Functional Programming in
Scheme

With Web Programming Examples
September 2003

Kurt Normark ©
Department of Computer Science, Aalborg University, Denmark

Abstract

This is a teaching material about functional programming in Scheme. The current version of
the material is a 2nd edition. Compared the first edition from the Fall 2002, the title has been
slightly changed. Scheme is a pragmatic choice of programming language in the functional
programming paradigm, with unique flexibility due to the membership of the Lisp family of
languages. Furthermore, Scheme is both very powerful and rather small compared to other
Lisp languages.

As the title indicates, we are concerned with the functional subset of Scheme. As a unique
aspect of this material, we illustrate the functional paradigm in Scheme with examples from
the area of web programming and web authoring. This is done on the ground of LAML - the
Lisp Abstracted Markup Language.

We hypothesize that an approach with HTML and XML examples is more motivating than
many other approaches, which often tend to illustrate Scheme programming via examples of
only little practical relevance.

The sound track of the cs.auc.dk version of this material depends on Real Player
(www.real.com). The animations depend on SVG and a SVG plugin, such as the one from
Adobe (http://www.adobe.com/svg/viewer/install/).

A number of exercises are integrated with this material. One star exercises are relatively
easy, two star exercises of medium difficulty, and the three star exercises are the most
demanding. The numbering of exercises follows the numbering of lectures. Figures,
programs, tables etc. are numbered within the thematic section, where they appear.

The material is indexed, and the special index icon on most pages leads to the alphabetic
index of the material.

When new concepts are introduced we often refer to The free Online Dictionary of
Computing - FOLDOC. You must have an Internet connection to make use of the FOLDOC
references.

In relation to Scheme, we provide references to the Revised(5) Report on the Algorithmic
Language Scheme - RSRS . The Scheme Report is bundled with the CD version of this
material.

Colophon: This material has been authored using the LENO language. LENO is an XML language, which at
the grammatical level is defined using an XML DTD. We use LENO in the context of LAML, which allows
us to author LENO material in the Scheme programming language. Thus, all source material is written in
Scheme, using the mirrors of the XML LENO language, and a mirror of HTML. The primary LENO
language is used to produced annotated slide pages, in a number of different views. A secondary source - the
thematic view - can be derived, which is enriched with additional text. The present material is a particular
'printable’ rendering of the thematic view. The printable thematic view has been edited slightly in MS Word
for the sake of appropriate page breaking, and appropriate aggregations of theme chapters have been formed.
From MS Word, PDF files have been generated using Adobe Acrobat.

i

e ® AR WD

W N N N N N N NN NN = e e e e e e e
S O 0 O SN N A W N = O O 0 O39S N A WDN=O

Contents

Programming Paradigms

Overview of the four main programming paradigms
Lisp and Scheme

Expressions and values

Types

Lists

Other Data Types

Functions

Name binding constructs

. Conditional expressions

. Recursion and iteration

. Example of recursion: Hilbert Curves

. Continuations

. Introduction to higher-order functions

. Mapping and filtering

. Reduction and zipping

. Currying

. Web related higher-order functions

. Introduction to evaluation order

. Rewrite rules, reduction, and normal forms
. Delayed evaluation and infinite lists in Scheme
. Introduction to linguistic abstraction

. Language embedding

. Language Mirroring

. Lisp in Lisp

. An introduction to LAML

. HTML mirror functions in LAML

. Additional LAML topics

. Classes and objects in Scheme

. Imperative Scheme and LAML Constructs

il

13
21
27
37
41
57
63
69
81
85
95
103
109
117
121
133
139
151
159
167
171
177
183
189
195
201
215

1. Programming Paradigms

Before we start on the functional programming paradigm we give a broad introduction to
programming paradigms in general.

In this section we will discuss the meaning of the word ‘paradigm’, and we will enumerate the main
programming paradigms, as we see them.

In Chapter 2 we will discuss each of the main programming paradigms in some details. Be aware,
however, thet this materia is about the functional programming paradigm. The two first chapters of
the material mainly serve as background, and as contrast for an enhanced understanding of the
functional school.

1.1. Paradigm

Lecture 1 - slide 2

|It Is interesting and useful to investigate the meaning of the word 'paradigm’

We will here look at the meaning of the word 'paradigm’, as it appears in "The American Heritage
Dictionary of the English Language, Third Edition':

"An exampl e that serves as pattern or model."

Another and dightly more complicated explanation stems from the 'The MerriamWebster's
Collegiate dictionary':

" A philosophical and theoretical framework of a scientific school or discipline
within which theories, laws, and generalizations and the experiments performed
in support of them are formulated"

Below we will first describe the meaning of the word 'paradigm’ as we adopt it in this course. After
that we describe related concepts, namely ‘programming technique', ‘programming style', and
‘programming culture'.

Programming paradigm (in this course)
A pattern that serves as a school of thoughtsfor programming of computers
Programming technique
Related to an algorithmic idea for solving a particular class of problems
Examples: 'Divide and conquer' and 'program devel opment by stepwise
refinement’
Programming style

The way we express ourselves in a computer program
Related to elegance or lack of elegance
Programming culture
- Thetotality of programming behavior, which often is tightly related to afamily of
programming languages
The sum of amain paradigm, programming styles, and certain programming
techniques.

1.2. The main programming paradigms

Lecture 1 - slide 3

In this section we will enumerate the four main programming paradigms which will be treated in
additional detailsin Chapter 2. It may very well be a matter of taste if some of the additional
programming paradigms, which we also mention below, should be considered as main
programming paradigms as well.

We identify four main programming paradigms and a number of minor programming
paradigms

In the concept definition below, we characterize a main programming paradigm in terms of an idea
and abasic discipline.

A main programming paradigm stems an idea within some basic discipline which is

relevant for performing computations

Main programming paradigms
The imperative paradigm
The functional paradigm
The logical paradigm
The object-oriented paradigm
Other possible programming paradigms
The visual paradigm
One of the parallel paradigms
The constraint based paradigm

In Chapter 2 we will characterize the four main programming paradigms mentioned above. We will
in particular attempt to trace the idea and basic discipline behind the four main programming
paradigms. We do not go into the other programming paradigms, mentioned above, in this material.

1.3. References

[-] Foldoc: visual programming
http://wombat.doc.ic.ac.uk/foldoc/fol doc.cgi ?query=visual +programming

2. Overview of the four main programming
paradigms

In this section we will characterize the four main programming paradigms, as identified in Section
1.2.

As the main contribution of this exposition, we attempt to trace the basic discipline and the idea
behind each of the main programming paradigms.

With this introduction to the material, we will also be able to see how the functional programming
paradigm corresponds to the other main programming paradigms.

2.1. Overview of the imperative paradigm

Lecture 1 - slide 5

The word 'imperative’ can be used both as an adjective and as a noun. As an adjective it means
‘expressing a command or plea. In other words, asking for something to be done. As anoun, an
imperative is acommand or an order. Some programming languages, such as the object oriented
language Beta, uses the word 'imperative’ for commands in the language.

First do this and next do that

The 'first do this, next do that' is a short phrase which really in anutshell describes the spirit of the
imperative paradigm. The basic idea is the command, which has a measurable effect on the program
state. The phrase also reflects that the order to the commands is important. 'First do that, then do
this would be different from ‘first do this, then do that'.

In the itemized list below we describe the main properties of the imperative paradigm.

Characteristics:
- Discipline and idea
Digital hardware technology and the ideas of Von Neumann
Incremental change of the program state as a function of time.
Execution of computational stepsin an order governed by control structures
We call the steps for commands
Straightforward abstractions of the way a traditional Von Neumann computer
works
Similar to descriptions of everyday routines, such as food recipes and car repair
Typical commands offered by imperative languages
Assignment, 10, procedure calls
L anguage representatives
Fortran, Algol, Pascal, Basic, C

The natural abstraction is the procedure
Abstracts one or more actions to a procedure, whichcan be called as a
single command.
"Procedural programming"

We use severa names for the computational steps in an imperative language. The word statement is
often used with the special computer science meaning 'a elementary instruction in a source
language'. The word instruction is another possibility; We prefer to devote this word the
computational steps performed at the machine level. We will use the word ‘command’ for the
imperatives in a high level imperative programming language.

A procedure abstracts one or more actions to a procedure, which can be activated as a single action.

2.2. Overview of the functional paradigm

Lecture 1 - slide 6

We here introduce the functional paradigm at the same level as imperative programming was
introduced in Section 2.1.

Functional programming isin many respects a ssimpler and more clean programming paradigm than
the imperative one. The reason is that the paradigm originates from a purely mathematical
discipline: the theory of functions. As described in Section 2.1, the imperative paradigm is rooted in
the key technological ideas of the digital computer, which are more complicated, and less ‘clean’
than mathematical function theory.

Below we characterize the most important, overall properties of the functional programming
paradigm. Needless to say, we will come back to most of them in the remaining chapters of this
meaterial.

\Eval uate an expression and use the resulting value for something

Characteristics:
Discipline and idea
M athematics and the theory of functions
The values produced are non-mutable
Impossible to change any constituent of a composite value
As aremedy, it is possible to make arevised copy of composite value
Atemporal

Abstracts a single expression to a function which can be evaluated as an
expression
Functions are first class values
Functions are full-fledged data just like numbers, lists, ...
Fits well with computations driven by needs
Opens anew world of possibilities

2.3. Overview of thelogic paradigm

Lecture 1 - slide 7

The logic paradigm is dramatically different from the other three main programming paradigms.
The logic paradigm fits extremely well when applied in problem domains that deal with the
extraction of knowledge from basic facts and relations. The logical paradigm seems less natura in
the more general areas of computation.

\A nswer a question via search for a solution

Below we briefly characterize the main properties of the logic programming paradigm.

Characteristics:
- Discipline and idea
Automatic proofs within artificia intelligence
Based on axioms, inference rules, and queries.
Program execution becomes a systematic search in a set of facts, making use of a
set of inference rules

2.4. Overview of the object-oriented paradigm

Lecture 1 - slide 8

The object-oriented paradigm has gained great popularity in the recent decade. The primary and
most direct reason is undoubtedly the strong support of encapsulation and the logical grouping of
program aspects. These properties are very important when programs become larger and larger.

The underlying, and somewhat deeper reason to the success of the object-oriented paradigm is
probably the conceptual anchoring of the paradigm. An object-oriented program is constructed with
the outset in concepts, which are important in the problem domain of interest. In that way, all the
necessary technicalities of programming come in second row.

Send messages between objects to simulate the temporal evolution of a set of real world
phenomena

As for the other main programming paradigms, we will now describe the most important properties
of object-oriented programming, seen as a school of thought in the area of computer programming.

Characteristics:
Discipline and idea
The theory of concepts, and models of human interaction with real world
phenomena
Data as well as operations are encapsulated in objects
Information hiding is used to protect internal properties of an object
Objects interact by means of message passing
A metaphor for applying an operation on an object
In most object-oriented languages objects are grouped in classes
Objectsin classes are similar enough to allow programming of the classes,
as opposed to programming of the individual objects
Classes represent concepts whereas objects represent phenomena
Classes are organized in inheritance hierarchies
Provides for class extension or specialization

This ends the overview of the four main programming paradigms. From now on the main focus will
be functional programming in Scheme, with special emphasis on examples drawn from the domain
of web program devel opment.

2.5. References

[-] Foldoc: object-oriented programming
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=obj ect-oriented+programming
[-] Foldoc: logic programming
http://wombat.doc.ic.ac.uk/foldoc/fol doc.cgi ?query=Iogic+programming
[-] Foldoc: functional programming
http://wombat.doc.ic.ac.uk/foldoc/fol doc.cgi ?query=functional +programming
[-] Foldoc: imperative

http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=imperative

3. Lisp and Scheme

We use the programming language Scheme in this material. Therefore it is natural to start with a
brief discussion of the family of languages, to which Scheme belongs. Thisis the Lisp family of
languages.

3.1 Lisp

Lecture 2 - slide 2

Lisp was invented by John McCarthy in the late fifties. In these days the dominating use of
computers was for numeric purposes. One of the purposes of Lisp was to support symbolic
computation.

As an example of symbolic computation, let us mention the calculation of differentiated
mathematical functions. The symbolic derivation of the function f(x) = x * x isthe function g(x) = 2
* X. The numeric derivation of f will never deliver the function g on source form. The best we can
hope for is some sort of numeric approximation to g, which can be applied to numbers.

It is worth noticing that transformation and compilation of programs also can be considered as
symbolic computations. In fact it turns out, that the computer is better suited to do symbolic
computations than numeric computations, because the former always can be done exactly, whereas
the latter often are inexact.

Today, many Lisp languages are not in use any more. Lisp 1.5 and Interlisp are two of these. 'Lisp'
is today used as a family name of al 'Lisp languages, which includes such languages and Emacs
Lisp, Common Lisp, and Scheme.

|Lisp is the next oldest programming language - only Fortran is older.

In the past, thousands of programming languages have been invented and tried out. Naturally, many
of these are not in active use any more. It is interesting to notice that both Lisp and Fortran are still
in widespread use for many different purposes.

Below we will summarize the main characteristics of Lisp.

Lisp characteristics:
- Invented for symbolic computations

Superficialy inspired by mathematical function theory

Is syntactically and uniformly based on parenthesized prefix notation
Parsing a Lisp program is trivial

Programming goes hand in hand with language development

It is easy to access and manipulate programs from programs
Calls for tool making in Lisp

One of the most remarkable facts of Lisp is that the primary data structure in the language - lists - is
used for the representation of programs. Thisis the reason why we use all these parenthesesin a
Lisp program! Originally, this characteristic program representation was only thought as an
intermediate representation, not to be used by the human programmer. It turned out, eventually, that
the representation had some very useful properties. Therefore the following 'equation’ is an
important characteristic of all Lisp languages.

Program = Data = Lists

3.2. Scheme

Lecture 2 - slide 3

Scheme is a programming language in the Lisp family. Scheme is formally defined in the Scheme
report [Abelson98], which is revised from time to time. Currently, the fifth revision is the most
current one. This explains the abbreviation R5RS, which goes something like 'The fifth Revised
Report on the Algorithmic Language Scheme'.

IScheme is a small, yet powerful language in the Lisp family

Scheme characteristics:
Supports functional programming - but not on an exclusive basis
Functions are first class data objects
Uses static binding of free names in procedures and functions
Types are checked and handled at run time - no static type checking
Parameters are evaluated before being passed - no lazyness

Many people encounter Lisp programming in Emacs Lisp [fsf02] , [fsf02a)], because of the need of
customizing Emacs in non-trivial ways. Emacs Lisp is an old and primitive dialect of Lisp. Hard
core Lisp programmers are also likely to meet Common Lisp, which is much bigger than Scheme.
The statement below compares very briefly Common Lisp and Emacs Lisp with Scheme.

Scheme is an attractive alternative to Common Lisp (abig monster) and EmacsLisp
(the rather primitive extension language of the Emacs text editor).

10

Exercise 2.1. Getting started with Scheme and LAML

The purpose of this exercisesis learn the most important practical details of using a Scheme
system on Unix. In case you insist to use Windows we will assume that you install the necessary
software in your spare time. There is no time available to do that during the course exercises.
Further details on installation of Scheme and LAML on Windows.

Y ou will have to choose between DrScheme and MzScheme.

DrScheme is a user friendly environment for creating and running Scheme programs, with lots of
menus and lots of help. However, it is somewhat awkward to use DrScheme with LAML. Only
use DrScheme in this course if you cannot use Emacs, or if you are afraid of textually, command
based tools. Follow this link for further details.

MzScheme is the underlying engine of DrScheme. MzScheme is a ssmple read-eval-print loop,
which let you enter an expression, evaluate and print the result. MzScheme is not very good for
debugging and error tracing. MzScheme works well together with Emacs, and there is a nice
connection between MzScheme and LAML. MzScheme used with Emacs is preferred on this
course. Please go through the following steps:

1. Insert the following line in your .emacs file in your home dir, and then restart Emacs:

(l oad "/ pack/Il am / emacs- support/dot-emacs-contribution.el™)

2. Have a session with a naked Scheme system by issuing the following command in Emacs.
M X run-schene-interactively

o Define acouple of smple functions (odd and even, for instance) and call them.

o Split the window in two partswith C- x 2 and make a buffer in the topmost one
named sour ces. scm(C-x b). Bring the Scheme interpreter started above into the
lower part of the window. The buffer with the Scheme processis called
inferior-lisp.Putthesources. scmbuffer in Scheme mode (M x schene-
nmode). Define the functions odd and even in the buffer and use the Scheme menu
(or the keyboard shortcuts) to define them in the running Scheme process.

3. Have asimilar session with a Schemet+tLAML system by issuing the following command
in Emacs. M x run-1am -interactively (You may haveto confirm that a previousy
started Scheme processis allowed to be killed).

o All you didinitem 2 can aso be done here.

o Evauateasmple HTML expression, such as

(htm (head (title "Atitle")) (body (p "A body")))

o Usethefunction xm -render to make atextua rendering of the HTML

expression.
o Make adeliberate grammatical error in the LAML expression and find out what
happens.

4. Makeafile'try.laml'.
o Control that Emacs brings the buffer in Laml mode. Issuean- x | am - node

11

explicitly, if necessary.

Use the menu 'Laml > Insert LAML template' to insert an XHTML template.

Fill in some details in the head and bodly.

Process the file viathe LAML menu in Emacs: Process asynchronously. The file
try.html will be defined.

Play with simple changes to the HTML expression, and re-process. Y ou can just
hit C-o on the keyboard for processing.

You can get good inspiration from the tutorial Getting started with LAML at this
point.

3.3. References

[-]
[-]

[abel son98]

[fsf02]

[fsf024]

Foldoc: Scheme
http://wombat.doc.ic.ac.uk/foldoc/fol doc.cgi ?query=Scheme

The Scheme Language Report
http://www.cs.auc.dk/~normark/prog3-03/external-material /r5rg/r5rs-html/r5rs_1.html

Schemers.org home page
http://www.schemers.org/

Foldoc: prefix notation
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=prefix+notation

Foldoc: Lisp

http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=Lisp

Richard Kelsey, William Clinger and Jonathan Rees, "Revised"5 Report on the
Algorithmic Language Scheme", Higher-Order and Symbolic Computation,
Vol. 11, No. 1, August 1998, pp. 7--105.

Free Software Foundation, "Programming in Emacs Lisp (Second Edition)”,
January 2002.

GNU Emacs Lisp Reference Manual. The Free Software Fundation Inc, May
2002.

12

4. Expressions and values

The notion of expression is of central importance in the functional programming paradigm. In some
sense, expressions is the only computational building block of the functional programming
paradigm. As a contrast, the imperative paradigm makes use of both commands and expressions. In
the imperative paradigm commands are executed with the purpose of modifying the state of the
program, as it is being executed. Expressions are executed - or evaluated - with the purpose of
producing a value. Values of expressions can be used as parts of surrounding expressions, in an
evaluation process. Ultimately, the value of an expression is presented to the person who runs a
functional program. The value serves as the 'result’' of the computation.

4.1. Expressions, values, and types

Lecture 2 - slide 5
We will now describe and characterize the important concepts of expressions, values and types.

The relationship between the three key concepts is as stated below.

|Eval uation of an expression yields a value which belongs to a type

In the itemized list below we will describe the most important properties of expressions, values, and
types. The coverage given here is only a brief appetizer. We have much more to say about all three
of them later in the materid.

Expressions
Written by the programmer
Will typically involve one or more function calls
A Function - as written by the programmer - is itself an expression
Values
Primitive as well as composite
A function expression is evaluated to a functionobject
Types
A set of values with common properties
Type checking can be used to validate a program for certain errors before it is
executed

Expressions are part of the source program, as written by the programmer.

A function expression is called a lambda expression. We will encounter these important expressions
later in this material.

13

The primitive values are those which cannot be decomposed into more primitive parts. Some of the
important primitive values are numbers, the two boolean values (true and false), and the characters
of some character set. Primitive values stand as a contrast to composite values, such aslists and
arrays, which are aggregations of parts, each of which are compositive or primitive values
themselves.

4.2. Examples of expressions and their values

Lecture 2 - slide 6

Before we go into additional details, we will give examples of important kinds of expressions. This
includes smple expressions, such as the well-known arithmetic expressions. Next we give an
example of a conditional expression, which somehow corresponds to selective control structuresin
the imperative paradigm. Lambda expressions generate functions, and as such they are of primary
importance for the functional programming paradigm. Finally, HTML expressions are of interest to
the approach taken in the running example used in this material - an example from the domain of
web program development. Wherever possible we wish to illustrate the use of functional
programming in the web domain. In this domain, expressions that involve mirrors of HTML and
XML elements are the key constituents.

Let us assume that x has the value 3
Simple expressions
7 hasthevaue7
(+ x 5) hasthevaue8
Conditional expressions
(if (even? x) 7 (+ x 5)) hasthevalue8
L ambda expressions
(lanbda (x) (+ x 1)) hasthe vaue 'the function that adds one to its
parameter’
HTML mirror expressions

(htm
(head
(title "PP"))
(body
(p "A body paragraph"))
)

The value of this expression can be rendered as a string in HTML which can be
presented in an Internet browser.

The conditiona expression is evaluated in two steps. First the boolean expression (even? x) IS
evaluated. If x is even, the boolean expression (even? x) evaluatesto true and thetrivia
expression 7 is evaluated. Because x is 3 and therefore odd, the other expression (+ x 5) is
evaluated, giving us the fina value 8. It isimportant to realize that an if form does not evaluate al
three congtituent expressions at the outset. It first evaluates the boolean expression, and based on

14

the outcome, it either evaluates the 'then part' or the 'else part’. Not both! We have much more to say
about the order of evaluation of ani f formin alater part of this material

Regarding the lambda expression, the x in parentheses after lambda is the formal parameter of the
function. the expression (+ x 1) isthe body. In functions, the body is an expression - not a
command.

The HTML mirror expressions stem from the LAML libraries.

The functionsht nl , body, ti t1 e, head, and p correspond to the HTML elements of the same
names. In the LAML software, the HTML elements are mirrored as functions in Scheme.

The evaluation order of the constituentsin a conditional expression is discussed in detailsin Section
20.10. Conditiona expression is a theme we will study in much more detail in Chapter 10. HTML
mirror expressions are discussed in additional detailsin Chapter 26.

4.3. Evaluation of parenthesized expressions

Lecture 2 - slide 7

Parentheses in Scheme are used to denote lists. Program pieces - expressions - are represented as
lists. Evaluation of parenthesized expressions in Scheme follows some simple rules, which we
discuss below.

How istheform (a b ¢ d e) evaluated in Scheme?

Theform (a b ¢ d e) appearsasapair of parentheses with a number of entitiesinside. The
question is how the parenthesized expression is evaluated, and which constraints apply to the
evaluation.

Evaluation rules
- The evaluation of the empty pair of parentheses() isin principle an error

If a is the name of a specia form, such as| anbda, i f, cond, or def i ne Special

rules apply

In al other cases:
Evaluate all subforms uniformly and recursively.
The value of the first constituent a must be a function object. The function
object is called with the values of b, ¢, d, and e as actual parameters.

The evaluation of the empty pair of parentheses () isoften - in concrete Scheme systems -
considered asthe same as' (), which returns the empty list. However, you should always quote
the empty pair of parentheses to denote the empty list.

15

Having reached the case where afunction is called on some given data, which are passed as
parameters, like in the call (ab c d), the next natural question is how to call afunction. We will
explore thisin detail in Chapter 20, more specifically, Section 20.3where we see that the call should
be replaced by the body of the called function, in which the formal parameters should be replaced
by the actual parameters.

4.4. Arithmetic expressions

Lecture 2 - slide 8

It is natural to start our more detailed study of expressions by reviewing the well-known arithmetic
expressions. The important thing to notice is the use of fully parenthesized prefix notation.

Scheme uses fully parenthesized arithmetic expressions with prefix notation

Prefix notation is defined in the following way:

Using prefix notation the operator is given before the operands

Prefix notation stands as a contrast to infix and postfix notation. Infix notation is 'standard notation
in which the operand is found in between the operands.

Below we give examples of evaluation of a number of different arithmetic expressions. Notice in
particular the support of rational numbers in Scheme, and the possibility to use arbitrarily large

numbers.

[Expression \Value

(+ 4 (* 56)) 34

Eiezing i ﬁi (* 4 x) 3) ‘207

(/ 21 5) 21/5

(/ 21.0 5) 4.2

(defi ne (fak n)

1)53;)(= 0@y 8w (FER (G m 30414093201713378043612608166064768
844377641568960512000000000000

(fak 50)

Table4.1 Examples of arithmetic expressions. The prefix notation can
be seen to the left, and the values of the expressions appear to theright.

There is no need for priorities - operator precedence rules - of operatorsin fully
parenthesized expressions

16

The observation about priorities of operators stands as a contrast to most other languages. In Lisp
and Scheme, the use of parentheses makes the programmer’s structural intentions explicit. Thereis
no need for specia rules for solving the parsing problem of arithmetic expressions. Thus, 1+2*3 is
written (+ 1 (* 2 3)), and it is therefore clear that we want to multiply before the addition is carried
out.

4.5. Equality in Scheme

Lecture 2 - slide 9

Equality is relevant and important in most programming paradigms and in most programming
languages. Interestingly, equality distinctions are not that central in the functional programming
paradigm. Two objects 0l and 02 which are equal in aweak sense (structurally equal) cannot really
be distinguished in the functional paradigm. One of them can be substituted by the other without
causing any difference or harm.

When we encounter imperative aspects of the Scheme language, the different notions of equality
becomes more important. In the imperative programming paradigm we may mutate existing objects.
By changing one of the two structurally equal objects, o1 and 02, it isreveded if o1 and 02 are aso
equal in astronger sense. If the mutation of o1 also affects o2 we can conclude that o1 and o2 are
identical (eq? o1 o02).If amutation of o1 does not affect 02, then (not (eq? ol 02)).

As most other programming languages, Scheme supports a number of different
equivalence predicates

In Scheme we have the following important equivalence predicates:

The most discriminating
- eqg?
The least discriminating - structural equivalence
equal ?
Exact numerical equality
Others
eqv? isclosetoeq?
st ring=2 isstructural equivaence on strings

An equivalence predicate divides a number of objects into equivalence classes (digoint subsets).
The objectsin acertain class are all equal. The most discriminating equivalence predicate is the one
forming most equivalence classes.

To stay concrete, we show a number some examples of equality expressions in a dialogue with a
Scheme system. Y ou should consider to try out other examples yourself.

17

1> (eq? (list "a '"b) (list "a 'h))
#f

2> (eqv? (list "a 'b) (list "a 'b))
#f

3> (equal? (list "a 'b) (list "a 'b))
#t

4> (= (list 'a 'b) (list "a 'b))
=: expects type <nunber> as 2nd argunment, given: (a b); other argunents were: (a
b)

5> (string=? "abe" "abe")
#t

6> (equal ? "abe" "abe")
#t

7> (eq? "abe" "abe")
#f

8> (eqv? "abe" "abe")
#f

Program 4.1 A sample interaction using and demonstrating the equivalence functionsin Scheme.

4.6. The read-eval-print loop

Lecture 2 - dide 10

It is possible to interact directly with the Scheme interpreter. At afine grained level, expressions are
read and evaluated, and the resulting value is printed. Thisis a contrast to many other language
processors, which require much more composite and coarse grained fragments for processing
pUrpOSEsS.

The tool which let us interact with the Scheme interpreter is called a 'read-eval-print loop),
sometimes referred to via the abbreviation 'REPL'.

[The 'read-eval- print loop' alows you to interact with a Scheme system in terms of
evaluation of individual expressions

We show the interaction with a Scheme REPL below. The interaction is quite smilar to the
exposition in Table 4.1. In this as well as in future presentations of REPL interaction, we often put a
number in front of the prompt. This simple convenience to allow us to refer to asingle interaction in
our discussions.

18

1> (+ 4 (* 5 6))
34

2> (define x 6)

3> (+ (* 5 x x) (* 4 x) 3

207

4> (] 21 5)
21/'5

5> (/ 21.0 5)
4.2

6> (define (fak n) (if (=n0) 1 (* n (fak (- n 1)))))

7> (fak 50)

30414093201713378043612608166064768844377641568960512000000000000

Program 4.2 A sample session with Scheme using a read eval print loop.

4.7. References

[-]

Equivaence predicates in R5RS
http://www.cs.auc.dk/~normark/prog3-03/external - material /r5rs/r5rs-
html/r5rs_48.htmI#SEC50

Foldoc: prefix notation

http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=prefix+notation

R5RS: Numerical operations
http://www.cs.auc.dk/~normark/prog3-03/external - material /r5rs/r5rs-html/r5rs_54.html

R5RS: Numbersin Scheme

http://www.cs.auc.dk/~normark/prog3-03/external -material /r5rs/rors-
html/r5rs_49.htmI#SEC51

R5RS: Procedure calls
http://www.cs.auc.dk/~normark/prog3-03/external - material/r5rs/rbrs-html/r5rs_28.html

19

20

5. Types

It is hard to justify atext about functional programming without a fair treatment of types. In this
chapter we will go over the most important concepts of types, as relevant in the functional
programming paradigm.

5.1. Types

Lecture 2 - slide 12

Types plays an essentia role in any programming language and any programming paradigm. In
many languages types are used in the program text as constraints on variables and parameters. C,
Pascal, and Java are such languages. In others, the types are inferred (somehow extracted from use
of variables, parameters etc. relative to the ways the variables and parameters are used in operators
and functions). ML is such alanguage. Y et in other languages, types are solely used to classify the
values (data objects) at run time. Scheme is such alanguage. Thus, in Scheme we do not encounter
types in the source program, but only at run time.

In general, we see three advantages of dealing with types:

[The notion of type is used to make programs more readable, make them run more
efficient, and to detect certain errorshbefore they cause errorsin the calculation

Let us now make a more detailed characteristics of these advantages in the following itemized list.

Readability
Explicitly typed variables, parameters and function serve as important
documentation, which enhances the program understanding.

Efficiency
Knowledge of the properties of data makes it possible to generate more efficient
code

Correctness
Explicit information about types in a program is akind of redundancy against
which it is possible to check expressions and values
Programmers usually wish to identify type errors as early as possible in the
development process

The correctness quality is often brought into focus. In the next few sections we will therefore
discuss type checking issues.

21

5.2. Type checking

Lecture 2 - dlide 13

As aready mentioned the use of types in source programs makes it possible to deal with program
correctness - at least in some simple sense. In this context, correctness is not relative to the overall
intention or specification of the program. Rather, it isin relation to the legal use of values as input
to operators and functions.

Type checking is the processes of identifying errors in a program based on explicitly or
implicitly stated type information

Below we will identify three kinds of 'typing’, which are related to three different approaches to
type checking.

Weak typing
Type errors can lead to erroneous calculations

Strong typing
Type errors cannot cause erroneous calculations
The type check is done at compile time or run time

Static typing
The types of all expressions are determined before the program is executed
The type check istypicaly carried out in an early phase of the compilation
Comes in two flavors: explicit type decoration and implicit type inference
Static typing implies strong typing

According to section 1.1 the Scheme Report (R5RS) 'Scheme has latent as opposed to manifest
types. Types are associated with values (also called objects) rather than with variables.' In our
categorization, Scheme is strongly typed and types are dealt with at run time (on values) as a
contrast to compile time (on variables).

It is worth noticing that we classify Scheme as supporting strong typing. Many programmers will
probably be surprised by this categorization because the 'typing' in Scheme is experienced to be
relatively ‘weak' and ‘dynamic’. However, type errors in Scheme do not cause erroneous
calculations. Type errors are discovered at alow and basic level. As such we find it justifiable to
classify the typing in Scheme as being strong. Notice however, that there is no trace of static type
checking in Scheme. Static type checking is the rule in most modern programming languages today,
and static type checking is also an absolutely key aspect in functional programming languages such
asML [Harper88] and Haskell [Hudak92].

22

5.3. Static type checking

Lecture 2 - dlide 14

We here make the distinction between explicit type decoration and implicit type inference, and
explain the principled difference.

[There are two main kinds of static type checking: explicit type decoration and implicit
type inference

For the sake of the discussion we will involve the following example:

Let us study the expression (+ x (string-length y))

Explicit type decoration
Variables, parameters, and others are explicitly declared of a given typein the
source program
It is checked that y is a string and that x is a number
Implicit type inference
Variables and parameters are not decorated with type information
By studying the body of st ri ng-1engt h it is concluded that y must be a string
and that the type of (string-1ength y) hasto bean integer
Because + adds numbers, it is concluded that x must be a number

Explicit type decoration is well-known to most computer science students.

If you want to study additional details about implicit type inference you should consult a textbook
of ML or Haskell programming.

5.4. An example of type checking

Lecture 2 - dide 15

We will now discuss type checking relative to the three kinds of ‘typing', which we identified in
Section 5.2.

|Istheexpron (+ 1 (if (even? x) 5 "five")) correct with respect to types?

The example shows an arithmetic expression that will cause atype error with most type checkers.
However, if X is even the sum can be evaluated to 6. If x is odd, we encounter atype error because
we cannot add the integer 1 to the string "five".

23

Weak typing
It is not realized that the expression (+ 1 "five") isillegd.
We can imagine that it returns the erroneous value 47

Strong typing
If, for instance, x is 2, the expression (+ 1 (if (even? x) 5 "five")) isOK,
and has the value 6
If x isodd, it is necessary to identify this as a problem which must be reported
before an evaluation of the expression is attempted

Static typing
(+ 1 (if (even x) 5 "five")) falsto passthe type check, because the type
of the expression cannot be statically determined
Static type checking is rather conservative

When we use the word conservativefor static type checking, we refer to the caution of the type

checker. Independent of branching, and in ‘worst cases scenarios, the type constraints should be
guaranteed to hold.

5.5. Typesin functional programming languages

Lecture 2 - dide 16

Before we proceed we will compare the handling of types in Scheme with the handling of typesin
other functional programming languages. Specifically, we compare with Haskell and ML.

Scheme is not representative for the handling of types in most contemporary functional
programming languages

ML and Haskell
Uses static typing ala implicit type inference
Some meaningful programs cannot make their way through the type checker
There will be no type related surprises at run time
Scheme
Isstrongly typed with late reporting of errors
Type errors in branches of the program, which are never executed, do not prevent
program execution
There may be corners of the program which eventually causes type problems

Due to the handling of types, Scheme and Lisp are elastic and flexible compared with
ML, Haskell, and other similar language which are quite stiff and rigid.

24

5.6. References

[-]
[-]
[-]
[-]

[harper88]

[hudek92]

Foldoc: weak typing
http://wombat.doc.ic.ac.uk/fol doc/foldoc.cgi ?query=weak+typing

Foldoc: strong typing
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=strong-+typing

R5RS: Semantics (Typesin Scheme)
http://www.cs.auc.dk/~normark/prog3-03/external-material /r5rs/r5rs-html/r5rs_5.html

Foldoc: type
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=type

Robert Harper, Robin Milner and Mads Tofte, "The Definition of Standard
ML, Version 2", No. ECS-LFCS-88-62, University of Edinburgh, August
1988, .

Paul Hudak and Joseph H. Fasel, "A Gentle Introduction to Haskell", ACM
Sgplan Notices, Vol. 27, No. 5, May 1992.

25

26

6. Lists

The list data type is the characteristic composite data type in all Lisp languages, and as such also in
Scheme. Interesting enough, the surface form of a Lisp program isalist itself. Thisis an important
practical observation. Below, we will study the list data type of Lisp and Scheme.

6.1. Proper lists

Lecture 2 - dide 18

Lists are recursively composed. We start with the main points regarding the recursive construction
of ligts.

A listisrecursively composed of ahead and atail, which is a (possibly empty) list itself

The building blocks of lists are the cons cells

Every such cell is allocated by an activation of the cons function

Below we illustrate how thelist (d ¢ b a) isbuilt. The web version of the material gives the best
impression of the construction process, via animation (refresh the web presentation to restart the
animation). The paper version of the material only shows the end result of the construction.

Lst: P 1l T I T LT 0O
) | } !]

d ¢ b a

Figure 6.1 Alist (d c b a) constructed by evaluating the expression
(cons '"d (cons '"c (cons 'b (cons "a '())))).

In the items below we emphasi ze the decomposition of the cons cell made by (cons e f), wheree
isan arbitrary expression and f isalist. Notice that we assume that the variable x is bound to (cons
e f).

Construction of the list structure which we here call x
(cons e f)

Selection:
(car x) => e
(cdr x) =>f

The constructor function cons takes an element e and alist f and constructs a new list. Asillustrated
above cons makes exactly one new cons cell, and no kind of list copying isinvolved at al.

27

The selector car returns the first e ement of the list. A better name of car would be head .

The selector cdr returnsthe list consisting of all but the first element in the list. A better name of
cdr would bet ail .

|A proper list is dways terminated by the empty list

In Scheme the empty list is denoted '(). When we in this context talk about the termination of the
list we mean the value we get by following the cdr references to the end of the list structure.

6.2. Symbolic expressions and improper lists

Lecture 2 - dide 19

Asillustrated above, the cons function can be used to construct linear linked lists. 1t should not
come as a surprise, however, that cons can be used to make binary tree structures as well. The
reason is that each cons cell can refer to two other cons cells.

Thecons function is suitable for definition of binary trees with 'data in the leaves

In Figure 6.2 we show a binary tree structure made by use of the the cons function. The light blue
box labeled Sexpr is a variable, the value of which is the binary tree structure. In Exercise 2.2 you
are encouraged to construct the tree.

Sexpr: B
g

il

a b ¢ a & f g h

Figure 6.2 A symbolic expression which illustrates the most general
formit can take - a binary tree

In Figure 6.3 we show the exact same structure in a dlightly different layout, and with another
coloring. This layout emphasizes the understanding of the structure as an improper list. The first
element is the green tree, the second is the brown tree, the third is the symbol g, and the improper
list element is the symbol h.

28

s
II", —‘—P| '.! ! |
; ‘H v ¥
g h
. _ ol LY
& N e
Tl Ll e f
Y v Yy r
a b ¢ d

Figure 6.3 The same symbolic expression laid out asa list. The
expressionsisa proper listif and only if histhe empty list. If his not the
empty list, the symbolic expression isan improper list.

As a matter of terminology, we use the name symbolic expressions, or S-expressions, for the
structures we have shown above.

Exercise 2.2. Construction of symbolic expressions

Construct the symbolic expressionsiillustrated on this page viathe cons primitive in Scheme. The
entities named a through h should be symbols. As a help, the rightmost part of the structureis
madeby (cons 'g 'h).' gisequivdent to (quote g), meaning that g is not evaluated, but

taken for face value.

Experiment with h being the empty list. Try to use a proper list function, such as! engt h, on your
structures.

6.3. Practical list construction

Lecture 2 - slide 20

On this page we address topics related to 'practical list construction’. Often, cons istoo low level for
construction of lists. Instead we usethel i st function or quoted expressions. A quoted expression
is taken for face value; The quot e form ” (e) prevents evaluation. The quasi quot e form " (e) isa
variant of quot e, which allows non constant constituentsin a quot e form. Please notice the use of
'normal quote' and 'back quote' before the parentheses. For details of the quasi quot e special form
you should consult section 4.2.6 in the Scheme report [Abelson98] .

lcons isthe basic list constructor function - but it can be applied through a number of
other means as well

29

List and S-expression construction:
Deep cons expressions
Using thel i st function
Using quot e or quasi quot e aso known as backquote

[Expression \Value

((cons 1 (cons 2 (cons (+ 1 2) '()))) (12 3)

(list 12 (+12)) (12 3)
l(quote (1 2 (+ 1 2))) (12 (+12)
(12 (+12) (12 (+12)
((quasiquote (1 2 (unquote (+ 1 2)))) (12 3)
P(12,(+12) (12 3)

Table6.1 Examplesof list construction by useof cons ,I i st and
quoted list expressions.

Exercise 2.3. Every second element of a list

Write afunction, ever y- second- el ement , that returns every second element of alist. As
examples

(every-second-element '(a b c)) => (a c)
(every-second-element '(a b c d)) => (a c)

It is recommended that you formulate a recursive solution. Be sure to consider the basis case(s)
carefully.

It is often worthwhile to go for a more general solution than actually needed. Sometimes, in fact,
the general solution is simpler than one of the more specialized solutions. Discuss possible
generalizations of ever y- second- el ement , and implement the one you find most appropriate.

6.4. List functions

Lecture 2 - dlide 21

On this page we will review a number of important list functions, which are part of Scheme and
described in section 6.3.2 of the Scheme report [Abelson9g] .

[There exists a number of important List functions in Scheme, and we often write other
such functions ourselves

30

(null? Ist) A predicate that returns whether Ist is empty

(list? I'st) A predicate that returns whether Ist is a proper list
(length |st) Returns the number of elements in the proper list Ist
(append Ist1 Ist2) Concatenates the elements of two or more lists
(reverse Ist) Returnsthe dementsin Ist in reverse order
(list-ref Ist k) Accesses element number k of the list Ist
(list-tail Ist k) Returnsthek'th tail of thelist Ist

It should be noticed that the first element is designated as element number 0. Thus (1ist-ref ' (a
b ¢c) 1) returnsb

6.5. Association lists

Lecture 2 - dide 22

Association lists are often used to associate two pieces of data. Association listsin Lisp and Scheme
correspond to a particular implementation of associative arrays, cf. [knoopnotes]

An association listisalist of cons pairs

Association lists are used in the same way as associative arrays

In the table below we shows simple examples and applications of association lists. Try them out
yourself!

[Expression \Value

(define conputer-prefs
"((peter . windows) (lars . mac)

(paw . linux) (kurt . unix)))
((assq 'lars conputer-prefs) ((lars . mac)
|(assq "kurt conputer-prefs) |(kurt . uni x)

(define conputer-prefs-1
(cons (cons 'l ene 'w ndows)
comput er - prefs))

((lene . wi ndows)
(peter . w ndows)

conputer-prefs-1 (lars . mac)

(paw . linux)

(kurt . unix))

Table6.2 Examplesof association lists. The function assg useseq? to
comparethefirst parameter with thefirst element - the key element - in
the pairs. As an alternative, we could use the functionassoc, which uses
equal ? for comparison. A better and more general solution would be to
pass the comparison function as parameter. Notice in this context, that
bothassq andassoc are'traditional Lisp functions' and part of
Scheme, as defined in the language report.

31

Exercise 2.4. Creation of association lists

Program afunction pai r - up that constructs an association list from alist of keys and alist of
values. As an example

(pair-up "(abc) (list 12 3))
should return
((a. 1) (b. 2) (c. 3))

Think of areasonable solution in case the length of the key list is different from the length of the
value list.

Exercise 2.5. Association list and property lists

Association lists have been introduced at this page. An association list isalist of keyword-vaue
pairs (alist of cons cells).

Property lists are closely related to association lists. A property list isa'flat list' of even length
with aternating keys and values.

The property list corresponding to the following association list

((a. 1) (b. 2) (c. 3))

(alb2c?3

Program afunction that converts an association list to a property list. Next, program the function
that converts a property list to an association list.

6.6. Property lists

Lecture 2 - dlide 23

Property lists are closely related to association lists. On this page - in Table 6.3 - we compare the
two kinds of lists with each other. In Program 6.1 we give examples of property lists from LAML,
which uses property lists for attributesin HTML, XML, and CSS.

A property list isaflat, even length list of associations

The HTML/XML/CSS attributes are represented as property listsin LAML documents

32

/Association list Property list

((peter . "windows") (lars . "nac") (peter "w ndows" lars "mac"
(paw . "linux™) (kurt . "unix")) paw "l inux" kurt "unix")

Table6.3 A comparison between association lists and property lists. In
this example we associate keys (represented as symbols) to string values.

(load (string-append lam -dir "lam .scnl))
(lam -style "sinple-xhtm 1.0-transitional -validating")

(wite-htm 'raw
(htm 'xmns "http://ww. w3. org/ 1999/ xht m "
(head
(meta ' http-equiv "Content-Type"
‘content "text/htm; charset=i so-8859-1")
(title "Attri bute Demd"))
(body '"id "KN' 'class "generic"

(p "Here comes a canpufl aged |ink:™")

(p (a "href "http://ww.cs. auc. dk" 'css:text-decoration "none"
‘target "main" "Link to the CS Departnment"))

(p "End of docunent."))))

(end-1am)

Program 6.1 A simple LAML document with emphasis on the attributes, represented as property
lists. There arefour attribute lists (property lists, each with its own color). Notice the CSSattribute

css: text-decoration,giveninlineinthe document .

In the LAML generd library there are functions (al i st -t o- propertylist and

propertylist-to-alist) that convert between association lists and property lists

Y ou should consult Section 26.2 if you want to learn more about the handling of attributesin

LAML.

6.7. Tablesaslists of rows

Lecture 2 - dide 24

In this material we are especially interested in studying examples from the web domain. In HTML,
tables are represented as collections of rows. It is therefore obvious to use lists of lists as a concrete
Lisp representation of tables. In Table 6.4 we show such atable, tabl, its rendering, and a number
of manipulations of the table (transpositions, row eliminations, and column eliminations). The table

operations will be studied in further detailsin Exercise 4.4 .

33

It is natural to represent tables as lists of rows, and to represent arow asalist
Tables play an important roles in many web documents

LAML has a strong support of tables

Expression ‘Value

((llThi SlI lli SlI llfi rSt n lIrOWI)
("This" "is" "second" "row")

t abl ("This" "is" "third" "row')

("This" "is" "fourth" "row")

)

This is first row

This is second row
(show-tabl e tabl) . : .

This is third row

This is fourth row

This This This This
is is is is
first second third fourth
row row row row

(showtable (transpose-1 tabl))

This is first row
(showtable (elimnate-row 2 tabl)) This is third row
This is fourth row

This is first
This is second
This is third
This is fourth

(show-table (elimnate-colum 4 tabl))

Table6.4 Examples of table transposing, row elimination, and column
elimination. We will program and illustrate these functionsin alater
exercise of thismaterial. The functionshow- t abl e issimilar to

t abl e- 0 froma LAML conveniencelibrary. Using higher-order

functionsit israther easy to program the show-table function. We will
come back to thislater in these notes.

In the program below we show a possible implementation of the show-table function, which we
used in Table 6.4 The function table-1 is one of the LAML convenience functions, which we have
used in the past. There are others and more interesting ways to deal with tablesin LAML. You
should consult Program 18.6 for details.

34

(define (showtable rows)
(let ((rowlgt (length (first rows))))
(table-1
0
(make-1ist rowl gt 50)
(make-1ist row | gt greenl)
rows)))

Program 6.2 The function show-table, implemented in terms of a LAML table function. Thereare
several different ways to implement and deal with the table functions. In the chapter about higher-
order functions we describe another simple table function.

6.8. Programs represented as lists

Lecture 2 - slide 25

The purpose of this section isto remind you that Scheme programs are themselves list structures. At
this point of the material, it should not be a big surprise to the readers.

It is a unique property of Lisp that programs are represented as data, using the main data
structure of the language: the list

A sample Scheme program from the LAML library:

(define (as-nunmber x)
(cond ((string? x) (string->number x))
((nunber? x) x)
((char? x) (char->integer x))
((bool ean? x) (if x 1 0)) ; false -> 0, true -> 1
(el se

(error
(string-append "Cannot convert to nunber " (as-string x))))

Program 6.3 The function fromthe general library that converts different kinds of data to a
number.

Isit possible to access the list source program of a Scheme definition? In other words, isit possible
to introspect and reflect about a Scheme program from another Scheme program. Or even more
interesting perhaps, is it possible for afunction to introspect and affect its own source code? Using
the standard Scheme functions the answers are 'no’. However, some Scheme systems allow it
nevertheless, through use of non-standard functions. Using more traditional Lisp languages, the
answers are 'yes.

In Scheme it is not intended that the program source should be introspected by the
running program

But in other Lisp systems there is easy access to self reflection

35

6.9. References

[-]
[-]

[-]

[-]

[-]

[knoopnotes)
[-]
[-]

[abelson98]

R5RS: Vectors
http://www.cs.auc.dk/~normark/prog3-03/external - material/r5rs/rsrs-html/r5rs_40.html

Table functions in the HTML4.0 convenience library
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/html 4.0-
loose/man/convenience.html#SECTIONS

Manual entry of alist-to-propertylist
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/general .html#alist-to-
propertylist

Manual entry of propertylist-to-alist
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/general .html#propertylist-to-
alist

The HTML document that illustrates the property list representation of

attributes
external-material/laml-doc-proplist.html

Associative arrays - OOP (in Danish)
http://www.cs.auc.dk/~normark/progl-01/html/noter/arrays-lister-note-associative-arrays.htmi

List functions in the general LAML library
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/general.html#SECTION6

R5RS: Quasiquotation

http://www.cs.auc.dk/~normark/prog3-03/external-material /r5rs/rors-
html/r5rs_37.htmI#SEC39

Foldoc: cons
http://wombat.doc.ic.ac.uk/fol doc/fol doc.cgi ?query=cons

Foldoc: list
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=list

R5RS: List and pair functions in Scheme
http://www.cs.auc.dk/~normark/prog3-03/external-material /r5rs/rbrs-
html/r5rs_58.html#SEC60

Richard Kelsey, William Clinger and Jonathan Rees, "Revised"5 Report on the
Algorithmic Language Scheme", Higher-Order and Symbolic Computation,
Vol. 11, No. 1, August 1998, pp. 7--105.

36

/. Other Data Types

There are other kinds of data than lists and numbers. In this chapter we will - relatively briefly -
review booleans, characters, symbols, vectors, and strings in Scheme.

7.1. Other simple types

Lecture 2 - slide 27

As most other programming languages Scheme supports the simple types of booleans and
characters. As a dlightly more specialized type, Scheme also supports symbols.

Y ou can get the details of these data types by reading in the Scheme Report [Abel son98]. Section
6.3.1 in the report covers the boolean type. Section 6.3.4 is about characters. Symbols are described
in section 6.3.3. From the slide and the annotated dlide view of this material, there are direct links to
these sections of the Scheme Report.

\Besi des numbers, Scheme aso supports booleans, characters, and symbols

Booleans
Trueisdenoted by #t and false by #f
Every nonfalse values count astrueini f and cond
Characters
Characters are denoted as #\a, #Db, ...
- Some characters have symbolic names, such as #Aspace, #\newline
Symbols
Symbols are denoted by quoting their names. ' a , ' synbol , ...
Two symbols are identical in the sense of eqv? if and only if their names are
spelled the same way

The equivaence function eqv? issimilar to eq?. See section 6.1 of [Abelson98] for details.

7.2. \Vectors

Lecture 2 - slide 28

There are a number of superficial similarities between vectors and list, as supported by Scheme.
However, at the conceptual level vectors are arrays, and lists are linearly linked structures. As such,
they represent quite different structures.

37

The most basic and fundamental difference between lists and vectors is that lists can be changed
and extended in a very flexible way (due to the use of dynamically allocated cons cells). A vector is
of fixed and constant size once allocated.

Vectors are treated in section 6.3.6 of [Abelson98].

Vectors in Scheme are heterogeneous array- like data structures of a fixed size

Vectors are denoted in a similar way as list
Example: #(0 a (1 2 3))
Vectors must be quoted in the same way as list when their external
representations are used directly

The function vect or issimilar to the function | i st

There are functions that convert a vector to a list and vice versa
vector->|i st
i st->vector

The main difference between lists and vectors is the mode of access and the mode of
construction

Thereis direct access to the elements of a vector. List elements are accessed by traversing a chain
of references. This reflects the basic differences between arrays and linked lists.

The mode of construction for list is recursive, using the cons function. Lists are created
incrementally: New elements can be created when needed, and prepended to the list. Vectors are
alocated in one chunck, and cannot be enlarged or decreased incrementally.

7.3. Strings

Lecture 2 - dlide 29

There are no big surprises in the way Scheme handles and supports strings. Please see section 6.3.5
of [Abelson98] for details.

String is an array-like data structure of fixed size with elements of type character.

38

The string and vector types have many similar functions
A number of functions allow lexicographic comparisons of strings:

string=?,string<?,string<=?, ...
There are case-independent, ci , versions of the comparison functions.

Thesubst ri ng function extracts a substring of a string

Like lists, strings are important for many practical purposes, and it is therefore important
to familiarize yourself with the string functions in Scheme

7.4. References

[-]

[abelson98]

Other LAML String functions
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/general.html#SECTION9

LAML String predicates
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/general.htmI#SECTIONS
R5RS: Strings
http://www.cs.auc.dk/~normark/prog3-03/external - material/r5rs/r5rs-html/r5rs_61.html

R5RS. Vectors
http://www.cs.auc.dk/~normark/prog3-03/external - material/r5rs/r5rs-html/r5rs_62.html

R5RS: Equivalence predicates
http://www.cs.auc.dk/~normark/prog3-03/external - material /r5rg/r5rs-html/??7?

R5RS: Symbols
http://www.cs.auc.dk/~normark/prog3-03/external-material /r5rs/rbrs-
html/r5rs_59.htmI#SEC61

R5RS: Characters
http://www.cs.auc.dk/~normark/prog3-03/external-material /r5rs/rbrs-
html/r5rs_60.htmI#SEC62

R5RS: Booleans
http://www.cs.auc.dk/~normark/prog3-03/external-material /r5rs/rbrs-
html/r5rs_57.htmI#SEC59

Richard Kelsey, William Clinger and Jonathan Rees, "Revised"5 Report on the
Algorithmic Language Scheme", Higher-Order and Symbolic Computation,
Vol. 11, No. 1, August 1998, pp. 7--105.

39

40

8. Functions

We have now reached the most central concept in this material, namely functions. Functions play a
key role in the functional programming paradigm.

Before we look at the function concept as such, we will take a look at definitions.

8.1. Definitions

Lecture 2 - dlide 31

A definition binds a value to a name. The name is often referred to as a variable The value bound
to aname may be a function value (function object/closure), but it may aso be another kind of
value, such as a number or alist.

A definition binds a name to a value

Below we show the syntactic form of a definition in Scheme.

(define nane expression)

Syntax 8.1 A nameisfirst introduced and the name is bound to the value of the expression

About Scheme def i ne forms
Appears normally at top level in a program
Creates a hew location named nane and binds the value of expr essi on to that
location
In case the location already exists we haveredefinition,and the def i ne formis
equivalent to the assignment (set! nanme expr)
Does not allow for imperative programming, because def i ne cannot appear in
selections, iterations, etc.
Can also appear at certain positions in bodies, but only as syntactic sugar for local
binding forms (i et r ec)

In Section 8.12 we discuss definition of functions, and a particular variation of defi ne which
applies only for function definition.

Asit is stated in the first item, define forms appear normally, but not necessarily at top level of a

Scheme program. By top level we mean 'at the outer level' of a program - not nested into other
constructs.

41

It is, however, possible to have def i ne forms at certain other locations in a Scheme program. The
Scheme Report [Abelson98] explains thisin section 5.2. Later in this material, in Section 28.3,
where we discuss simulation of object-oriented concepts in Scheme, we will use nested def i ne
forms.

8.2. The function concept

Lecture 2 - dlide 33

We start our coverage of functions with the observation that there is both a conceptual and a
notational starting point.

The conceptual starting point is the well-known mathematical concept of functions

The notational starting point is lambda calculus

The conceptual starting point is well-known for most readers, due to the common knowledge of the
mathematical meaning of functions.

The notational starting point is probably not familiar to very many readers. It happens to be the case
that the notational inspiration of lambda calculus is quite superficial, as applied in Scheme and Lisp.

The mathematical function concept
A mapping from a domain to arange
A function transfers values from the domain to values in the range
A vaue in the domain has at most a single corresponding value in the
range
Totally or partially defined functions
Extensionally or intensionally defined functions
Lambda calculus
A very terse notation of functions and function application

An extensionally defined function is defined by a set of pairs, enumerating corresponding elements
in the domain and range. Notice that this causes practical problems if there are many different
values in the domain of the function. An intensionally defined function is based on an algorithm
that describes how to bring a value from the domain to the similar value in the range. Thisis a much
more effective technique to definition of most the functions, we program in the functional

paradigm.

Before we continue the conceptual and programming-related discussion of functions, we will in
Section 8.3 take a closer look at the notational starting point.

42

8.3. Lambda calculus

Lecture 2 - dlide 34

We will here introduce the notation of the lambda calculus, mainly in order to understand the
inspiration which led to the concept of lambda expressions in Lisp and Scheme.

ILambda calculus is a more dense notation than the similar Scheme notation

| Lambda calculus 'Scheme
/Abstraction ?v.E (lambda (v) E)
\Combination E1E2 (E1E2)

Table8.1 A comparison of the notations of abstraction and combinatior
(application) in the lambda calculus and Lisp. In some variants of

lambda cal culus there are mor e parentheses than shown here: (? v. E).
However, mathematicians tend to like ultra brief notation, and they often
eliminate the parentheses. This stands as a contrast to Lisp and Scheme
programmers.

8.4. Functionsin Scheme

Lecture 2 - slide 35

On this page we introduce the crucial distinction between alambda expression and a function
object. Lambda expressions are part of a source program. Lambda expressions can be evaluated as
all other Scheme expressions. The value of alambda expression is a function object.

Functions are represented as |lambda expressionsin a source program

At run time, functions are represented as first class function objects

Below we show a sample dialogue with a Scheme system. In the dialogue we define functions, and
we play with them in order to illustrate some of the basic properties of function in relation to
function definition and application. Please play with these elements yourself!

> (define x 6)

> (lanbda (x) (+ x 1))
#<pr ocedur e>

> (define inc (lambda (x) (+ x 1)))

> inc
#<procedure:inc>

> (if (even? x) inc fac)
#<pr ocedure: i nc>

43

> ((if (even? x) inc fac) 5)

Program 8.1 A sampleread-eval-print session with lambda expressions and function objects. In a
context where we define x to the number 6 we first evaluate a lambda expression. Scheme
acknowl edges this by returning the function object, which printslike' #<pr ocedur e>"'. Asa

contrast to numbers, lists, and other simple values, there is no good surface representation of
function values (function objects). Next we bind the namei nc to the same function object. More
about name binding ina later part of thismaterial . The expression(i f (even? x) inc fac)
returnsi nc because the value of x is6, and assuch it is even. Therefore the value of ((i f
(even? x) inc fac) 5) isthesameasthevalueof (i nc 5), namely 6.

8.5. Function objects

Lecture 2 - slide 36

Let us now define the concepts of function objectsand closures.

A function object represents a function at run time. A function object is created as the
value of alambda expression

A function object is also known as a closure.

A function object is afirst class value at run time, in the same way as numbers, lists and other data
are values. Thisis different from more traditional programming languages, where procedura and
functional abstractions have another status than ordinary data.

The name 'closure' is related to the interpretation of free names in the body expression of the
function. Free names are used, but not defined in the body. In a function object (or closure) the free
names are bound in the context of the lambda expression. Thisis a contrast to the case where the
free names are bound in the context of the application of the function.

Characteristics of function objects:

First class objects

Does not necessarily have a name

A function object can be bound to a name in a definition

Functions as closures:
Capturing of free names in the context of the lambda expression
Static binding of free names
A closureis represented as a pair of function syntax and values of free
names

A function object can be applied on actual parameters, passed as a parameter to a

function, returned as the result from another function, and organized as a

constituent of a data structure

The first characteristics of functions, as mentioned in the itemized lists above, is 'the first class
status. We will consolidate our understanding of first class 'citizens in Section 8.6 .

8.6. Functions asfirst class values

Lecture 2 - slide 37

Asitisdiscussed in this section, first class entities in alanguage can be passed as parameters,
returned as results, and organized in data structures.

We are used to the first class status of numbers and lists. But with a background from imperative
programming, we are not used to organize functions and procedures in data structures, and we are
not used to the possibility of returning procedures and functions from other abstractions.

Notice that objects, as known from the object-oriented paradigm, are of first class.

Here is our definition of being 'of first class.

A first class citizen is an entity which can be passed as parameter to functions, returned

as aresult from afunction, and organized as parts of data structures

A function object is afirst class citizen

In Program 8.2 we show an interaction with a Scheme system, which illustrates that functions can
be used as elements in data structures.

1> (define toplevel-htm -elenents (list htm franeset))

2> overall-html -el enents
(#<procedur e> #<procedure>)

3> ((cadr toplevel-htm-elenments) (frame 'src "sss"))
(ast "franmeset" ((ast "frame" () (src "sss") single)) () double)

4> (xm -render ((cadr toplevel-htm -elements) (franme 'src "sss")))
"<frameset ><frame src = \"sss\"></franeset>"

Program 8.2 A few interactions which illustrate the first class properties of function objects. We
bind thevariablet opl evel - ht ml - el enent s tothelist of thetwo functionsht ml and

f rameset . Both are HTML mirror functions defined in the LAML general library. Weillustrate
next that the value of the variable indeed is a list of two functions. Thus, we have seen that we can
organized functions as elementsin lists. The function cadr returnsthe second element of alist. Itis
equivalent to(conpose car cdr),whereconpose isfunctional composition. In the third
evaluation we apply the mirror functionf r ameset on asingle frame. The last interaction shows
the HTML rendering of the this. xml - r ender isa function defined in the LAML general library.

45

8.7. Anonymous functions

Lecture 2 - slide 38

The reader may believe that a function name is a necessary constituent of a function. This
understanding is not correct, however. We can chose to associate a name with a function by using
an enclosing define form, as explained in Section 8.1. But the function itself is not named.

A function object does not have a name, and a function object is not necessarily bound
to aname

The interactions below illustrate the use of anonymous functions, i.e., functions without names.

1> ((lanbda(x) (+ x 1)) 3)
4

2> (define fu-lIst (list (lambda (x) (+ x 1)) (lanmbda (x) (* x 5))))

3> fu-| st
(#<pr ocedur e> #<procedur e>)

4> ((second fu-Ilst) 6)
30

Program 8.3 Anillustration of anonymous functions. The function(| anbda(x) (+ x 1)) is
the function that adds one (to its parameter). It isorganized in a list side by side with the function
that multiplies by five. Noticein this context that none of these two functions are named. In the last
interaction we apply the latter to the number 6.

8.8. Lambda expressions in Scheme

Lecture 2 - slide 39

The syntax definitions in Syntax 8.2 and Syntax 8.3 below show the two possible forms of lambda
expressions.

Each of the formal parametersin aformal parameter list are binding name occurrences. It means
that a formal parameter introduces a new name with a new role. The new name can be used and
referred from other parts of the program. We can talk about the scope of the name as the area of the
program in the which the binding is in effect. The scope of aformal parameter is - quite naturally -
the body expression of the lambda form.

In the first syntax definition, f or mal - par aneter -1 i st isalist of forma parameters. The formal

parameter list may be improper, suchas(a b . c¢).Inthiscaseal actual parameters after the
second oneis bound to c.

(I ambda (fornmal - parameter-1ist) expression)

Syntax 8.2

46

In the second case, the list of actual parametersis smply bound to the namef or nal - par arret er s-
nane.

Be sure to understand the correspondence between formal parameters (in the two forms) and the
actual parameters. Use Exercise 2.6 to strengthen your understanding.

(I anbda fornal - par anet er s- nane expr essi on)

Syntax 8.3

Lambda expression characteristics in Scheme:
- No type declaration of formal parameter names
Call by value parameters
In reality passing of references to lists and other structures
Positional and required parameters
(lanmbda (x y z) expr) acceptsexactly three parameters
Required and rest parameters
(lanmbda (x y z . r) expr) acceptsthree or more parameters
Rest parameters only
(1 ambda r expr) accepts an arbitrary number of parameters

Exercise 2.6. Parameter passing in Scheme

Familiarize yourself with the parameter passing rules of Scheme by trying out the following calls:

((lambda (x y z) (list xy z)) 12 3)
((lambda (x y z) (list xy z)) 1 2)
((lambda (x y z) (list xy z)) 12 3 4)
((lambda (x y z . r) (list xy zr)) 12 3)
((lambda (x y z . r) (list xy zr)) 1 2)
((lambda (x y z . r) (list xy zr)) 12 34
((lambda r r) 1 2 3)

((lambda r r) 1 2)

((lambda r r) 1 2 3 4)

Be sure that you can explain all the results

47

8.9. Optional parameters of Scheme functions (1)

Lecture 2 - dlide 40

In LAML software we use a particular pattern to deal with optional parameters. This pattern is built
on top of the rest parameter mechanism discussed in Section 8.8. The pattern also involves a
function opt i onal - par anet er, defined in the LAML general library, as an important brick.

When we use optional parameters of a function, the caller may chose not to pass a vaue. In that
case, the parameter is bound to a default value, which is defined as part of the function.

It is often useful to pass one or more optional parameters to a function

In case an optional parameter is not passed explicitly, a default value should apply

The example in Program 8.4 illustrates how to define a function which requires one parameter r p,
and up to three optional parametersopi, op2, and op3.

(define (f rp . optional -paranmeter-1|ist)
(let ((opl (optional-paraneter 1 optional-paraneter-list 1))
(op2 (optional -paraneter 2 optional -paraneter-list "a"))
(op3 (optional -paraneter 3 optional -paraneter-list #f)))
(list rp opl op2 op3)))

Program 8.4 A example of a function f that accepts optional -parameters. Besides the required
parameter rp, the function accepts an arbitrary number of additional parameters, the list of which
are bound to the formal parameter optional -parameter-list. The function optional-parameter from
the LAML general library accesses information from optional-parameter-list. In case an optional
parameter is not passed, the default value (the last parameter of optional-parameter) applies.

The following dialogue with a Scheme system shows optional parametersin play.

0>
(define (f rp . optional -paraneter-1list)
(let ((opl (optional-paraneter 1 optional -paraneter-list 1))
(op2 (optional -paraneter 2 optional -paraneter-list "a"))
(op3 (optional -paraneter 3 optional -paraneter-list #f)))
(list rp opl op2 op3)))

1> (f 7)
(7 1 "a" #f)

2> (f 7 "c")
(7 "c" "a #f)

3> (f 7 8)
(7 8 "a" #f)

4> (f 7 8 9)
(7 8 9 #f)

5> (f 7 8 9 10)
(f 7 89 10)

48

6> (f 7 8 9 10 11)
(7 8 9 10)

Program 8.5 A number of calls of the function f. For clarity we define f asthe first interaction.

In the next section we will discuss a magjor shortcoming of the optional parameter mechanism.

8.10. Optional parameters of Scheme functions (2)

Lecture 2 - dide 41

Optional parameters, as discussed in Section 8.9 is not a perfect solution in all respects. On this
page we will discuss a major weakness.

Observations about optional parameters:

- Thefunction opt i onal - par anet er isaLAML function from the genera library
The optiona parameter idea works well if there is a natural ordering of the
relevance of the parameters

If parameter n is passed, it is also natural to pass parameter 1 to n-1

The idea does not work well if we need to pass optiona parameter number n, but
not number 1 .. n-1

'Keyword parameters is a good alternative to optional parameter lists in case many,
‘unordered’ parameters need to passed to a function

We have demonstrated how we simulate optional parameter viathe 'rest parameter list' mechanism
in Scheme. It is also possible to s mulate a keyword parameter mechanism. In a LAML context, this
is done with respect to the passing of attributes to the HTML mirror functions.

For more information about the simulation of keyword parametersin HTML and XML mirror
functions, please consult Section 26.2.

8.11. Closures

Lecture 2 - dlide 42

Function objects are also called closures. In this section we will see why.

Functions capture the free names in the context of the lambda expression

49

The illustration below shows a closure. For a better visualization, you should visit the web version
of the page, which uses animation to illustrate the capturing of free names.

When we talk about a free nameit is dways relative to a given construct, such as alambda
expresson. A free name in the construct is used, but not bound in the construct. The formal
parameter names of a lambda expression are 'binding positions. Thus, names in the body of a
lambda expression, which correspond to formal parameter names of the lambda expressions, are not
free names.

b

{lambda (x}
(+xvy) (+x¥)

(lambda (x)

Figure 8.1 A lambda expression with afree namey. Thenamey is
bound outside the lambda expression. A closure is formed by associating
the lambda expressions (the syntactic form) with the binding of the free
names.

In the table below we illustrate free names and closures. Notice that in the inner lambda expression,
(lambda (txt) ...),bothp andb arefree names, whereas in the lambda expression bound to f

only p is afree name.

[Expression \Value
(define f
(let ((b (lanmbda (x)
(string-append x ":" x)))) A textA text

(lambda (txt) (p (b txt)))))

(f "Atext")

(b "A text™) A text

(f (b "Atext™)) A text:A text

Table8.2 Examplesof the closuring effect. Inthefirst examplebis
locally bound to afunction which replicatesits parameter with a colon in
between. f is bound to a function (the inner lambda) in which b refersto
the string replicating function. Notice that outside thisthis context, bis
the HTML mirror function that renders a text in bold face.

50

8.12. Function definition in Scheme

Lecture 2 - dlide 43

In Section 8.1 we studied definitions in general. In a definition we associate a name with a value
through the evaluation of an expression. As already discussed there, we can define functionsin the
same way we associate names with other types of values.

In this section we will study a particular twist onfunction definitions.

A function object can be bound to a name via def i ne like any other kind of value.

But we often use adightly different, equivalent syntax for function definitions, where
the'l anbda' isimplicitly specified

In Syntax 8.4 we show the ordinary way of defining a function. With this, f is bound to a function
object.

(define f (lanmbda (pl p2) ...))

Syntax 8.4 The ordinary way to bind f to the value of a lambda expressions

In Syntax 8.5 we show an alternative way of defining a function. The second element of the define
form is alist, which corregponds to the calling profile of the function. The two definitions are fully
equivalent, and it is a matter of style and personal preference which one to use.

| typically use the form in Syntax 8.5 because it is a little more shallow (with respect to
parentheses) than the one in Syntax 8.4. As another reason, it is nice to have the calling form as a
constituent of the definition. It is often convenient to copy it out of the definition to some context,
in which the function is to be called.

(define (f pl p2) ...)

Syntax 8.5 An equivalent syntactic sugaring with a more shallow parenthesis structure. Whenever
Scheme identifies a list at the 'name place’ in a define form, it carries out the transfor mation
(define (f pl p2) ...) => (define f (lanbda (pl p2) ...)) .SomeScheme
programmersliketheform(defi ne (f pl p2) ...) becausethecallingform(f pl p2)
isaconstituent of theform(define (f pl p2) ...)

8.13. Simple web-related functions (1)

Lecture 2 - dide 44

We will here give a simple example of a web-related function. Much more interesting examples will
appear later in the material.

51

The programs in Program 8.6 and Program 8.7 show the definition and a call of a www-document
function, which abstracts the outer HTML elements. In the web version of the material you will, in
addition, find an illustration with all the LAML details necessary to execute the example.

(define (www«docunment the-title . body-fornmns)
(htm

(head (title the-title))

(body body-forns)))

Program 8.6 The definition of awww docunent function. Thewww documnent functionis
useful if you want to abstract the HTML envel ope formed by the elements html, head, title, and body.
If you need to pass attributes to html or body the proposed function is not adequate.

(www docunent
"This is the docunment title"
(h1 "Docunent title")

(p "Here is the first paragraph of the docunent")

(p "The second paragraph has an" (em "enphasi zed itent)
"and a" (em "bold face iteni')_"."))

Program 8.7 A sample application of the functionwww docunent . Notice the way we pass a
number of body contributions, which - as a list - are bound to the formal parameter body-forms.

8.14. Simple web-related functions (2)

Lecture 2 - slide 45

The example on this page shows an indent-pixel function, which inderts a block of text a number of
pixels to the right.

In Program 8.8 you find a version which is implemented in terms of tables.

(define (indent-pixels p . contents)
(table ' border "O0O"
(t body
(tr
(td "width (as-string p) "")
(td "width "*" contents)))))

Program 8.8 The definition of thei ndent - pi xel function. Thisisa function which weusein
many web documents to indent the contents a number of pixelsrelative to its context. Here we
implement the indentation by use of a table, in which the first column cell is empty. Aswe will se,
other possihilities exist.

In Program 8.9 we show an alternative version of indent-pixels, which isimplement by use of
Cascading Style Sheets (CSS) features.

52

(define (indent-pixels p . contents)
(div "css:margin-left (as-string p)
contents))

Program 8.9 An alternative version of thei ndent - pi xel function. This version uses Cascading

Style Sheets expressiveness. Asit appears, thisis a more compact, and more direct way of achieving
our indentation goal.

Below, in Program 8.10 we show a sample application of thei ndent - pi xel s function. The
program in Program 8.10 is complete and self contained relative to the LAML libraries.

In the web version of the materia (slide or annotated dlide view) you will find references to the
generated documents.

(load (string-append lam -dir "lam .scnl))
(lam -style "sinple-xhtm 1.0-strict-validating")

(define (indent-pixels p . contents)
(div "css:margin-left (as-string p)
contents))

(wite-html 'raw

(htm

(head (title "lIndent Pixel Exanple"))
(body

(p "Here is sone initial text")

(i ndent - pi xel s 45
(p "First paragraph of indented text")
(p "Second paragraph of indented text")

)

(p "Here is sone final text"))))

Program 8.10 A sample application of i ndent - pi xel with someinitial LAML context (software
loading). Notice the use of the XHTML mirror.

53

8.15. Function exercises

Lecture 2 - dlide 46

In this last section of the chapter we provide a couple of extra exercises.

Exercise 2.7. Colorsin HTML
In HTML we define colors as text strings of length 7:

"H#rstuvw'

The symbolsr, s, t, u, v, and w are all hexadecimal numbers between 0 and f (15). rsisin that way
the hexadecimal representation for red, tu is the code for green, and vw is the code for blue.

As an example, the text string
"HEEFFEE"

represents white and
" #f £ 0000"

isred.

In Scheme we wish to represent a color as the list

(color r g b)

where color isasymboal, r is number between 0 and 255 which represents the amount of red, and g
and b in asimilar way the amount of green and blue in the color.

Write a Scheme function that transforms a Scheme color to aHTML color string.

It isagood training to program the function that converts decimal numbers to hexa decimal
numbers. | suggest that you do that - | did it in fact in my solution! If you want to make life alittle
easier, the Scheme function (nunber - >string n radix) ishelpful (passradix 16 as second
parameter).

Exercise 2.8. Letter case conversion

In many web documentsiit is desirable to control the letter case of selected words. This allows us
to present documents with consistent appearances. Therefore it is helpful to be able to capitalize a
string, to transform a string to consist of upper case letters only, and to lower case letters only. Be
sure to leave nonal phabetic characters untouched. Also, be sure to handle the Danish characters
', 'd, and 'd (ASCII 230, 248, and 229 respectively). In addition, let us emphasize that we want
functions that do not mutate the input strina bv anv means. (It means that vou are not allowed to

modify the strings passed as input to your functions).

Write functions capi t al i ze- a- string, upcase-a-string, downcase- a-stri ng for these
PUrPOSES.

As examples of their use, please study the following:

(capitalize-a-string "nonkey") => "Mnkey"
(upcase-a-string "nonkey") => "MONKEY"
(downcase-a-string "MONkey") => "nonkey"

Hint: | suggest that you program the necessary functions yourself. Convert the string to alist of
ASCII codes, do the necessary transformations on this list, and convert the list of modified ASCII
codes back to a string. The Scheme functions| i st - >string andstring->li st are useful.

Hint: If you want to make life alittle easier (and learn less from this exercise...) youcan use the
Scheme functions char - upcase and char - downcase, which work on characters. But these
functions do maybe not work on the Danish letters, so you you probably need some patches.

8.16. References

[-] The second version of the indent-pixels document
external-material/indent-pixels-2.html
[-] The first version of the indent-pixels document
external-material/indent-pixels-1.html
[-] Manual entry of optional-parameter
http://www.cs.auc.dk/~normark/scheme/di stributi on/laml/man/laml.html#optional-parameter
[-] Foldoc: first class
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=first+class
[-] R5RS: Procedures (Functions)
http://www.cs.auc.dk/~normark/prog3-03/external - material/r5rs/rbrs-html/rSrs_28.html
[-] Foldoc: lambda calculus
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=lambda+cal culus
[-] Foldoc: function
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=function
[-] R5RS: Definitions
http://www.cs.auc.dk/~normark/prog3-03/external - material/r5rs/rsrs-html/r5rs_43.html
[abel son98] Richard Kelsey, William Clinger and Jonathan Rees, "Revised"5 Report on the

Algorithmic Language Scheme", Higher-Order and Symbolic Computation,
Vol. 11, No. 1, August 1998, pp. 7--105.

55

56

9. Name binding constructs

In Section 8.1 we saw how to bind names globally, at top level, by use of def i ne. In this chapter
we will study local name binding constructs - | et constructs - and we will se how they are made by
means of lambda expressions.

9.1. Thel et name binding expression

Lecture 3 - slide 2

Let us first define what we mean by name binding constructs.

A name binding expression establishes a number of local name bindings in order to ease

the evaluation of a body expression

In a name binding construct a number of names are bound to values. The name bindings can be

used in the body, which must be an expression when we are working in the functional paradigm.
There are a number of variations in the way the names can refer to each other mutualy. We will
meet some of them on the following pages.

The syntax a let form follows.

(let ((ng ey)

(nk ex))
body- expr)

Syntax 9.1 Thenamesn; ... nyare bound to the respective valuese ... ex, and the body
expression is evaluated rel ative to these name bindings. Free names in the body expression are
bound to names defined in the surround of the let construct.

Characteristics of al et construct:
Inbody- expr my refersto the value of ey, ..., and r refersto the value of e
Syntactic sugar for an immediate call of alambda expression
To beillustrated on the next page
As aconsequence, the names are bound simultaneously relative to the name
bindings in effect in the context of the | et construct.

Theideaof simultaneous name binding is especially important to understand. Take a close look at
the second example of Table 9.1 If you understand the result of the let expression in this example,
you probably understand simultaneous name binding.

57

9.2. The equivalent meaning of | et

Lecture 3 - slide 3

Al et construct can be defined by use of the name binding features of a lambda expression. In the
rest of this section, we will see how it is done.

We will here understand the underlying, equivalent form of al et name binding
construct

Below we show a syntactic equivalence. The let form in Syntax 9.2 is fully equivaent with the
lambda expression in Syntax 9.3

Whenever aform like Syntax 9.2 is encountered it is transformed to the equivalent, but more basic
form of Syntax 9.3. The syntactic transformation is done by a Scheme macro.

(let ((ny ey)

(nk ex))
body- expr)
Syntax 9.2
((lambda (ny ... ng) body-expr)
€1 ... €
Syntax 9.3

9.3. Exampleswith e name binding

Lecture 3 - slide 4

We provide a couple of examples of name binding with let. The examples are drawn from the web
domain.

[Expression \Value after rendering

(let ((anchor "An anchor text")
(url "http://ww.cs. auc. dk")
(tag a) An anchor text
)

(tag 'href url anchor))

(let ((f b))

e Text 1 Text 2
g
(p (f "Text 1") (g "Text 2"))))
‘(Iet ((phrase-el ement s | . foo

58

(list emstrong dfn code sanp . foo

kbd var cite abbr acronym) . foo

)
(ul
(lambda (f) (li (f "foo0"))) - foo
phrase-el enents))) . foo
foo
foo
foo

f oo

Table9.1 Examples of namebindingswith| et . Thefirst example
shows that all constituents of a function call can be bound to local names
- in the example both the function object referred to by a, and two string
parameters. The second exampleillustrates that alter native names,
aliases, can be defined for a couple of functions. Noticein particular that
g isbound to b (the bold face function), not em (the emphasis function).
This can also be seen in the second column. The third exampleisalittle
mor e advanced, and it can first be understood fully on the ground of the
material in the lecture about higher-order functions. We bind the name
phrase- el ement s toalist of ten functions. Via mapping, we apply
each function tof oo, and we present the resultsin an ul list.

9.4. Thel et * name binding construct

Lecture 3 - slide 5

It is often useful to use a sequential alternative to simultaneous name binding, ala let. In this section
we will study let*, which provides for sequential name binding.

It is often useful to be able to use previous name bindings in alet construct, which binds
several names

The syntax of | et *, as shown in Syntax 9.4 is very close to the syntax of | et , which we saw in
Syntax 9.1.

(let* ((n1 ey

(n|1 €i-1)

(ni e)

(nk €k))
body- expr)

Syntax 9.4

59

Characteristicsof | et * :
It is possible to refer to n through n.; from the expression g
Syntactic sugar for k nested | et name bindings

Take a moment to understand the last item above. Thus, try to understand that it is possible to
obtain the effect of sequential name bindings by nesting a number of ordinary | et constructs. In
that way, we can devise arewriting of al et * construct to a construct with nested lambda
expressions.

9.5. Anexamplewith| et *

Lecture 3 - slide 6

In the example on this page we show a function from the LAML time library. There is access to this
library from the web material, cf. [timelib].

(defi ne (how many-days- hours-n nutes-seconds n)

(let* ((days (quotient n seconds-in-a-day))
(n-rest-1 (nodul o n seconds-in-a-day))
(hours (quotient n-rest-1 seconds-in-an-hour))

(n-rest-2 (nodulo n-rest-1 seconds-in-an-hour))
(m nutes (quotient n-rest-2 60))
(seconds (nodulo n-rest-2 60))

(l'i st days hours ninutes seconds)))

Program9.1 A typical example using sequential name binding. The task is to cal culate the number
of days, hours, minutes, and seconds given a number of seconds. We subsequently calculate a
number of quotients and rest. While doing so we find the desired results. In this example we would
not be ableto use let; let* isessential because a given cal culation depends on previous name
bindings. The full example, including the definition of the constants, can be found in the
accompanying elucidative program. The function is part of the LAML timelibrary in lib/time.scm of
the LAML distribution. Thetimelibrary is used whenever we need to display time information, such
as 'the time of generation' of some HTML files.

In the web version of the material we provide a link to an elucidator which explains the basic time
calculations in LAML. Please refer to the web version to get access to this resource.

Examples that illustrate uses of the LAML time functions are given later in the material, in Section
9.7.

9.6. Theetrec Nnamebinding construct

Lecture 3 - slide 7

60

There exists a third local name binding form, called letrec. It is used for local definition of mutually
recursive functions, as sketched in Program 9.2.

Thel et r ec name binding construct allows for definition of mutually recursive

functions
(letrec ((ny ey
(nk ex))
body- expr)
Syntax 9.5
(letrec ((f1 (lanmbda (...) ... (f2 ...)))
(f2 (lanbda (...) ... (f1 ...)))

)
body- expr)

Program 9.2 An schematic example of a typical application of letrec for local definition of two
mutually recursive functions.

Characteristicsof | et rec
Each of the name bindings have effect in the entire | et r ec construct, including e;

o &

9.7. LAML time functions

Lecture 3 - slide 8

In section Section 9.5 we discussed the function how many- days- hour s- mi nut es- second. We
will now illustrate some other useful LAML time functions.

[Expression \Value
((current-time) 1999789132

\(ti me- decode 1000000000) (2001 9 9 3 46 40)
(time-decode 0) (1970 1 1 2 0 0)
((time-interval 1000000000) (31 8 2 5 1 46 40)
\(weekday (current-tine)) Thur sday

((dani sh- week- nunber (current-tine)) 36

Table9.2 Example use of some of the LAML time library functions

61

Strictly speaking, the abstractions which are applied in the example above, are not functions. They
all depend on some state, which is updated every second due to the fact that time does not stand
still.

9.8. References

[timelib] Manua of the LAML time library
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/time.html
[-] Foldoc: let
http://wombat.doc.ic.ac.uk/foldoc/fol doc.cgi ?query=let
[-] R5RS: Binding Constructs (let, let*, letrec)

http://www.cs.auc.dk/~normark/prog3-03/external - material/r5rs/r5rs-html/r5rs_33.html

62

10. Conditional expressions

In this chapter we will be interested in conditional expressions dai f and cond.

10.1. Conditional expressions

Lecture 3 - dide 10

In this section we introduce i f and cond , both at the syntactic level (through Syntax 10.1 and
Syntax 10.2) and at the semantic level (below the syntax boxes).

i f and cond are specia forms which evaluate their expressions according to the value of
one or more boolean selectors

i f and cond are not control structures when applied in the functional paradigm

Control structures belong to the imperative paradigm. In the functiona paradigm, i f and cond are
used in conditional expressions. By that we mean expressions, of which subexpressions are selected
for evaluation based on one or or more boolean selectors.

(i f bool -expr expri expry)

Syntax 10.1

(cond (bool -expr, expr;)

.(.b.ool - eXprg expry)
(el se exprg+))

Syntax 10.2

i f evaluatesexpr ; if bool - expr istrue, and expr , if bool - expr isfase
cond evaluates the first expression expr ; whose guarding bool - expr ; istrue. If bool -
expr, ..., bool - expr are al false, the value of cond becomes the value of expr .1

Exercise 3.1. HTML Header functions

Thisisasmall exercise that aims at construction of dightly different header functions than those
provided by the native header functions hi, ..., h6.

Define afunction (header | evel) which takes a parameter | evel . The header function should
return the similar basic header function provided that n is between one and six. If nis outside this

63

interval, we want header to return the identity function of one parameter.

It means that ((header 3) "Header text") is equal to (h3 "Header text") and that ((h 0) "Header
text") isjust "Header text".

Hint: Arrange the header functionsin alist, and let header select the appropriate header function
from this list.

Define a variant of header which returns a native header function if it receives a single parameter
(level), and which returns the value, such as, ((header 3) "Header text"), if it receives both alevel
parameter and a header text string.

10.2. Exampleswithi f

Lecture 3 - slide 11

The examples in the table below gives web-related examplesof i f .

[Expression Value

(body
(if (string=? (weekday (current-
tinme)) "Wednesday")
(p (em "Renmenber the Thursday

neeting(t;);TDHOW!")) &:hedUIe

(h1 " Schedul e")

(p"..."))

Remember the Thursday meeting tomor row!

(body
(p (if (string=? (weekday (current-
time)) "Wednesday")
(em "Renenber the Thursday

neet i ng t.OEm;;;)\M“) &hedUIe
(h1l "Schedul e")

(p"..."))

Remember the Thursday meeting tomor row!

Table10.1 Examplesusing anif conditional expression on a
Wednesday. In both examples we extract the weekday (a string) fromthe
current time. If it is a Wednesday we emit a paragraph which serves as a
reminder of a meeting the following day. If not executed on a Wednesday,
we do not want any special text. We achieve this by returning the empty
list, which is spliced into the the body context (in the first example) and
into the paragraph context (in the second example). The splicingisa
result of the handling of lists by the HTML mirror functionsin LAML.
The two examples differ slightly. Inthefirst examplethei f isplaced on
the outer level, feeding information tobody. In the second row, thei f is
placed at an inner level, feeding information to the p function. The two
examples also give slightly different results. Can you characterize the
results?

64

10.3. Examplewithcond: | eap- year ?

Lecture 3 - dide 12

The leap year function is a good example of afunction, which calls for use of acond conditional. It
would, of course, aso be possible to program the function with nested i f expressions.

(define (
(cond (

(
(
(

(modul o y 400) 0) #t)
(modul o y 100) 0) #f)
(modul o y 4) 0) #t)

eap-year? y)
lse #f)))

I
(
(
(
e

Program 10.1 The function| eap- year ?. The function returns whether a year yisaleap year.

For clarity we have programmed the function with a conditional. In this case, we can express the
leap year condition as a simple boolean expression usingand and or . We refer to thisvariation
below, and we leave it to you to decide which version you prefer.

It is also possible to program the leap year function with simple, boolean arithmetic. Thisis shown
below. It is probably easier for most of us to understand the version in Program 10.1 because it is
closer to the way we use to formulate the leap year rules.

(define (leap-year? vy)
(or (= (modulo y 400) 0)
(and (= (rmodulo y 4) 0)
(not (= (npdulo y 100) 0)))))

Program 10.2 The function leap year programmed without a conditional.

In the web version of this material we provide alink to the same elucidator as already discussed in
Section 9.5. The elucidator shows the leap year function in alarger context.

10.4. Examplewith cond: aneri can-ti nme

Lecture 3 - dlide 13

In this section we will study an extended example of the use of cond. We carry out a calculation of
'‘American time', such as 2:30PM given the input of 14 30 00. There are severa different cases to
consider, as it appears in Program 10.3.

65

(define (anmerican-time h ms)
(cond ((< h 0)
(lam -error "Cannot handle this hour:" h))

((and (= h 12) (= mO0) (= s 0))
"noon")

((< h 12)
(string-append
(f ormat - hour - m nut es-seconds h m s)
© vant))

((= h 12)
(string-append
(format - hour - m nut es-seconds h m s)

© vpnt))
((and (= h 24) (= m0) (=s 0))
"m dni ght")
((<= h 24)

(string-append
(format - hour - mi nut es-seconds (- h 12) ms)
" "pnt))

(el se
(lam -error "Cannot handle this hour:" h))))

Program 10.3 The functionamer i can-t i me. The function returnsa string displaying the
‘am/pm/noon’ time given hour h, mi nute m, and secondss.

In the web version of the material - dide or annotated slide view - we include a version of the
program which includes the helping functions f or mat - hour - mi nut es- seconds and zer o- pad-

string.

10.5. Examplewithcond: as-stri ng

Lecture 3 - dlide 14

Asafina example with cond, we show as- st ri ng, which is a function from the general LAML
library. Given an almost arbitrary piece of data the function will attempt to convert it to a string.
Similar functions named as- nunber , as- synbol , and as- bool ean exist in the library, cf.
[generdlib].

66

(define (as-string x)

(cond ((numnber->string x))
((symbol ->string x))
(X)
(
(if x "true" "false")) ; consider "#t" and "#f" as alternatives
E(char? x) (char->string x))
(string-append " ("
(string-nmerge (map as-string x) (make-list (- (length x) 1) " "))
"))

(let ((lIst (vector->list x)))
(string-append "#("
(string-nmerge (map as-string Ist) (make-list (- (length Ist) 1) "

"))

")")))

(string-append " ("
(apply string-append
(map (lanmbda (y) (string-append (as-string y) " ")) (proper-

part x))

" . " (as-string (first-inproper-part X))

")"))

("2?2")))

Program 10.4 The function as-string converts a variety of Scheme data typesto a string. This
function makes use of the fact that any kind of data can be passed to the function, without
intervening static type check. At run time we dispatch on the type of x. The function string-mergeis
discussed later in this section, cf. the reference fromthis page. The functionas- st ri ng, and its
sibling functionsas- nunber ,as- char,as- synbol ,andas- | i st areused heavilyin all
LAML software. The functions are convenient because they do not need to know the type of the input
data. In functional languages with static type checking, we cannot program these functions as showr
above. In these language we could overload the function nameas- st r i ng, and underneath define
a number of individual functions each taking a particular type of input.

10.6. References

[generallib] Manual of the LAML general library
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/general .html
[-] R5RS: cond
http://www.cs.auc.dk/~normark/prog3-03/external -material/r5rs/r5rs-html/rbrs_32.html
[-] R5RS: if

http://www.cs.auc.dk/~normark/prog3-03/external - material/r5rs/r5rs-html/r5rs_29.html

67

68

11. Recursion and iteration

Recursion plays an important role for nonttrivial functional programs. One of the reasonsis that
recursive data structures are used heavily in functional programs. Just take, as example, linear lists,
cf. Chapter 6.

As another reason, most norttrivial needs some kinds of repeating structures - iteration. In our style
of Scheme programming, we use recursive functions for iterative purposes. In this chapter we will
see how this can be done without excessive use of memory resources.

And as before we attempt to illustrate also this topic with examples from the web domain.

11.1. Recursion

Lecture 3 - slide 16

In this section we characterize the basic ideas of recursion, and the kinds of problem solving which
are aided by recursion.

|Recursi ve functions are indispensable for the processing of recursive data structures

Recursion is an algorithmic program solving idea that involves solution of subproblems

of the same nature as the overall problem

Given a problem P
- If Pistrivia then solve it immediately
If Pisnontrivial, divide P into subproblems Py ..., P,
Observeif P (i=1..n) are of the same nature as P
If s0, use the overall problem solving idea on each of P; ... P,
Combine solutions of the subproblems P; ... P, to a solution of the overall
problem P

The problem solving technique sketched here is called divide and conquer. It is not al divide and
conquer problems that involve recursion. But many do in fact. Recursion comes into play when the
subproblems P; ... P, turn out to be of the same nature as the overall problem, and as such they can
be solved by the same 'medicine’ as used for the overall problem P.

We would like to refer the reader to an ECIU materia on recursion, which in a more careful way

discusses and illustrates the ideas [eciu-recursion]. Notice that there is some overlap with the ECIU
material and the material you are reading now.

69

11.2. List processing

Lecture 3 - dide 17

We have already discussed lists as a recursive data type in Section 6.1. In this section we will give
an extended LAML related example of recursive list processing in Scheme.

A list isarecursive data structure
As a consequence list processing is done via recursive functions

Weiillustrate list processing by extracting attribute values from a LAML attribute
property list

Thefunction fi nd- href -attri but e in Program 11.1 extracts the href attribute value from an
attribute property list. Property lists have aready been discussed in Section 6.6.

Notice the recursive nature of the function find- href-attribute. The recursive cal is highlighted with
red color.

It happens to be the case that the function in Program 11.1 is tail recursive, cf. the discussionin
Section 11.5.

Return the href attribute value froma property I|i st
Return #f if no href attribute is found
Pre-condition: attr-p-list is a property |ist
; of even |ength.
(define (find-href-attribute attr-p-1ist)
(if (null? attr-p-1ist)
#f
(let ((attr-name (car attr-p-list))
(attr-value (cadr attr-p-list))
(attr-rest (cddr attr-p-list)))
(if (eqg? attr-name 'href)
attr-val ue
(find-href-attribute attr-rest)))))

Program 11.1 Afunction for extraction of the href attribute from a property list.

To stay concrete, we show an example of using the function fi nd- href - att ri but e in Program
11.2.

1> (define a-clause
(a 'id "myid" 'class "myclass" 'href "http://ww.cs.auc.dk"))

2> a-cl ause

(ast "a" ()
(id "nyid" class "myclass" href "http://ww.cs. auc. dk" shape "rect")
doubl e xhtm 10-strict)

70

3> (render a-cl ause)
""

4> (define attr-list (ast-attributes a-clause))

5> attr-1list
(id "nyid" class "nmyclass" href "http://ww.cs.auc.dk” shape "rect")

6> (find-href-attribute attr-Ilist)

"http://ww.cs. auc. dk"
>

Program 11.2 An example with property lists that represent HTML attributesin LAML. Asthelast
interaction, we see the function find-href-attribute in play.

11.3. Treeprocessing (1)

Lecture 3 - slide 18
Trees are another classical example of recursive data types.

In this section we show aweb document and its internal structure. In Section 11.4 we show how to
traverse this document, by means of tree traversal, with the purpose of extracting and collecting all
URLSs from href attributes of anchor elements in the document.

A treeis arecursive data structure

We illustrate how to extract information from an HTML syntax tree

The LAML document in Program 11.3 shows a web document, in which we have highlighted al the
anchor elements - the a elements. The tree structure in Figure 11.1 shows the hierarchical
composition of the document, in terms of HTML elements. In the web version of the material - dide
or annotated slide view - you can aso access the actua abstract syntax tree - AST - which isthe
internal document representation of LAML. We do not include it in this version of the material
because it is relatively long.

71

(load (string-append lam -dir "lam .scnl))
(lam -style "sinple-xhtm 1. 0-strict-validating")

(wite-html 'raw
(htm
(head (title "Denmp Links"))
(body
(p "ACM has a useful" (a "href "http://ww.acmorg/dl" "digital library"))

(p "The follow ng places are al so of
interest:")

(ul
(l'i (a "href "http://ww.ieee.org/ieeexplore/" "The |EEE"))
(l'i "The" (a "href "http://ww.w3c.org" "WBC') "for web standards")

(l'i (a "href "http://link.springer.de/link/servicel/series/0558/"
"Lecture Notes in Conputer Science")))

(p "Kurt Nermark" (br)
(a "href "http://ww.cs.auc. dk" "Departnment of Conputer Science") (br)
(a "href "http://ww. auc. dk" "Aal borg University")))))

(end-Iam)

Program 11.3 A sample web document with a number of links. The link forms - represented by a
elements - are highlighted.

html
-.---i_ff -\'\‘\H
head baody
.-"'-f:f II'l 1"““-,___H
p p U p
| I N

a 1|1 llj Ilj a a

a a a

Figure 11.1 The syntax tree of the web document with the root made up
by theht m element.

11.4. Tree processing (2)

Lecture 3 - slide 19
We continue the example from Section 11.3.

In Program 11.4 we show the function ext ract - 1 i nks . The function is indirectly recursive via the
functionextract-1inks-ast-1ist .

72

Return a list of URLS as |located in the a elenents of ast.
(define (extract-links ast)
(if (ast? ast)
(let ((nane (ast-el enent-nanme ast))
(subtrees (ast-subtrees ast))
)
(if (equal ? name "a")
(let ((href-attr-val ue
(find-href-attribute (ast-attributes ast))))
(if href-attr-value (list href-attr-value) '()))
(extract-links-ast-list subtrees)))

“()))

Return a list of URLS as located in the a el enents of
the list of ast's as passed in ast-list.
(define (extract-links-ast-list ast-Ilist)
(if (null? ast-list)
"0
(append
(extract-links (car ast-list))
(extract-links-ast-list (cdr ast-list)))))

Program 11.4 Thelink extraction functions.

Theextract - 1i nks function above traverses the internal AST structure of a web document. When
an anchor element is encountered, when (equal ? nane "a") becomes true, we collect the hr ef
attribute by means of the function f i nd- href - at t ri but e, which we described in Section 11.2, see
Program 11.1. In the cases where we do not encounter an anchor element, the call (extr act -
links-ast-list subtrees) causestraversal of thelist of subtrees.

In the dialogue shown below we illustrate how to extract the URLs from a demo document, which
we assume is identical with the document in Program 11.3.

1> (define doc-ast

(htm
(head (title "Denmp Links"))
(body
-)))
2 > (extract-1links doc-ast)
("http://ww. acmorg/dl" "http://ww.ieee.org/ieeexplore/"™ "http://ww. w3c. org"

"http://link.springer.de/link/servicel/series/0558/" "http://ww.cs.auc. dk"
“http://ww. auc. dk")

Program 11.5 Alink extraction dialogue.

73

Exercise 3.2. The function outline-copy

Program afunction out I i ne- copy which makes a deep copy of alist structure. Non-list datain
the list should all be trandated to a symbol, such as'-. Y ou should be able to handle both proper
lists and improper lists.

As an example:

(outline-copy '"((abzc) (de. f) (hi))) =>
(C---)y ¢ -.-) (- -))

11.5. Recursion versus iteration

Lecture 3 - dlide 20

The purpose of this section is to introduce and not least motivate the idea of tail recursion.

Recursive functions are - modulo use of memory resources - sufficient for any iterative
need

Tail recursive functions in Scheme are memory efficient for programming of any
iterative process

Tail recursion is a variant of recursion in which the recursive call takes place without

contextual, surrounding calculations in the recursive function.

A tail cal isthe last 'thing' to be done before the function returns. Therefore there is no need to
maintain any activation record of such arecursive call - we can reuse the callers activation record.

The main source of insight to understand tail recursiveness is a series of images, which are available
in the web version of the materia (slide view). Y ou should definitively consult this before you go
on in this material.

11.6. Example of recursion: nunber-interval

Lecture 3 - slide 21

We provide an example of arecursive function, namely nunber -i nt erval .

The function nurber - i nt er val returnsalist of integers from alower bound to an upper
bound

74

The version of number -i nt erval shown in Program 11.6 is not tail recursive. The rewriting of the
function in Program 11.7 is tail recursive however. Notice that the function in Program 11.7 needs a
helping function, nunber - i nt erval -i t er - hel p, with an appropriate parameter profile.

(define (nunber-interval f t)
(if (<=1 1t)
(cons f (nunber-interval (+ f 1) t))

“()))

Program 11.6 The function nunber - i nt er val fromthe general LAML library. This function
returnsalist of t-f+1 numbersfromf tot .Tryit out!.

(define (nunber-interval-iter f t)
(reverse (nunmber-interval-iter-help f t "())))

(define (nunber-interval-iter-help f t res)
(if (<=1 1t)
(nunber-interval-iter-help (+ f 1) t (cons f res))
res))

Program 11.7 The function nunber - i nt erval -i t er isaniterative, tail recursive variant of
nunber-interval .

We show below a couple of concrete applications of the functionsin Program 11.6 and Program
11.7.

1> (nunber-interval 1 10)
(123456789 10)

2> (nunmber-interval -iter 10 20)
(10 11 12 13 14 15 16 17 18 19 20)

3> (nunber-interval -iter 20 10)
0

Program 11.8 A sample dialogue with the number interval functions.

Exer cise 3.3. The append function

The function append, which is a standard Scheme function, concatenates two or more lists. Let us
here show a version which appends two lists:

(define (nmy-append |Istl |st2)
(cond ((null? Istl) Ist2)
(el se (cons (car Istl) (ny-append (cdr Istl) Ist2)))))

We will now challenae ourselves bv proarammina an iterative solution. bv means of tail

75

recursion. We start with the standard setup:

(define (ny-next-append |Istl |st2)
(ny-next-append-1 Istl Ist2 ...))

where my- next - append- 1 is going to be the tail recursive function:

(define (ny-next-append-1 Istl Ist2 res)
(cond ((null? Istl) ...)
(el se (ny-next-append-1 (cdr Istl) Ist2 ...))))

Fill out the details, and try out your solution.

Most likely, you will encounter a couple of problems! Now, do your best to work around these
problems, maybe by changing aspects of the templates | have given above.

One common problem with iterative solutions and tail recursive functions is that lists will be built
in the wrong order. Thisis dueto our use of cons to construct lists, and the fact that cons operates
on the front end of the list. The common medicine is to reverse alist, using the function r ever se,
either on of the input, or on the output.

Exercise 3.4. Alist replication function

Write atail recursive function called { t replicate-to-length}, which in a cyclic way (if necessary)
replicates the elements in alist until the resulting list is of certain exact length. The following
serves as an example:

(replicate-to-length "(a b ¢c) 8) =>
(abcabcahb)

(replicate-to-length "(a b c) 2) =>
(a b)

In other words, in (replicate-to-l1ength |st n),takeelementsout of I st, cyclicaly if
necessary, until you reach n elements.

11.7. Examples of recursion: string-merge

Lecture 3 - dide 22

This section and the next give yet other examples of recursive functions. We start with st ri ng-
nmer ge.

Thefunction st ri ng- mer ge zips two lists of strings to a single string. The lists are not
necessarily of equal lengths

76

(define (string-nmerge str-list-1 str-1list-2)
(cond ((null? str-list-1) (apply string-append str-1list-2))
((null? str-list-2) (apply string-append str-list-1))
(el se (string-append
(car str-list-1) (car str-list-2)
(string-nmerge (cdr str-list-1) (cdr str-list-2))))))

Program 11.9 The recursive function string-merge. Notice that this function is a general recursive
function. Therecursive call, emphasized above, is not in a tail position, because of the embedding in

string-append.

The function in Program 11.9 not tail recursive. To remedy this weakness, we make another version
which is. It is shown in Program 11.10.

Asit is characteristic for al tail recursive functions, the state of the iteration needs to be represented
in the parameter list, here in the helping function called mer ge-i t er - hel per . The necessary state
for string merging purpose is reduced to the resulting, merged string - ther es parameter.

(define (string-nmerge-iter str-list-1 str-list-2)
(nmerge-iter-helper str-list-1 str-list-2 ""))

(define (nmerge-iter-helper str-list-1 str-list-2 res)
(cond ((null? str-list-1)
(string-append res (apply string-append str-list-2)))
((null? str-1list-2)
(string-append res (apply string-append str-list-1)))
(el se (nerge-iter-hel per
(cdr str-list-1)
(cdr str-list-2)
(string-append
res (car str-list-1) (car str-list-2))))))

Program 11.10 Atail recursive version of string-merge.

In the LAML software, the function st ri ng- mer ge isused in several contexts. One of themisin
thefunction | i st -t o- string , which we show in Program 11.11 We could in fact have applied
l'ist-to-string inthefunction as-string, which we discussed in Program 10.4.

(define (list-to-string str-|st separator)
(string-nerge
str-1Ist
(make-list (- (length str-lst) 1) separator)))

Program 11.11 An application of string-merge which converts alist of stringsto a string with a
given separator. Thisisatypical task in a web program, where a list of elements needs to be
aggregated for HTML presentation purposes. Notice the merging of a list of n elementswith a list of
length n-1. The function make-list is another LAML function; (makelist n el) makesalist of n

occurrences of €l.

77

11.8. Exampleswithrecursion: stri ng-of -char-1list?

Lecture 3 - dide 23

The last example in this chapter is a boolean function that can check if a string is formed by the
characters from a given alphabet.

Thefunction st ri ng- of - char -1 i st ? is apredicate (a boolean function) that finds out
If astring isformed exclusively by characters from a particular alphabet.

(define (string-of-char-list? str char-list)
(string-of-char-list-1? str char-list O (string-length str)))

(define (string-of-char-list-1? str char-list i |gt)
(if (=1 lgt)
#t

(and (nmenmv (string-ref str i) char-1list)
(string-of-char-list-1? str char-list (+i 1) Igt))))

Program 11.12 The function string-of-char-list? which relies on the tail recursive function string-
of-char-list-1?. The function string-of-char-list-17? iterates through the charactersin str, via the
controlling parametersi and Ist.

The predicates bl ank- st ri ng? and numeri c-string? in Program 11.13 are very useful for many
practical purposes. The first function checks if a string represents white space only. The latter
function checks if a string represents a decimal integer.

;7 Alist of characters considered as bl ank space characters
(defi ne white-space-char-1Ii st
(l'i st #\space (as-char 13) (as-char 10) #\tab))

i, |Is the string str enpty or blank (consists of white space)
(define (blank-string? str)
(or (enpty-string? str)
(string-of-char-list? str white-space-char-list)))

;7 Returns if the string str is numeric.
i, More specifically, does str consist exclusively of the
;; ciffers O through 9.
(define (numeric-string? str)
(string-of-char-list? str
(list #10 #\1 #\2 #\3 #\4 #\5 #6 #7 #8 #9)))

Program 11.13 Applications of string-of-char-list?. The function blank -string? determinesif a
string is formed entirely of white space characters. The function numeric-string? is a predicate that
returnstrueif the string consists exclusively of decimal digits. Thisis, for instance, useful to check
the forminput of dates and time in some server-based web applications. The version of numeric-
string? in the lib/general.scm of LAML is slightly more general than the version shown above (it
allows + or - signsaswell, depending on an optional parameter).

78

Exercise 3.5. Qublistsof alist

In this exercise we will program afunction f r ont - subl i st which returns the first n elements of a
list. The signature (the head) of the function should be (front - subli st Ist n) wherelst isa
list and n is a number. As a precondition it can be assumed that | st isaproper list and that n isa
non-negative integer. As a postcondition we want to guarantee that the length of the result isn.

Asan example

(front-sublist "(a b c de 3) =>
(a b c)

(front-sublist '(abcde) 6) =>
ERROR

First, identify the extreme, border cases and be sure that you know how to handle these. Next,
program the function with due respect to both the precondition and the postcondition. Next, test
the function carefully in a dialogue with your Scheme system.

Given the function f r ont - subl i st we will program the function subl i st s, which breaks a
proper list into alist of sublists of some given size. As an example

(sublists "(abcdef) 3) =>
((abec) (def))

Program the function subl i st s with use of f ront - subl i st . Be careful to prepare you solution
by recursive thinking. It means that you should be able to break the overall problem into a smaller
problem of the same nature, as the original problem. Y ou are free to formulate both preconditions
and postconditions of the function sublists, such that existing function front-sublist fits well.

Hint: The Scheme function | i st -t ai | isprobably useful when you program the function
sublists.

A table can be represented as a list of rows. Thisis, in fact, the way tables are represented in
HTML. Thetr tagisused to mark each row; thet d tag is used to mark each cell. Thet abl e tag
is used to mark the overall table. Thus, the list of rows((a b ¢) (d e f)) will be marked up as:

<t abl e>
<tr> <td>a</td> <td>b</td> <td>c</td> </tr>
<tr> <td>d</td> <td>e</td> <td>f</td> </tr>
</t abl e>

Write a Scheme function called t abl e- r ender that takes alist of rows as input (as returned by
the function subl i st s, which we programmed above) and returns the appropriate HTML
rendering of the rows. Use the LAML mirror functionst abl e, t r, and t d. Be sure to call the
LAML function xm - r ender to see the textual HTML renderina of the result, as opposed to

79

LAML'sinternal representation.

Notice: During the course we will see better and better ways to programt abl e- r ender .
Nevertheless, it is a good idea aready now to program afirst version of it.

11.9. References

[-]

[eciu-recursion]

[-]

Foldoc: iteration
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=iteration

R5RS: Proper tail recursion
http://www.cs.auc.dk/~normark/prog3-03/external - material/r5rs/r5rs-html/rbrs_22.html

The HTML version of the web document that illustrates tree traversal
external-material/ast-example.html

AST functionsin LAML
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/xml -in-laml/man/xml -in-
laml.html#SECTION 4

Recursion - an ECIU material
http://www.cs.auc.dk/~normark/eciu-recursion/htmi/recit.html

Foldoc: recursion
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=recursion

80

12. Example of recursion: Hilbert Curves

In this chapter we will give examples of recursive curves. The examples are taken from the ECIU
material on recursion [eciu-recursion] which we have mentioned earlier on.

The primary value of this chapter is the animations, which show the building of the Hilbert Curves.
These animations must be approached in the web version of the material.

In this paper version of the material we only give a shallow and superficial coverage. You are
referred to the web version to get the real outcome.

12.1. Hilbert Curves

Lecture 3 - dide 26

The Hilbert Curveis a space filling curve that visits every point in a square grid

At this spot in the web version of the material you will find a Hilbert curve of order 5, i.e, aquite
complicated curve.

The path taken by a Hilbert Curve appears as a sequence - or acertain iteration - of up,
down, left, and right.

12.2. Building Hilbert Curves of order 1

Lecture 3 - dlide 27

Here we will study the recursive composition of the most simple Hilbert Curve.

This section is only meaningful in the web version of the material - please take a look at it.

12.3. Building Hilbert Curves of order 2

Lecture 3 - dlide 28

Here will study the recursive composition of Hilbert Curvesin additional details.

This section is only meaningful in the web version of the material - please take a look at it.

81

12.4. Building Hilbert Curves of order 3

Lecture 3 - dlide 29

In the same way we made a Hilbert Curve of order 2, we will here see how a Hilbert Curve of order
3 ismade.

This section is only meaningful in the web version of the material - please take a look at it.

12.5. Building Hilbert Curves of order 4

Lecture 3 - dide 30

In the same way we made a Hilbert Curve of order 3, we will here see how a Hilbert Curve of order
4 is made. Thisisthe final development along these lines in this material.

This section is only meaningful in the web version of the material - please take a ook at it.

12.6. A program making Hilbert Curves

Lecture 3 - slide 31

Given our understanding of Hilbert Curves obtained from the previous pages, we will now study a
computer program that generates Hilbert Curves of order n, where n is any non-negative number.

\We will here discuss a concrete program which draws Hilbert Curves of order n

The program below, Program 12.1 shows the hi | bert function, which returns a rendering of
Hilbert Curves.

82

(define (hilbert n turn)
(cond ((=n 0))
((>n0)
(cond
((eq? turn 'up)
(concat - path
(hilbert (- n 1) 'right)

(up-1ine)
(hilbert (- n 1) "up)
(right-1line)

(hilbert (- n 1) "up)
(down-1i ne)
(hilbert (- n 1) 'left)))

((eq? turn "left)
(concat - path
(hilbert (- n 1) 'down)
(left-1ine)
(hilbert (- n 1) '"left)
(down- 1 i ne)
(hilbert (- n 1) "left)
(right-Iline)
(hilbert (- n 1) 'up)))

((eq? turn 'right)
(concat - path
(hilbert (- n 1) "up)

(right-1line)

(hilbert (- n 1) 'right)
(up-1line)

(hilbert (- n 1) 'right)
(left-1ine)

(hilbert (- n 1) 'down)))

((eg? turn ' down)

(concat - pat h
(hilbert (- n 1) '"left)
(down- 1 i ne)
(hilbert (- n 1) 'down)
(left-1ine)
(hilbert (- n 1) 'down)
(up-1ine)
(hilbert (- n 1) 'right)))))))

Program 12.1 The function hi | ber t programmed in Scheme as a functional program. The
function returnsthe path of the Hilbert Curver of order n. The parameter t ur n determinesthe
rotation of the curve. In the top level call we ask for an upward Hilbert Curve: Asan example,
(hil bert 3 "up) producesan upward Hilbert Curve of order 3. Thered fragments are
responsible for all line drawing. The blue fragments represent all the recursive calls of the

hi | bert function. Finally, the green fragment represent the level 0 'basis case. The level Ocase
returns the empty Hilbert Curve, which isliterally empty (no drawing at all - no contribution to the
resulting path). What does it mean that the the programis a functional program? Well, it basically
means that hi | ber t returns a value which can be rendered somehow by another function or
procedure. The value returned is a path, composed by concat-path. The hi | ber t function does not
carry out any action itself.

83

The actual rendering of a Hilbert Curveisdone by use of SVG stuff [svg]. SVG isaW3C standard
for Scalable Vector Graphics. In case you want to get started with SVG we will recommend that
you start with an excellent tutorial made by Ivan Herman, F.R.A. Hopgood, and D.A. Duce [svg-
tutorial].

In the web version of the material - in dide or annotated dlide view - you will have access to the
additional implementation details of the primitives used in Program 12.1.

84

13. Continuations

Continuations represent one of the advanced concepts in Scheme. In this section we will introduce
continuations, and we will show some examples of their use within the functional programming

paradigm.

13.1. Introduction and motivation

Lecture 3 - slide 33

We start by motivating our interest in continuations. One part of the story is the usefulness of a
mechanism that allows us to 'jump out of a deep subexpression’. Another part is the possibility of
controlling and manipulating the 'remaining part of the calculation' relative to some given control

point.

It is sometimes necessary to escape from a deep expression, for instance in an
exceptiona case

We are interested in a primitive which allows us to control the remaining part of a
calculation - aso-called continuation.

Exit or exception mechanism:
The need to abandon some deep evaluation
Continuation
Capturing of continuations
Exploring new control mechanisms by use of continuations

|Scheme support first class continuations dressed as functions

Both needs mentioned above are handled by first class continuations in Scheme.

13.2. The catch and throw idea

Lecture 3 - dide 34

In this section, and section Section 13.3 we explore a catch and throw escape mechanism. This
mechanism is used in Common Lisp, but it is not directly available in Scheme. Aswe will seein
Section 13.8 first class continuations can easily play the role of catch and throw. A similar Scheme-
base exampleis given in Section 13.9.

85

Cat ch andt hr ow provides for an intuitively simple escape mechanism on functional
ground

We introduce an imaginary syntax of catch and throw, see Syntax 13.1 and Syntax 13.2. The
meaning is intended to be that catch identifies an expression, cat ch- expr with anid. idisa
symbol. Within the expression, or within a function called directly or indirectly in catch-expr, we
may encounter a throw form, which mention the id of the catch. The value of the thrown expression,
throw-expr, is passed back along the chain of calls to the catcher, and it becomes the return value of
the catch form. If no throw form with an appropriate id is met during the evaluation of the catch
form, the value of the catch form just becomes the value of cat ch- expr .

(catch id catch-expr)

Syntax 13.1

(throw id throw expression)

Syntax 13.2

Scheme does not support cat ch and t hr ow

Rather Scheme supports a much more powerful mechanisms based on continuations

In case you are interested in more precise details of catch and throw in Common Lisp, you should
consult the book about Common Lisp, [cltl], (full text on the web). More specifically you should
consult the chapter abou dynamic non-local exists [cltl-nonlocal-exists].

13.3. A catch and throw example

Lecture 3 - dlide 35

We now study an concrete, real-life example of catch and throw. Thisis not a Scheme example.

\Exit from alist length function in case it discovers a non-empty tail of the list

Thefunction I i st -1 engt h returns the length of the list. The function counts the cons cells. If we
encounter an improper list (alist without an empty list in the end of the cdr chain, see Section 6.2)
we wish to return the symbol i nproper - 1i st . In order to provide for this we set of a catcher
around the a local function, list-lengthl, which does the real job. The function list-length calls list-
lengthl. If list-lengthl encounters an improper termination of the list, it throws the symbol
improper-list to the catcher, which returnsit. If not, it just returns the count, which also is returned
by catch via the letrec form.

86

(define (list-length Ist)
(catch '"exit
(letrec ((list-lengthl
(I anbda (I st)
(cond ((null? Ist) 0)
((pair? Ist) (+ 1 (list-lengthl (cdr Ist))))

(el se (throw "exit "inproper-list))))))
(list-lengthl Ist))))

Program 13.1 An example using catch and throw. Please notice that the exampleis not a proper
Scheme program. Catch and throw are not defined in Scheme.

13.4. Theintuition behind continuations

Lecture 3 - slide 36

The rest of this chapter is about concepts that are fully supported in Scheme.

We start with an overall definition of a continuations. Then follows some intuitive examples of
continuations of given expressions within given contexts (surrounding expressions).

A continuation of the evaluation of an expression E in a surrounding context C

represents the future of the computation, which waits for, and depends on, the value of E

It may very well be difficult to grasp the intuition of continuations. We hope the following table
will help you. It is intended to explain the intuitive understanding of the continuations of the blue,

emphasized expressions in the leftmost column.

IContext C and expression E lIntuitive continuation of E in C

(+ 5 (* 43)) "The adding of 5 to the value of E

(cons 1 (cons 2 (cons 3 '()))) "The consing of 3, 2 and 1 to the value of E
(define x 5)

(if (=0 x) The multiplication of E by x - 1 followed by a

" undef i ned division by x
(remainder (* (+ x 1) (- x 1)) x))

Table13.1 Anintuitive understanding of continuations of an expression
in some context.

13.5. Being more precise

Lecture 3 - dide 37

Instead of relying of an informal understanding of continuations we will now introduce lambda
expressions that represent the continuations.

87

\We can form alambda expression that to some degree represents a continuation

The continuation of the expression (* 3 4) within (+ 5 (* 3 4)) isafunction that adds 5.
Written precisaly, it is the function (1 anbda (e) (+ 5 e)). The other two examples of Table 13.2
(corresponding to the second and third rows) are similar.

(Context C and expression E The continuation of E in C

(+ 5 (* 4 3)) ((lanbda (e) (+ 5 e))

(lanbda (e) (cons 1 (cons 2 (cons 3

e))))

(cons 1 (cons 2 (cons 3 '())))

(define x 5)
(if (=0 x) (lanbda (e) (remainder (* e (- x 1))
"undefi ned X))
(remainder (* (+ x 1) (- x 1)) x))

Table13.2 A more precise notation of the continuations of E

The representation of continuations with lambda expressions is part of the truth, but not the whole
truth. The problem is that if we activate the continuation, by calling the function that represents it, it
will return the normal way, and its calling context will finish the evaluation the normal way. We do
not want that. Therefore a mechanism known as escape functions are invented and used. An escape
function ignores its context in every call. We will not go into the technical details of escape
functions in this text. The interested reader should consult [Springer89].

13.6. The capturing of continuations

Lecture 3 - dlide 38

It is now time to introduce the Scheme primitive that allows us to capture a continuation.

Scheme provides a primitive that captures a continuation of an expression E in a context
C

The primitiveiscaled cal | - wi t h-current -conti nuation, Orcal | / cc asashort alias
cal | / cc takes a parameter, which is afunction of one parameter.

The parameter of the function is bound to the continuation, and the body of the function
ISE

We will use the brief form call/cc in our examples.

88

IContext C and the capturing
I(+ 5 (call/cc (lanbda (e) (* 4 3))))
|(cons 1 (cons 2 (cons 3 (call/cc (lambda (e) "())))))

(define x 5)
(if (=0 x)
"undefi ned
(remai nder (* (call/cc (lanmbda (e) (+ x 1))) (- x 1))

X))

Table13.3 Useof call/cc and capturing of continuations.

We elaborate the examples from Table 13.1 and Table 13.2. In the first line of Table 13.3 we
capture the continuation of (* 4 3) in(+ 5 (* 4 3)).Inthe second line we capture the
continuationof * () in(cons 1 (cons 2 (cons 3 '()))).Andinthethird line we capture the
continuationof (+ x 1) intheif expression. Thisis the same as the continuation of the (+ x 1) in
ther emai nder expression.

One thing is capturing continuations. Another is to make good use of them. Table 13.3 does not
illustrate the latter aspect at all. Thisis seen by the fact the the continuations, bound to the names e
in al three examples, are not used.

It should be noticed that a captured continuation is dressed like a function. Somehow we can think
of a continuation as a 'wolf in sheep's clothing'. A continuation is activated in the same way as a
function is called. However, the continuation is defined (captured) differently than the way
functions are defined. Notice aso that continuations inherit their first class status from functions,
See Section 8.6.

13.7. Capturing, storing, and applying continuations

Lecture 3 - slide 39

In this section we will illustrate applications of the captured continuations. Once captured, we
assign the continuations to a global variable cont - r emenber . We assume that cont - r enenber has
been defined before any of the expressions in table Table 13.4 are evaluated. Use of assignmentsis
of course not functional programming, but it provides an easy way to illustrate the working and the
nature the captured continuations. Later in this section we will show uses of continuationsin
functional programming. For a brief review of imperative programming in Scheme the reader is
referred to Chapter 29.

We here show capturing, imperative assignment, and a subsequent application of a
continuation

89

In table Chapter 29 below we show the context expression C, its value, the application of the
captured continuation that we have stored in the variable cont - r enenber , and the value of the
application. We explain the rightmost column below the table.

Value of Application
Context C and expression E C of Value
continuation
(+5
(call/cc (cont -
(lanbda (e) 17 remenber 8
(set! cont-renenber e) 3)
(* 43))))
(cons 1
(cons 2
(cons 3 (cont -
(call/cc (12 3 remenber g1237
(1 anbda (e) (7 8)))
(set! cont-renenber e)
*0))))))
(define x 5)
(if (=0 x)
"undefi ned
(remai nder
(* (call/cc (cont -
(lanbda (e) 4 r emember 2
(set! cont-renenber 3)
e)
(+x1)))
(- x 1))
X))

Table13.4 Capturing and applying continuations. The captured
continuations are stored in a global variable. The application of the
continuation is shown in the third column, and the result of the
application of the continuation is shown in the fourth column.

First we explain the first row in the table. The application (cont - renenber 3) passes 3 to the
continuation e. It means that we fuel the expression (+ 5 X) with an X which is 3. The result is 8.

In the second row, (cont -renenber ' (7 8)) passesthelist (7 8) into the innermost point Y of
(cons 1 (cons 2 (cons 3 Y))). Theresultisthelist(1 2 3 7 8).

In the last row, we activate (cont - renenber 3). It impliesthat 3 is passed into the z of

(remai nder (* Z (- x 1)) x),wherex is5. Thevalueis(remi nder 12 5) =2. Noticein
particular that the i f has made the choice of the 'else part'. 1 f is not afunction, but a special form
with special evaluation rules. Once it the choice of thei f is made, there is no trace left of it in the
continuation. For more details of the evaluation of i f special forms see Chapter 19 to Chapter 21,
and in particular Section 20.10.

90

13.8. Use of continuations for escaping purposes

Lecture 3 - dlide 40

In this section we will illustrate how to apply the captured continuations for escaping purposes.

We here illustrate applications of the continuations for escaping purposes

In Table 13.5 we basically show the same expressions asin Table 13.1, Table 13.2, Table 13.3, and
Table 13.4. In the light blue fragmerts, of theform (e X) we send a vaue X to the continuation,
which isboundtoe. In thefirst row we send 5 to the addition, and the value of the context
becomes 15. In the second row we send the symbol x to the continuation, whereby the value of the
context isthe pair (1 . x) . (Notice that the second example captures a continuation at a more outer
level than in the other tables). In the second row we send the integer 111 to the else part of thei f
form, and hereby the value of the context becomes 111.

Context C, capturing, and escape call \Value

(+5
(call/cc
(I anbda (e) 15
(* 4))))

(cons 1
(call/cc
(I anbda (e)
(cons 2
(cons

3)))))

(1. x)

(define x 5)

(if (=0 x)

"undefi ned

(call/cc

(lanbda (e)
(remai nder
(* (+x 1)

(- x))

X))))

111

Table13.5 Capturing and use of a continuation for escaping purposes

13.9. Practical example: Length of an improper list

Lecture 3 - dlide 41

Now that we have seen how to capture and use continuations for escaping purposes we will study a
number of real examples. The first is similar to the catch throw example in Program 13.1. Like the
examples in Section 13.8 we aso deal with escape values in this example.

91

Recall from Program 13.1 that we are about to program alist length function. If we, during the
element counting, realize that we deal with an improper list (alist not terminated by the empty list)
we want some specia result, namely the symbol i npr oper -1 st.

The length of an improper list is undefined

We chose to return the symbol i mproper-1i st if I'i st-1 engt h encounters an improper
list

This example is similar to the cat ch and t hr ow example shown earlier in this section

It is easy to program the escaping version of | i st - 1 engt h with continuations, see Program 13.2. At
the outer level we capture the continuation that immediately returnsfrom1i st -1 engt h. Wecan
freely name the continuation, and we chose the name do- exi t . Within the scope of the continuation
we define alocal helping function |i st -1 engt h1, which does the real counting job. We follow the
cdr chainintherecursion of 1i st -1 engt h1. If we encounter a data object which is not a cons pair
or the empty list we have identified an improper list. In this situation we send the symbol

i mproper -1ist todo-exit. The effect is that we immediately return this symbol, and the count of
of cons pairsis not used.

(define (list-length I)
(call-wth-current-continuation
(I anbda (do-exit)
(letrec ((list-lengthl
(lanmbda (1)
(cond ((null? 1) 0)
((pair? 1) (+ 1 (list-lengthl (cdr 1))))
(else (do-exit "inproper-list))))))
(list-lengthl 1)))))

Program 13.2 The function list-length, which returns the symbol 'improper-list in case it
encounters an improper list.

13.10. Practical example: Searching abinary tree

Lecture 3 - slide 42

The next example is about traversal of atree, with the purpose of finding a subtree which satisfy a
given predicate.

Searching a binary tree involves a recursively defined tree traversal

If we find the node we are looking for it is convenient to throw the out of the tree
traversal

92

Thefunction fi nd-i n-tree isshown in Program 13.3. Asin the list length example in Program
13.2 we set up a continuation at the outer level of fi nd-i n-tree. The continuation is called f ound.
Thisis not a continuation used for an exceptional value, but for the expected 'normal’ value of the
function.

Thelocal function fi nd-i n-treel iSarecursive pre-order tree traversal function. In case the
predicate holds on a subtree, it is passed to the continuation f ound. If not, the subtrees are searched
recursively. The recursion stops when we reach the leaves, on which (subtree-1ist ...) returns
the empty list. In case we finish the traversal without ever finding a subtree that satisfies pr ed we
drop through the if form. In that case we will have to return #f . Notice that thisis arare example of
having two expression in sequence in the body of afunctional abstraction.

(define (find-in-tree tree pred)
(call-with-current-continuation
(I ambda (found)
(letrec
((find-in-treel
(lanbda (tree pred)
(if (pred tree)
(found tree)
(let ((subtrees (subtree-list tree)))
(for-each
(lambda (subtree) (find-in-treel subtree pred))
subtrees)))

#t)))
(find-in-treel tree pred)))))

Program 13.3 A tree search function which uses a continuation found if we find what we search
for. Notice that this examples requires the function subtree-list, in order to work. The function
returns#f in case we do not find node we are looking for. Notice that it makes sense in this example
to have both the if expression and the #f value in sequence!

13.11. References

[cltl- nontlocal- Dynamic Non-local exists (Common Lisp)

exi StS] http://www.ida.liu.se/imported/cltl/clm/node96.html

[cItl] Common Lisp the Language, 2nd Edition.
http://www.ida.liu.se/imported/cltl/cltl2.html

[springer89] George Springer and Daniel P. Friedman, Scheme and the art of programming.

The MIT Press and McGraw-Hill Book Company, 1989.

93

94

14. Introduction to higher-order functions

Higher-order functions is another key areain the functional programming paradigm; Perhaps the
most important at all. In this chapter we will explore this exiting area, and we will give a number of
web-related examples.

14.1. Higher-order functions

Lecture 4 - slide 2

The idea of higher-order functionsis of central importance for the functional programming
paradigm. As we shall see on this and the following pages, this stems from the fact that higher-order
functions can be further generalized by accepting functions as parameters. In addition, higher-order
functions may act as function generators, because they allow functions to be returned as the result
from other functions.

Let usfirst define the concepts of higher-order functions and higher-order languages.

A higher-order function accepts functions as arguments and is able to return a function
as its result

A higher-order language supports higher-order functions and allows functions to be
constituents of data structures

When some functions are 'higher-order' others are bound to be 'lower-order'. What, exactly, do we
mean by the 'order of functions. Thisis explained in below.

The order of data
Order 0: Non function data
Order 1: Functions with domain and range of order O
Order 2: Functions with domain and range of order 1
Order k: Functions with domain and range of order k-1

Order 0 data have nothing to do with functions. Numbers, lists, and characters are example of such
data.

Data of order 1 are functions which work on 'ordinary' order O data. Thus order 1 data are the
functions we have been concerned with until now.

Data of order 2 - and higher - are example of the functions that have our interest in this lecture.

With this understanding, we can define higher-order functions more precisely.

95

Functions of order i, i >= 2, are called higher-order functions

14.2. Some simple and genera higher-order functions

Lecture 4 - slide 3

It istime to look at some examples of higher-order functions. We start with a number of simple
Ones.

Thef1ip function is given in two versions below. f 1 i p takes a function as input, which is returned
withreversed parameters, cf. Program 14.1.

Thefirst version of f1i p uses the shallow syntactic form, discussed in Section 8.12. The onein ?7??
uses the raw lambda expression, also at the outer level.

(define (flip f)
(lambda (x y)
(f y x)))
Program 14.1 The function flip changes the order of it's parameters. The function takes a function
of two parameters, and returns another function of two parameters. The only difference between the
input and output function of flip isthe ordering of their parameters.

The read expression in Program 14.1 and ??? are the values returned from the function flip.

(define flip

(lanmbda (f)
(lambda (x y)
(fy x))))

Program 14.2 An alternative formulation of flipwithout use of the sugared define syntax.

The function negat e, as shown in Program 14.3, takes a predicate p as parameter. negat e returns
the negated predicate. Thus, if (p x) istrue, then ((negate p) x) isfase

(define (negate p)
(I ambda (x)
(if (p x) #f #t)))

Program 14.3 The function negate negates a predicate. Thus, negate takes a predicate function
(boolean function) as parameter and returns the negated predicate. The resulting negated predicate
returns true whenever the input predicate returnsfalse, and vise versa.

The function conpose in Program 14.4 is the classical function composition operator, known by all
high school studentsas'f o g

96

(define (conpose f Q)
(I ambda (x)
(f (g9 x))))

Program 14.4 The function compose composes two functions which both are assumed to take a
single argument. The resulting function composed of f and g returnsf (g(x)),orinLisp(f (g
X)), giventheinputx . Theconpose function fromthe general LAML library accepts two or
mor e parameters, and as such it is more general than the compose function shown here.

Exercise4.1. Usingfl i p, negat e, and conpose

Define and play with the functionsf 1 i p, negat e, and conpose, asthey are defined on this page .
Define, for instance, aflipped cons function and a flipped minus function.

Define the function odd? interms of even? and negat e.

Finaly, compose two HTML mirror functions, such as b and em to a new function.

Be sure you understand your results.

14.3. Linear search in lists

Lecture 4 - slide 4

Let us program a simple, but useful higher-order function which searches alist by linear search. The
functionfi nd-i n-1i st, shown in Program 14.5 takes a predicate pr ed and alist | st as

parameters. This predicate is applied on the elements in the list. The first element which satisfy the
predicate is returned.

]Search criterias can be passed as predicates to linear search functions

;7 Asinple linear |ist search function.
;; Return the first elenment which satisfies the predicate pred.
;; If no such elenment is found, return #f.
(define (find-in-list pred |st)
(cond ((null? Ist) #f)
((pred (car Ist)) (car Ist))

(else (find-in-list pred (cdr Ist)))))

Program 14.5 Alinear list search function. A predicate accepts asinput an element in the list, and
it returnseither true (#t) or false (#f). If the predicate holds (if it returns true), we have found what
we searched for. The predicate pr ed is passed asthe first parameter tof i nd-i n-1i st. Asitis
emphasized in blue color, the predicate is applied on the elements of the list. The first successful
application (an application with true result) terminates the search, and the element is returned. If
thefirst case in the conditional succeeds (the brown condition) we have visited all elementsin the
list, and we conclude that the element looked for is not there. In that case we return false.

97

The dialogue below shows examples of linear list search with fi nd-in-1i st.

1> (define hair-colors (pair-up '(ib per ann) '("black" "green" "pink")))

2> hair-colors
((ib . "black") (per . "green") (ann . "pink"))

3> (find-in-list (lanbda (ass) (eq? (car ass) 'per)) hair-col ors)
(per . "green")

4> (find-in-list (lanbda (ass) (equal? (cdr ass) "pink"™)) hair-colors)
(ann . "pink")

5> (find-in-list (lanbda (ass) (equal ? (cdr ass) "yellow')) hair-colors)
#f

6> (let ((pink-person
(find-in-1ist
(I anbda (ass) (equal ? (cdr ass) "pink")) hair-colors)))
(i f pink-person (car pink-person) #f))
ann

Program 14.6 A sampleinteraction usingfi nd-i n-1i st . Wedefinea simple association list
which relates persons (symbols) and hair colors (strings). The third interaction searches for per's
entry in the list. The fourth interaction searches for a person with pink hair color. In thefifth
interaction nothing is found, because no person has yellow hair color. In the sixth interaction we
illustrate the convenience of boolean convention in Scheme: everything but #f counts astrue. From
atraditional typing point of view thel et expressionis problematic, becauseit can return either a
person (a symbol) or a boolean value. Notice however, from a pragmatic point of view, how useful
thisis.

Exercise 4.2. Linear string search

Listsin Scheme are linear linked structures, which makes it necessary to apply linear search
technigues.

Strings are also linear structures, but based on arrays instead of lists. Thus, strings can be linearly
searched, but it is aso possible to access strings randomly, and more efficiently.

First, design a function which searches a string linearly, in the same way asfi nd-in-1ist. Will
you just replicate the parameters from i nd-i n-1i st, or will you prefer something different?

Next program your function in Scheme.

Exercise 4.3. Indexin list
It is sometimes useful to know wherein a list a certain element occurs, if it occurs at al. Program

the function i ndex-i n-1i st - by- predi cat e which searches for a given element. The comparion
between the aiven e ement and the elements in the list is controlled bv a combarison parameter to

98

i ndex-in-1ist-by-predi cate. The function should return the list position of the match (first
element is number 0), or # if no match is found.

Some examples will help us understand the function:

(index-in-list-by-predicate '"(a b cc b a) 'c eq?) => 2
(index-in-list-by-predicate '(a b c c b a) 'x eq?) => #f

(index-in-list-by-predicate '(tw 2 "two") 2
(lambda (x y) (and (nunber? x) (nunber? y) (= xvy)))) =>1

Be aware if your function is tail recursive.

Exercise 4.4. Binary search in sorted vectors

Linear search, asillustrated by other exercises, is not efficient. It is often attractive to organize
data in a sorted vector, and to do binary search in the vector.

This exercise is meant to illustrate a real- life higher-order function, generalized with several
parameters that are functions themselves.

Program afunction bi nar y- sear ch-i n-vect or, with the following signature:

(bi nary-search-in-vector v el sel el-eq? el-leq?)

v isthe sorted vector. el isthe element to search for. If v-el isan element in the vector, the
actual comparison is done between el and (sel v-el). Thus, the function sel isused asa
selector on vector elements. Equality between elementsis done by the el - eq? function. Thus,
(el -eq? (sel x) (sel y)) makessenseon elementsx andy in the vector. The ordering of
elements in the vector is defined by the el -1 eq? function. (el -1 eq? (sel x) (sel y)) makes
sense on elements x and y in the vector.

Thecal (bi nary-search-in-vector v el sel el-eq? el-leq?) searchesthe vector via
binary search and it returns an element el - v from the vector which satisfies (el-eq? (sel el-v) d).
If no such element can be located, it returns #f.

Here are some examples, with elements being cons pairs:

(bi nary-search-in-vector "#((2 . x) (4 . y) (5. z) (7. i) (9. ¢

(11 . c)) 7 car = <= =>

(7 . 1)

(bi nary-search-in-vector "#((2 . x) (4 . y) (5. z) (7. 1) (9. ¢
(11 . ¢)) 2 car = <9 =>

(2 . x)

99

(bi nary-search-in-vector "#((2 . x) (4 . y) (5. z) (7. 1) (9. ¢
(11 . ¢)) 10 car = <9 =>
#f

Be sure to program atail recursive solution.

14.4. Generation of list selectors

Lecture 4 - slide 5

Thefunction fi nd-i n-1i st took afunction as parameter. In this section we will give an example
of a higher-order function which returns a function as result.

It is attractive to generate generalizations of the list selector functionscar, cadr, etc

The function make- sel ect or - f unct i on generates a list selector function which returns element
number n from alist. It should be noticed that the first element in alist is counted as number one.
Thisis contrary to the convention of the function 1i st - r ef and other similar Scheme function,
which counts the first element in alist as number zero. Thisexplainsthe (- n 1) expressionin
Program 14.7.

(define (nmake-sel ector-function n)
(lambda (Ist) (list-ref Ist (- n 1))))

Program 14.7 Asimpleversion of themake- sel ect or - f uncti on function.

In the web version of the materia (dide view or annotated dide view) you will find yet another
version of the function make- sel ect or - f unct i on, which provides for better error messages, in
case element number n does not exist in the list. We have taken it out of this version because of its
size and format.

The dialogue below shows examples of definitions and uses of list selector functions generated by
meke- sel ect or-functi on.

1> (define first (make-selector-function 1 "first"))

2> (first "(a b c))
a

3> (first '())

The sel ector function first: The list () is is too short for selection
It nust have at |east 1 elements.

>

4> (define (make-person-record firstnane |astnanme departnent)
(l'ist 'person-record firstnane |astnanme departnent))

100

5> (define person-record
(make- person-record "Kurt" "Nornmark" "Conputer Science"))

6> (define first-nanme-of (nmake-selector-function 2 "first-nane-of"))
7> (define |ast-name-of (nmake-selector-function 3 "|ast-nanme-of"))

8> (| ast - name- of person-record)
" Nor mar k"

9> (first-nane-of person-record)
"Kurt"

Program 14.8 Examples usages of the function make-sel ector-function. In interaction 1 through 3
we demonstrate generation and use of the first function. Next we outline how to define accessors of
data structures, which are represented aslists. In reality, we are dealing with list-based record
structures. In my every day programming, such list structures are quite common. It istherefore
immensely important, to access data abstractly (via name accessors, instead of via the positionin
thelist (car, cadr, etc). In this context, the make-sel ector-function comesin handy.

14.5. References

[-] Foldoc: higher order function
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=higher+order+function

101

102

15. Mapping and filtering

In this chapter we will focus on higher-order functions that work on lists. It turns out that the
appropriate combinations of these make it possible to solve a variety of different list processing
problems.

15.1. Classica higher-order functions. Overview

Lecture 4 - slide 7

We start with an overview of the classical higher-order functions on lists, not just mapping and
filtering, but aso including reduction and zipping functions which we cover in subsequent sections.

There exists a few higher-order functions viawhich awide variety of problems can be
solved by ssimple combinations

Overview:
Mapping: Application of afunction on all elementsin alist
Filtering: Collectionof elements from alist which satisfy a particular condition
Accumulation: Pair wise combination of the elements of alist to avalue of
another type
Zipping: Combination of two liststo asingle list

[The functions mentioned above represent abstractions of algorithmic patternsin the
functional paradigm

The idea of patterns has been boosted in the recent years, not least in the area of object-oriented
programming. The classical higher-order list functions encode recursive patterns on the recursive
data type list. As a contrast to many patterns in the object-oriented paradigm, the patterns encoded
by map, filter, and others, can be programmed directly. Thus, the algorithmic patterns we study
here are not design patterns. Rather, they are programming patterns for the practical functional
programmer.

15.2. Mapping

Lecture 4 - slide 8

The idea of mapping is to apply a function on each element of alist, hereby collecting the list of the
function applications

103

A mapping function applies a function on each element of alist and returns the list of
these applications

The function map is an essential Scheme function

The idea of mapping is illustrated below.

ﬁi1 H’j‘1 !?31 ﬂ‘l‘—¢ H‘I‘1

£ e, €, By i e
v oy v !
((me,)(me,) (me;) (me,).... (me))

Figure 15.1 Mapping a function mon alist. misapplied on every
element, and the list of these applicationsis returned.

15.3. The mapping function

Lecture 4 - slide 9

It is now time to study the implementation of the mapping function. We program a function called
mymap in order not to redefine Scheme's own mapping function (a standard function in al Scheme
implementations).

(define (nymap f Ist)
(if (null? Ist)
"0
(cons (f (car Ist))
(mymap f (cdr Ist)))))
Program 15.1 Animplementation of map. Thisis not a good implementation because the recursive

call isnot atail call. We leave it as an exercise to make a memory efficient implementation with tail
recursion - see the exercise below.

Exercise 4.5. Iterative mapping function

In contrast to the function mymap on this page , write an iterative mapping function which is tail
recursive.

Test your function against mymap on this page, and against the native map function of your
Scheme system.

Exercise 4.6. Table exercise: transposing, row elimination, and column elimination.

Inan earlier sectior we have shown the annlication of some verv useful table manipulation

104

functions. Now it is time to program these functions, and to study them in further details.

Program the functiorst r anspose, el i m nat e-r ow, and el i m nat e- col urm, asthey have been
illustrated earlier. As one of the success criteria of this exercise, you should attempt to use higher-
order functions as much and well as possible in your solutions.

Hint: Program a higher-order function, (el i m nat e- el ement n) . The function should return a
function which éiminates el ement number n from a list.

15.4. Examples of mapping

Lecture 4 - dide 10

We will now study a number of examples.

[Expresion \Value
(map
string? (#f #f #t #f #f #t)
(list 1 "en "en" 2 "to "to"))
(map
(lanbda (x) (* 2 X)) (20 40 60 80)
(list 10 20 30 40))
(ul
(Enap .
compose 1 (ul (map (compose li (compose b (lambda (X)
(st S St eoter red 90 ont-color red X)) (list "a "b" "c’)))
)
)
(ul
(map
(conpose i
Same as above (compose b

(lambda (x) (font-color red x))))
(I I St n a.II n bll n CII)
)

)

Table15.1 Inthefirstrowwemapthest ri ng? predicateon alist of
atoms (number, symbols, and strings). Thisreveals (in terms of boolean
values) which of the elements that are strings. In the second row of the
table, we map a 'multiply with 2' function on a list of numbers. The third
row is more interesting. Here we map the compositionof | i ,b , and red
font coloring on the elements a, b, and c. When passed to the HTML
mirror function ul , this makes an unordered list with red and bold i tems.
Notice that the conpose function used in the exampleis a higher-order
function that can compose two or more functions. The functionconpose
froml i b/ gener al . scmissuch a function. Notice also that the HTML
mirror functionul receivesalist, not astring. The fifth and final row
illustrates the raw HTML output, instead of the nicer rendering of the
unordered list, which we used in the third row.

105

15.5. Filtering

Lecture 4 - dlide 11

As the name indicates, thefi I t er function is good for examining elements of alist for a certain
property. Only elements which possess the property are allowed through the filter.

A filtering function applies a predicate (boolean function) on every element of alist.
Only elements on which the predicate returns true are returned from the filtering
function.

Thefunction filter isnot an essential Scheme function - but is part of the LAML
generd library

The figure below illustrates the filtering idea.

(e, ‘Eg\ e h\ e)

L 4 v v v L
true fal e true falze ... frue

Figure 15.2 Filtering alist with a predicatef. Theresulting list isthe
subset of the elements which satisfy f (the elements onwhich f returns
true).

15.6. Thefiltering function

Lecture 4 - slide 12

The next item on the agenda is an implementation of filter .

|For practical purposes it is important to have a memory efficient fi | t er function

As a consequence of the observation above, we now program atail recursive version of fi | ter.
Notice that it isthe function fi I t er - hel p, which does the real filtering job.

106

(define (filter pred Ist)
(reverse (filter-help pred Ist "())))

(define (filter-help pred Ist res)
(cond ((null? Ist) res)
((pred (car Ist))
(filter-help pred (cdr Ist) (cons (car Ist) res)))
(

(filter-help pred (cdr Ist) res))))

Program 15.2 Animplementation of filter which is memory efficient. If the predicate holds on an
element of thelist (the red fragment) we include the element in the result (the brown fragment). If
not (the green fragment), we drop the element from the result (the purple fragment).

Exercise 4.7. A straightforward filter function
Thefilter function illustrated in the material is memory efficient, using tail recursion.

Take a moment here to implement the straightforward recursive filtering function, which isn't tail
recursive.

15.7. Examples of filtering

Lecture 4 - slide 13

Aswe did for mapping, we will also here study a number of examples. As before, we arrange the
examples in a table where the example expressions are shown to the left, and their values to the

right.

107

[Expression \Value

(filter
even? (2 4)
'(1 23 405))

(filter
(negate even?) (13 5)
"(12 3 45))

Orap 1 1. Firg
map |i
(filter string? 2. Second

(list 1 "a "First" "Second" 3))))
\Sanxaasabove ‘<0I><Ii>First</Ii> <l i >Second</ | i ></ ol >

Table15.2 Inthefirst row wefilter thefirst five natural numberswith
theeven? predicate. In the second row, wefilter the same list of
numberswith the odd? predicate. Rather than using the name odd? we
formit by calculating(negat e even?) . We have seen the higher-
order functionnegat e earlier in thislecture. The third and final
exampleillustratesthefiltering of a list of atomswiththest ri ng?
predicate. Only strings pass the filter, and the resulting list of stringsis
rendered in an ordered list by means of the mirror function of the ol
HTML element.

15.8. References

[-] Foldoc: filter
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=filter
[-] The LAML general library
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/general .html
[-] Foldoc: map

http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=map

108

16. Reduction and zipping

The reduction and zipping functions work on lists, like map and filter from Chapter 15.

16.1. Reduction

Lecture 4 - dide 15

List reduction is useful when we need somehow to 'boil down' alist to a'single value'. The boiling
is done with abinary function, asillustrated in Figure 16.1.

[Reduction of alist by means of a binary operator transforms the list to avalue in the
range of the binary operator.

(e; & € ey €) ‘CF{]--“ €3 S € ©)
R\\t | ,."I r/ H/r / \H‘ , 1\ \'\L‘ . X
op |/ / \ \oooop
\\\. r."Ilr /I I,."l \\ \ f
w | O\
ﬁx If If.* \ .\‘ J(r
op : ;
.,f % IFP
ap \c};_';

Figure 16.1 Left and right reduction of alist. Left reductionis- quite
naturally - shown to the left, and right reduction to theright.

There is no natural value for reduction of the empty list. Therefore we assume as a
precondition that the list is non-empty.

The intuitive idea of reduction will probably be more clear when we meet examplesin Table 16.1
below.

Examples of left and right reduction are given in the table below. Be sure to understand the

difference between left and right reduction, when the function, with which we reduce, is not
commutative.

109

[Expression \Value

((reduce-left - ' (1 2 3 4 5)) -13

((reduce-right - '(1 2 3 4 5)) 3

(rs:ducs:-l eft string-append (list "The" "The End"
End"))

(reduce-left append (list (list 1 2 3)

(list 'a'b 'c))) (£ zeabe)

Table16.1 Examples of reductions. The - left reduction of the list
corresponds to calculating the expression (- (- (- (-1 2) 3) 4) 5). The -
right reduction of thelist corresponds to calculating the expression (- 1 (-

2(-3(-45))-

16.2. The reduction functions

Lecture 4 - dide 16

We will now implement the reduction functions introduced above in Section 16.1. Both right
reduction and left reduction will be implemented, not least because they together illustrate a good
point about iterative and tail recursive processing of lists. The explanations of thisis found in the
captions of Program 16.1 and Program 16.2.

The function r educe-ri ght isastraightforward recursive function

Thefunction r educe- | ef t isastraightforward iterative function

(define (reduce-right f |st)
(if (null? (cdr Ist))
(car Ist)
(f (car Ist)
(reduce-right f (cdr Ist)))))

Program 16.1 The function reduce-right. Notice the fit between the composition of thelist and the
recursive pattern of the right reduction.

(define (reduce-left f Ist)
(reduce-hel p-left f (cdr Ist) (car Ist)))

(define (reduce-help-left f Ist res)
(if (null? Ist)
res
(reduce-help-left f (cdr Ist) (f res (car Ist)))))

Program 16.2 The function reduce-left. Thereisa misfit between left reduction and the recursive
composition of the list with heads and tails. However, an iterative process where we successively
combineel and e2 (giving r1), r1 and e3 etc., is straightforward. As we have seen several times, this
can be done by a tail recursive function, here reduce-hel p-left.

110

In summary, right reduction is easy to program with a recursive function. The reason is that we can
reduce the problemto (f (car Ist) X),whereXaright reductionof (cdr Ist) withf. Theright
reduction of (cdr 1st) issmaller problem than the original problem, and therefore we eventually
meet the case where the list istrivia (in this case, a single e ement list).

The left reduction combines the elements one after the other, iteratively. First we calculate (f (car
el) (cadr el)), provided that the list is of length 2 or longer. Let us call thisvalue Y. Next (f Y
(caddr el)) iscaculated, and so onin an iterative way. We could easily program this with a
simple loop control gructure, like a for loop.

16.3. Accumulation

Lecture 4 - dlide 17

In this section we introduce a variation of reduction, which allows us aso to reduce the empty list.
We chose to use the word accumulation for this variant.

It is not satisfactory that we cannot reduce the empty list

We remedy the problem by passing an extra parameter to the reduction functions

We call this variant of the reduction functions for accumulation

It also turns out that the accumulation function is slightly more useful than r educe-1 ef t and
reduce-ri ght from Section 16.2. The reason is that we control the type of the parameteri ni t to
accunul at e-ri ght in Program 16.3. Because of that, the signature of the accumulate function
becomes more versatile than the signatures of r educe-1 eft andreduce-ri ght . Honestly, thisis
not easy to spot in Scheme, whereas in languages like Haskell and ML, it would have been more
obvious.

Below we show the function accunul at e- ri ght , which performs right accumulation. In contrast to
reduce-ri ght from Program 16.1laccunul at e- ri ght aso handles the extreme case of the empty
list. If the list is empty, we use the explicitly passed i ni t value as the resuilt.

(define (accunul ate-right f init Ist)
(if (null? |st)
init
(f (car Ist) (accurmulate-right f init (cdr Ist)))))
Program 16.3 The function accumulate-right. The recursive patternissimlar to the pattern of
reduce-right.

The table below shows a few examples of right accumulation, in the sense introduced above.

111

[Expression \Value

\(accunul ate-right - 0 '()) 0

(accunul ate-right - 0 ' (1 2 3 4 5)) 3

(accunul ate-ri ght append ' ()

(list (list 123) (list 'a‘'b'c))) [(L23abc)

Table16.2 Examples of right accumulations. Thefirst row illustrates
that we can accumulate the empty list. The second and third rows are
similar to the second and third rowsin Table 15.1.

In relation to web programming we most often append accumulate lists and strings

accunul ate-ri ght ispart of the general LAML library

Due to their deficiencies, the reduction functions are not used in LAML

16.4. Zipping

Lecture 4 - slide 18

The zipping function is named after a zipper, as known from pants and shirts. The image below
shows the intuition behind a list zipper.

Two equally long lists can be pair wise composed to asingle list by means of zpping
them

& & & B

Figure 16.2 Zipping two lists with the function z. The head of the
resulting listis(z e f j), wherethe element e ; comes fromthefirst list,
and f ; comesfromthe other.

We implement the zipping function in the following section.

16.5. The zipping function

Lecture 4 - slide 19

Thezi p function in Program 16.4 takes two lists, which are combined element for element. Asa
precondition, it is assumed that both input list have the same size.

112

(define (zip z Istl Ist2)
(if (null? Istl)
()
(cons
(z (car Istl) (car Ist2))
(zip z (cdr Istl) (cdr I1st2)))))

Program 16.4 The function zip.

Below we show examples of zipping with the zi p function. For comparison, we aso show an
example that involves st ri ng- mer ge, which we discussed in Section 11.7.

[Expression \Value
((zip cons '(1 2 3) '(ab c)) ((1. a) (2. b) (3. ¢c))
(apply string-append
(zip
"Ri p, Rap, and Rup"”

string-append
'("Rip" "Rap" "Rup")
(" and T M)

(string-nerge "Ri p, Rap, and Rup"

"("Rip" "Rap" "Rup") '(", " ", and "))

Table16.3 Examples of zipping.

Zi p issimilar to the function st ri ng- ner ge from the LAML generdl library

However, st ri ng- mer ge handles lists of strings nortequal lengths, and it concatenates
the zipped results

113

114

17. Currying

Currying is an idea, which is important in contemporary functional programming languages, such as
Haskell. In Scheme, however, the ideais less attractive, due to the parenthesized notation of
function calls.

Despite of this, we will discuss the idea of currying in Scheme via some higher-order functions like
curry anduncurry. Wewill also study some ad hoc currying of Scheme functions, which has
turned out to be useful for practical HTML authoring purposes, not least when we are dealing with
tables.

17.1. Theideaof currying

Lecture 4 - dide 21

Currying is the idea of interpreting an arbitrary function to be of one parameter, which returns a
possibly intermediate function, which can be used further on in a calculation.

Currying alows us to understand every function as taking at most one parameter.

Currying can be seen as a way of generating intermediate functions which accept
additional parameters to complete a calculation

The illustration below shows what happens to function signatures (parameter profiles) when we
introduce currying.

f AxBxC->D non curried.
ffA->B ->C->D curried.

£ A->@B ->(C->D) | [f A->B ->C->D
fa: B ->{(C->D) fa: B -»>C->D
fab: C->D fab: C->D

Figure 17.1 Thesignatures of curried functions. In the upper frame we
show the signature of a function f, which takes three parameters. The
frames bel ow show the signature when f iscurried. In theliterature, the
notation shown to the bottom right is most common. The frame to the left
shows how to par se the notation (the symbol -> associates to theright).

Currying and Scheme is not related to each other. Currying must be integrated at a more
basic level to be elegant and useful

115

17.2. Currying in Scheme

Lecture 4 - dlide 22

Degspite the observations from above, we can explore and play with currying in Scheme. We will
not, however, claim that it comes out as elegant as, for instance, in Haskell.

It is possible to generate curried functions in Scheme.,

But the parenthesis notation of Lisp does not fit very well with the idea of currying

The function cur ry2 generates a curried version of a function, which accepts two parameters. The
curried version takes one parameter at atime. Similarly, cur r y3 generates a curried version of a
function that takes three parameters.

The functions uncur ry2 and uncur ry3 are the inverse functions.

It is worth a consideration if we can generalizecurry2 and cur ry3 to ageneration of currynviaa
higher-order function cur ry, which takes n as parameter. We will leave that as an open question.

(define (curry2 f)
(I ambda(x)
(I ambda(y)
(f xy))))

(define (curry3 f)
(1 anbda(x)
(I ambda(y)
(I anmbda(z)
(f xy z)))))

(define (uncurry2 f)
(lanmbda (x y)

((f x) v)))

(define (uncurry3 f)
(lambda (x y z)
(((f x) y) 2)))

Program 17.1 Generation of curried and uncurried functionsin Scheme.

Exercise 4.8. Playing with curried functionsin Scheme
Try out the functions cur ry2 and cur ry3 on a number of different functions.
You can, for instance, use then curry functions on plus (+) and map.

Demonstrate, by a practical example, that the uncurry functions and the curry functions are
inverse to each other.

116

17.3. Examples of currying

Lecture 4 - dlide 23

Let us here show a couple of examples of the curry functions from Section 17.2.

Curried functions are very useful building blocks in the functional paradigm

In particular, curried functions are adequate for mapping and filtering purposes

The function font-1 is assumed to take three parameters. The font size (an integer), a color (in some
particular representation that we do ot care about here) and a text string on which to apply the font
information. We show a possible implementation of font-1 in terms of the font mirror function in
Program 17.2.

\Expron \Value
‘(font-l 4 red "Large red text") ‘Large red text

(define curried-font-1 (curry3 font-1))
(define large-font (curried-font-1 5))

((large-font blue) "Very |large blue Very Iarge bl ue text

text™)

(define small-brown-font ((curried-font-

1 2) brown)) Small brown text
(smal |l -brown-font "Small brown text")

(define large-green-font ((curried-font-
1 5) green))

(list-to-string (map | arge-green-font
(list "The" "End")) " ")

Table17.1 Examplesof currying in Scheme.

(define (font-1 size color txt)
(font 'size (as-string size)
‘col or (rgb-color-encodi ng col or)
txt))

Program 17.2 A possible implementation of font-1 in terms of the font HTML mirror function.

17.4. Ad hoc currying in Scheme (1)

Lecture 4 - slide 24

In some situations we would wish that the map function, and similar functions, were curried in
Scheme. But we cannot generate an f- mapper by evaluating the expression(map f) . Weget an
error message which tells us that map requires at least two parameters.

117

In this section we will remedy this problem by a pragmatic, ad hoc currying made via use of a
simple higher-order function we call curry- general i zed.

It is possible to achieve 'the currying effect’ by generalizing functions, which requires
two or more parameters, to only require a single parameter

In order to motivate ourselves, we will study a couple of attempts to apply a curried mapping
function.

[Expression Value
("<l'i>one</Ii>"
(map I'i (list "one" "two" "three")) "two</Ii>"
"three")
(define Ii-mapper (map Ii)) Imap: expects at least 2 arguments, given 1
(define li-mapper ((curry2 map) li)) (:<I?>0ne</|?>:
(l'i-mapper (list "one" "two" "three")) two</1i>
"three")

Table17.2 Alegal mapping and an impossible attempt to curry the
mapping function. The last example shows an application of curry2 to
achieve the wanted effect, but asit appears, the solution is not very
elegant.

In Program 17.3 we program the function cur ry- gener al i zed. It returns a function that
generalizesthe parameter 1 . If we pass a single parameter to the resulting function, the value of the
red lambda expression is returned. If we pass more than one parameter to the resulting function, f is
just applied in the normal way.

(define (curry-generalized f)
(I anbda rest
(cond ((= (length rest) 1)
(lambda Ist (apply f (cons (car rest) Ist))))
((>= (length rest) 2)
(apply f (cons (car rest) (cdr rest)))))))

Program 17.3 The function curry-generalized. Thisis a higher-order function which generalizes
the function passed as parameter tocur r y- gener al i zed. The generalization provides for just
passing a single parameter tof , in the vein of currying.

The blue expression aggregates the parameters - done in this way to be compatible with the inner
parts of the red expression. In asimpler version (cons (car rest) (cdr rest)) would be
replaceby rest .

In the next section we see an example of curry generalizing the map function.

118

17.5. Ad hoc currying in Scheme (2)

Lecture 4 - dlide 25

We may now redefine map to (curry-general i zed map) . However, we usually bind the curry
generalized mapping function to another name, such as gmap (for generalized nap).

This section shows an example, where we generate al i mapper, by (gmap 1i).

‘Expron |VaJue

(define gmap (curry-generalized map)) ("one</1i>"
(define li-mapper (gmap li)) "two</Ii>"
(l'i-mapper (list "one" "two" "three")) "three")

("one</I|i>"
(gmap i (list "one" "two" "three")) "two"
"three")

Table17.3 Examples of curry generalization of map. Usingcur ry-
general i zed itispossibleto makeal i -mapper in an elegant and
satisfactory way. The last row in the table shows that gnap can be used
instead of map. Thus, gmap canin all respect be a substitution for map,
and we may chose to redefine the name nap to the value of (curry-
general i zed map).

If we redefine map to (curry-general i zed map), the new mapping function can be used instead
of the old onein al respects. In addition, (map f) now makes sense; (map f) returns afunction,

namely an f mapper. Thus((map i) "one" "two" "three") doesaso make sense, and it gives
the result shown in one of value cellsto the right of Table 17.3.

17.6. References

[-] Foldoc: curried function
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=curried+function

119

120

18. Web related higher-order functions

We finish our coverage of higher-order functions with a number of examples from the web domain.

18.1. HTML mirror generation

Lecture 4 - dide 27

In this section we will, in a principled way, show how to generate ssimple HTML mirror functionsin
Scheme. Please notice that the HTML mirror functionsin LAML are more sophisticated and
elaborate than the ones discussed here.

There are three different cases to consider: double tag e ements, single tag elements, and
tags that can be both single and double.

A well-known tag, that can be both single and double is the p tag.

The higher-order functions gener at e- doubl e-t ag- f unct i on and gener at e- si ngl e-t ag-
functi on arethe top level functions. They rely on a couple of other functions, which we program
in Program 18.2 - Program 18.4.

(define (generate-doubl e-tag-function tag-nane)
(lanbda (contents . attributes)
(doubl e-tag tag-name contents attributes)))

(define (generate-single-tag-function tag-nane)
(I anbda attributes
(single-tag tag-nanme attributes)))

Program 18.1 The two higher-order functions for the HTML mirror generation. Thisversion
correspondsto the an earlier version of LAML'sHTML mirror.

(define (single-tag name attributes)
(start-tag nane attributes))

(define (double-tag name contents attributes)
(string-append (start-tag name attributes)
(as-string contents)
(end-tag nane)))

Program 18.2 Functionsthat generate single and double tags.

The functionsst art - t ag and end- t ag are used in Program 18.2 and implemented in Program 18.3.

121

(define (start-tag kind attributes)
(if (null? attributes)
(string-append "<" kind ">")
(let ((html -attributes (linearize-attributes attributes)))
(string-append "<" kind " " html-attributes " >"))))

(define (end-tag kind)
(string-append "</" kind ">"))

Program 18.3 Functionsthat generate individual single and double tags.

The missing aspect at this point is the attribute handling stuff. It is made in Program 18.4.

(define (linearize-attributes attr-1ist)
(string-append
(l'ineari ze-attributes-1
(reverse attr-list) "" (length attr-list))))

(define (linearize-attributes-1 attr-list res-string |gt)
(cond ((null? attr-list) res-string)

((>=1Tgt 2)
(linearize-attributes-1
(cddr attr-1ist)
(string-append
(l'inearize-attribute-pair
(car attr-list) (cadr attr-list)) " " res-string)
(- gt 2)))
((<lgt 2)
(error "The attribute |list nmust have even Il ength"))))

(define (linearize-attribute-pair val attr)
(string-append (as-string attr)
" =" (string-it (as-string val))))

Program 18.4 Functionsfor attribute linearization. The parameter attr-list isa property list.

Recall that property lists, as passed to the function I i neari ze-at t ri but es in Program 18.4 have
been discussed in Section 6.6.

There are several things to notice relative to LAML. First, the HTML mirror in LAML does not
generate strings, but an internal representation akin to abstract syntax trees.

Second, the string concatenation done in Program 18.1 through Program 18.4, where a lot of small
strings are aggregated, generates a lot of 'garbage strings. The way thisis handled (by the r ender
functionsin LAML) is more efficient, because we write string parts directly into a stream (or into a
large, pre-allocated string).

Y ou will find more details about LAML in Chapter 25 and subsequent chapters.

122

18.2. HTML mirror usage examples

Lecture 4 - dlide 28

Let us now use the HTML mirror generation functions, which we prepared viagener at e- doubl e-
tag-functi on and gener at e- si ngl e-t ag-f uncti on in Section 18.1.

The example assumes loading of | anl . scmand the function map- concat , which
concatenates the result of a map application.

The real mirrors use implicit (string) concatenation

As noticed above, there some differences between the real LAML mirror functions and the ones
programmed in Section 18.1. The functions from above require string appending of such
condtituents as the three t r element instances in the table; This is inconvenient. Also, the mirror
functions from above require that each double element gets exactly one content string followed by a
number of attributes. The real LAML mirror functions accept pieces of contents and attributesin
arbitrary order (thus, in some sense generalizing the XML conventions where the attributes come
before the contents inside the start tag). Finally, there is no kind of contents nor attribute validation
in the mirror functions from above. The LAML mirror functions validate both the contents and the
attributes relative to the XML Document Type Definition (DTD).

123

[Expression Value

(let* ((functions
(map gener at e-doubl e-t ag-
function <tabl e border="3">
(list "table" "td" <tr bgcol or="#ff0000" >
"tr"))) <td> cl </td>
(table (car functions)) <td> c2 </td>
(td (cadr functions)) <td> c3 </td>
(tr (caddr functions))) </[tr>
(table <tr>
(string-append <td> c4 </td>
(tr <td> c5 </td>
(map-concat td (list "cl" "c2" <td> c6 </td>
"c3")) </tr>
" bgcol or "#ff0000") <tr>
(tr <td> c7 </td>
(map-concat td (list "c4" "cb5" <td> c8 </td>
"c6"))) <td> c9 </td>
(tr </tr>
(map-concat td (list "c7" "c8" </tabl e>
"c9"))))
"border 3))
Same as above

Table18.1 An example usage of the simple HTML mirror which we
programmed on the previous page. The bottom example shows, asin
earlier similar tables, the HTML rendering of the constructed table. The
map- concat function used in the exampleis defined in the general
LAML libraryas(defi ne (map-concat f Ist) (apply
string-append (map f |st))).Inordertoactually evaluate the
expression you should load| am . scmof the LAML distribution first.

To show the differences between the simple mirror from Section 18.1 and the real mirror we will
show the same example using the XHTML mirror functions in Section 18.3.

18.3. Making tables with the real mirror

Lecture 4 - dlide 29

The real mirror provide for more elegance than the smple mirror illustrated above

Here we will use the XHTML1.0 transitional mirror

In the example below there is no need to string append the tr forms, and there is no need to use a
special string appending mapping function, like map- concat from Table 18.1. Attributes can appear

124

before, within, or after the textual content. This makes the HTML mirror expression ssmpler and
less clumsy. The rendering result is, however, the same.

[Expression IRendered value
<tabl e border = "3">
<tr bgcol or = "#ff0000">

<td>cl</td>
<td>c2</td>

(tabl e
'border 3 <td>c3</td>
(tr </tr>
<tr>

(map td (list "c1" "c2" "c3"))
" bgcol or "#ff0000")
(tr
(map td (list "c4" "cb5" "c6")))
(&0 <tr>
) (map td (list "c7 c8 c9"))) <t d>c7</ t d>
<t d>c8</td>
<td>c9</td>
</tr>
</tabl e>

<td>c4</td>

<t d>ch</td>

<td>c6</td>
</[tr>

Same as above

Table18.2 A XHTML mirror expression with a table corresponding to
the table shown on the previous page and the corresponding HTML
fragment. Notice the absence of string concatenation. Also notice that the
border attribute is given beforethefirst tr element. The border attribute
could aswell appear after the tr elements, or in between them.

Y ou might think, that the example above aso could be HTML4.01. But, not quite, in fact. In
HTMLA4.01 there need to be at body (table body) form in between the t r instances and the t abl e
instance. Without this extract level, the table expression will not be valid. Try it yourself! It is easy.

[How, you may ask. In Emacsdo M x set-interactive-lam -mirror-Iibrary andenterhtm -
4.01. ThendoM x run-1an -interactivel y. Copy the table expression from above, and try it
out. You can shift to XHTML1.0 by M x set-interactive-lam -mirror-1ibrary andasking
forxhtm - 1. 0-transi tional, for instance. Thenredo M x run-1anl -interactivel y. Besureto
usexm -render ontheresult of (table ...) to make atextua rendering. |

18.4. Tableswith higher-order functions

Lecture 4 - dide 30

In the context of higher-order functions there are even better ways to deal with tables than the one
shown in Table 18.2 from Section 18.3.

The table expression in the last line in Table 18.3 shows how.

125

Instead of explicit compositionof t d andt r elements we can use a mapping to apply tr
torowsandt d to e ements

[Expression \Value
(define rows
"(("This™ "is"™ "first" "row") :
("This" "is" "second" "row') This E|first |I‘OW
("This® “is" "third" "row') ——
("This" "is" "fourth" "row')) This ’E_|Second |rOW
) This|is [third [row
(table 'border 5 This E|fourth |row
(gmap (conpose tr (gmap td))
rows))

Table18.3 Inthetable expression we map - at the outer level - a
compositionof t r and at d-mapper. Thet d-mapper is made by (gmap

td).

Recall that we already have discussed the ad hoc currying, which isinvolved in gmap, cf. the
discussion in Section 17.4.

The last example illustrates that (gmap t d) isauseful building block, which can be
composed with other functions.

The last example depends on the fact that the HTML mirror functions accept lists of
elements and attributes.

Y ou should consult Chapter 26 to learn about the exact parameter passing rules of the HTML mirror
functions in LAML.

18.5. HTML element modifications

Lecture 4 - dide 31

It is often useful in some context to bind an attribute of aHTML mirror function (or a number of
attributes) to some fixed value(s). This can be done by the higher-order function nodi f y- el enent
which we discuss below.

The idea behind the function nodi f y- el enent isto perform an a priori binding of some
attributes and some of the contents of amirror function.

The function modi fy- el enent issimple. First notice that it accepts a function, namely the el enent
parameter. It also returns a function; In effect, it returns el enent with at t ri but es- and- cont ent s

126

appended to the parameters of the modified e ement. As another possibility, we could have
prepended it.

(define (nmodify-el ement el ement . attributes-and-contents)
(I anbda paraneters
(apply el ement
(append paraneters attributes-and-contents))))

Program 18.5 The function modify-element.

In the table below we illustrate three examples wheret d, ol , and ul are modified with apriori
bindings of selected attributes.

[Expression \Value

defi di : :
(oo oy el erent T s fit
"b I b-col or-1li d
ecoler (rob-eolor-tist vea N I
(table 'border 5 ---
(map (conpose tr (gmap tdl)) rows))

A1l

B. 2

(define ol 1 C. 3
(nodi fy-elenent ol 'type "A")) D. 4
E 5

(ol1 F. 6
(map _ _ G 7
(conmpose |i as-string) H. 8
(nunber-interval 1 10))) I. 9

J 10

- 1

- 2

(define ull - 3
(nodi fy-el ement ul 'type "square")) : g’
(ul'l = 6
(mep - 7
(conpose |i as-string) = 8
(nunber-interval 1 10))) 9

= 10

Table18.4 Examples of element modification using the function
nodi fy-el ement .

LAML supports two related, but more advanced functions called xmi -i n-1 am - paramet ri zati on
andxn -in-1am -abstraction. Thefirst of these isintended to transform an 'old style function' to

127

afunction with XML-inrLAML parameter conventions, as explained in Chapter 26. The second
function is useful to generate functions with XML-in-LAML parameter conventions in general.

18.6. The function simple-html-table

Lecture 4 - slide 32

We will now show show an implementation of the function si npl e-ht mi -t abl e

In an earlier exercise - 'restructuring of lists' - we have used the function si npl e- ht ni -
tabl e

We will now show how it can be implemented

(define sinple-htn -tabl e
(I anbda (col umm-wi dht |i st-of -rows)
(let ((gmap (curry-generalized map))
(td-width
(modi fy-elenment td 'width
(as-string colum-wi dht))))
(tabl e
'border 1

(t body
(gmap (conpose tr (gmap td-width)) list-of-rows))))))

Program 18.6 The function simple-html -table. Locally we bind grmap to the curry generalized map
function. We also create a specialized version of t d, which includes awi dt h attribute the value of
which is passed as parameter tosi npl e- ht nl -t abl e . Inthe body of thel et construct we
create the table in the same way as we have seen earlier in thislecture.

18.7. The XHTML mirror in LAML

Lecture 4 - slide 33

In order to illustrate the data, on which the HTML mirrorsin LAML rely, the web edition of the
material includes a huge table with the content model and attribute details of each of the 77

XHTML1.0 strict elements.

LAML supports an exact mirror of the 77 XHTML 1.0 strict elements as well as the
other XHTML variants

The LAML HTML mirror libraries are based on a parsed representation of the HTML
DTD (Document Type Definition). The table below is automatically generated from the
same data structure.

128

The table is too large to be included in the paper version of the material. Please take alook in the
corresponding part of the web material to consult the table.

18.8. Generation of aleq predicate from enumeration

Lecture 4 - side 34

As the last example related to higher-order functions we show the function gener at e- | eq, See
Program 18.7.

The ideais to generate a boolean 'less than or equal’ (leq) function based on an explicit enumeration
order, which is given as input to the function gener at e- 1 eq. A number of technicalities are
involved. You should read the details in Program 18.7 to grasp these details.

In some contexts we wish to specify a number of clausesin an arbitrary order

For presentational clarity, we often want to ensure that the clauses are presented in a
particular order

Here we want to generate a leq predicate from an enumeration of the desired order

Cenerate a |l ess than or equal predicate fromthe
enuneration-order. If p is the generated predicate,
(p xy) istrue if and only if (selector x) cones before
(or at the sane position) as (selector y) in the
enuner ati on-order. Thus, (selector x) is assuned to give a
value in enuneration-order. Conparison with elenents in the
;; enuneration-list is done with eq?
(deflne (generate-1eq enuneration-order sel ector)
(lambda (x vy)
; X and y supposed to be elenments in enuneration order
(let ((x-index (list-index (selector x) enuneration-order))
(y-index (list-index (selector y) enuneration-order)))
(<= x-index y-index))))

A hel ping function of generate-|eq.
Return the position of e in Ist. First is 1
conpare with eq?
if e is not member of Ist return (+ 1 (length [st))
(deflne (list-index e |st)
(cond ((null? Ist) 1)
((eq? (car Ist) e) 1)
(else (+ 1 (list-index e (cdr Ist))))))

Program 18.7 The functionsgener at e- | eq and the helping function! i st - i ndex .

The table below shows a very simple example, in which we use si npl e- 1 eq?, which is generated
by the higher-order function gener at e- | eq from Program 18.7.

129

[Expression \Value

(define sinple-Ileq?
(generate-leq '(z ac by x) id-1))
(zaaccbyXx
(sort-list '"(axy zcc b a) sinple-
| eq?)

Table18.5 A simple example of an application of generate-leq.

The fragment in Program 18.8 gives a more redlistic example of the use of generated 'less than or
equal’ functions. In Program 18.9 we show how the desired sorting of manual - page subelementsis
achieved.

(manual - page

(form "' (showtable rows))

(title "showtable")

(description "Presents the table, in terns of rows")
(parameter "row' "a list of elenents")

(pre-condition "Must be placed before the begin-notes cl ause")
(msc "Internally, sets the variable lecture-id")

(result "returns an HTM. string")

)

Program 18.8 A hypothetical manual page clause. Before we present the clauses of the manual
page we want to ensure, that they appear in a particular order, say title, form, description, pre-
condition, result, and misc. In this example we will illustrate how to obtain such an ordering in an
elegant manner.

(define (syntactic-form nane)
(I anbda subcl auses (cons nanme subcl auses)))

(define form (syntactic-form'form)

(define title (syntactic-form'title))

(define description (syntactic-form ' description))
(define paranmeter (syntactic-form' paranmeter))
(define pre-condition (syntactic-form' pre-condition))
(define msc (syntactic-form'msc))

(define result (syntactic-form'result))

(defi ne (manual - page . cl auses)
(let ((clause-1eq?
(generate-| eq
"(title form description
pre-condition result m sc)
first))

(let ((sorted-clauses (sort-list clauses clause-1eqg?)))
(present-clauses sorted-clauses))))

Program 18.9 An application of gener at e- | eq which sorts the manual clauses.

130

18.9. References

[-]

[-]

[-]

The XHTML 1.0 frameset validating mirror
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/xml -in-
laml/mirrors/man/xhtml 10-frameset-mirror.html

The XHTML1.0 transitional validating mirror
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/xml -in-
laml/mirrors/man/xhtml 10-transitional-mirror.html

The XHTML1.0 strict validating mirror
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/xml -in-
laml/mirrors/man/xhtml 10-strict-mirror.html

The HTMLA4.01 transitional validating mirror
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/html4.01-transitional-
validating/man/surface.html

131

19. Introduction to evaluation order

At this point in the material we start our coverage of evaluation order. We start by discussing the
idea of referential transparency.

19.1. Referentia transparency

Lecture 5 - slide 2

The main idea behind the concept of referential transparency is captured by the point below.

Two equal expressions can substitute each other without affecting the meaning of a
functional program

As formulated above, the possibility of substituting one expression by another depends on whether
or not the two expressions are considered as being equal. As noticed in Section 4.5 there area
number of different interpretations of equality around in Scheme, as well asin other programming
languages.

Aswe observe in the items below, we can use even the weakest form of equality, namely structural,
deep equality, for our observations about referential transparency. In other words, if two structures
are structurally equal, the expressions and values involved may substitute each other.

Referential transparency
provides for easy equational reasoning about a program
does not rely on a particular notion of equality
Reference equality, shallow equality and deep equality cannot be
distinguished by functional means
isamajor contrast to imperative programming

The idea of referential transparency can be stated very briefly in the following way:

|Equals can be replaced by equals

19.2. Anillustration of referential transparency

Lecture 5 - slide 3

Before we proceed we will illustrate some practical uses of referential transparency.

133

With referential transparency it is possible to perform natural program transformations
without any concern of side effects

The two expressions in the top left and the top right boxes of Figure 19.1 may substitute each other,
provided that the function F is a pure function (without side effects).

In the case where F is a value returning procedure, as illustrated in the bottom box of Figure 19.1 it
is clear that it isimportant how many times F is actually evaluated. The reason is that an evaluation
of F affects the value of the variable c, which is used in the top level expressions. (Thus, F is an
imperative abstraction - a procedure).

, let t be 3 * F(a,b)
(3*Fab)+b)* (3 *Fab) -¢) | <==> |in@t+b)* (t-c)
_l | |

- end

| F(a,b: integer): integer is

do

c=c+1;

result =2 *{a+ b)
end

Figure 19.1 Itispossibleto rewrite one of the expressions above to the
other, provided that F is a function. Below, we haveillustrated an
example where F is of procedural nature. Notice that F assigns the

variable c, such that it becomes critical to know how many timesF is
called.

On the ground of this example it is worth observing that equational reasoning about functional
programs is relatively straightforward. If procedures are involved, as F in the bottom box of Figure
19.1, it is much herder to reason about the expression, for instance with the purpose of simplifying
it (asit is the case when substituting the expression to the left with the expression to the right in the
top-part of Figure 19.1).

19.3. Arbitrary evaluation order - with some limits

Lecture 5 - slide 5

In this section we will discuss the order of subexpression evaluation in a composite expression.

In afunctional program an expression is evaluated with the purpose of producing a
value

An expression is composed of subexpressions

134

Take alook at one of the expressionsin Figure 19.2. The underlying syntax trees are shown below
the expressions in the figure. The question is which of the subexpressions to evaluate first, which
comes next, and which one is to be the last.

(a*b=c)and not (¢ =d) fla*b,gb+¢))
and
.—""f .\x f‘
< &S
e oy
¥ "*\x J __-"':"'\-\.‘ a’ \b %
a b c d P
b ¢

Figure 19.2 Anillustration of an expression with subexpressions.

To be concrete, we can propose to start from the left leaf, from the right leaf, from the top, or
perhaps from some location in the middle of the expression.

In the functional programming context, with expressions and pure functions, we will probably
expect that an arbitrary evaluation order is possible. If we should devise a practical recipe we will
probably start from one of leafs (say the leftmost leaf) and work our way to the expression in the
root.

As noticed below, we can actually use an arbitrary evaluation order, provided that there are no
errorsin any of the subexpressions, and provided that all of the involved evaluations terminate.

Subexpressions can be evaluated in an arbitrary order provided that
No errors occur in subexpressions
the evaluation of all subexpressions terminates
It is possible, and without problems, to evaluate subexpressions in parallel

In the rest of this section, as well as in Chapter 20 we will study and understand the premises and
the limits of ‘arbitrary evaluation order'.

19.4. A motivating example

Lecture 5 - slide 6

It is valuable to understand the problems and the quirks of evaluation order by looking at a very
simple program example.

|What is the value of the following expression?

135

The lambda expression in Program 19.1 shows a pseudo application of the constant function, which
returns 1 for every possible input x. The tricky part is, however, that we pass an actual parameter
expression which never terminates.

((lambda (x) 1) sone-infinite-calculation)

Program 19.1 A constant function with an actual parameter expression, the evaluation of which
never terminates.

It is not difficult to write a concrete Scheme program, which behave in the same way as Program
19.1. Such aprogram is shown in Program 19.2. The parameter less function i nfi ni t e-
cal cul ati on just callsitself forever recursively.

(define (infinite-calculation)
(infinite-cal cul ation))

((lambda (x) 1) (infinite-calculation))

Program 19.2 A more concrete version of the expression from above. The functioni nfi ni t e-
cal cul ati on just callsitself without ever terminating.

19.5. A motivating example - clarification

Lecture 5 - slide 7

As noticed below, it can be argued that the value of the expression in Program 19.1 is 1, due to the
reasoning that the the result of the function (1 anbda (x) 1) isindependent of the formal
parameter x.

It can also be argued that an evaluation of the actual parameter expression (i nfinite-

cal cul ati on) stallsthe evaluation of the surrounding expression, such that the expression in
Program 19.1 does not terminate. In Scheme, as well as in most other programming languages, this
will be the outcome.

The items below summarizes these two possibilities, and they introduce two names of the two
different function semantics, which are involved.

Different evaluation orders give different 'results
The number 1
A non-terminating calculation

Two different semantics of function application are involved:
Strict: A function call is well-defined if and only if al actual parameters are
well-defined
Non-strict: A function call can be well-defined even if one or more actua
parameters cause an error or an infinite calculation

136

In most languages, functions are strict. Thisis aso the case in Scheme. In some languages,
however, such as Haskell and Miranda, functions are non-strict. As we will see in the following,
languages with non-strict functions are very interesting, and they open up new computational
possibilities.

19.6. References

[-] Foldoc: referential transparency
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=referential +transparency

137

138

20. Rewrite rules, reduction, and normal forms

At this point in the materia it will be assumed that the reader is motivated to study evaluation order
in some detall.

An evaluation of an expression can be understood as a transformation of the expressions which
preserves its meaning. In this chapter we will see that transformations can be done incrementally in
rewriting steps. A rewriting of an expression gives a new expression which is semantically
equivalent to the original one. Usually, we go for rewritings which simplify an expression. In
theory, however, we could also rewrite an expression to more complicated expression.

In this chapter we will formally characterize the value of an expression, using the concept of a
normal form. We will see that the value of an expression is an expression in itself that cannot be
rewritten to smpler forms by use of any rewriting rules.

As akey insight in this chapter, we will also see that an expression can be reduced to avalue (a
normal form) in many different ways. We will identify and name a couple of these, and we will
discuss which of the evaluation strategies is the 'best'.

20.1. Rewriterules

Lecture 5 - slide 9

This section gives an overview of the rewrite rules, we will study in the subsequent sections.

The rewrite rules define semantics preserving transformations of expressions

The goal of applying the rewrite rulesis normally to reduce an expression to the
simplest possible form, called a normal form.

Overview of rewrite rules
Alpha conversion: rewrites alambda expression
Beta conversion: rewrites genera function calls
Expresses the idea of substitution, as described by the substitution model
Eta conversion: rewrites certain lambda expressions to a simpler form

The Beta conversion corresponds to the substitution model of function calls, which is explained in
[Abelson96]. (See section of 1.1.5 of [Abelson96] for the details).

139

20.2. The dpharewriterule

Lecture 5 - dlide 10

The first rewrite rule we encounter is called the alpha rewrite rule. From a practical point of view
this rule is not very interesting, however. The rule tells under which circumstances it is possible to
use other names of the formal parameters. Recall in this context that the formal parameter names
are binding name occurrences, cf. Section 8.8.

An alpha conversion changes the names of lambda expression formal parameters

Here comes the formulation of the alpharewrite rule.

Formal parameters of alambda expression can be substituted by other names, which are

not used as free names in the body

Recall in the context of this discussion that a free name in a construct is applied, but not bound (or
defined) in the construct. See Section 8.11 for additional details about free names.

In Table 20.1 we see an example of alegal use of the apha rewrite rule. The forma names x andy
of the lambda expression are changed to a and b, respectively. It is fairly obvious that this causes no
problems nor harm. The resulting lambda expression is fully equivaent with the original one.

[Expression IConverted Expression
((lambda (x y) (f x y)) ((lambda (a b) (f a b))

Table20.1 Anexample of an alpha rewriting. The name a replaces x
and the namey replacesy.

More interesting, we show an example of anillegal use of the apharewrite rulein Table 20.2.
Again we change the name x to a. The name of the other formal parameter is changed tof . But f is
afree name in the lambda expression. It is easy to see that the converted expression in Table 20.2
has changed its meaning. The name f is now bound in the formal parameter list. Thus, the rewriting

in Table 20.2 isillegal.

[Expression IConverted Expression
(lambda (x y) (f x y)) ((lambda (a f) (f a f))

Table20.2 Examplesof anillegal alpha conversion. fisafreenamein
the lambda expression. A free nameis used, but not defined (bound) in
the lambda expression. In case we rename one of the parametersto f, the
free name will be bound, hereby causing an erroneous name binding.

140

20.3. The betarewriterule

Lecture 5 - dlide 11

The beta rewrite rule is the one to watch carefully, due to its central role in any evaluation process
that involves the calling of functions.

A beta conversion tells how to evaluate a function call

The beta rewrite rules goes as follows.

An application of a function can be substituted by the function body, in which formal

parameters are substituted by the corresponding actual parameters

It is worth noticing that there are no special conditions for the application of the beta rewriterule. In
that way the rule is different from both the alpha rewrite rule, which we studied in Section 20.2, and
it is also different from the eta rewrite rule which we encounter in Section 20.4 below. All the
examplesin Table 20.3 are legal examples of beta rewritings.

[Expression IConverted Expression

(((lambda(x) (f x)) a) (f a)

((lambda(x y) (* x (+ x y))) (+ 3 4) 5) |[(* 7 (+75))

((lanbda(x y) (* x (+ x y))) (+ 3 4) 5) |(* (+ 3 4) (+ (+34) 5)

Table20.3 Examples of beta conversions. In all the three examples the
function calls are replaced by the bodies. In the bodies, the formal
parameters are replaced by actual parameters.

Be sure to understand that the beta rewrite rule tells us how to implement a function call, at least in
aprincipled way. In apractical implementation, however, the substitution of formal parameters by
(more or less evaluated) actual parametersis not efficient. Therefore, in redlity, the bindings of the
formal parameters are organized in name binding frames, in so-called environments. Thus, instead
of name substitution (as called for in the beta rewrite rules), the formal names are looked up in a
name binding environment, when they are needed in the body of the lambda expression.

The implementation of eval in a Scheme interpreter describes the details of a practical and real life
use of the beta rewrite rule. See Section 24.3 for additional details.

20.4. Theetarewriterule

Lecture 5 - slide 12

The etarewrite rules transforms certain lambda expressions. As such the eta rewrite rule is similar
to the alpharewrite rule, but radically different from the beta rewrite rule.

141

An eta conversion lifts certain function calls out of alambda convolute

In loose terms, the eta rewrite rule can be formulated in the following way. Be aware, however, that
there is a condition associated with applications of the eta rewrite rule. The condition is described
below.

A function f, which only passes its parameters on to another function e, can be

substituted by e
Hereisadightly more formal - and more precise - description of the eta rewrite rule:
(lambda(x) (e x)) <=> e providedthat x isnot freein the expression e

In the same way as above for alpha conversions in Section 20.2 we will give examples of legal and
illegal uses of the etarule.

The example in Table 20.4 shows that the lambda expression around square is superfluous. In the
eta-rewritten expression, the lambda surround of squar e is simply discarded.

[Expression |Converted Expression
(I anbda (x) (square x)) 'squar e

Table20.4 Anexample of an eta rewriting.

It is dightly more complicated to illustrate an illegal use of the rule. In the expression of the left cell
in Table 20.5 we are attempting to eliminate the outer lambda expression by use of the eta rewrite
rule. Notice, however, that x is free in the inner blue lambda expression. Therefore the eta rewriting
illustrated in Table 20.5 is not legal. By applying the rewriting rule on the left part of Table 20.5
anyway we |loose the binding of x, and therefore the rewriting does not preserve the semantics of the
left cell expression.

[Expression |Converted Expression
(1anbda(x) ((1anbda(y) (f x y)) x)) (lambda(y) (f x y))

Table20.5 Anexampleof anillegal eta conversion. The eta conversion
rule saysin general how 'e' islifted out of the lambda expressions. In this
example, e corresponds to the emphasized inner lambda expression
(whichisblue on a color medium.) However, x is a free name in the inner
lambda expression, and therefore the application of the eta rewriteruleis

illegal.

This completes our discussion of rewriting rules, and we will now look at the concept of normal
forms.

142

20.5. Normal forms

Lecture 5 - dlide 13

As already mentioned above, the value v of an expression eis a particular ssimple expression which
is semantically equivalent with e. The expression v is obtained from e by a number of rewriting
steps.

|Norma| forms represent our intuition of the value of an expression

Here is the definition of a normal form.

An expressionsis on normal form if it cannot be reduced further by use of beta and eta

conversons

Notice in the definition that we talk about reduction. By thisis meant application of the rewrite
rules ‘from left to right'.

About normal forms
- Alpha conversions can be used infinitely, and as such they do not play any role in
the formulation of a normal form
A normal form is a particular smple expression, which is equivalent to the
origina expression, due to the application of the conversions

Normal forms are simple to understand. But there are a number of interesting and important
questions that need to be addressed. One of them is formulated below.

\Is anormal form always unique?

The answer to the question will be found in Section 20.9.

20.6. The ordering of reductions

Lecture 5 - dlide 14

As discussed in Section 19.3 we can expect that the concrete order of evaluation steps will matter,
especially in the cases where errors or infinite calculations are around in some of the
subexpressions.

Evaluation steps are now understood as reductions with the beta or eta rewrite rule.

In this section we will identify and name a couple of evaluation strategies or plans. Such a strategy
determines the order of use of the beta and eta reduction rules.

143

Given a complex expression, there are many different orderings of the applicable
reductions

Using normal -order reduction, the first reduction to perform is the one at the outer level
of the expression

Using applicative-order reduction, the first reduction to perform is the inner leftmost
reduction

Normal-order reduction represents evaluation by need

Applicative-order reduction evaluates all constituent expressions, some of which are
unnecessary or perhaps even harmful. As such, there is often a need to control the
evaluation process withspecial formgthat use a non-standard evaluation strategy

Let it be clear here, that many other evaluation strategies could be imagined. The practica
relevance of additional strategiesis another story, however.

Applicative-order reduction represents 'the usual' evaluation strategy, used for expressions in most
programming languages. Normal-order reduction represents a new approach, which isused in afew
contemporary functional programming languages.

In Section 20.10 we will discuss examples of the special forms mentioned in the item discussing the
applicative-order reduction.

20.7. An example of normal versus applicative evaluation

Lecture 5 - slide 15

Let usillustrate the difference between normal-order reduction and applicative-order reduction viaa
concrete example.

Reduction of the expression ((1 anbda(x y) (+ (* x x) (* y y))) (fak 5) (fib
10))

The example involves an application of the blue function (1 anbda(x y) (+ (* x x) (* y y)))
on the actual parameters (fak 5) and (fib 10). The functionsfak andfi b are shown in Program
20.1.

In Program 20.1 we show definitions of f ak and f i b, together with the example expression.

144

(define (fak n)
(if (=n0) 1(* n (fak (- n 1)))))

(define (fib n)
(cond ((=n 0) 0)
((=n1) 1
(else (+ (fib (- n 1)) (fib (- n 2))))))

((lambda(x y) (+ (* x x) (* yy))) (fak 5) (fib 10))

Program 20.1 The necessary Scheme stuff to evaluate the expression.

In Figure 20.1 applicative-order reduction is outlined in the leftmost path of the graph. With
applicative-order reduction we first evaluate the lambda expression, then (fak 5) and (fib 10).
The evaluation of the lambda expression gives a function object. Notice that the expensive
calculationsof (fak 5) and (fi b 10) are only made once. The last step before the addition and the
multiplications is a beta reduction, with which the function is called.

The normal order reduction is illustrated with the path to the right in Figure 20.1. The outer
reduction is a beta reduction, in which we substitute the non-reduced parameter expressions (f ak
5) and (fi b 10). Noticethat the calculation of (fak 5) and (fib 10) are made twice.

{((ambdalx v (+ (™ % %) ™ ¥y y))
(fak 5) o nodtnal-

e it

(fib 107 2 __E_ -"d'—EF-_._ {+ (" (fak 5) (fak 50 (fib 109 (b 109
applicative- i
l order i
{function-ebjela 120 55)
J

(+ (= 120 1200 (* 55 55)) ——= 17425

Figure 20.1 Normal vs. applicative reduction of a Scheme expression

As an immediate insight from the example we will emphasize the following:

It appears to be the case that normal order reduction can lead to repeated evaluation of
the same subexpression

20.8. Theoretical results

Lecture 5 - slide 16

We will now cite some theoretical results of great importance to the field.

The theoretical results mentioned on this page assure some very satisfactory properties
of functional programming

145

The results are based on a definition of confluence, which appears in the figure below.

e
& Y
™, e
g)
. £
4 ¥

Figure 20.2 Therewriting=> isconfluent if for all e, e; and e,, for
which e=> ¢ and e => e, there existsan e; such that e, => ez and g, =>
€3

The results which we will use below are the following:

Thefirst Church-Rosser theorem. Rewriting with beta and eta conversions are confluent.

The second Church-Rosser theorem If g => ... => e, and if e is on norma form, then there
exists anormal order reduction of &) to g

The practical consequences of the results will be discussed in the following section.

20.9. Practical implications

Lecture 5 - slide 17

We will here describe the practical consequences of the theoretical results mentioned on
the previous page

During the evaluation of an expression, it will never be necessary to backtrack the
evaluation process in order to reach a normal form.

An expression cannot be converted to two different normal forms (modulo alpha
conversions, of course).

If an expression e somehow can be reduced to f in one or more steps, f can be reached by
normal order reduction - but not necessarily by applicative order reduction

Because rewriting with beta and eta reduction is confluent, according to the first Church-Rosser
theorem in Section 20.8, we see that there can be no dead ends in an evaluation process. Assume
thereis, and you will get an immediate contradiction.

The middle item is of particular importance because it guaranties that a normal form is unique.
Assume that two different normal forms exist, and get a contraction with the first of the theorems.

The last result is adirect consequence of the second Church-Rosser theorem. It says more or less
that normal-order reduction is the most powerful evaluation strategy. Notice, however, the

146

efficiency penalties with are involved, due to repeated evaluation of expressions. Thisis the theme
of Section 20.11.

We can summarize as follows.

Normal-order reduction is more powerful than the applicative-order reduction

Scheme and ML uses applicative-order reduction

Haskell is an example of a functional programming language with normal-order
reduction

20.10. Conditionals and sequential boolean operators

Lecture 5 - dide 18

In languages with applicative-order reduction there is a need to control the evaluation processin
order to avoid the traps of erroneous and infinite calculations. In this section we review a couple of
widely used and important forms from Scheme and Lisp. The evaluation control of these should in
particular be noticed.

There are functional language constructs - specia forms - for which applicative order
reduction would not make sense

(if b xy)
Depending on the value of b, either x or y are evaluated
It would often be harmful to evaluate both x andy before the selection
(define (fak n) (if (=no0) 1 (* n (fak (- n 1)))))

(and x y z)
and evaluates its parameter from left to right
Incasex isfase, thereis no need to evaluatey and z
Often, it would be harmful to evaluatey and z
(and (not (=y 0)) (even? (quotient x y)))

In the items above we discuss the general semantics of i f and and. In the deepest items we give a
concrete examples of i f and and where the evaluation order matters.

147

20.11. Lazy evauation

Lecture 5 - dlide 19

Lazy evaluation is a particular implementation of normal-order reduction which takes care of the
lurking multiple evaluations identified in Section 20.7.

\We will now deal with a practical variant of normal-order reduction

Lazy evaluation is an implementation of normal-order reduction which avoids repeated

calculation of subexpressions

In Figure 20.3 we show an evaluation idea which is based on normal-order reduction without
multiple evaluation of parameters, which are used two or more times in the body of a function.

It is not our intention in this material to go deeper into the realization of an interpreter that supports
lazy evaluation.

{(lambda(x v} {if (even x) (square x) (square (+ X y))))
{fak 5)
(fib 10})

(if (even *) (square *) (square (+ * *}))

(fak 5) (fib 10}
(if (even *) (square *) (square (++ =)} — 14400

120 55

Figure 20.3 Aniillustration of lazy evaluation of a Scheme expression.
Notice, that Scheme does not evaluate the expression in thisway. Scheme
uses applicative-order reduction.

This end the general coverage of evaluation order. In the next chapter we will see how to explore
the insights from this chapter in Scheme, which is a language with traditional, applicative-order
reduction.

20.12. References

[-] Foldoc: lazy evaluation
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=lazy+eval uation
[-] Foldoc: church-rosser

http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=church-rosser

148

[-] Foldoc: normal form
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=normal +form

[-] Foldoc: eta conversion
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=etat+conversion
[-] Foldoc: beta conversion
http://wombat.doc.ic.ac.uk/foldoc/fol doc.cgi ?query=betat+conversion
[-] Foldoc: alpha conversion
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=al pha+conversion
[abel son96] Abelson, H., Sussman G.J. and Sussman J., Sructure and I nter pretation of

Computer Programs, second edition. The MIT Press, 1996.

149

150

21. Delayed evaluation and infinitelistsin
Scheme

Asnoticed in Chapter 19 and Chapter 20 the evaluation strategy in Scheme is the one called
applicative order, cf. Section 20.6.

In contrast to normal-order reduction and lazy evaluation - as described in Section 20.6 and Section
20.11 - we can think of Scheme as eager in the evaluation of the function parameters.

In this chapter we will see how to make use of a new evaluation idea in terms of explicitly delaying
the evaluation of certain expressions. Thisisthe topic of Section 21.1 and Section 21.2.

21.1. Delayed evaluation in Scheme

Lecture 5 - dlide 21

The starting point of our discussion is now clear.

Scheme does not support normal-order reduction nor lazy evaluation

Scheme has an explicit primitive which delays an evaluation

Thedel ay and f or ce primitives are described in Syntax 21.1 and Syntax 21.2. The del ay primitive
returns a so-called promise, which can be redeemed by the f or ce primitive. Thus, the composition
of del ay and f or ce carry out anormal evaluation step.

(del ay expr) => promni se

Syntax 21.1

(force promi se) => val ue

Syntax 21.2

In Program 21.1 we show simple implementations of del ay and f or ce. In Program 21.2 we show
possible implementations of del ay by means of Scheme macros.

(del ay expr) ~ (lambda() expr)
(define (force prom se) (prom se))

Program 21.1 A principled implementation of del ay andf or ce in Scheme.

151

The thing to notice is the semantic idea behind the implementation of del ay. The expression

(del ay expr) iseguivalent to the expression (I anbda () expr). Thefirst expression is supposed
to replace the other expression at program source level. The value of the lambda expression is a
closure, cf. Section 8.11, which captures free names in its context together with the syntactic form
of expr . As it appears from the definition of the function f or ce in Program 21.1 the promise
returned by the del ay form is redeemed by calling the parameter less function object. It is easy to
see that this carries out the evaluation of expr .

Be sure to observe that f or ce can be implemented by a function, whereas del ay cannot. The reason
IS, of course, that we cannot alow afunctional implementation of del ay to evaluate the parameter
of del ay. The whole point of del ay isto avoid such evaluation. This rules out an implementation

of del ay asafunction. Thef or ce primitive, on the other hand, can be implemented by a function,
because it works on the value of a lambda expression.

Please notice that other implementations of del ay and f or ce can easily be imagined. The Scheme
Report describes language implementations of del ay and f or ce, which may use other means than
described above to obtain the same semantic effect, cf. [delay-primitive] and [force-primitive].

R5RS syntactic abstraction:
(defi ne-syntax ny-del ay
(syntax-rules ()
((del ay expr)
(I anbda ()
expr))))

MzSchene syntactic abstraction:
(defi ne-macro mny-del ay
(I anbda (expr)
“(lanmbda () ,expr)))

Program 21.2 Real implementations of delay. Thefirst definition uses the RSRS macro facility,
whereas the last one uses a more primitive macro facility, which happens to be supported in
MzScheme.

21.2. Examples of delayed evaluation

Lecture 5 - slide 22

Let uslook at afew very smple examples of using del ay and f or ce. In the first line of the table
below we delay the expression (+ 5 6) . The valueis a promise that enables us to evaluate the sum
when necessary, i.e, when we choose to force it. The next line shows that we cannot force a non
promise value. The last line shows an immediate forcing of the promise, which we bind to the name
del ayed inthel et construct.

152

[Expression \Value

(delay (+ 5 6)) #<proni se>

‘(force 11) |error

(let ((delayed (delay (+ 5 6))))

(force del ayed)) ‘11

Table21.1 Examples of use of delay and force.

21.3. Infinite lists in Scheme: Streams

Lecture 5 - slide 23

We are now done with the toy examples. It is time to use delayed evaluation in Scheme to
something of real value. In this material we focus on streams. A stream is an infinitelist. The
inspiration to our coverage of streams comes directly from the book Structure and Interpretation of
Computer Programs[Abelson98].

The crucial observation is the following.

We can work with lists of infinite length by delaying the evaluation of every list tall
using del ay

Asan invariant, every list tail will be delayed

Every tall of alistisapromise. The promise covers an evaluation which gives a new cons cell, in
which the tail contains another promise.

It is simple to define a vocabulary of stream functions. There is an obvious relationship between list
functions (see Section 6.1) and the stream functions shown below in Program 21.3.

(cons-stream a b) = (cons a (delay b))
(define head car)

(define (tail stream) (force (cdr stream))

(define enpty-strean? null?)

(define the-enpty-stream"' ())

Program 21.3 Stream primitives. Notice the way head is defined to bean aliasof car .

153

In that same way as we defined del ay as amacro in Program 21.2 , we also need to define cons-
st reamas amacro. The reason is that we are not allowed to evaluate the second parameter; The
second parameter of cons- cel | isgoing to be delayed, and as such it must be passed unevaluated
fOcons-stream

(defi ne-macro cons-stream
(I anbda (a b)
“(cons ,a (delay ,b))))

Program 21.4 A MzScheme implementation of cons- st r eam

In the following sections we will study a number of interesting examples of streams from the
numerical domain.

21.4. Example streams

Lecture 5 - dlide 24

In the first exanple linein Table 21.2 we define a stream of ones. In other words, the name ones is
bound to an infinitelistof ones; (1 1 1 ...).

Please notice the very direct use of recursion in the definition of ones. We are used to a conditional
suchascond ori f when we deal with recursion, in order to identify a basis case which stops the
recursive evaluation process. We do not have such a construction here. The reason is that we never
reach any basis (or terminating case) of the reduction. Due to the use of delayed evaluation we
never attempt to expand the entire list. Instead, there is a promise in the end of the list which can
deliver more elements if needed.

In the second row of the example we use the function st r eam sect i on to extract a certain prefix of
the list (determined by the first parameter of stream secti on). Thefunction st ream section is
defined in Program 21.5 together with another useful stream function called add- st r eans which
adds elements of two numeric streams together.

In the third row we define a stream of al natural numbers, using the functioni nt egers-starti ng-
from.

The fourth row shows an alternative definition of nat - nuns. We use add- st r eans 0N nat - nuns
and ones to produce nat - nuns. Please notice the recursion which is involved.

In the bottom row of the table we define the Fibonacci numbers, in away similar to the definition of

nat - nuns just above. fi bs isdefined by adding f i bs to its own tail. This works out because we
provide enough staring numbers (0 1) to get the process started.

154

[Expression \Value

|(defi ne ones (cons-stream 1 ones)) |(1 . #<proni se>)

((stream section 7 ones) (1111111)

(define (integers-starting-fromn)
(cons-streamn
(integers-starting-from (+ n 1))))

(define nat-nums (12345678910

(integers-starting-from1l))

(stream section 10 nat-nuns)

(define nat-nuns
(cons-stream 1

(add- streanms ones nat-nuns))) (123456789 10)
(stream section 10 nat-nuns)
(define fibs
(cons-stream O
(cons-stream 1 (0112358 13 21 34 55 89 144

(add-streams (tail fibs) fibs)))) | 233 377)

(stream section 15 fibs)

Table21.2 Examplesof streams. ones isan infinite streams of the
element 1. st r eam sect i on isafunction that returns a finite section
of a potentially infinite stream. nat - nuns is stream of all the natural
numbers, made by use of the recursive functioni nt eger s-

st arti ng- f r om The fourth row shows an alternative definition of
nat - nuns. Finally, f i bs istheinfinite stream of Fibonacci humbers.

As mentioned above, the functions st r eam sect i on and add- st r eans in Program 21.5 are used in
Table 21.2.

In the web version of the material (slide and annotated slide view) there is an additional program
with all the necessary definitions which allow you to play with streams in MzScheme or DrScheme.

(define (streamsection n stream
(cond ((=n 0) "())
(el se
(cons
(head stream
(stream section
(- n1
(tail stream))))))

(define (add-streams sl s2)
(let ((hl (head s1))
(h2 (head s2)))
(cons-stream
(+ h1l h2)
(add-streanms (tail sl1) (tail s2)))))

Program 21.5 The functionsst r eam secti on andadd- str eans.

155

21.5. Stream example: The sieve of Eratosthenes

Lecture 5 - dlide 25

Still with direct inspiration from the book Structure and Interpretation of Computer Programs
[Abelson98] we will look at a dightly more complicated example, namely generation of the stream
of prime numbers. Thisis an infinite list, because the set of prime numbers is not finite.

The agorithmic idea behind the generation of prime numbers, see Program 21.6 was originally
conceived by Eratosthenes (a Greek mathematician, astronomer, and geographer who devised a map
of the world and estimated the circumference of the earth and the distance to the moon and the sun -
according to the American Heritage Dictionary of the English Language).

The input of the function si eve in Program 21.6 is the natural numbers starting from 2. See aso the
example in Table 21.3. The first element in the input is taken to be a prime number. Let us say the
first such number is p. No number p*n, where n is a natural number greater than one, can then be a
prime number. Program 21.6 sets up a sieve which disregards such numbers.

Recursively, the first number which comes out of the actual chain of sievesis a prime number, and
itisused set up a new filter. Thisis due to the smple fact that the si eve function calls itself.

\The Sieve of Eratosthenes is a more sophisticated example of the use of streams

(define (sieve stream
(cons-stream
(head stream
(sieve
(filter-stream
(lambda (x) (not (divisible? x (head strean))))

(tail stream)))))

Program 21.6 Thesi eve stream function.

Program 21.6 uses the functions cons- st r eam head and t ai | from Program 21.3. The functions
filter-streamanddi visi bl e? aredefined in Program 21.7.

Figure Figure 21.1 shows a number of sieves, and it sketches the way the numbers(2 3 4 .. .)

are sieved. Notice that an infinite numbers of sieves are set up - on demand - when we in the end
requests prime numbers.

156

~— 23456789 ...
F

Mot diviedble by 2

Mot divisible by 3

Not divisibie by 5

(T 4—""’

Figure 21.1 Anillustration of the generation of prime numbersin The
Seve of Eratosthenes

21.6. Applications of The sieve of Eratosthenes

Lecture 5 - slide 26

In this section we show an example of prime number generation with the sieve function from
Program 21.6.

Notice that the prime numbers are really generated on demand. In the call (stream section 25
pri mes) we are requesting 25 prime numbers. This triggers generation of sufficient natural
numbersvia (i nt egers-starting-from 2), and it triggers the set up of sufficient sievesto
produce the result.

We see that the evaluations are done on demand.

\The sieve process produces the stream of all prime numbers

[Expression \Value

(define prines
(sieve

(integers-starting-from2))) (2 357 11 13 17 19 23 29 31 37 41

43 47 53 59 61 67 71 73 79 83 89 97)

(stream section 25 primes)

Table21.3 Thefirst 25 prime numbers made by sieving a sufficiently
long prefix of the integers starting from 2.

Y ou can use the definitions in Program 21.7 to play with the si eve function. Y ou should first load
the stream stuff discussed in Section 21.4. More specifically, you should load the definitions on the
last program clause in the dide view of Section 21.4. Then load the definitionsin Program 21.7.

157

(define (sieve stream
(cons-stream
(head stream
(sieve
(filter-stream
(lanmbda (x) (not (divisible? x (head strean))))

(tail stream)))))

(define (divisible? x vy)
(= (remmi nder x y) 0))

(define (filter-streamp |st)
(cond ((enpty-strean? |st) the-enpty-stream
((p (head Ist)) (cons-stream (head Ist) (filter-streamp (tail Ist))))
(else (filter-streamp (tail Ist)))))

(define (integers-starting-from n)
(cons-streamn
(integers-starting-from(+ n 1))))

(define prines (sieve (integers-starting-from2)))

Program 21.7 All the functions necessary to use the Seve of Eratosthenes. In addition, however,
you must load the Scheme stream stuff. The most remarkable functionisfi |l t er - st r eans, which

illustratesthat it is necessary to rewrite all our classical higher order function to streamvariants.
Thisisclearly a drawback!

21.7. References

[force-primitive] R5RS: force
http://www.cs.auc.dk/~normark/prog3-03/external - material/r5rs/rors-
html/r5rs_63.htmI#SEC65

[delay-primitive] R5RS: delay
http://www.cs.auc.dk/~normark/prog3-03/external - material /r5rs/rors-
html/r5rs_36.htmI#SEC38

[abelson98] Richard Kelsey, William Clinger and Jonathan Rees, "Revised"5 Report on the
Algorithmic Language Scheme", Higher-Order and Symbolic Computation,
Vol. 11, No. 1, August 1998, pp. 7--105.

158

22. Introduction to linguistic abstraction

This section if about linguistic abstraction in Scheme, with and without LAML. Linguistic
abstraction is the act of making new languages. Thus, with linguistic abstraction we form new ways
to express ourselves far beyond functional abstraction, as it has been studied until now.

22.1. Linguistic abstraction

Lecture 6 - slide 2

Linguistic abstraction can be defined very briefly, as follows.

Linguistic abstraction is the act of establishing a new language

In many contexts, linguistic abstraction is qualified with the word 'meta’. Thus we speak about
metalinguistic abstraction, emphasizing that we enter a higher language level than the level we
came from.

We introduce linguistic abstraction by comparing it with the more well-known discipline of making
abstractions with functions (or for that sake, procedural abstraction).

e Abstraction by means of functions
e Encapsulation, naming and parametrization of a potentially complex expression
o Use of good abstractions makes a program easier to understand
o Use of abstractions makes a program shorter, because the functions can be called
from more than one context
e Abstraction by means of languages
o Involves primitive means of expressions as well as the way the primitives can be
meaningfully composed
e A more global kind of abstraction than functional abstraction
o Raises lexical, syntactical and - most important - semantical concerns
o Specialized or general purpose language

Abstraction is a central discipline in all serious programming efforts. We have discussed functional
abstraction in earlier parts of this material. Procedural abstraction is central in both the imperative
paradigm and the object-oriented paradigm. Here we have contrasted functional abstraction with
linguistic abstraction.

‘Problem solving by means of linguistic abstraction is a very powerful approach

The idea of defining and implementing a new language as part of a problem solving process is a
very strong idea. Expert programmers tend to work in that way.

159

22.2. Linguistic abstraction in Lisp

Lecture 6 - slide 3

The primary language of interest in this material is Scheme, and with it the family of Lisp
languages. Therefore we will at this point study linguistic abstraction in Lisp languages.

‘The are several possible approaches to linguistic abstractions in Lisp

Below we discuss an incremental approach to linguistic abstraction in Lisp. This approach is based
on the point of view that definition of functions, procedures, and macros in Lisp contribute with
new aspects of the Lisp language. This is discussed in additional detail in Section 22.3 and Section
22.4.

The contrast to an incremental approach will be called a total approach. As it appears from the
items below, compilation and interpretation are considered as 'a total linguistic abstraction
implementation technique'. Total linguistic abstraction is discussed in more details in Section 22.5
and Section 22.6.

e Incremental approaches
e Each new construct is defined by a function or a macro
e Macros are used for new surface syntax, and in cases where evaluation
order issues prevent use of functions
o Fine grained linguistic abstraction
o Total approaches
e Writing an interpreter for the new language or
o Translating the new language to an existing language (compilation)
o Coarse grained linguistic abstraction

In some cases we embed the new language in an existing language, hereby combining
the use of two or more languages in a single program or document

Language embedding is the issue of Chapter 23.

22.3. Fine grained linguistic abstraction in Lisp

Lecture 6 - slide 4

In this section, and in Section 22.4, we will discuss and give examples of fine grained linguistic
abstraction in Lisp.

160

The main insight is that program contributions in terms of function definitions can be regarded as
extensions of the Scheme language. The reason is that the status, use, and appearance of a new
function is similar to both core language constructs and the pre-existing Scheme functions and
procedures. In most other languages, there is a clear distinction of core language constructs and
contributions made in terms of programs written in the language.

Due to the uniform notation of language constructs and functions, a set of Scheme
functions can be seen as an extension of the Scheme language

e Incremental extension of the language
e The functional paradigm is well-suited because application of functions can be
nested into each other
e The definitions of the functions implement the language
e A possible approach:
o the inner functions are more or less self evaluating
o the outermost function is responsible for the realization of the language

A function call is an expression, which can be embedded into other function calls. In this way it is
possible to build complex expressions by combination of programmed, functional abstractions.

As a contrast in the imperative programming paradigm, a procedure call is a command. A command
can not normally be passed as a parameter to other commands. Thus, the combination of

programmed abstractions is different, when we compare imperative and functional programming.

In section Section 22.4 we will see an example of the observations made above.

Programming in Lisp can be seen as incremental language development

22.4. An example of fine grained abstraction

Lecture 6 - slide 5

In this section we will study a simple formulation of a course home page, built by means of
functions, and combined in the way discussed at the end of Section 22.3.

The course-home-page clause of Program 22.1 is to be processed somehow to create a set of
course home pages. The functions used in Program 22.1 are defined in Program 22.2. As illustrated
in Program 22.2 the subclauses of a course-home-page page are very simple, almost 'self-
evaluating functions'. The course-home-page function itself is assumed to do the bulk part of the
work - the real work so to say. This part of the program is only outlined in Program 22.2.

161

A fine grained implementation of a course home page language

Each of the forms in the language are implemented as a Scheme function

(course-home-page
(name "Programming Paradigms")
(number-of-lectures 15)

(lecture—-names
"intr" "scheme" "higher-order-fn"
"eval-order" "lisp-languages")

(current-lecture 3)

(links
"schemers.org" "http://www.schemers.org/"
"LAML" "http://www.cs.auc.dk/~normark/laml/"
"Haskell" "http://haskell.org/"

Program 22.1 A4 sample document in a course home page language. The outer 'keyword' is
course-home-page . Inside a course-home-page form there may be a number of
subclauses. We see a name clause, a number-of-1lectures clause etc. The important point of
the example is that the expression is regarded as a clause in a new language, which we somehow
want to implement with the purpose of 'solving some problem' - here to generate a set of coherent
web pages for some activity.

162

(define (course-home-page name-form number-form lecture-list current-form
link-form process-form)

; The real implementation of
; the course home page language

(define (name nm)
(list 'name nm))

(define (number-of-lectures n)
(list '"number-of-lectures n))

(define (lecture-names . name-1st)
(cons 'lecture-names name-1st))

(define (current-lecture n)
(list 'current-lecture n))

(define (links . 1lnk-1list)
(cons 'links 1lnk-1list))

Program 22.2 An almost empty outline of the functions that implement the course home page
language. Each kind of subexpression is either implemented as a function or as a macro. In this
simple example, macros are not used.

The ideas in this section have been explored and developed in a LAML context. Early LAML
languages, such as the 'Manual' language (for definition of library interface documentation) has
been defined in the way illustrated above. More recent LAML-related language have been defined
as XML-in-LAML language, and implemented as mirrors of an XML language in LAML. This
approach is addressed in Chapter 24.

22.5. Coarse grained linguistic abstraction in Lisp

Lecture 6 - slide 6

As mentioned in Section 22.2 coarse grained linguistic abstraction is related to translation
(compilation) and interpretation, as known from courses in compiler technology.

As a Scheme and Lisp topic related to transformation and interpretation, we notice on this page that
parsing of an expression or program made in Lisp syntax (cf. parenthesized notation, Section 6.8),
is very easy. The reason is that a generic parser can be written that translates a parenthesized string
to a proper or improper list structure.

163

It is relatively easy and straightforward to establish a new language in Lisp syntax

o Establishing a new 'Lisp language'
e Generic parsing can be done by the Lisp reader
o It is possible to concentrate on the semantic issues
o Language checking and error handling should not be forgotten

22.6. An example of coarse grained abstraction

Lecture 6 - slide 7

In this section we will discuss how to 'process' the course home page document (see Program 22.1),
which we discussed earlier in Section 22.4.

Below we will assume that the course home page fragment of Program 22.1 is located on the file
named "new-document.lsp".

In Program 22.3 we show how to open, read and close the file (in blue color). The processing of the
parsed expression is shown in red color.

(let* ((port (open-input-file "new-document.lsp"))
(new-document (read port))

)

; new-document is a reference to the list structure
; representation of the new document.

(process-document! new-document)

(close-input-port port)

Program 22.3 Reading the document as a list structure. We open a port to the document and use
the read primitive in Scheme to read the list expression on the file. The procedure or function
process-document is supposed to implement the processing semantics of the new language.

In this material we will not go into any detail of the transformation. In Program 22.4 we limit
ourselves to a superficial demo processing, in which we extract and print the keyword of each
subform of the course home page form.

The important thing to notice is that it is very easy to come to the point where the semantic
processing (as sketched in Program 22.4) can begin. The only preparation is that of Program 22.3.

164

(define (process-document! doc)
(file-write (transform-document doc) "res.lsp"))

(define (transform-document doc)
(let ((top-level-forms (document-forms doc)))
(map
(lambda (subform)
(subform-keyword subform))
top-level-forms)))

(define document-forms cdr)
(define subform-keyword car)

Program 22.4 A simple demo processing of the document. We just extract some information about
the document. No attempt is made here to implement the language, nor to process the document in
any realistic way.

In Program 22.5 we see a sample dialog and execution of the abstractions in Program 22.3 and
Program 22 4.

1> (let* ((port (open-input-file "new-document.lsp"))
(new—-document (read port))

)

; new-document is a reference to the list structure
; representation of the new document.

(process—-document new-document)
(close-input-port port))

name

number-of-lectures

lecture—-names

current-lecture

links
do-process

Program 22.5 Execution dialogue. We show what happens when the document is read and
processed in the simple manner programmed above.

22.7. References

[course-plan- Example of the LAML course home page system
examples] http://www.cs.auc.dk/~normark/scheme/examples/course-plan-xml-in-laml/index.html

165

166

23. Language embedding

In Chapter 22 we discussed how to establish languages, especially in Lisp.

In this chapter we will discuss how to combine two (or more) existing languages. More specifically,
we will look at ways to embed one language into another.

23.1. Embedded languages

Lecture 6 - slide 9

We start with a definition of language embedding.

A new language N is an embedded language in an existing language E if an expression

in N can be used as a subexpression of a construct in E.

As a possible practical organization of the embedding of a new language into another language, the
interpreter of the new language N is made available as a function in the existing language E.

In the web domain there are many examples of language embeddings. Below we mention some of
them.

e There are many examples of embedding web languages and programming languages
e Embedding of CSS in HTML, SVG and other XML languages
o Embedding of Javascript in HTML for client dynamics
o Embedding of a programming language in HTML at the server-side
e ASP: HTML embedding of Visual Basic fragments
e JSP: HTML embedding of Java fragments
e PHP: HTML embedding of C-like fragments
o BRL: HTML embedding of Scheme fragments

23.2. Examples of language embedding in HTML

Lecture 6 - slide 10

In this section we will illustrate some examples of language embedding from the web domain. More
specifically, we will see how fragments in various programming languages can be embedded into
HTML. Such language embedding is widely used at the server side of the World Wide Web.

Concrete illustrations of JSP, ASP, and BRL documents

167

The ASP and JSP examples are available via the slide and the annotated slide view of this material.
(The examples are too large to warrant inclusion at this location of the material). Please take a look
at the web material for the details.

The BRL [Lewis00] example is included here, because it is relatively small. In some sense it also
covers the essence of the two others. We see Scheme fragments (emphasized with red color) within
a conventional HTML document. When the web document is delivered by the server, the program
fragments are executed. The functional results of the program execution become part of the web
document. In a nutshell, this is a very common way to deal with dynamic web contents.

<html>
<head>
[
(inputs word) ; HTML input. Will be null if no such input.
(define newword
(if (null? word)
"something"
word))
1
<title>Backwards</title>
</head>

<body>

<form>

Type a word: <input name="word">
<input type="Submit">

</form>

<p>[newword] spelled backwards is
[(list->string (reverse (string->list newword)))]
</p>

<p>This message brought to you by [(cgi SERVER NAME)] as a public
service.</p>

</body>
</html>

Program 23.1 An example of a BRL document. BRL - Beautiful Report Language - is a Scheme
based web server framework which allows the web programmer to embed Scheme fragments into
HTML

23.3. Course home page embedding in Scheme

Lecture 6 - slide 11

We will illustrate embedded languages with an embedded list-based language in Scheme. This is
done as a direct continuation of the course home page example from Section 22.4.

The simple course home page language is an embedded /ist language in Scheme

168

In Program 23.2 we see the course home page expression, emphasized with red color. This is a list
structure, formed in its own language: A simple course home page language. The language is list-
based, and the non-constant parst of the language are brought in via quasiquotation (also known as
backquoting). Thus, the course home page subdocument makes use of variables and expressions
from the surrounding Scheme program. Notice, however, that a special interpreter is needed to
process the backquoted course-home-page expression.

(let ((ttl "Programming Paradigms")
(max 5)
(current 3)

)
" (course-home-page
(name ,ttl)
(number-of-lectures ,max)

, (cons
'lecture-names
(map downcase-string
(list "intr" "scheme" "HIGHER-ORDER-FN"
"eval-order" "lisp-languages")))

(current-lecture ,current)

(links
"schemers.org" "http://www.schemers.org/"
"LAML" "http://www.cs.auc.dk/~normark/laml/"
"Haskell" "http://haskell.org/"

)

)

Program 23.2 A4 sample embedding of a course home document in a Scheme program. We use a
quasiquotation to provide for a representation of the course home page as a list structure in the
Scheme context.

23.4. References

[-] BRL
http://brl.sourceforge.net/
[lewis00] Bruce R. Lewis, "BRL---A database-oriented language to embed in HTML and

other markup", October 2000.

169

170

24. Language Mirroring

In this chapter we will discuss language mirroring, in part as a contrast to language embedding from
Chapter 23.

24.1. Mirrored Languages

Lecture 6 - slide 13

Let us start with a definition of a mirrored language.

A new language N is a mirrored language in an existing language E if an expression in

N in a systematic way can be represented as an expression in E.

The mirror of N in E does not call for a new interpreter. A new interpreter as need for an embedded
language i E. A mirror expression N-expr is written in E, and it can be evaluated by the processor
(interpreter) of E.

e LAML provides mirrors of a number of XML languages in Scheme:
e HTML 4.01 and XHTML1.0
e SVG
e A number educational languages, such as LENO and the Course Home Page
language (Course Plan)

24.2. Course home page mirroring in Scheme (1)

Lecture 6 - slide 14

Let us now illustrate how to mirror the simple course home page language in Scheme. The mirror
which we deal with is a mirror of an XML language in LAML. Recall that we programmed the
course home page document with simple functional abstractions in Section 22.4 and that we
embedded the course home page language in Scheme in Section 23.3. Thus, the treatment below is
actually our third attempt to accommodate the simple course home page abstractions in Scheme.

The simple course home page is mirrored as an XML language in Scheme and LAML

We will start by giving an overview of the practical process that leads to the creation of mirror of
some XML language in Scheme and LAML.

171

e Steps involved in the mirroring process:
e Write an XML DTD of the language
e Parse the XML DTD to a Scheme data structure
o Synthesize the mirror of the language by the XML-in-LAML mirror generation

tool

e When using the course home page language, load the mirror as a Scheme library

It is fairly straightforward to write an XML DTD for a new 'little language', although the SGML
inherited language may seem a little strange at first sight. Take a look at Program 24.1.

<!ENTITY % Number "CDATA">
<!-- one or more digits -->

<!ENTITY % URI "CDATA">

<!-- a Uniform Resource Identifier, see [RFC2396] -->

<!ELEMENT course-home-page
(lecture-names, links)
>

<!ATTLIST course-home-page

name CDATA
number-of-lectures SNumber;
current-lecture SNumber;

>

<!ELEMENT lecture-names
(lecture—-name+)
>

<!ELEMENT lecture-name
(#PCDATA)
>

<!ELEMENT links
(link*)
>

<!ELEMENT link
(#PCDATA)
>

<!ATTLIST link
href SURI;
>

"#REQUIRED"
"#REQUIRED"
"#IMPLIED"

"#REQUIRED"

Program 24.1 The course home page DTD. The DTD is essentially a context free grammar of the
new XML language. XML DTDs are a heritages from SGML (The Standard Generalized Markup

Language).

The XML DTD can be parsed with the LAML DTD parser. We usually make a simple LAML
script for such purposes, as shown in Program 24.2.

172

(load (string-append laml-dir "laml.scm"))

(load (string-append laml-dir "tools/dtd-parser/dtd-parser-4.scm"))

(parse—-dtd "course-home-page")

Program 24.2 The script that parses the DTD.

The DTD parser creates a Lisp list structure representation of the DTD. This list structure is passed
as input to the LAML mirror generator. The LAML script in Program 24.3 shows how the mirror

generator is activated.

(load (string-append laml-dir "laml.scm"))
(laml-tool-load "xml-in-laml/xml-in-laml.scm")
; Tool parameters

; The name of the language for which we create a mirror
(define mirror-name "course-homepage")

; The full path to the parsed DTD:
(define parsed-dtd-path

(in-startup-directory "course-home-page.lsp"))

; The full path of the mirror target directory
(define mirror-target-dir (string-append (startup-directory) "

(define action-elements ' (course-home-page))
(define default-xml-represent-white-space "#f")

(define auto-lib-loading "#t")

; End tool parameters

(let ((mirror-destination-file
(string-append mirror-target-dir mirror-name "-mirror"

../mirroxr/"))

".SCIT[")))

(generate-mirror parsed-dtd-path mirror-destination-file mirror-name))

Program 24.3 The script that generates the mirror.

The output of the mirror generator is a Scheme source file, which represents the mirror of the course
home page language from Program 24.1. As most other automatically generated source files, the
mirror library of the demonstrational course home language is not easy to read. We have therefore
not included it in this version of the material. You can access it from the web version via the slide

view.

173

24.3. Course home page mirroring in Scheme (2)

Lecture 6 - slide 15

In this section we will se how to use the mirror of the course home page language, which we created
in Section 24.2.

A sample course home page document that uses the XML-in-LAML course home page
mirror functions

(load (string-append laml-dir "laml.scm"))
(define (course-home-page! doc) 'nothing)

(load "../mirror/course-homepage-mirror.scm")
(let ((ttl "Programming Paradigms")
(max 5)

(current 3))

(course-home-page 'name ttl 'number-of-lectures "5"
'current-lecture "3"
(lecture-names
(map
(compose lecture-name downcase-string)
(list "intr" "scheme" "HIGHER-ORDER-FN"
"eval-order" "lisp-languages")))
(links
(link "schemers.org" 'href "http://www.schemers.org/")
(link "LAML" 'href "http://www.cs.auc.dk/~normark/laml/")
(link "Haskell" 'href "http://haskell.org/")

)))

Program 24.4 A sample course home page that uses the course home page mirror functions.

The first three lines in Program 24.4 loads the laml library and the mirror library. Before loading the
mirror library we need to define an action procedure of the top-level element, course-home-page.
Notice that this element was announced as an action element in Program 24.3. As an action
element, the action procedure takes over the rest of the transformation process, typically to HTML.
In this demo setup, the action procedure is empty.

The mirror function applications in the course-home-page expression are all emphasized in red.
Notice the smooth integration of the course home page mirror functions and other Scheme
functions. You should in particular compare the way mapping is done with the similar mapping in
Program 23.2.

Further processing and transformation is done by the action procedure course-home-
page'!

174

24.4. Course home pages ala Course Plan

Lecture 6 - slide 16

The course home pages of the Programming Paradigms is made by the Course Plan system. The
principles used in the Course Plan system are the same as illustrated about for the toy course home

pages.

A real life course home page mirror in Scheme - The Course Plan system

In the web version of this material there is a program that shows a real course home page from
LAML. This is called a course plan. The example is too long for the paper version.

24.5. Embedding versus mirroring

Lecture 6 - slide 17

In this section we compare language embedding ala the example from Section 23.3 with language
mirroring as discussed in this chapter.

How does a list-embedding of new language in Scheme compare to a mirroring of the
language Scheme?

Embedding in Scheme Mirroring in Scheme

New language fragments are New language fragments are represented as Scheme
represented as lists expressions

Many different interpretations can be The most typical transformation is 'built in', as
provided for obtained by evaluation of the Scheme expression
Processing requires a specialized The (first level of) processing is done by the standard
interpreter Scheme interpreter

Relatively awkward to combine with Mixes well with higher-order functions

use of higher-order functions

24.6. References

[course-plan- The generated Course Plan page (web only)
examples] http://www.cs.auc.dk/~normark/scheme/examples/course-plan-xml-in-laml/html/example.html
[transf] LAML transformation functions

http://www.cs.auc.dk/~normark/scheme/lib/xml-in-laml/man/xml-in-laml.html#SECTION 18

175

176

25. Lisp in Lisp

Let us now jump to a topic, which is quite different from language embedding and language
mirroring as discussed in Chapter 23 and Chapter 24. Recall, however, that the topic of the current
lecture is linguistic abstraction, which is about establishing new languages in an existing language.

We will now see how to establish Lisp in Lisp. Thus, we will study a situation where the new
language and the existing language are (almost) identical. This calls for a more detailed explanation
and rationale, which is given in Section 25.1.

25.1. Why 'Lisp in Lisp'

Lecture 6 - slide 19

In this section we will look at a principled implementation of Lisp in Lisp. In concrete terms we
will study a partial Scheme implementation in Scheme itself.

Why do we study an implementation of Scheme in Scheme?

e Motivations:
o To illustrate the idea of linguistic abstraction in Lisp
e Lisp is both the implementation language and the new language

e To understand the overall principles of interpreters

o To illustrate the use of important Lisp implementation concepts, such as
environments

e To provide a playground that provides for easy experimentation with the
semantics of Scheme

We will refer to a concrete Scheme implementation from the book 'Structure and
Interpretation of Computer Programs' (SICP).

We have earlier referred to the book 'Structure and Interpretation of Computer Programs'
[Abelson96]. The part of the book which is relevant for linguistic abstraction and Scheme
interpreters is chapter 4.

177

25.2. An overview of Scheme constructs

Lecture 6 - slide 20

When we are interested in implementing Scheme in Scheme it is important to have a good
classification of constructs in Scheme.

As a basic distinction, some forms are denoted as syntax, and others as procedures. (In this
particular context, 'procedures' also covers 'functions'). As another distinction, some abstractions are
fundamental - they form the core language; Others are /ibrary abstractions in the sense that they can
be implemented by use of the fundamental abstractions. You can consult section 1.3 of the Scheme
report [Abelson98] to learn more about these distinctions.

‘What 1s the basic classification of constructs in Scheme?

e Syntax
o Fundamental syntactical constructs such as 1ambda , define , and if
e Primitive functions and procedures
o Fundamental functions and procedures, which cannot in a reasonable way be
implemented in the language
o Library Syntax
o Syntactical extensions which can be implemented by macros
e Library functions and procedures
e Functions and procedures which can be implemented on the ground of more
primitive features

Parenthesized prefix notation is used as a common notation for all kinds of constructs

This provides for an uniform notation across the different kinds of constructs in the
language

25.3. Scheme in Scheme

Lecture 6 - slide 21

It is interesting and instructive to understand the most general processing primitive in a Scheme
system, namely eval. Together with app1y - which calls primitive functions, library functions, and
your own functions - it is shown in Program 25.1.

It is possible to write a relatively full, but brief meta circular Scheme interpreter in
Scheme

178

(define
(cond

(eval exp env)

((self-evaluating? exp) exp)

((quoted? exp) (text-of-quotation exp))

((variable? exp) (lookup-variable-value exp env))

((definition? exp) (eval-definition exp env))

((assignment? exp) (eval-assignment exp env))

((lambda? exp) (make-procedure exp env))

((conditional? exp) (eval-cond (clauses exp) env))

((application? exp) (apply (eval (operator exp) env)
(list-of-values (operands exp) env)))

(else (error "Unknown expression type -- EVAL" exp))))

(define (apply procedure arguments)
(cond ((primitive-procedure? procedure
(apply-primitive-procedure procedure arguments)))
((compound-procedure? procedure)
(eval-sequence (procedure-body procedure)
(extend-environment
(parameters procedure)

arguments
(procedure-environment procedure))))
(else (error "Unknown procedure type —-- APPLY" procedure))))

Program 25.1 The eval and apply functions (procedures) of the Scheme interpreters. The full
interpreter needs a lot of relatively small helping functions (procedures) that we do not show here.

The two central functions of the language implementation - eval and apply - are made
available in the language itself

You are encouraged to read a much more comprehensive story about the Scheme in Scheme
interpreter in chapter 4 of [Abelson96].

Below we will dwell a little on eval and apply, in the form they are available in Scheme.

25.4. The eval and apply primitives

Lecture 6 - slide 22
The eval procedure makes the Scheme interpreter directly available as a primitive in the language.

The apply procedure is handy when we call a function on a 'first class parameter list'; That is, in
situations where the parameters are available in a list.

179

The implementation primitive eval of a Lisp systems is typically made available in the
language, hereby providing access to evaluation of syntactical expressions (lists) in a
given environment

The apply primitive is also available as a convenient mechanism for application of a
function, in cases where all the parameters are available in a list

Examples of both are given in Table 25.1 below.

Expression Value
(let* ((ttl "My Do?umfnt") . <html>
(bdy (list 'p "A paragraph")) <head>
(doc .)
< > < >
(list 'html </E;Zé§ My Document</title
(list 'head <body>
. '
<}15t' title ttl)) <p>A paragraph</p>
(list 'body bdy))) </body>
)
< >
(render (eval doc))) /bl
< >
(let* ((ttl "My Document") 2E2id>
EESZ (list 'p "A paragraph")) <title>My Document</title>
il </head>
(head (title ,ttl)) <body>
o oy ’ <p>A paragraph</p>
W 98) </body>
(render (eval doc))) </html>
[(+ 1 2 3 4) 10
Error: + expects argument of type
(+ (list 1 2 3 4)) number;
given (1 2 3 4)
|(apply + (list 1 2 3 4)) 110

Table 25.1 An illustration of eval and apply. In the first two rows we
construct a list structure of the usual html , head, title, and body
HTML mirror functions. In the first row, the 11st structure is made by
the list function. In the second row, we use the convenient backquote
(semiquote) facility. In both cases we get the same result. The last three
rows illustrate the use of apply . apply is handy in the cases where the
parameters of a function is already organized in a list. What it interesting
in our current context, however, is that apply is really an

implementation primitive of Scheme, which is made available in the
language itself.

With this we are done with Linguistic abstraction, and as such with the main lectures of this
material.

The remaining chapters represent side tracks, in which we cover additional details about LAML,
object-oriented programming in Scheme, and the imperative aspects of Scheme.

180

25.5. References

[-]
[-]

[abelson98]

[abelson96]

R5RS: Apply
http://www.cs.auc.dk/~normark/prog3-03/external-material/rSrs/rSrs-html/rSrs_63.html

R5RS: Eval

http://www.cs.auc.dk/~normark/prog3-03/external-material/rSrs/r5rs-
html/r5rs_64.htmI#SEC66

Richard Kelsey, William Clinger and Jonathan Rees, "Revised"5 Report on the
Algorithmic Language Scheme", Higher-Order and Symbolic Computation,
Vol. 11, No. 1, August 1998, pp. 7--105.

Abelson, H., Sussman G.J. and Sussman J., Structure and Interpretation of
Computer Programs, second edition. The MIT Press, 1996.

181

26. An introduction to LAML

LAML means 'Lisp Abstracted Markup Language'. LAML is a software package written by the
author of this material. The purpose of LAML is to support web development in Scheme - both of
static materials and of server-side applications.

In the first and the main part of this material we have used LAML whenever possible, to illustrate
functional programming in Scheme with examples from the web domain. We are now ready for a
more solid introduction and description of LAML.

26.1. HTML documents in LAML

Lecture 7 - slide 2

We start gently by taking a look at a very simple HTML document - see Program 26.1. The
document in Program 26.1 can be accessed via [initdoc].

We introduce LAML by studying the LAML counterpart of a very simple HTML
document

<html>
<head>
<title>This is the document title</title>
</head>
<body>
<hl>Document title</hl1>
<p>Here is the first paragraph of the document</p>
<p>The second paragraph has an emphasized item
and a bold face item.
</p>
</body>
</html>

Program 26.1 A very simple HTML document that illustrates the overall HTML document
structure. It may, however, be tedious to write these tags for each and every small HTML page you
have to produce.

The LAML counterpart of Program 26.1 is shown in Program 26.2. Each HTML element instance
used in Program 26.1 is available in Scheme as a function. The set of such functions are called a
mirror of HTML in Scheme. In Chapter 27 we will study the HTML mirror functions in details.

183

(html
(head

(title "This is the document title")
)

(body
(hl "Document title")

(p "Here is the first paragraph of the document")

(p "The second paragraph has an" (em "emphasized item")
"and a" (b "bold face item") ".")

)

Program 26.2 The same document as an LAML expression. We see that the the shift from HTML to
LAML is a matter of a few changes, some of which can be claimed to be of lexcical nature, and some
of which are of concrete syntactical of nature. Notice the use of the underscore character, which

suppresses the insertion of white space. This document cannot be processed immediately. However,
the next version that we show can be processed.

The final document on this page, Program 26.3, shows a complete LAML document. The red parts
of the program make up the differences between Program 26.2 and Program 26.3. The first two
lines of the red parts load the necessary software. The write-html clause renders the HTML
document to text, and it writes the HTML document to a file in the file system.

(load (string-append laml-dir "laml.scm"))
(style "simple-html4.0l-transitional-validating")

(write-html ' (raw prolog epilog)

(html
(head
(title "This is the document title")
)

(body
(hl "Document title")

(p "Here is the first paragraph of the document")

(p "The second paragraph has an" (em "emphasized item")
"and a" (b "bold face item") ".")
)
)

Program 26.3 The document from above embedded in the LAML framework. Besides initial
loading, we see the imperative writing of the functionally generated document to a specific target
file. If the source file is doc1 . laml, the target file will be doc1.html.

The document generated by Program 26.3 can be accessed via [lamldoc].

184

26.2. Authoring of web materials

Lecture 7 - slide 4

We leave the HTML mirror functions temporarily. We come back to them in Chapter 27. Here we
will give an overview of ways to produce web materials. Our main purpose with this section is to
put our approach - programmatic authoring - in perspective and in relation to more well-known and
more commonly used techniques.

|Several different approaches to web authoring can be identified

e Writing the document in a markup language
e HTML - low level and non-extensible
e XML - requires subsequent transformations or specification of the document
rendering
o Using a visual tool - a structure editor on top of the markup language
e Good for low skill users
o Difficult to manage large and complex materials
e Transforming the document from another format
o Will often result in a web edition of a paper document
o Difficult to make effective use of the WWW's hypertext potentials
e Writing the document in a programming language
o Potentially good for users with programming skills
e To be explored in this lecture

In the next section we define and describe the last approach - programmatic authoring - in more
details.

26.3. Programmatic authoring

Lecture 7 - slide 5

Programmatic authoring is the idea behind the use of LAML for creation of static web pages.

Using programmatic authoring the document source is a program written in a

programming language. By executing the program, the document source program is
transformed to another format, typically HTML.

The generation of HTML upon execution of a programmatically authored document can be
questioned. It can be argued that several possible kinds of processings and transformation can be
imagined. Why bind the program execution to a single kind of processing?

In LAML we have more recently prepared for an intermediate document representation, which is

produced when a document is processed. This is part of the XML-in-LAML approach, which we
touch on in Section 28.4. This document representation is akin to abstract syntax trees. Thus, when

185

evaluating an expression such as the one in Program 26.2 in a context where all the mirror functions
and defined, an abstract syntax is returned. This intermediate representation can be rendered as
textual HTML, or it can be processed in another direction.

o Expected advantages of programmatic authoring
e We can use all the programming tricks' in the web authoring area
e Authoring of complex materials parallels creation of non-trivial programs
e Programmatic authoring is probably not feasible in many main stream languages
e Java, C++, C, Pascal, Perl, ...

Using programmatic authoring the power of a programming language is available
everywhere in the document, and at any time in the authoring process

26.4. LAML: Lisp Abstracted Markup Language

Lecture 7 - slide 7

We now introduce the LAML system, which basically is Scheme with access to libraries which
mirror HTML. In addition, we support a number of functions which in our experience are very
helpful during a typical web authoring process. Some of these functions are organized in document
styles, others in tools of various kinds.

LAML means Lisp Abstracted Markup Language

LAML provides abstractions, in terms of functions, for HTML. Beyond these it is possible to create
arbitrary abstractions, along the line of XML.

e LAML fundamentals:
e The Scheme programming language itself
e Mirrors of HTML and XML languages in Scheme
e A number of useful libraries
e A number of LAML document styles
e A number of LAML tools
e An Emacs Environment for practical use of LAML

Briefly stated, but also somewhat simplified, we can summarize LAML as follows.

|LAML = Scheme + The HTML and XML mirrors

186

26.5. References

[lamldoc] The LAML generated document as rendered in a browser
http://www.cs.auc.dk/~normark/prog3-03/html/notes/external-html/doc1.html
[initdoc] The initial HTML document as rendered in a browser

http://www.cs.auc.dk/~normark/prog3-03/html/notes/external-html/initial-document.html

187

188

27. HTML mirror functions in LAML

In this chapter we will elaborate on the HTML mirror functions, which we have encountered
numerous times during the initial parts of this material.

The mirror functions are generated automatically from a document type definition of HTML.

The apparatus for generation of HTML mirrors is also available for XML languages. This is XML-
in-LAML. We have used XML-in-LAML for several non-trivial tasks. The source of this material is
authored in an XML-in-LAML language called LENO.

27.1. The HTML mirrors in LAML

Lecture 7 - slide 9

We will here describe the HTML4.01 transitional and the XHTML mirrors in LAML. All the
essential observations also hold for XML-in-LAML languages. The XHTML mirrors are made via
the XML-in-LAML framework.

A HTML mirror in Scheme is a set of functions that in an accurate way makes the

HTML elements of a particular HTML version available in Scheme
The key properties of a HTML mirror in Scheme - as provided by LAML - are the following.

e A one-to-one mapping of HTML elements to named functions in Scheme

e Generates well-formed and valid HTML documents

e Prevents accidental emission of '<', ', and '&' as part of the textual contents

e The mirror functions return abstract syntax trees which can be rendered as 'HTML text'
e Supports optional pretty printing of the resulting HTML code

The generation of valid HTML in reality boils down to check of the context free composition of the
document on the fly, while it is generated by the mirror functions.

As of the fall of 2003, the generation of the validation procedures is fully automatic. XML elements
with so-called element contents [xml10] (as opposed to the elements with mixed content, i.e.

elements with alternatives and PCDATA) are validated by deterministic finite state automata.

The point below is rather naive, but nevertheless important.

Not too many functions - not too few. You cannot by accident use a non-standard
HTML element

189

Using raw XML you can by accident use a non-existing tag or element. When used through LAML
you will discover this as soon as you attempt to execute the LAML document - simply because the
counterpart of the non-existing tag is a non-defined Scheme function.

In Section 27.2 and the subsequent sections we will describe and discuss the detailed rules of the
mirror functions. The rules will be summarized in Section 27.6.

27.2. Mirroring of HTML (1)

Lecture 7 - slide 10
We describe the mirror functions in this and the following sections.

We here focus on the basic elements and their composition. As a contrast to Program 26.2 from the
previous chapter, we also include the attributes in the forms below

The mirror function f distinguishes between attribute names, attribute values, explicit
white space,character references,and content strings via the runtime types of the
parameters together with their mutual position in the parameter list.

(f 'al "v1" 'a2 "v2" "Some text." "More text")

Program 27.1 A HTML mirror expression with attribute names (symbols), attribute values (strings
following symbols) and content strings.

The LAML Scheme form in Program 27.1 corresponds to the HTML form in Program 27.2.

<f al="v1" a2="v2"> Some text. More text</f>

Program 27.2 The rendering of the value of the HTML mirror expression.

Attribute names are represented as symbols. The string that follows a symbol is the attribute value.
All other strings are 'white space concatenated' to the element instance contents. The details of the
white space handling is described in Section 27.3.

As a consequence, and as a generalization in relation to HTML and XML, the attributes and the
contents may be mixed arbitrarily. As an example, all the attributes may come after the content
strings.

The HTML mirror functions traverse the actual parameters and 'sorts' them into attributes and

contents contributions. From a programming language point of view, the attributes are handled as
keyword parameters - although simulated with use of symbols as explained above.

190

27.3. Mirroring of HTML (2)

Lecture 7 - slide 11

The handling of white spaces is a minor detail. Nevertheless, it is a detail which is important to 'get
right'.

The basic idea behind the handling of white spaces in LAML is formulated in the following point.

|Instead of specifying where to add white spaces we tell where to suppress it

The underscore symbols (shown with red emphasis) in Program 27.3 suppress white space.
Underlying, the underscore symbol is bound to a boolean false value. This is rather arbitrary. What
matters is really that a distinguished and unique run-time value is used for the purpose. Symbols
and strings are ruled out, because they are used already for content and attributes. A boolean value
is fine.

(p "Use" (kbd "HTML") _ "’" (kbd "XHTML") "’"

(kbd "XML") "’" "Or" (kbd "LAML") _ ".")

Program 27.3 An HTML mirror expression which suppresses white space in front of punctuation
characters.

The Scheme fragment in Program 27.3 returns an internal structure, which can be rendered as
shown in Program 27.4.

<p>
Use <kbd>HTML</kbd>, <kbd>XHTML</kbd>, <kbd>XML</kbd>, or <kbd>LAML</kbd>.
</p>

Program 27.4 The rendering of the value of the HTML mirror expression.

27.4. Mirroring of HTML (3)

Lecture 7 - slide 12

Until now we have met symbols, strings and boolean values as parameters in the HTML mirror
functions. We have not yet used lists. We will do that now.

When a list is encountered among the parameters of a HTML mirror function, the elements of the
list are spliced into the surrounding parameter lists. The implementation of the splicing is recursive,
such that lists of any depth are flattened and spliced in the contextual list of HTML mirror function
parameters.

It turns out that this handling of this is extremely flexible and important in a language, where the
primary structuring of data is done with lists.

191

List of contents and lists of attributes are processed recursively and spliced together with
their context

In Program 27.5 we see an ul unordered list, in which the contents is passed as a list. The list is
formed by mapping the 1i mirror function on (list("one" "two" "three").

(body

(ul
(map 1li (list "one" "two" "three"))

)

(let ((attributes
(list 'start "3" 'css:list-style-type "lower-roman'))
(contents (map li (list "one" "two" "three"))))
(ol 'id "demo" contents attributes)))

Program 27.5 An HTML mirror expression in which lists are passed as parameters to the HTML
mirror functions.

With the convention of splicing lists into its surround, the example would be more clumsy too,
because we then have to apply ul on a certain list, using apply, cf. Section 25.4.

In the 1et construct of Program 27.5 we bind the blue names attributes and contents to two
lists. Both lists are spliced into the list with the id symbol and the "demo" string. In the o1 form we
just refer to these lists via their names. Notice that the id attribute of o1 is passed 'the normal way'.

<body>
one</1li> two</1li> three

<ol style="list-style-type: lower-roman;" id="demo" start="3">
one</1li>
two</1li>
three</1i>

</body>

Program 27.6 The rendering of the value of the HTML mirror expression.

192

27.5. Mirroring of HTML (4)

Lecture 7 - slide 13

In this section we show how CSS attributes - Cascading Style Sheet attributes - are handled in the
HTML mirror functions.

CSS attributes and HTML attributes are uniformly specified

CSS attributes are prefixed with css:

(em 'css:background-color "yellow" "Functional Programming in Scheme")

Program 27.7 An HTML mirror form in which we highlight a CSS attribute.

The main point to notice is the uniform notation used for both HTML attributes and CSS attributes.
The notation is somehow in conflict with the notation used for name spaces in XML.

The rendering of the expression in Program 27.7 is shown in Program 27.8.

<em style="background-color: yellow;">Functional Programming in Scheme

Program 27.8 The rendering of the value of the HTML mirror expression.

HTML attributes are validated in LAML, but CSS attributes are not.

193

27.6. Summary of Mirror Rules

Lecture 7 - slide 14

The parameter passing rules of the HTML mirror functions are summarized below. Notice that the
exact same rules apply for XML mirror functions in the so-called XML-in-LAML framework.

The HTML mirror conventions of LAML can be summarized in six rules

e Rulel
An attribute name is a symbol in Scheme, which must be followed by an expression of
type string, which plays the role as the attribute's value.

e Rule2
Parameters which do not follow a symbol are content elements (strings or instances of
elements).

e Rule3
All content elements are implicitly separated by white space.

e Rule4

A distinguished data object (the boolean value false) which we conveniently bind to a
variable named _ suppresses white space at the location where the value appears.

e Rule5
Every place an attribute or a content element is accepted we also accept a list, the
elements of which are processed recursively and unfolded into the result.

e Rule6
An attribute with the name css: a refers to the a attribute in CSS.

In the next chapter we will discuss a number of practical aspects of the LAML system.

27.7. References

[xml10] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0",
February 1998.

194

28. Additional LAML topics

In this chapter we describe some more practical aspects of using LAML. We also touch on the
XML-in-LAML approach.

28.1. LAML document processing

Lecture 7 - slide 16

As one of the underlying ideas of LAML, we organize the programmatic source of a web document
as a Scheme program. When the Scheme program is executed, the underlying HTML files are
generated.

It is of practical importance to make it easy and flexible to execute the Scheme program. Below we
summarize the possibilities supported in the LAML system.

The LAML system supports a number of different ways to process a document

e From the command prompt (shell)

e Good for some Unix users

e Good for tool composition - piping
e From a Scheme prompt (LAML prompt)

e Makes it possible to interact with LAML at a more fine grained level
e From Emacs

e Direct support of LAML from an advanced text editor

e Synchronous and asynchronous processing

o Keyboard shortcuts, templates, and menu support

e Support of embedding of a substring in a Lisp form - and the inverse

unembedding

Let us be more concrete. Scheme source files with LAML documents are supposed to have the file
extension 'laml'. We will assume that we have written source document in a file called 'd.laml".

From a command prompt or a Unix shell, you can execute it and hereby generate the underlying
HTML file by the command 1aml d.

From a Scheme interpreter (a Scheme prompt) in which the basic LAML software has been loaded,
you can type (1laml "d") followed by "enter". This is a call of the 1am1 procedure on "d".

From within Emacs (in which the LAML mode has been loaded) you can process a the document
directly, by issuing the command M-x laml-process-current-buffer. (It is assumed, however, that
the buffer is associated with a file at some location in the file system). The emacs command 1aml-
process-current-buffer is bound to some convenient shortcut, c-o, which makes it very easy to
do the processing.

195

In Emacs, it is possible to start an interactive Scheme/LAML session. This is done with M-x run-
laml-interactively. Using this possibility, the Scheme system is started, and selected LAML
libraries are loaded. The Emacs Lisp variables interactive-laml-mirror-library and
interactive-laml-load-convenience-library control which HTML mirror library and which
additional support libraries to load in the interactive LAML session.

The Emacs support of LAML can be seen as powerful environment for programmatic
authoring

As a practical remark, we will strongly recommend that LAML is used via Emacs. Authors of
LAML-based materials should make use the features of the Emacs laml mode. Similarly, users who
interact with the Scheme system can make good use of the additional support in Emacs, such as the
run-laml-interactively command mentioned above, and the variables that control the behavior
of this command.

28.2. LAML document styles and tools

Lecture 7 - slide 17

The purpose of this section is to give a short overview of some of the major document styles and
tools in LAML. A document style is a LAML based language. All such new languages are derived
from an XML document type definition.

The overview below is by no means comprehensive. You are referred to the LAML Software home
page [normark02e] for details.

A number of document styles and tools have been built on top of the basic LAML
libraries and the mirrors

e Document styles
e Domain specific web languages
e LENO in which this material is written
e Course plan in which the course home page is written
e The Manual document style in which the LAML software is documented

e The Scheme Elucidator used to explain programs in this material
e Web Calendar used on the course home page
e XML parser and XML mirror generation tool

196

28.3. LAML server-side programming - CGI

Lecture 7 - slide 18

LAML can be used for authoring of static web material using a Scheme mirror of an XML
language. LAML has also been used for server side programming using the Common Gateway
Interface - CGI.

In this material we will not cover CGI programming in Scheme, but we will refer to an elucidative
tutorial on the topic.

In the web version of this material there is an 'Elucidate’ button which brings you to a Scheme
elucidator that explains how to make a LAML CGI program, cf.[laml-cgi-tutorial].

A number of non-trivial server side web systems have been made in LAML via use of
CaGl

e LAML Web System
o IDAFUS - a distance education manager used for CS open university activities
during three years
e The calendar manager
e The exercise manager

IDAFUS - Insitut for DAtalogis FjernUndervisnings System - is a major example of a LAML
server application used for non-trivial purposes during a number of years in open university
educations. The exercise manager is a minor system for synchronous management of exercise
sessions. It requires user name and password to try out these systems.

The LAML calendar manager is widely used at Aalborg University for course and semester
calendar management. The author's (simple) calendar can be accessed as an example [kn-calendar].
From a given calendar you can create your own, if you want.

28.4. XML in LAML

Lecture 7 - slide 20

XML-in-LAML is the LAML framework for mirroring of XML languages in Scheme.

In LAML there is a DTD parser, which produces a Lisp representation of a DTD. Based on this
representation it is possible to synthesize an exact Scheme mirror of the XML language. The
properties of this mirror is described below.

IXML-z'n-LAML is a mirroring technique that makes XML languages available in Scheme

197

e XML-in-LAML
e Mirror derivation from Document Type Definitions (DTDs)
e Automatic derivation of validation predicates
e Two or more XML languages can co-exist
o Existing XML-in-LAML languages
e XHTML (strict, transitional, frameset) with full validation
e SVG - Scalable Vector Graphics - with partial validation
e LENO - the XML language used as the source of this material - with full
validation
e Course Plan - the course home page system.
e Program Dissection - A simple program explanation facility
e Photo Show - A web photo presentation system

Currently we convert several existing LAML document styles to the XML-in-LAML framework.
As an important language for this material - LENO has already been transformed.

28.5. More information

Lecture 7 - slide 22

|There are a number of sources to more information about LAML

e Academic

e The papers available from the LAML Home Page
e Tutorial

e The elucidative LAML Tutorial
e LAML user/programmer information

e The LAML software home page

The LAML home page [laml-home] contains all the papers that have been written above LAML
and LENO.

The aim of the LAML tutorial [laml-tutorial] is to introduce various aspects of LAML in a gentle
way.

The LAML software home page [laml-software] contains an overview of all the software, and it
gives access to a download page where the latest distribution is made available as free software.

|LAML can be downloaded as free software from the LAML home page

The exercise below is seen as a typical, practically oriented example where LAML can be used for
management of everyday information.

198

Exercise 7.1. Bookmark administration
Exercise motivation: It is not practical to bind web bookmarks to a single machine nor to a single
browser. Therefore we will maintain a list of bookmark entries in a file, and generate web

bookmark pages from this description.

We will assume that we maintain a /ist of bookmark entries, each of the form
(bookmark URL title category comment)

The first constituent is a symbol (a tag that distinguishes bookmark entries from other structured
data) and the other fields are text strings.

You can find an example of a bookmark list here. See the link in the web version.

The exercise is to complete a frame-based bookmark browser, given a list of bookmarks.You can
find an example of a frame-based bookmark browser here. See again the link in the web version.
To make it realistic for you to solve this exercises, you are only asked to make the left frame: the
category overview frame. The frameset page and the right frame page are already programmed.

You are, however, supposed to understand the pre-programmed frame of the exercise. So start to
read through the existing pieces of the program.

You can find the pre-programmed part of the bookmark browser in the zip file bookmarks-zip.zip.
Please consult the web version of the material to get access to it. Unzip it, and LAML process the

file bookmark.laml. Bring up the file bookmark-frameset.html in a browser to get started.

You are welcome to extend the solution, for example with a good use of the comment field from
the bookmark entry.

28.6. References

[laml-software] The LAML software home page - development version
http://www.cs.auc.dk/~normark/scheme/index.html
[laml-tutorial] The LAML tutorial
http://www.cs.auc.dk/~normark/scheme/tutorial/index.html
[laml-home] The LAML home page

http://www.cs.auc.dk/~normark/laml/

[laml-cgi-tutorial] Guess a Number - A simple CGI program in Scheme with LAML

http://www.cs.auc.dk/~normark/scheme/tutorial/cgi-programming/cgi-programming.html

[kn-calendar] The authors personal LAML calendar
http://www.cs.auc.dk/~normark/cgi-bin/calendar/data/normark.html
[normark02e] Kurt Nermark, "The LAML Software Home Page", 2003.

199

200

29. Classes and objects in Scheme

In Section 8.5 we have described function-objects, which are returned when we evaluate lambda
expressions. Function objects are also called closures, because a function object captures and 'closes
around' the free name, on which the function object depends (due to the use of static binding of free
names).

In this section we will see how to combine function objects to represent objects, in the sense of the
object-oriented programming paradigm.

29.1. Functions with private context

Lecture 8 - slide 4

We start gently with some observations about private context around functions. It turns out later that
this is one of the key ideas when we want to represent objects by means of functions. The insight in
this section shows how to arrange some private, encapsulated state around a function. This is
relevant because the idea of encapsulation is central in the object-oriented paradigm.

|It is possible to define a private context around a function

The function below is defined in a private context. The 1et construct sets up a number of names
(not shown directly in the program), which can be accessed from the lambda expression. Moreover,
no other places than the lambda expression can access these names. Therefore the context is private
to the shown lambda expression.

(define function-with-private-context
(let (CONTEXT)
(lambda (PARAMETERS)
BODY)))

Program 29.1 A template of a function with private context. The lambda expression appears in the
context of the 1et name binding construct. When the definition is evaluated a name binding context
is established around the lambda expression. The lambda expression is the only place in the
program which have a possibility to reach the name bindings. Therefore the name bindings are local
to the lambda expression. The CONTEXT is a list of name bindings, as such name bindings appear
in a let construct.

Before we proceed with a deeper understanding and exploration of private context around functions,
we will give a concrete example in Table 29.1 below. We take one of our favorite examples, namely
the use of the HTML mirror functions html, head, body, etc, to define a document function. The
document function has a private context, in which we redefine htm1 and body . The redefinition
binds a couple of relevant attributes, by use of the function modi fy-element, which we introduced
in Section 18.5.

201

Expression Value

(define document

(let
((html
(xml-modify-element html
'xmlns
"http://www.w3.0rg/1999/xhtml"))
(body
(xml-modify-element body
'bgcolor (rgb-color-encoding 255
0 0)))

)
(lambda (ttl bdy)

(html
(head (title ttl))
(body bdy)))))
<html xmlns =
"http://www.w3.0rg/1999/xhtml">
<head>
<title>A title</title>
(document "A title™ "A body") </head>
<body bgcolor = "#f£f0000">
A body
</body>
</html>

Table 29.1 An example in which we abstract a (html (head
(title..)) (body ...)) expressionin alambda expression, of
which we define a private context. The context redefines the html and
body functions to 'specialized’ versions, with certain attributes. Notice
the importance of the 'simultaneous name bindings' of let in the
example (as explained in an earlier lecture). Also notice that we have
discussed the modify-element higher-order function before.

Now we know how to deal with private context around a function. In the next section we will use
this knowledge to approach the definition of classes, as known from the object-oriented
programming paradigm.

29.2. Classes and objects

Lecture 8 - slide 5
We will now demonstrate that a function definition can be interpreted as a class, and that a function

call can play the role of an object. In other words, certain lambda expressions will be regarded as
classes, and certain closures will be seen as objects.

202

Due to (1) the first class status of functions, and due to (2) the use of static binding of
free names, it is possible to interpret a closure as an object

With this interpretation, it is possible to regard certain function definitions as classes

In Program 29.2 we see the definition of Point, which we want to play the role of a class. The
purple lambda expression, the value of which is returned from point, is the object handle, which
represents the object. Notice that this object handle really is a dispatcher, which returns one of the
red methods given a message parameter as input. Thus, the object handle manages method lookup in
the object. The 1etrec construct organizes the methods, which all are defined inside the scope of
the green instance variables, which are just the 'construction parameters' of the point.

(define (point x vy)

(letrec ((getx (lambda () x))
(gety (lambda () y))
(add (lambda (p)
(point

(+ x (send 'getx p))
(+ y (send 'gety p)))))

(type-of (lambda () 'point))

)
(lambda (message)
(cond ((eg? message 'getx) getx)

((eg? message 'gety) gety)

((eg? message 'add) add)

((eg? message 'type-of) type-of)

(else (error "Message not understood"))))))

Program 29.2 The definition of a 'class Point 'with methods getx, gety, add, and type-
of . On this page we have also defined the syntactical convenience function send that sends a
message to an object. In MzScheme, be sure that you define send before Point (such that send
in the add method refers to our send, and not an already existing and unrelated definition of the
name send).

In the add method we use the send function. The send function sends a message to an object. We
show the definition of the send function in Program 29.3. The send function just looks up the
method, after which it calls the method by means of app1y.

(define (send message obj . par)
(let ((method (obj message)))
(apply method par)))

Program 29.3 The send method which is used in the Point class. The function apply calls a
function on a list of parameters. This should be seen in contrast to a normal call, in which the
individual parameters are passed.

The send function is of course of interest also outside the classes. Whenever we need to
communicate with an object, we do it by use of the send function. We will encounter send and
other similar functions in the following sections.

203

On the practical side, it might be a good idea to rename send , for instance to send-message . It is
likely that send already is the name of a function in your Scheme system. In DrScheme and
MzScheme this is indeed the case. So in order to avoid problems with this, you can consider a
systematic renaming when you are playing with the point class in Exercise 8.1.

Exercise 8.1. Points and Rectangle

The purpose of this exercise is to strengthen your understanding of functions used as classes in
Scheme.

First, play with the existing point class defined on this page available from the on-line version of
this material.

As an example, construct two points and add them together. Also, construct two lists of each four
points, and add them together pair by pair.

Define a new method in the point class called (move dx dy) , which displaces a point with dx
units in the x direction and dy units in the y direction. We encourage you to make a functional
solution in which move creates a new displaced point. After that you can make an imperative
solution in which the state of the receiving point is changed.

Finally, define a new class, Rectangle , which aggregates two points to a representation of a
rectangle. Define move and area methods in the new class.

As a practical remark to the 'class point 'and the send primitive, be sure to define send before
you define point . (This is done to redefine an existing send procedure in MzScheme).

29.3. A general pattern of classes

Lecture 8 - slide 6

We will now generalize the ideas exemplified in the Point class above. With this we will discuss a
general pattern for simulation of classes and objects in Scheme.

If you want additional information about the simulation of object-oriented concepts in Scheme you
can consult [Normark90a].

|The following shows a template of a function that serves as a class

In the program below pattern of a class is shown. As explained in Program 29.4 there are
construction parameters, instance variables, methods, and the se1f function. The methods and the
self function are defined through explicit define forms. This is just syntactic sugar, instead of
using letrec as in Point - see Program 29.2.

204

(define (class—-name construction-parameters)
(let ((instance-var init-value)

-)

(define (method parameter-1ist)
method-body)

(define (self message)
(cond ((eqv? message selector) method)

(else (error "Undefined message" message))))

self))

Program 29.4 A general template of a simulated class. construction-parameters are
typically transferred to the 1et construct, which we want to play the role as instance variables.
Next comes explicitly defined methods, and last is the object handle called self . Notice that the
value returned by the class is the value of self - the object handle.

Below we show the send function, which we also saw in Program 29.3. The version in Program
29.5 includes a little error handling in addition to method lookup and method activation. The
program also contains a syntactic sugaring function called new-instance , which just 'calls the
class' with the purpose of class instantiation.

(define (new-instance class . parameters)
(apply class parameters))

(define (send message object . args)
(let ((method (object message)))
(cond ((procedure? method) (apply method args))
(else (error "Error in method lookup " method)))))

Program 29.5 Accompanying functions for instantiation and message passing.

29.4. Example of the general class pattern

Lecture 8 - slide 7

Let us now take a look at the Point class, programmed with the class pattern introduced in Section
29.3 . We carefully introduce instance variables x and y, even though they are not strictly needed.
The construction parameters of Point - also called x and vy - are sufficient to represent the object
state.

205

The Point class redefined to comply with the general class pattern

(define (point x y)
(let ((x x)

(v y)
)

(define (getx) x)
(define (gety) vy)
(define (add p)

(point

(+ x (send 'getx p))

(+ v (send 'gety p))))

(define (type-of) 'point)

(define elf message)
(cond eqv? message 'getx) getx)

eqv? message 'add) add)
eqv? message 'type-of) type-of)
(else (error "Undefined message" message))))

(s
((
((egqv? message 'gety) gety)
((
((

self))

Program 29.6 The class Point implemented with use of the general class template. The Point
class corresponds to the Point class defined on an earlier page. Notice that the bindings of x and
y in the let construct is superfluous in the example. But due to the simultaneous name binding

used in let constructs, they make sense. Admittedly, however, the 1et construct looks a little
strange.

Below, in Program 29.7 we show a scenario in which we create two points, and bind them to the
variables p and g. The sum of p and g is bound to the variable named p+q . We also send getx and
gety messages to the points in order to assure, that they are located as expected.

1> (define p (new-instance point 2 3))

2> (send 'getx p)
2

3> (define g (new-instance point 4 5))
4> (define p+g (send 'add p q))

5> (send 'getx p+q)
6> (send 'gety p+tq)

Program 29.7 A sample construction and dialogue with point.

206

29.5. A general pattern of classes with inheritance

Lecture 8 - slide 8

Now that we have seen how the simple aspects of object-oriented programming can be simulated in
Scheme, we will move on to a slightly more advanced aspect, namely inheritance. We will see that
it is possible to organize object parts in such a way that they can be considered as an object of a
class, which inherits from another class.

In Program 29.8 the binding of super to new a 'super part' (the red program fragment) is the place
to look first. At this location we instantiate the super part of the current object. In the dispatcher -
earlier called self - we carry out method lookup in super , in case we do not find the method in the
current object part. This is in reality the operational manifestation of inheritance (from subclass part
to super part - and not as usually conceived, the other way around).

You should already now take a look at the left (green) part of Figure 29.1 to understand the super
chain of the object. The self variable in the figure holds the value of dispatch. Thus, self refers
to the object handle.

|The following shows a template of a function that serves as a subclass of another class

(define (class—-name parameters)

(let ((super (new-part super-class-name some-parameters))
(self 'nil))
(let ((instance-variable init-value)

o)
(define (method parameter-1ist)
method-body)
(define (dispatch message)
(cond ((eqv? message 'selector) method)
(else (method-lookup super message))))

(set! self dispatch))

self))

Program 29.8 A general template of a simulated class with inheritance.

When object parts refer to each other in a chain of super variables, the top object part is deemed to
be special. As usual, the most general class is called object. It is shown in Program 29.9. The
super reference is 'empty' (the empty list), and the dispatch function ends the method lookup at
this point.

207

(define (object)
(let ((super '())
(self 'nil))

(define (dispatch message)

"))

(set! self dispatch)
self))

Program 29.9 A simulation of the root of a class hierarchy.

Below, in Program 29.10, the syntactic sugaring functions new-instance , new-part , send , and
method-1lookup are shown. The function new-part is used to make a new part object, whereas
new-instance is used to make a whole object. Currently they are identical, but later we will make a
small difference in between them. In reality method-1lookup and send have survived from Section
29.3. Only some additional error handling has been added.

(define (new-instance class . parameters)
(apply class parameters))

(define (new-part class . parameters)
(apply class parameters))

(define (method-lookup object selector)

(cond ((procedure? object) (object selector))
(else
(error "Inappropriate object in method-lookup: "
object))))
(define (send message object . args)

(let ((method (method-lookup object message)))
(cond ((procedure? method) (apply method args))
((null? method)

(error "Message not understood: " message))

(else

(error "Inappropriate result of method lookup: "
method)))))

Program 29.10 Accompanying functions for instantiation, message passing, and method lookup.

29.6. An example of classes with inheritance

Lecture 8 - slide 9

We will of course take a look at a concrete example with class inheritance. Below we define a heir
of point . For the sake of the example, we could also have extended Point with a third dimension,
but we choose the somewhat foolish specialization called colorPoint .

208

We sketch one of the favorite toy specializations of Point - ColorPoint

(define (color-point x y color)

(let ((super (new-part point x vy))
(self 'nil))
(let ((color color))

(define (get-color)
color)

(define (type-of) 'color-point)

(define
(cond

dispatch message)

(eqv? message 'get-color) get-color)
(eqv? message 'type-of) type-of)

else (method-lookup super message))))

—~ o~~~

(set! self dispatch))
self))

Program 29.11 A specialization of Point which is called ColorPoint.

We also include a sample dialogue with color points, see Program 29.12. Of course, it is best for
you to play with the classes yourself. Adding two color points together creates a point, not a color
point. In Exercise 8.2 we explore this problem.

1> (define cp (new-instance color-point 5 6 'red))

2> (send 'get-color cp)
red

3> (send 'getx cp)
5

4> (send 'gety cp)
6

5> (define cp-1 (send 'add cp (new-instance color-point 1 2 'green)))
6> (send 'getx cp-1)

7> (send 'gety cp-1)

8> (send 'get-color cp-1)

Undefined message get-color

9> (send 'type-of cp-1)

point

Program 29.12 A sample construction and sample dialogue with ColorPoint.

209

Exercise 8.2. Color Point Extension
On this page we have introduced the class ColorPoint, which inherits from color .

In the sample dialogue with a couple of color points we have identified the problem that the sum
of two color points is not a color point. Why is it so?

You are now supposed to make a few changes in the classes Point and ColorpPoint. In order to
make it realistic for you to play with the classes, your starting point is supposed to be a pre-
existing file, with all the useful stuff (available from the on-line version of this material).

When you experiment with points and color-points, use€ M-x run-laml-interactively from
Emacs.

1. First take a look at the existing stuff, and make sure you understand it. Be aware that both
of the classes Point and ColorPointuse virtual methods, as explained below.

2. Add a method class-of to both Point and ColorPoint that returns the class of an
instance. Underlying, the method c1ass-of is supposed to return a function.

3. Now repair the method add in Point, such that it always instantiate a class corresponding
to the class of the receiver. In other words, if the receiver of add is a Point, instantiate a
point. If the receiver of add is a ColorPoint, instantiate a ColorPoint. You can
probably use the method c1ass-of from above. (If you run into a problem of a missing
parameter in the instantiation of the 'sum point' - you are invited to take a look at my
solution).

29.7. The interpretation of se1f

Lecture 8 - slide 10

The simulation of inheritance involves an aggregation of object parts to a holistic object. In order to
tie the whole object together, se1f (the object handle) of all parts must point to the most specialized
object part.

In Figure 29.1 we show what we want to achieve. The green hierarchy to the left shows the situation
until now, where self at each level points to the current object part. The yellow hierarchy to the
right shows the situation we want to establish.

In order to obtain virtual methods of classes we need another interpretation of self

The interpretation of sel1f can be related to virtual methods in the object-oriented paradigm. A
method is virtual if the type of the receiving object, rather the type of the qualifying class,
determines the method binding in a method lookup process.

210

Thus, from an arbitrary object part, we want to be able to access the most specialized interpretation
of'a method. In order to provide for this, se1f must give access to the most specialized object part.
Without this, there is no way at all to access the 'top object part' from a "non-top object part'.

Creneral
A D
supuarJ S‘l.lpf:fJ
self _:l gelf —1—
B |E
SUper :
self _j
C
sUpsr
self —— 4—|

Spectalized

Figure 29.1 Two different interpretations of self. We see two linear
class hierarchies. The class C inherits from B, which in turn inherits from
A. And similarly, F inherits from E, which inherits from D. The one to the
left - in the green class hierarchy - is the naive one we have obtained in
our templates and examples until now. The one to the right - in the yellow
class hierarchy, shows another interpretation of self . Following this
interpretation, self at all levels refer to the most specialized object

part.

29.8. A demo of virtual methods

Lecture 8 - slide 11

It is now time to show the effect of virtual methods. In Program 29.13 we define a class x which is
the superclass of a class y in Program 29.14. Thus, y inherits from x . In both of the classes we see
an extra bookkeeping method set-self! , which is responsible for mutating self to the proper
object part. Notice that set-self! is not of interest to the programmers, who use the x and y
classes. The set-self! methods are internal affairs of the classes.

On this page we will make two artificial classes with the purpose of demonstrating
virtual methods

211

(define (x)

(let ((super (new-part object))
(self 'nil))

(let ((x-state 1)
)

(define (get-state) x-state)

(define (res)
(send 'get-state self))

(define (set-self! object-part)
(set! self object-part)
(send 'set-self! super object-part))

(define (self message)
(cond ((eqv? message 'get-state) get-state)
((egqv? message 'res) res)
((eqv? message 'set-self!) set-self!)
(else (method-lookup super message))))

self))) ; end x

Program 29.13 A4 base class x. The method res sends the message get—-state to itself. If an x
object receives the message res , it will return the number 1.
(define (y)

(let ((super (new-part x))
(self 'nil))

(let ((y-state 2)
)

(define (get-state) y-state)

(define (set-self! object-part)
(set! self object-part)
(send 'set-self! super object-part))

(define (self message)

(cond ((eqv? message 'get-state) get-state)
((egqv? message 'set-self!) set-self!)
(else (method-lookup super message))))

self))) ; end y

Program 29.14 A class y that inherits from x . The y class redefines the method get-state.
The y class inherits the method res . If a y method receives the message res, it will be propagate
to the x part of the object. Due to the use of virtual methods, self in the x part refers to the y part.
Therefore the get-state message returns the y-state of the y part, namely 2.

The dialogue in Program 29.15 is a minimal example that illustrates the effect of the new
interpretation of se1f . Sending the res message to the y-object b gives the value 2, which shows

that the get-state of y (not the get-state of x) is called by the res method. Notice that the res
method is inherited from x to v .

212

1> (define a (new-instance x))
2> (define b (new-instance y))

3> (send 'res a)

4> (send 'res Db)

Program 29.15 A dialogue using class x and class y. Instances of the classes x and y are created
and res messages are send to both of them.

The program below, Program 29.16, shows the new-instance function, which - in a declarative
fashion - asks for virtual operations. The function virtual-operations , sends the set-self!
method to the object, which in turn will activate the set-self! methods at all levels in the object.
This causes the adjustment of se1f , as illustrated in the right part of Figure 29.1.

(define (new-instance class . parameters)
(let ((instance (apply class parameters)))
(virtual-operations instance)
instance))

; Arrange for virtual operations in object
(define (virtual-operations object)
(send 'set-self! object object))

Program 29.16 The functions new-instance and virtual-operations.

213

Exercise 8.3. Representing HTML with objects in Scheme
This is an open exercise - maybe the start of a minor project.

In the original mirror of HTML in Scheme, the HTML mirror functions, return strings. In the
current version, the mirror functions return an internal syntax tree representation of the web
documents. With this, it is realistic to validate a document against a grammar while it is
constructed. In this exercise we will experiment with an object representation of a web document.
We will use the class and object representation which we have introduced in this lecture.

Construct a general class html-element which implement the general properties of a HTML
element object. These include:

1. A method that generates a rendering of the element
2. A method that returns the list of constituents
3. An abstract method that performs context free validation of the element

In addition, construct one or more examples of specific subclasses of html-element , such as
html , head, or body. These subclasses should have methods to access particular, required
constituents of an element instance, such as the head and the body of a HTML element, and title
of'a head element. Also, the concrete validation predicate must be redefined for each specific
element.

29.9. References

[normark90a] Kurt Nermark, "Simulation of Object-oriented Concepts and Mechanisms in
Scheme", No. R 90-01, Department of Mathematics and Computer Science,
Institute of Electronic Systems, Aalborg University, January 1990, .

[oop-sim] Simulation of object-oriented mechanisms in Scheme - A technical report
http://www.cs.auc.dk/~normark/oo-scheme.html

214

30. Imperative Scheme and LAML Constructs

This material is about functional programming in Scheme. So why do we include this section about
imperative aspects of Scheme and LAML?

The reason is that Scheme in reality is a multi-paradigm programming language - although with
strong historical roots in the functional paradigm. As a related observation, in Chapter 29 we saw
that the distance between concepts in Scheme and the concepts in object-oriented programming is
little too.

When Scheme is used for real world applications - like in the web domain - it is not possible to
avoid use of imperative features. Just take, as an example, the handling of files on the harddisk.
Some people may be able to regard file handling - deletion and file writing for instance - in a
functional way. I prefer to think of these aspects as belonging to the well-known imperative
paradigm.

In this brief side track chapter we will review some of the more important imperative aspects of
Scheme.

30.1. Imperative Scheme Constructs

Lecture 9 - slide 2

We start by enumerating the main commands - and groups of commands - of the Scheme language.
Be sure to notice the assignment syntactical form set !, which is the most important of them all.

The most fundamental imperative Scheme construct is the assignment set !

e Other imperative constructs:
° (begin ey ... ep)
e The iterative do control structure
e The input output procedures
e The list, string and vector mutators

As a notational convention, most imperative abstractions in Scheme ends with "!"

As noticed above it is hard to avoid using imperative constructs when writing real-world Scheme
programs in the web domain. But we should be careful. We do not want to mix traditional use of
'the imperative programming style' with functional programming. Thus, we should clearly avoid
using set! side by side with all the functional means, which we have described in this material.

As a good rule of thumb, the imperative constructs in our programs should be kept at a minimum,

and - most important - they should be used at a few places - typically at top level - such that the
inner parts of the program are purely functional.

215

30.2. List mutators

Lecture 9 - slide 3

In Chapter 6 we have studied the list concepts in Scheme (proper and improper lists) and we have
seen the functional primitives for list construction and list selection - cons, car, cdr and the
functions on top of these.

In this section we will mention and list the mutating functions, which are also available in Scheme.

Besides the list constructor cons and the list selectors car and cdr there are also list
mutators called set-car! and set-cdr!

e The list mutator procedures:
e The command (set-car! x y) changes the value of the car position of the cons
cell referred by x. The car position is assigned to y
e The command (set-cdr! x y) changes the value of the cdr position of the cons
cell referred by x. The cdr position is assigned to y
o Using the list mutators it is possible to make circular structures

Without use of the list mutators, and with use of structural equivalence predicates, it is
not possible to tell the difference between a list structure and a copy of the list structure

If we make use of list mutators we can tell the difference between a list structure, LS, and a copy of
LS. The way to do it is to mutate LS and observe that the copy is not changed. Using only the
functional subset of Scheme (and disregarding the very discriminating equality predicates such as
eq? and eqv?) a copy of LS serves the same purposes as LS itself.

30.3. String mutators

Lecture 9 - slide 4

Strings can be mutated in Scheme. Below we mention the main procedure for this, string-set!,
and we also look at a similar procedure, string-fill!.

A string can be mutated by the string-set! and the string-£i11! procedures

o The string mutator procedures:
e (string-set! str k chr) changes character number k in str to chr
e (string-fill! str chr) changes every character in str to chr

There are similar functions that mutate the elements in vectors

216

30.4. Imperative features in LAML

Lecture 9 - slide 6

As mentioned in the introduction to this chapter, we need imperative features to deal with the real-
world needs in both static and more dynamic web authoring and programming.

In this section we enumerate some of the more important imperative aspects in the LAML software
package.

LAML needs imperative features for file 10, handling of LAML context information,
and high level commands

e Overview of imperative features in LAML:

e The procedures write-text-file and read-text-file

e At a higher level procedures such as write-html which surrounds many
HTML mirror documents in Scheme

e Many high level procedures which represent tools or commands
e Suchas xml-parse, xml-pp, and schemedoc
o File handling in general

e Definition of LAML context information

e fake-startup-parameters, laml-cd, ...

In some situations we have internally in LAML used imperative patching of functional
programs, because functional patching has been too difficult and too time consuming

Unfortunately, we have not systematically used the 'exclamation mark' naming
convention of LAML procedures.

30.5. References

[-]
[-]
[-]
[-]

[-]

LAML tools and commands
http://www.cs.auc.dk/~normark/scheme/distribution/laml/man/laml.htmI#SECTION7

The Text Collection and Skipping Library
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/collect-skip.html

Reading of writing of text files
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/file-read.html

R5RS: Vectors in Scheme
http://www.cs.auc.dk/~normark/prog3-03/external-material/rSrs/r5rs-
html/r5rs_62.htmI#SEC64

R5RS: Strings Scheme
http://www.cs.auc.dk/~normark/prog3-03/external-material/rSrs/r5rs-
html/r5rs_61.htmI#SEC63

List and pairs in Scheme

217

http://www.cs.auc.dk/~normark/prog3-03/external-material/rSrs/r5rs-
html/r5rs_58.htmI#SEC60

Input output procedures

http://www.cs.auc.dk/~normark/prog3-03/external-material/rSrs/r5rs-
html/r5rs_65.htmI#SEC67

do
http://www.cs.auc.dk/~normark/prog3-03/external-material/rSrs/r5rs-
html/r5rs_35.htmI#SEC37

begin
http://www.cs.auc.dk/~normark/prog3-03/external-material/rSrs/rSrs-html/r5rs_34.html

Scheme assignment
http://www.cs.auc.dk/~normark/prog3-03/external-material/rSrs/rSrs-html/r5rs_30.html

218

