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1.  Programming Paradigms 

Before we start on the functional programming paradigm we give a broad introduction to 
programming paradigms in general. 

In this section we will discuss the meaning of the word 'paradigm', and we will enumerate the main 
programming paradigms, as we see them. 

In Chapter 2 we will discuss each of the main programming paradigms in some details. Be aware, 
however, that this material is about the functional programming paradigm. The two first chapters of 
the material mainly serve as background, and as contrast for an enhanced understanding of the 
functional school.  

  

1.1.  Paradigm 
Lecture 1 - slide 2 

 It is interesting and useful to investigate the meaning of the word 'paradigm'  
 

We will here look at the meaning of the word 'paradigm', as it appears in 'The American Heritage 
Dictionary of the English Language, Third Edition': 

  "An example that serves as pattern or model."   

Another and slightly more complicated explanation stems from the 'The Merriam-Webster's 
Collegiate dictionary': 

  "A philosophical and theoretical framework of a scientific school or discipline 
within which theories, laws, and generalizations and the experiments performed 
in support of them are formulated" 

 

 

Below we will first describe the meaning of the word 'paradigm' as we adopt it in this course. After 
that we describe related concepts, namely 'programming technique', 'programming style', and 
'programming culture'. 

 • Programming paradigm (in this course) 
• A pattern that serves as a school of thoughts for programming of computers 

• Programming technique 
• Related to an algorithmic idea for solving a particular class of problems 
• Examples: 'Divide and conquer' and 'program development by stepwise 

refinement' 
• Programming style 

The way we express ourselves in a computer program 
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• The way we express ourselves in a computer program 
• Related to elegance or lack of elegance 

• Programming culture 
• The totality of programming behavior, which often is tightly related to a family of 

programming languages 
• The sum of a main paradigm, programming styles, and certain programming 

techniques. 

 

  

1.2.  The main programming paradigms 
Lecture 1 - slide 3 

In this section we will enumerate the four main programming paradigms which will be treated in 
additional details in Chapter 2. It may very well be a matter of taste if some of the additional 
programming paradigms, which we also mention below, should be considered as main 
programming paradigms as well. 

 We identify four main programming paradigms and a number of minor programming 
paradigms  

 

In the concept definition below, we characterize a main programming paradigm in terms of an idea 
and a basic discipline. 

 A main programming paradigm stems an idea within some basic discipline which is 
relevant for performing computations  

 

   

 • Main programming paradigms 
• The imperative paradigm 
• The functional paradigm 
• The logical paradigm 
• The object-oriented paradigm 

• Other possible programming paradigms 
• The visual paradigm 
• One of the parallel paradigms 
• The constraint based paradigm 

 

In Chapter 2 we will characterize the four main programming paradigms mentioned above. We will 
in particular attempt to trace the idea and basic discipline behind the four main programming 
paradigms. We do not go into the other programming paradigms, mentioned above, in this material.  
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1.3.  References 

[-] Foldoc: visual programming 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=visual+programming 
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2.  Overview of the four main programming 
paradigms 

In this section we will characterize the four main programming paradigms, as ident ified in Section 
1.2. 

As the main contribution of this exposition, we attempt to trace the basic discipline and the idea 
behind each of the main programming paradigms. 

With this introduction to the material, we will also be able to see how the functional programming 
paradigm corresponds to the other main programming paradigms. 

  

2.1.  Overview of the imperative paradigm 
Lecture 1 - slide 5 

The word 'imperative' can be used both as an adjective and as a noun. As an adjective it means 
'expressing a command or plea'. In other words, asking for something to be done. As a noun, an 
imperative is a command or an order. Some programming languages, such as the object oriented 
language Beta, uses the word 'imperative' for commands in the language. 

 First do this and next do that 
 

 

The 'first do this, next do that' is a short phrase which really in a nutshell describes the spirit of the 
imperative paradigm. The basic idea is the command, which has a measurable effect on the program 
state. The phrase also reflects that the order to the commands is important. 'First do that, then do 
this' would be different from 'first do this, then do that'.  

In the itemized list below we describe the main properties of the imperative paradigm. 

 • Characteristics: 
• Discipline and idea 

• Digital hardware technology and the ideas of Von Neumann 
• Incremental change of the program state as a function of time. 
• Execution of computational steps in an order governed by control structures 

• We call the steps for commands 
• Straightforward abstractions of the way a traditional Von Neumann computer 

works 
• Similar to descriptions of everyday routines, such as food recipes and car repair 
• Typical commands offered by imperative languages 

• Assignment, IO, procedure calls 
• Language representatives 

• Fortran, Algol, Pascal, Basic, C 
The natural abstraction is the procedure 
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• The natural abstraction is the procedure 
• Abstracts one or more actions to a procedure, which can be called as a 

single command. 
• "Procedural programming" 

 

We use several names for the computational steps in an imperative language. The word statement is 
often used with the special computer science meaning 'a elementary instruction in a source 
language'. The word instruction is another possibility; We prefer to devote this word the 
computational steps performed at the machine level. We will use the word 'command' for the 
imperatives in a high level imperative programming language. 

A procedure abstracts one or more actions to a procedure, which can be activated as a single action. 

  

2.2.  Overview of the functional paradigm 
Lecture 1 - slide 6 

We here introduce the functional paradigm at the same level as imperative programming was 
introduced in Section 2.1. 

Functional programming is in many respects a simpler and more clean programming paradigm than 
the imperative one. The reason is that the paradigm originates from a purely mathematical 
discipline: the theory of functions. As described in Section 2.1, the imperative paradigm is rooted in 
the key technological ideas of the digital computer, which are more complicated, and less 'clean' 
than mathematical function theory.  

Below we characterize the most important, overall properties of the functional programming 
paradigm. Needless to say, we will come back to most of them in the remaining chapters of this 
material. 

 Evaluate an expression and use the resulting value for something  
 

   

 • Characteristics: 
• Discipline and idea 

• Mathematics and the theory of functions 
• The values produced are non-mutable 

• Impossible to change any constituent of a composite value 
• As a remedy, it is possible to make a revised copy of composite value 

• Atemporal 
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• Abstracts a single expression to a function which can be evaluated as an 
expression 

• Functions are first class values 
• Functions are full- fledged data just like numbers, lists, ... 

• Fits well with computations driven by needs 
• Opens a new world of possibilities 

 

  

2.3.  Overview of the logic paradigm 
Lecture 1 - slide 7 

The logic paradigm is dramatically different from the other three main programming paradigms. 
The logic paradigm fits extremely well when applied in problem domains that deal with the 
extraction of knowledge from basic facts and relations. The logical paradigm seems less natural in 
the more general areas of computation. 

 Answer a question via search for a solution 
 

 

Below we briefly characterize the main properties of the logic programming paradigm. 

 • Characteristics: 
• Discipline and idea 

• Automatic proofs within artificial intelligence 
• Based on axioms, inference rules, and queries. 
• Program execution becomes a systematic search in a set of facts, making use of a 

set of inference rules 

 

  

2.4.  Overview of the object-oriented paradigm 
Lecture 1 - slide 8 

The object-oriented paradigm has gained great popularity in the recent decade. The primary and 
most direct reason is undoubtedly the strong support of encapsulation and the logical grouping of 
program aspects. These properties are very important when programs become larger and larger.  

The underlying, and somewhat deeper reason to the success of the object-oriented paradigm is 
probably the conceptual anchoring of the paradigm. An object-oriented program is constructed with 
the outset in concepts, which are important in the problem domain of interest. In that way, all the 
necessary technicalities of programming come in second row.  
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 Send messages between objects to simulate the temporal evolution of a set of real world 
phenomena  

 

As for the other main programming paradigms, we will now describe the most important properties 
of object-oriented programming, seen as a school of thought in the area of computer programming. 

 • Characteristics: 
• Discipline and idea 

• The theory of concepts, and models of human interaction with real world 
phenomena 

• Data as well as operations are encapsulated in objects 
• Information hiding is used to protect internal properties of an object 
• Objects interact by means of message passing 

• A metaphor for applying an operation on an object 
• In most object-oriented languages objects are grouped in classes 

• Objects in classes are similar enough to allow programming of the classes, 
as opposed to programming of the individual objects 

• Classes represent concepts whereas objects represent phenomena 
• Classes are organized in inheritance hierarchies 

• Provides for class extension or specialization 

 

This ends the overview of the four main programming paradigms. From now on the main focus will 
be functional programming in Scheme, with special emphasis on examples drawn from the domain 
of web program development.  

  

2.5.  References 

[-] Foldoc: object-oriented programming 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=object-oriented+programming 

[-] Foldoc: logic programming 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=logic+programming 

[-] Foldoc: functional programming 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=functional+programming 

[-] Foldoc: imperative 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=imperative 
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3.  Lisp and Scheme  

We use the programming language Scheme in this material. Therefore it is natural to start with a 
brief discussion of the family of languages, to which Scheme belongs. This is the Lisp family of 
languages.  

3.1.  Lisp 
Lecture 2 - slide 2 

Lisp was invented by John McCarthy in the late fifties. In these days the dominating use of 
computers was for numeric purposes. One of the purposes of Lisp was to support symbolic 
computation. 

As an example of symbolic computation, let us mention the calculation of differentiated 
mathematical functions. The symbolic derivation of the function f(x) = x * x  is the function g(x) = 2 
* x. The numeric derivation of f will never deliver the function g on source form. The best we can 
hope for is some sort of numeric approximation to g, which can be applied to numbers. 

It is worth noticing that transformation and compilation of programs also can be considered as 
symbolic computations. In fact it turns out, that the computer is better suited to do symbolic 
computations than numeric computations, because the former always can be done exactly, whereas 
the latter often are inexact. 

Today, many Lisp languages are not in use any more. Lisp 1.5 and Interlisp are two of these. 'Lisp' 
is today used as a family name of all 'Lisp languages', which includes such languages and Emacs 
Lisp, Common Lisp, and Scheme. 

 Lisp is the next oldest programming language - only Fortran is older.  
 

In the past, thousands of programming languages have been invented and tried out. Naturally, many 
of these are not in active use any more. It is interesting to notice that both Lisp and Fortran are still 
in widespread use for many different purposes. 

Below we will summarize the main characteristics of Lisp. 

 • Lisp characteristics: 
• Invented for symbolic computations 
• Superficially inspired by mathematical function theory 
• Is syntactically and uniformly based on parenthesized prefix notation 

• Parsing a Lisp program is trivial 
• Programming goes hand in hand with language development 
• It is easy to access and manipulate programs from programs 

• Calls for tool making in Lisp 
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One of the most remarkable facts of Lisp is that the primary data structure in the language - lists - is 
used for the representation of programs. This is the reason why we use all these parentheses in a 
Lisp program! Originally, this characteristic program representation was only thought as an 
intermediate representation, not to be used by the human programmer. It turned out, eventually, that 
the representation had some very useful properties. Therefore the following 'equation' is an 
important characteristic of all Lisp languages.  

 Program = Data = Lists 
 

 

  

3.2.  Scheme 
Lecture 2 - slide 3 

Scheme is a programming language in the Lisp family. Scheme is formally defined in the Scheme 
report [Abelson98], which is revised from time to time. Currently, the fifth revision is the most 
current one. This explains the abbreviation R5RS, which goes something like 'The fifth Revised 
Report on the Algorithmic Language Scheme'.  

 Scheme is a small, yet powerful language in the Lisp family  
 

   

 • Scheme characteristics: 
• Supports functional programming - but not on an exclusive basis 
• Functions are first class data objects 
• Uses static binding of free names in procedures and functions 
• Types are checked and handled at run time - no static type checking 
• Parameters are evaluated before being passed - no lazyness 

 

Many people encounter Lisp programming in Emacs Lisp [fsf02] , [fsf02a], because of the need of 
customizing Emacs in non-trivial ways. Emacs Lisp is an old and primitive dialect of Lisp. Hard 
core Lisp programmers are also likely to meet Common Lisp, which is much bigger than Scheme. 
The statement below compares very briefly Common Lisp and Emacs Lisp with Scheme.  

 

 Scheme  is an attractive alternative to Common Lisp (a big monster) and Emacs Lisp 
(the rather primitive extension language of the Emacs text editor).  
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 Exercise 2.1. Getting started with Scheme and LAML 

The purpose of this exercises is learn the most important practical details of using a Scheme 
system on Unix. In case you insist to use Windows we will assume that you install the necessary 
software in your spare time. There is no time available to do that during the course exercises. 
Further details on installation of Scheme and LAML on Windows.  

You will have to choose between DrScheme and MzScheme. 

DrScheme  is a user friendly environment for creating and running Scheme programs, with lots of 
menus and lots of help. However, it is somewhat awkward to use DrScheme with LAML. Only 
use DrScheme in this course if you cannot use Emacs, or if you are afraid of textually, command 
based tools. Follow this link for further details. 

MzScheme  is the underlying engine of DrScheme. MzScheme is a simple read-eval-print loop, 
which let you enter an expression, evaluate and print the result. MzScheme is not very good for 
debugging and error tracing. MzScheme works well together with Emacs, and there is a nice 
connection between MzScheme and LAML. MzScheme used with Emacs is preferred on this 
course. Please go through the following steps:  

1. Insert the following line in your .emacs file in your home dir, and then restart Emacs:  

  (load "/pack/laml/emacs-support/dot-emacs-contribution.el") 

2. Have a session with a naked Scheme system by issuing the following command in Emacs: 
M-x run-scheme-interactively  

o Define a couple of simple functions ( odd and even, for instance) and call them.  
o Split the window in two parts with C-x 2 and make a buffer in the topmost one 

named sources.scm ( C-x b ). Bring the Scheme interpreter started above into the 
lower part of the window. The buffer with the Scheme process is called 
*inferior-lisp*. Put the sources.scm buffer in Scheme mode ( M-x scheme-
mode ). Define the functions odd and even in the buffer and use the Scheme menu 
(or the keyboard shortcuts) to define them in the running Scheme process.  

3. Have a similar session with a Scheme+LAML system by issuing the following command 
in Emacs: M-x run-laml-interactively (You may have to confirm that a previously 
started Scheme process is allowed to be killed).  

o All you did in item 2 can also be done here.  
o Evaluate a simple HTML expression, such as  

      (html (head (title "A title")) (body (p "A body"))) 

o Use the function xml-render to make a textual rendering of the HTML 
expression.  

o Make a deliberate grammatical error in the LAML expression and find out what 
happens.  

4. Make a file 'try.laml'.  
o Control that Emacs brings the buffer in Laml mode. Issue a M-x laml-mode 
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explicitly, if necessary.  
o Use the menu 'Laml > Insert LAML template' to insert an XHTML template.  
o Fill in some details in the head and body.  
o Process the file via the LAML menu in Emacs: Process asynchronously. The file 

try.html will be defined.  
o Play with simple changes to the HTML expression, and re-process. You can just 

hit C-o on the keyboard for processing.  
o You can get good inspiration from the tutorial Getting started with LAML at this 

point.  

 
  

3.3.  References 

[-] Foldoc: Scheme 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=Scheme 

[-] The Scheme Language Report 
http://www.cs.auc.dk/~normark/prog3-03/external-material/r5rs/r5rs-html/r5rs_1.html 

[-] Schemers.org home page 
http://www.schemers.org/ 

[-] Foldoc: prefix notation 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=prefix+notation 

[-] Foldoc: Lisp 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=Lisp 

[abelson98] Richard Kelsey, William Clinger and Jonathan Rees, "Revised^5 Report on the 
Algorithmic Language Scheme", Higher-Order and Symbolic Computation, 
Vol. 11, No. 1, August 1998, pp. 7--105.  

[fsf02] Free Software Foundation, "Programming in Emacs Lisp (Second Edition)", 
January 2002.  

[fsf02a] GNU Emacs Lisp Reference Manual. The Free Software Fundation Inc, May 
2002.  

 



 13

4.  Expressions and values 

The notion of expression is of central importance in the functional programming paradigm. In some 
sense, expressions is the only computational building block of the functional programming 
paradigm. As a contrast, the imperative paradigm makes use of both commands and expressions. In 
the imperative paradigm commands are executed with the purpose of modifying the state of the 
program, as it is being executed. Expressions are executed - or evaluated - with the purpose of 
producing a value. Values of expressions can be used as parts of surrounding expressions, in an 
evaluation process. Ultimately, the value of an expression is presented to the person who runs a 
functional program. The value serves as the 'result' of the computation. 

  

4.1.  Expressions, values, and types 
Lecture 2 - slide 5 

We will now describe and characterize the important concepts of expressions, values and types.  

The relationship between the three key concepts is as stated below. 

 Evaluation of an expression yields a value which belongs to a type  
 

In the itemized list below we will describe the most important properties of expressions, values, and 
types. The coverage given here is only a brief appetizer. We have much more to say about all three 
of them later in the material. 

 • Expressions 
• Written by the programmer 
• Will typically involve one or more function calls 
• A Function - as written by the programmer - is itself an expression 

• Values 
• Primitive as well as composite 
• A function expression is evaluated to a function object 

• Types 
• A set of values with common properties 
• Type checking can be used to validate a program for certain errors before it is 

executed 

 

Expressions are part of the source program, as written by the programmer. 

A function expression is called a lambda expression. We will encounter these important expressions 
later in this material. 
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The primitive values are those which cannot be decomposed into more primitive parts. Some of the 
important primitive values are numbers, the two boolean values (true and false), and the characters 
of some character set. Primitive values stand as a contrast to composite values, such as lists and 
arrays, which are aggregations of parts, each of which are compositive or primitive values 
themselves. 

  

4.2.  Examples of expressions and their values 
Lecture 2 - slide 6 

Before we go into additional details, we will give examples of important kinds of expressions. This 
includes simple expressions, such as the well-known arithmetic expressions. Next we give an 
example of a conditional expression, which somehow corresponds to selective control structures in 
the imperative paradigm. Lambda expressions generate functions, and as such they are of primary 
importance for the functional programming paradigm. Finally, HTML expressions are of interest to 
the approach taken in the running example used in this material - an example from the domain of 
web program development. Wherever possible we wish to illustrate the use of functional 
programming in the web domain. In this domain, expressions that involve mirrors of HTML and 
XML elements are the key constituents.  

 • Let us assume that x has the value 3 
• Simple expressions  

• 7    has the value 7 
• (+ x 5)    has the value 8 

• Conditional expressions  
• (if (even? x) 7 (+ x 5))    has the value 8 

• Lambda expressions  
• (lambda (x) (+ x 1))    has the value 'the function that adds one to its 

parameter' 
• HTML mirror expressions  

(html 
 (head  
  (title "PP")) 
 (body  
  (p "A body paragraph")) 
) 

• The value of this expression can be rendered as a string in HTML which can be 
presented in an Internet browser. 

 

The conditional expression is evaluated in two steps. First the boolean expression (even? x) is 
evaluated. If x is even, the boolean expression (even? x) evaluates to true and the trivial 
expression 7 is evaluated. Because x is 3 and therefore odd, the other expression (+ x 5) is 
evaluated, giving us the final value 8. It is important to realize that an if form does not evaluate all 
three constituent expressions at the outset. It first evaluates the boolean expression, and based on 
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the outcome, it either evaluates the 'then part' or the 'else part'. Not both! We have much more to say 
about the order of evaluation of an if form in a later part of this material 

Regarding the lambda expression, the x in parentheses after lambda is the formal parameter of the 
function. the expression (+ x 1) is the body. In functions, the body is an expression - not a 
command. 

The HTML mirror expressions stem from the LAML libraries. 

The functions html, body, title, head, and p correspond to the HTML elements of the same 
names. In the LAML software, the HTML elements are mirrored as functions in Scheme. 

The evaluation order of the constituents in a conditional expression is discussed in details in Section 
20.10. Conditional expression is a theme we will study in much more detail in Chapter 10. HTML 
mirror expressions are discussed in additional details in Chapter 26. 

  

4.3.  Evaluation of parenthesized expressions 
Lecture 2 - slide 7 

Parentheses in Scheme are used to denote lists. Program pieces - expressions - are represented as 
lists. Evaluation of parenthesized expressions in Scheme follows some simple rules, which we 
discuss below. 

 How is the form (a b c d e) evaluated in Scheme? 
 

 

The form (a b c d e) appears as a pair of parentheses with a number of entities inside. The 
question is how the parenthesized expression is evaluated, and which constraints apply to the 
evaluation. 

 • Evaluation rules 
• The evaluation of the empty pair of parentheses ( ) is in principle an error 
• If a is the name of a special form, such as lambda, if, cond, or define special 

rules apply 
• In all other cases: 

• Evaluate all subforms uniformly and recursively. 
• The value of the first constituent a must be a function object. The function 

object is called with the values of b, c, d, and e as actual parameters. 

 

The evaluation of the empty pair of parentheses ( ) is often - in concrete Scheme systems - 
considered as the same as '( ), which returns the empty list. However, you should always quote 
the empty pair of parentheses to denote the empty list. 
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Having reached the case where a function is called on some given data, which are passed as 
parameters, like in the call (a b c d), the next natural question is how to call a function. We will 
explore this in detail in Chapter 20, more specifically, Section 20.3where we see that the call should 
be replaced by the body of the called function, in which the formal parameters should be replaced 
by the actual parameters.  

  

4.4.  Arithmetic expressions 
Lecture 2 - slide 8 

It is natural to start our more detailed study of expressions by reviewing the well-known arithmetic 
expressions. The important thing to notice is the use of fully parenthesized prefix notation.  

 Scheme uses fully parenthesized arithmetic expressions with prefix notation 
 

 

Prefix notation is defined in the following way: 

 Using prefix notation the operator is given before the operands  
 

Prefix notation stands as a contrast to infix and postfix notation. Infix notation is 'standard notation' 
in which the operand is found in between the operands. 

Below we give examples of evaluation of a number of different arithmetic expressions. Notice in 
particular the support of rational numbers in Scheme, and the possibility to use arbitrarily large 
numbers. 

Expression Value  
(+ 4 (* 5 6)) 34 
(define x 6) 
(+ (* 5 x x) (* 4 x) 3) 207 

(/ 21 5) 21/5 
(/ 21.0 5) 4.2 
(define (fak n) 
  (if (= n 0) 1 (* n (fak (- n 
1))))) 
 
(fak 50) 

30414093201713378043612608166064768 
844377641568960512000000000000 

Table 4.1    Examples of arithmetic expressions. The prefix notation can 
be seen to the left, and the values of the expressions appear to the right. 
 

 There is no need for priorities - operator precedence rules - of operators in fully 
parenthesized expressions  
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The observation about priorities of operators stands as a contrast to most other languages. In Lisp 
and Scheme, the use of parentheses makes the programmer's structural intentions explicit. There is 
no need for special rules for solving the parsing problem of arithmetic expressions. Thus, 1+2*3 is 
written (+ 1 (* 2 3)), and it is therefore clear that we want to multiply before the addition is carried 
out. 

  

4.5.  Equality in Scheme 
Lecture 2 - slide 9 

Equality is relevant and important in most programming paradigms and in most programming 
languages. Interestingly, equality distinctions are not that central in the functional programming 
paradigm. Two objects o1 and o2 which are equal in a weak sense (structurally equal) cannot really 
be distinguished in the functional paradigm. One of them can be substituted by the other without 
causing any difference or harm.  

When we encounter imperative aspects of the Scheme language, the different notions of equality 
becomes more important. In the imperative programming paradigm we may mutate existing objects. 
By changing one of the two structurally equal objects, o1 and o2, it is revealed if o1 and o2 are also 
equal in a stronger sense. If the mutation of o1 also affects o2 we can conclude that o1 and o2 are 
identical (eq? o1 o2). If a mutation of o1 does not affect o2, then (not (eq? o1 o2)).  

 As most other programming languages, Scheme supports a number of different 
equivalence predicates 

 

 

In Scheme we have the following important equivalence predicates: 

 • The most discriminating 
• eq? 

• The least discriminating - structural equivalence 
• equal? 

• Exact numerical equality 
• = 

• Others 
• eqv? is close to eq? 
• string=? is structural equivalence on strings 

 

An equivalence predicate divides a number of objects into equivalence classes (disjoint subsets). 
The objects in a certain class are all equal. The most discriminating equivalence predicate is the one 
forming most equivalence classes. 

To stay concrete, we show a number some examples of equality expressions in a dialogue with a 
Scheme system. You should consider to try out other examples yourself. 
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1> (eq? (list 'a 'b) (list 'a 'b)) 
#f 
 
2> (eqv? (list 'a 'b) (list 'a 'b)) 
#f 
 
3> (equal? (list 'a 'b) (list 'a 'b)) 
#t 
 
4> (= (list 'a 'b) (list 'a 'b)) 
=: expects type <number> as 2nd argument, given: (a b); other arguments were: (a 
b) 
 
5> (string=? "abe" "abe") 
#t 
 
6> (equal? "abe" "abe") 
#t 
 
7> (eq? "abe" "abe") 
#f 
 
8> (eqv? "abe" "abe") 
#f 

 Program 4.1    A sample interaction using and demonstrating the equivalence functions in Scheme.    

  

4.6.  The read-eval-print loop 
Lecture 2 - slide 10 

It is possible to interact directly with the Scheme interpreter. At a fine grained level, expressions are 
read and evaluated, and the resulting value is printed. This is a contrast to many other language 
processors, which require much more composite and coarse grained fragments for processing 
purposes.  

The tool which let us interact with the Scheme interpreter is called a 'read-eval-print loop', 
sometimes referred to via the abbreviation 'REPL'. 

 The 'read-eval-print loop' allows you to interact with a Scheme system in terms of 
evaluation of individual expressions  

 

We show the interaction with a Scheme REPL below. The interaction is quite similar to the 
exposition in Table 4.1. In this as well as in future presentations of REPL interaction, we often put a 
number in front of the prompt. This simple convenience to allow us to refer to a single interaction in 
our discussions. 
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1> (+ 4 (* 5 6)) 
34 
 
2> (define x 6) 
 
3> (+ (* 5 x x) (* 4 x) 3) 
207 
 
4> (/ 21 5) 
21/5 
 
5> (/ 21.0 5) 
4.2 
 
6> (define (fak n) (if (= n 0) 1 (* n (fak (- n 1))))) 
 
7> (fak 50) 
30414093201713378043612608166064768844377641568960512000000000000 

 Program 4.2    A sample session with Scheme using a read eval print loop.    
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 20



 21

5.  Types 

It is hard to justify a text about functional programming without a fair treatment of types. In this 
chapter we will go over the most important concepts of types, as relevant in the functional 
programming paradigm. 

  

5.1.  Types 
Lecture 2 - slide 12 

Types plays an essential role in any programming language and any programming paradigm. In 
many languages types are used in the program text as constraints on variables and parameters. C, 
Pascal, and Java are such languages. In others, the types are inferred (somehow extracted from use 
of variables, parameters etc. relative to the ways the variables and parameters are used in operators 
and functions). ML is such a language. Yet in other languages, types are solely used to classify the 
values (data objects) at run time. Scheme is such a language. Thus, in Scheme we do not encounter 
types in the source program, but only at run time.  

In general, we see three advantages of dealing with types: 

 The notion of type is used to make programs more readable, make them run more 
efficient, and to detect certain errors before they cause errors in the calculation. 

 

 

Let us now make a more detailed characteristics of these advantages in the following itemized list. 

 • Readability 
• Explicitly typed variables, parameters and function serve as important 

documentation, which enhances the program understanding. 
• Efficiency 

• Knowledge of the properties of data makes it possible to generate more efficient 
code 

• Correctness 
• Explicit information about types in a program is a kind of redundancy against 

which it is possible to check expressions and values 
• Programmers usually wish to identify type errors as early as possible in the 

development process 

 

The correctness quality is often brought into focus. In the next few sections we will therefore 
discuss type checking issues. 
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5.2.  Type checking 
Lecture 2 - slide 13 

As already mentioned the use of types in source programs makes it possible to deal with program 
correctness - at least in some simple sense. In this context, correctness is not relative to the overall 
intention or specification of the program. Rather, it is in relation to the legal use of values as input 
to operators and functions. 

 Type checking is the processes of identifying errors in a program based on explicitly or 
implicitly stated type information  

 

Below we will identify three kinds of 'typing', which are related to three different approaches to 
type checking. 

 • Weak typing 
• Type errors can lead to erroneous calculations 

• Strong typing 
• Type errors cannot cause erroneous calculations 
• The type check is done at compile time or run time 

• Static typing 
• The types of all expressions are determined before the program is executed 
• The type check is typically carried out in an early phase of the compilation 
• Comes in two flavors: explicit type decoration and implicit type inference 
• Static typing implies strong typing 

 

According to section 1.1 the Scheme Report (R5RS) 'Scheme has latent as opposed to manifest 
types. Types are associated with values (also called objects) rather than with variables.' In our 
categorization, Scheme is strongly typed and types are dealt with at run time (on values) as a 
contrast to compile time (on variables). 

It is worth noticing that we classify Scheme as supporting strong typing. Many programmers will 
probably be surprised by this categorization, because the 'typing' in Scheme is experienced to be 
relatively 'weak' and 'dynamic'. However, type errors in Scheme do not cause erroneous 
calculations. Type errors are discovered at a low and basic level. As such we find it justifiable to 
classify the typing in Scheme as being strong. Notice however, that there is no trace of static type 
checking in Scheme. Static type checking is the rule in most modern programming languages today, 
and static type checking is also an absolutely key aspect in functional programming languages such 
as ML [Harper88] and Haskell [Hudak92].  
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5.3.  Static type checking 
Lecture 2 - slide 14 

We here make the distinction between explicit type decoration and implicit type inference, and 
explain the principled difference. 

 There are two main kinds of static type checking: explicit type decoration and implicit 
type inference  

 

For the sake of the discussion we will involve the following example: 

 Let us study the expression (+ x (string-length y)) 

  

 • Explicit type decoration 
• Variables, parameters, and others are explicitly declared of a given type in the 

source program 
• It is checked that y is a string and that x is a number 

• Implicit type inference 
• Variables and parameters are not decorated with type information 
• By studying the body of string-length it is concluded that y must be a string 

and that the type of (string-length y) has to be an integer 
• Because + adds numbers, it is concluded that x must be a number 

 

Explicit type decoration is well-known to most computer science students. 

If you want to study additional details about implicit type inference you should consult a textbook 
of ML or Haskell programming.  

  

5.4.  An example of type checking 
Lecture 2 - slide 15 

We will now discuss type checking relative to the three kinds of 'typing', which we identified in 
Section 5.2. 

 Is the expression   (+ 1 (if (even? x) 5 "five"))   correct with respect to types? 
 

 

The example shows an arithmetic expression that will cause a type error with most type checkers. 
However, if x is even the sum can be evaluated to 6. If x is odd, we encounter a type error because 
we cannot add the integer 1 to the string "five". 
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 • Weak typing 
• It is not realized that the expression (+ 1 "five") is illegal. 
• We can imagine that it returns the erroneous value 47 

• Strong typing 
• If, for instance, x is 2, the expression (+ 1 (if (even? x) 5 "five")) is OK, 

and has the value 6 
• If x is odd, it is necessary to identify this as a problem which must be reported 

before an evaluation of the expression is attempted 
• Static typing 

• (+ 1 (if (even x) 5 "five"))   fails to pass the type check, because the type 
of the expression cannot be statically determined 

• Static type checking is rather conservative 

 

When we use the word conservative for static type checking, we refer to the caution of the type 
checker. Independent of branching, and in 'worst cases scenarios', the type constraints should be 
guaranteed to hold. 

  

5.5.  Types in functional programming languages 
Lecture 2 - slide 16 

Before we proceed we will compare the handling of types in Scheme with the handling of types in 
other functional programming languages. Specifically, we compare with Haskell and ML. 

 Scheme is not representative for the handling of types in most contemporary functional 
programming languages 

 

 

   

 • ML and Haskell 
• Uses static typing ala implicit type inference 
• Some meaningful programs cannot make their way through the type checker 
• There will be no type related surprises at run time 

• Scheme 
• Is strongly typed with late reporting of errors 
• Type errors in branches of the program, which are never executed, do not prevent 

program execution 
• There may be corners of the program which eventually causes type problems 

 
  

 Due to the handling of types, Scheme and Lisp are elastic and flexible compared with 
ML, Haskell, and other similar language which are quite stiff and rigid.  
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6.  Lists 

The list data type is the characteristic composite data type in all Lisp languages, and as such also in 
Scheme. Interesting enough, the surface form of a Lisp program is a list itself. This is an important 
practical observation. Below, we will study the list data type of Lisp and Scheme.  

  

6.1.  Proper lists 
Lecture 2 - slide 18 

Lists are recursively composed. We start with the main points regarding the recursive construction 
of lists. 

 A list is recursively composed of a head and a tail, which is a (possibly empty) list itself 

The building blocks of lists are the cons cells 

Every such cell is allocated by an activation of the cons function 
 

 

Below we illustrate how the list (d c b a) is built. The web version of the material gives the best 
impression of the construction process, via animation (refresh the web presentation to restart the 
animation). The paper version of the material only shows the end result of the construction. 

 
Figure 6.1    A list (d c b a) constructed by evaluating the expression 
(cons 'd (cons 'c (cons 'b (cons 'a '())))). 

In the items below we emphasize the decomposition of the cons cell made by (cons e f), where e 
is an arbitrary expression and f is a list. Notice that we assume that the variable x is bound to (cons 
e f). 

 • Construction of the list structure which we here call x 
• (cons e f) 

• Selection: 
• (car x) => e 
• (cdr x) => f 

 

The constructor function cons takes an element e and a list f and constructs a new list. As illustrated 
above cons makes exactly one new cons cell, and no kind of list copying is involved at all. 
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The selector car returns the first element of the list. A better name of car would be head . 

The selector cdr returns the list consisting of all but the first element in the list. A better name of 
cdr would be tail . 

 A proper list is always terminated by the empty list  
 

In Scheme the empty list is denoted '(). When we in this context talk about the termination of the 
list we mean the value we get by following the cdr references to the end of the list structure. 

  

6.2.  Symbolic expressions and improper lists 
Lecture 2 - slide 19 

As illustrated above, the cons function can be used to construct linear linked lists. It should not 
come as a surprise, however, that cons can be used to make binary tree structures as well. The 
reason is that each cons cell can refer to two other cons cells. 

 The cons function is suitable for definition of binary trees with 'data' in the leaves 
 

 

In Figure 6.2 we show a binary tree structure made by use of the the cons function. The light blue 
box labeled Sexpr is a variable, the value of which is the binary tree structure. In Exercise 2.2 you 
are encouraged to construct the tree. 

 
Figure 6.2    A symbolic expression which illustrates the most general 
form it can take - a binary tree  

In Figure 6.3 we show the exact same structure in a slightly different layout, and with another 
coloring. This layout emphasizes the understanding of the structure as an improper list. The first 
element is the green tree, the second is the brown tree, the third is the symbol g, and the improper 
list element is the symbol h. 
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Figure 6.3    The same symbolic expression laid out as a list. The 
expressions is a proper list if and only if h is the empty list. If h is not the 
empty list, the symbolic expression is an improper list. 

As a matter of terminology, we use the name symbolic expressions, or S-expressions, for the 
structures we have shown above. 

 
 Exercise 2.2. Construction of symbolic expressions 

Construct the symbolic expressions illustrated on this page via the cons primitive in Scheme. The 
entities named a through h should be symbols. As a help, the rightmost part of the structure is 
made by (cons 'g 'h). 'g is equivalent to (quote g), meaning that g is not evaluated, but 
taken for face value. 

Experiment with h being the empty list. Try to use a proper list function, such as length, on your 
structures. 

 

  

6.3.  Practical list construction 
Lecture 2 - slide 20 

On this page we address topics related to 'practical list construction'. Often, cons is too low level for 
construction of lists. Instead we use the list function or quoted expressions. A quoted expression 
is taken for face value; The quote form ´(e) prevents evaluation. The quasiquote form `(e) is a 
variant of quote, which allows non constant constituents in a quote form. Please notice the use of 
'normal quote' and 'back quote' before the parentheses. For details of the quasiquote special form 
you should consult section 4.2.6 in the Scheme report [Abelson98] . 

 cons is the basic list constructor function - but it can be applied through a number of 
other means as well 
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 • List and S-expression cons truction: 
• Deep cons expressions 
• Using the list function 
• Using quote or quasiquote also known as backquote 

 
  

Expression Value  
(cons 1 (cons 2 (cons (+ 1 2) '()))) (1 2 3) 
(list 1 2 (+ 1 2)) (1 2 3) 
(quote (1 2 (+ 1 2))) (1 2 (+ 1 2)) 
'(1 2 (+ 1 2)) (1 2 (+ 1 2)) 

(quasiquote (1 2 (unquote (+ 1 2)))) (1 2 3) 
`(1 2 ,(+ 1 2)) (1 2 3) 

Table 6.1    Examples of list construction by use of cons , list and 
quoted list expressions. 
 

 
 Exercise 2.3. Every second element of a list 

Write a function, every-second-element, that returns every second element of a list. As 
examples 

  (every-second-element '(a b c)) => (a c) 
  (every-second-element '(a b c d)) => (a c) 

It is recommended that you formulate a recursive solution. Be sure to consider the basis case(s) 
carefully. 

It is often worthwhile to go for a more general solution than actually needed. Sometimes, in fact, 
the general solution is simpler than one of the more specialized solutions. Discuss possible 
generalizations of every-second-element, and implement the one you find most appropriate. 

 

  

6.4.  List functions 
Lecture 2 - slide 21 

On this page we will review a number of important list functions, which are part of Scheme and 
described in section 6.3.2 of the Scheme report [Abelson98] . 

 There exists a number of important List functions in Scheme, and we often write other 
such functions ourselves 
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 • (null? lst)     A predicate that returns whether lst is empty 
• (list? lst)     A predicate that returns whether lst is a proper list 
• (length lst)     Returns the number of elements in the proper list lst 
• (append lst1 lst2)     Concatenates the elements of two or more lists 
• (reverse lst)     Returns the elements in lst in reverse order 
• (list-ref lst k)     Accesses element number k of the list lst 
• (list-tail lst k)     Returns the k'th tail of the list lst 

 

It should be noticed that the first element is designated as element number 0. Thus (list-ref '(a 
b c) 1) returns b 

6.5.  Association lists 
Lecture 2 - slide 22 

Association lists are often used to associate two pieces of data. Association lists in Lisp and Scheme 
correspond to a particular implementation of associative arrays, cf. [knoopnotes] 

 An association list is a list of cons pairs 

Association lists are used in the same way as associative arrays  

 

In the table below we shows simple examples and applications of association lists. Try them out 
yourself! 

Expression Value  
(define computer-prefs  
 '((peter . windows) (lars . mac) 
   (paw . linux) (kurt . unix))) 

 

(assq 'lars computer-prefs) (lars . mac) 
(assq 'kurt computer-prefs) (kurt . unix) 
(define computer-prefs-1 
 (cons (cons 'lene 'windows)  
  computer-prefs)) 

 

computer-prefs-1 

((lene . windows) 
 (peter . windows)  
 (lars . mac) 
 (paw . linux) 
 (kurt . unix)) 

Table 6.2    Examples of association lists. The function assq uses eq? to 
compare the first parameter with the first element - the key element - in 
the pairs. As an alternative, we could use the function assoc, which uses 
equal? for comparison. A better and more general solution would be to 
pass the comparison function as parameter. Notice in this context, that 
both assq and assoc are 'traditional Lisp functions' and part of 
Scheme, as defined in the language report. 
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 Exercise 2.4. Creation of association lists 

Program a function pair-up that constructs an association list from a list of keys and a list of 
values. As an example 

  (pair-up '(a b c) (list 1 2 3)) 

should return 

  ((a . 1) (b . 2) (c . 3)) 

Think of a reasonable solution in case the length of the key list is different from the length of the 
value list. 

 
 Exercise 2.5. Association list and property lists 

Association lists have been introduced at this page. An association list is a list of keyword-value 
pairs (a list of cons cells). 

Property lists are closely related to association lists. A property list is a 'flat list' of even length 
with alternating keys and values. 

The property list corresponding to the following association list 

  ((a . 1) (b . 2) (c . 3)) 

is 

  (a 1 b 2 c 3) 

Program a function that converts an association list to a property list. Next, program the function 
that converts a property list to an association list. 

 

  

6.6.  Property lists 
Lecture 2 - slide 23 

Property lists are closely related to association lists. On this page - in Table 6.3 - we compare the 
two kinds of lists with each other. In Program 6.1 we give examples of property lists from LAML, 
which uses property lists for attributes in HTML, XML, and CSS. 

 A property list is a flat, even length list of associations 

The HTML/XML/CSS attributes are represented as property lists in LAML documents  
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Association list Property list 
((peter . "windows") (lars . "mac") 
 (paw . "linux") (kurt . "unix")) 

(peter "windows" lars "mac" 
 paw "linux" kurt "unix") 

Table 6.3    A comparison between association lists and property lists. In 
this example we associate keys (represented as symbols) to string values. 
 

(load (string-append laml-dir "laml.scm")) 
(laml-style "simple-xhtml1.0-transitional-validating") 
 
 
(write-html 'raw 
 (html 'xmlns "http://www.w3.org/1999/xhtml" 
  (head  
   (meta 'http-equiv "Content-Type"  
         'content "text/html; charset=iso-8859-1")  
   (title "Attribute Demo")) 
  (body 'id "KN" 'class "generic" 
 
    (p "Here comes a camouflaged link:") 
 
    (p (a 'href "http://www.cs.auc.dk" 'css:text-decoration "none" 
          'target "main" "Link to the CS Department")) 
 
    (p "End of document.")))) 
 
 
(end-laml) 

 
Program 6.1    A simple LAML document with emphasis on the attributes, represented as property 
lists. There are four attribute lists (property lists, each with its own color). Notice the CSS attribute 
css:text-decoration, given inline in the document .  

 
 

 
 

 In the LAML general library there are functions ( alist-to-propertylist and 
propertylist-to-alist ) that convert between association lists and property lists 

 

 

You should consult Section 26.2 if you want to learn more about the handling of attributes in 
LAML. 

  

6.7.  Tables as lists of rows 
Lecture 2 - slide 24 

In this material we are especially interested in studying examples from the web domain. In HTML, 
tables are represented as collections of rows. It is therefore obvious to use lists of lists as a concrete 
Lisp representation of tables. In Table 6.4 we show such a table, tab1, its rendering, and a number 
of manipulations of the table (transpositions, row eliminations, and column eliminations). The table 
operations will be studied in further details in Exercise 4.4 . 
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 It is natural to represent tables as lists of rows, and to represent a row as a list 

Tables play an important roles in many web documents 

LAML has a strong support of tables  

 

   

Expression Value  

tab1 

(("This" "is" "first" "row") 
 ("This" "is" "second" "row") 
 ("This" "is" "third" "row") 
 ("This" "is" "fourth" "row") 
) 

(show-table tab1) 

This is first row 

This is second row 
This is third row 
This is fourth row  

(show-table (transpose-1 tab1)) 

This This This This 
is is is is 

first second third fourth 
row row row row  

(show-table (eliminate-row 2 tab1)) 

This is first row 

This is third row 
This is fourth row  

(show-table (eliminate-column 4 tab1)) 

This is first 
This is second 
This is third 

This is fourth  
Table 6.4    Examples of table transposing, row elimination, and column 
elimination. We will program and illustrate these functions in a later 
exercise of this material. The function show-table is similar to 
table-0 from a LAML convenience library. Using higher-order 
functions it is rather easy to program the show-table function. We will 
come back to this later in these notes. 
 

In the program below we show a possible implementation of the show-table function, which we 
used in Table 6.4 The function table-1 is one of the LAML convenience functions, which we have 
used in the past. There are others and more interesting ways to deal with tables in LAML. You 
should consult Program 18.6 for details. 
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(define (show-table rows) 
 (let ((row-lgt (length (first rows)))) 
   (table-1 
      0  
      (make-list row-lgt 50)  
      (make-list row-lgt green1) 
      rows))) 

 
Program 6.2    The function show-table, implemented in terms of a LAML table function. There are 
several different ways to implement and deal with the table functions. In the chapter about higher-
order functions we describe another simple table function. 

 
 

  

6.8.  Programs represented as lists 
Lecture 2 - slide 25 

The purpose of this section is to remind you that Scheme programs are themselves list structures. At 
this point of the material, it should not be a big surprise to the readers. 

 It is a unique property of Lisp that programs are represented as data, using the main data 
structure of the language: the list 

 

 

   

 A sample Scheme program from the LAML library: 

  
(define (as-number x) 
  (cond ((string? x) (string->number x)) 
        ((number? x) x) 
        ((char? x) (char->integer x)) 
        ((boolean? x) (if x 1 0))  ; false -> 0, true -> 1 
        (else 
         (error 
          (string-append "Cannot convert to number " (as-string x)))) 

 Program 6.3    The function from the general library that converts different kinds of data to a 
number.   

 

Is it possible to access the list source program of a Scheme definition? In other words, is it possible 
to introspect and reflect about a Scheme program from another Scheme program. Or even more 
interesting perhaps, is it possible for a function to introspect and affect its own source code? Using 
the standard Scheme functions the answers are 'no'. However, some Scheme systems allow it 
nevertheless, through use of non-standard functions. Using more traditional Lisp languages, the 
answers are 'yes'. 

 In Scheme it is not intended that the program source should be introspected by the 
running program 

But in other Lisp systems there is easy access to self reflection  
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7.  Other Data Types 

There are other kinds of data than lists and numbers. In this chapter we will - relatively briefly - 
review booleans, characters, symbols, vectors, and strings in Scheme. 

  

7.1.  Other simple types 
Lecture 2 - slide 27 

As most other programming languages Scheme supports the simple types of booleans and 
characters. As a slightly more specialized type, Scheme also supports symbols.  

You can get the details of these data types by reading in the Scheme Report [Abelson98]. Section 
6.3.1 in the report covers the boolean type. Section 6.3.4 is about characters. Symbols are described 
in section 6.3.3. From the slide and the annotated slide view of this material, there are direct links to 
these sections of the Scheme Report. 

 Besides numbers, Scheme also supports booleans, characters, and symbols  
 

   

 • Booleans 
• True is denoted by #t and false by #f 
• Every non-false values count as true in if and cond 

• Characters 
• Characters are denoted as #\a, #\b, ... 
• Some characters have symbolic names, such as #\space, #\newline 

• Symbols 
• Symbols are denoted by quo ting their names: 'a , 'symbol , ... 
• Two symbols are identical in the sense of eqv? if and only if their names are 

spelled the same way 

 

The equivalence function eqv? is similar to eq?. See section 6.1 of [Abelson98] for details. 

  

7.2.  Vectors 
Lecture 2 - slide 28 

There are a number of superficial similarities between vectors and list, as supported by Scheme. 
However, at the conceptual level vectors are arrays, and lists are linearly linked structures. As such, 
they represent quite different structures. 
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The most basic and fundamental difference between lists and vectors is that lists can be changed 
and extended in a very flexible way (due to the use of dynamically allocated cons cells). A vector is 
of fixed and constant size once allocated. 

Vectors are treated in section 6.3.6 of [Abelson98]. 

 Vectors in Scheme are heterogeneous array- like data structures of a fixed size 
 

 

   

 • Vectors are denoted in a similar way as list 
• Example: #(0 a (1 2 3)) 
• Vectors must be quoted in the same way as list when their external 

representations are used directly 
• The function vector is similar to the function list 
• There are functions that convert a vector to a list and vice versa 

• vector->list 
• list->vector 

 
  

 The main difference between lists and vectors is the mode of access and the mode of 
construction  

 

There is direct access to the elements of a vector. List elements are accessed by traversing a cha in 
of references. This reflects the basic differences between arrays and linked lists. 

The mode of construction for list is recursive, using the cons function. Lists are created 
incrementally: New elements can be created when needed, and prepended to the list. Vectors are 
allocated in one chunck, and cannot be enlarged or decreased incrementally. 

  

7.3.  Strings 
Lecture 2 - slide 29 

There are no big surprises in the way Scheme handles and supports strings. Please see section 6.3.5 
of [Abelson98] for details. 

 

 String is an array- like data structure of fixed size with elements of type character. 
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 • The string and vector types have many similar functions 

• A number of functions allow lexicographic comparisons of strings: 
• string=?, string<?, string<=?, ... 
• There are case- independent, ci, versions of the comparison functions. 

• The substring function extracts a substring of a string 

 
  
  

 Like lists, strings are important for many practical purposes, and it is therefore important 
to familiarize yourself with the string functions in Scheme 
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8.  Functions 

We have now reached the most central concept in this material, namely functions. Functions play a 
key role in the functional programming paradigm. 

Before we look at the function concept as such, we will take a look at definitions. 

  

8.1.  Definitions 
Lecture 2 - slide 31 

A definition binds a value to a name. The name is often referred to as a variable. The value bound 
to a name may be a function value (function object/closure), but it may also be another kind of 
value, such as a number or a list. 

 A definition binds a name to a value  
 

Below we show the syntactic form of a definition in Scheme. 

 
(define name expression)  

 Syntax 8.1    A name is first introduced and the name is bound to the value of the expression    
 

 • About Scheme define forms 
• Appears normally at top level in a program 
• Creates a new location named name and binds the value of expression to that 

location 
• In case the location already exists we have redefinition,and the define form is 

equivalent to the assignment (set! name expr) 
• Does not allow for imperative programming, because define cannot appear in 

selections, iterations, etc. 
• Can also appear at certain positions in bodies, but only as syntactic sugar for local 

binding forms (letrec) 

 

In Section 8.12 we discuss definition of functions, and a particular variation of define which 
applies only for function definition. 

As it is stated in the first item, define forms appear normally, but not necessarily at top level of a 
Scheme program. By top level we mean 'at the outer level' of a program - not nested into other 
constructs.  
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It is, however, possible to have define forms at certain other locations in a Scheme program. The 
Scheme Report [Abelson98] explains this in section 5.2. Later in this material, in Section 28.3, 
where we discuss simulation of object-oriented concepts in Scheme, we will use nested define 
forms. 

  

8.2.  The function concept 
Lecture 2 - slide 33 

We start our coverage of functions with the observation that there is both a conceptual and a 
notational starting point.  

 The conceptual starting point is the well-known mathematical concept of functions 

The notational starting point is lambda calculus 
 

 

The conceptual starting point is well-known for most readers, due to the common knowledge of the 
mathematical meaning of functions. 

The notational starting point is probably not familiar to very many readers. It happens to be the case 
that the notational inspiration of lambda calculus is quite superficial, as applied in Scheme and Lisp. 

 • The mathematical function concept 
• A mapping from a domain to a range 
• A function transfers values from the domain to values in the range 

• A value in the domain has at most a single corresponding value in the 
range 

• Totally or partially defined functions 
• Extensionally or intensionally defined functions 

• Lambda calculus  
• A very terse notation of functions and function application  

 

An extensiona lly defined function is defined by a set of pairs, enumerating corresponding elements 
in the domain and range. Notice that this causes practical problems if there are many different 
values in the domain of the function. An intensionally defined function is based on an algorithm 
that describes how to bring a value from the domain to the similar value in the range. This is a much 
more effective technique to definition of most the functions, we program in the functional 
paradigm. 

Before we continue the conceptual and programming-related discussion of functions, we will in 
Section 8.3 take a closer look at the notational starting point. 
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8.3.  Lambda calculus 
Lecture 2 - slide 34 

We will here introduce the notation of the lambda calculus, mainly in order to understand the 
inspiration which led to the concept of lambda expressions in Lisp and Scheme. 

 Lambda calculus is a more dense notation than the similar Scheme notation  
 

   

 Lambda calculus  Scheme  

Abstraction ? v . E (lambda (v) E) 
Combination E1 E2 (E1 E2) 

Table 8.1    A comparison of the notations of abstraction and combination 
(application) in the lambda calculus and Lisp. In some variants of 
lambda calculus there are more parentheses than shown here: (? v . E). 
However, mathematicians tend to like ultra brief notation, and they often 
eliminate the parentheses. This stands as a contrast to Lisp and Scheme 
programmers. 

  

8.4.  Functions in Scheme 
Lecture 2 - slide 35 

On this page we introduce the crucial distinction between a lambda expression and a function 
object. Lambda expressions are part of a source program. Lambda expressions can be evaluated as 
all other Scheme expressions. The value of a lambda expression is a function object. 

 Functions are represented as lambda expressions in a source program 

At run time, functions are represented as first class function objects  

 

Below we show a sample dialogue with a Scheme system. In the dialogue we define functions, and 
we play with them in order to illustrate some of the basic properties of function in relation to 
function definition and application. Please play with these elements yourself! 

> (define x 6) 
 
> (lambda (x) (+ x 1)) 
#<procedure> 
 
> (define inc (lambda (x) (+ x 1))) 
 
> inc 
#<procedure:inc> 
 
> (if (even? x) inc fac) 
#<procedure:inc> 
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> ((if (even? x) inc fac) 5) 
6 

 

Program 8.1    A sample read-eval-print session with lambda expressions and function objects. In a 
context where we define x to the number 6 we first evaluate a lambda expression. Scheme 
acknowledges this by returning the function object, which prints like ' #<procedure> '. As a 
contrast to numbers, lists, and other simple values, there is no good surface representation of 
function values (function objects). Next we bind the name inc to the same function object. More 
about name binding in a later part of this material . The expression (if (even? x) inc fac) 
returns inc because the value of x is 6, and as such it is even. Therefore the value of ((if 
(even? x) inc fac) 5) is the same as the value of (inc 5), namely 6. 

 

 

  

8.5.  Function objects 
Lecture 2 - slide 36 

Let us now define the concepts of function objects and closures. 

 A function object represents a function at run time. A function object is created as the 
value of a lambda expression 

A function object is also known as a closure.  

 

A function object is a first class value at run time, in the same way as numbers, lists and other data 
are values. This is different from more traditional programming languages, where procedural and 
functional abstractions have another status than ordinary data. 

The name 'closure' is related to the interpretation of free names in the body expression of the 
function. Free names are used, but not defined in the body. In a function object (or closure) the free 
names are bound in the context of the lambda expression. This is a contrast to the case where the 
free names are bound in the context of the application of the function.  

 • Characteristics of function objects: 
• First class objects 
• Does not necessarily have a name 
• A function object can be bound to a name in a definition 
• Functions as closures: 

• Capturing of free names in the context of the lambda expression 
• Static binding of free names 
• A closure is represented as a pair of function syntax and values of free 

names 
• A function object can be applied on actual parameters, passed as a parameter to a 

function, returned as the result from another function, and organized as a 
constituent of a data structure 
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The first characteristics of functions, as mentioned in the itemized lists above, is 'the first class 
status'. We will consolidate our understanding of first class 'citizens' in Section 8.6 . 

  

8.6.  Functions as first class values 
Lecture 2 - slide 37 

As it is discussed in this section, first class entities in a language can be passed as parameters, 
returned as results, and organized in data structures. 

We are used to the first class status of numbers and lists. But with a background from imperative 
programming, we are not used to organize functions and procedures in data structures, and we are 
not used to the possibility of returning procedures and functions from other abstractions. 

Notice that objects, as known from the object-oriented paradigm, are of first class. 

Here is our definition of being 'of first class'. 

 A first class citizen is an entity which can be passed as parameter to functions, returned 
as a result from a function, and organized as parts of data structures  

 

   

 A function object is a first class citizen 
 

 

In Program 8.2 we show an interaction with a Scheme system, which illustrates that functions can 
be used as elements in data structures. 

1> (define toplevel-html-elements (list html frameset)) 
 
2> overall-html-elements 
(#<procedure> #<procedure>) 
 
3> ((cadr toplevel-html-elements) (frame 'src "sss")) 
(ast "frameset" ((ast "frame" () (src "sss") single)) () double) 
 
4> (xml-render ((cadr toplevel-html-elements) (frame 'src "sss"))) 
"<frameset><frame src = \"sss\"></frameset>" 
 

 

Program 8.2    A few interactions which illustrate the first class properties of function objects. We 
bind the variable toplevel-html-elements to the list of the two functions html and 
frameset. Both are HTML mirror functions defined in the LAML general library. We illustrate 
next that the value of the variable indeed is a list of two functions. Thus, we have seen that we can 
organized functions as elements in lists. The function cadr returns the second element of a list. It is 
equivalent to (compose car cdr), where compose is functional composition. In the third 
evaluation we apply the mirror function frameset on a single frame. The last interaction shows 
the HTML rendering of the this. xml-render is a function defined in the LAML general library.  
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 8.7.  Anonymous functions 
Lecture 2 - slide 38 

The reader may believe that a function name is a necessary constituent of a function. This 
understanding is not correct, however. We can chose to associate a name with a function by using 
an enclosing define form, as explained in Section 8.1. But the function itself is not named. 

 A function object does not have a name, and a function object is not necessarily bound 
to a name 

 

 

The interactions below illustrate the use of anonymous functions, i.e., functions without names. 

1> ((lambda(x) (+ x 1)) 3) 
4 
 
2> (define fu-lst (list (lambda (x) (+ x 1)) (lambda (x) (* x 5)))) 
 
3> fu-lst 
(#<procedure> #<procedure>) 
 
4> ((second fu-lst) 6) 
30 
 

 
Program 8.3    An illustration of anonymous functions. The function (lambda(x) (+ x 1)) is 
the function that adds one (to its parameter). It is organized in a list side by side with the function 
that multiplies by five. Notice in this context that none of these two functions are named. In the last 
interaction we apply the latter to the number 6.  

 

 

 8.8.  Lambda expressions in Scheme 
Lecture 2 - slide 39 

The syntax definitions in Syntax 8.2 and Syntax 8.3 below show the two possible forms of lambda 
expressions. 

Each of the formal parameters in a formal parameter list are binding name occurrences. It means 
that a formal parameter introduces a new name with a new role. The new name can be used and 
referred from other parts of the program. We can talk about the scope of the name as the area of the 
program in the which the binding is in effect. The scope of a formal parameter is - quite naturally - 
the body expression of the lambda form. 

In the first syntax definition, formal-parameter-list is a list of formal parameters. The formal 
parameter list may be improper, such as (a b . c). In this case all actual parameters after the 
second one is bound to c. 

 
(lambda (formal-parameter-list) expression)  

 Syntax 8.2       
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In the second case, the list of actual parameters is simply bound to the name formal-parameters-
name. 

Be sure to understand the correspondence between formal parameters (in the two forms) and the 
actual parameters. Use Exercise 2.6 to strengthen your understanding. 

 
(lambda formal-parameters-name expression)  

 Syntax 8.3       
 • Lambda expression characteristics in Scheme: 

• No type declaration of formal parameter names 
• Call by value parameters 

• In reality passing of references to lists and other structures 
• Positional and required parameters 

• (lambda (x y z) expr) accepts exactly three parameters 
• Required and rest parameters 

• (lambda (x y z . r) expr) accepts three or more parameters 
• Rest parameters only 

• (lambda r expr) accepts an arbitrary number of parameters 

 
  

 
 Exercise 2.6. Parameter passing in Scheme 

Familiarize yourself with the parameter passing rules of Scheme by trying out the following calls: 

  ((lambda (x y z) (list x y z)) 1 2 3) 
  ((lambda (x y z) (list x y z)) 1 2) 
  ((lambda (x y z) (list x y z)) 1 2 3 4) 
  ((lambda (x y z . r) (list x y z r)) 1 2 3) 
  ((lambda (x y z . r) (list x y z r)) 1 2) 
  ((lambda (x y z . r) (list x y z r)) 1 2 3 4) 
  ((lambda r r) 1 2 3) 
  ((lambda r r) 1 2) 
  ((lambda r r) 1 2 3 4) 

Be sure that you can explain all the results 
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8.9.  Optional parameters of Scheme functions (1) 
Lecture 2 - slide 40 

In LAML software we use a particular pattern to deal with optional parameters. This pattern is built 
on top of the rest parameter mechanism discussed in Section 8.8. The pattern also involves a 
function optional-parameter, defined in the LAML general library, as an important brick. 

When we use optional parameters of a function, the caller may chose not to pass a value. In that 
case, the parameter is bound to a default value, which is defined as part of the function. 

 It is often useful to pass one or more optional parameters to a function 

In case an optional parameter is not passed explicitly, a default value should apply  

 

The example in Program 8.4 illustrates how to define a function which requires one parameter rp, 
and up to three optional parameters op1, op2, and op3. 

(define (f rp . optional-parameter-list) 
 (let ((op1 (optional-parameter 1 optional-parameter-list 1)) 
       (op2 (optional-parameter 2 optional-parameter-list "a")) 
       (op3 (optional-parameter 3 optional-parameter-list #f))) 
  (list rp op1 op2 op3))) 

 

Program 8.4    A example of a function f that accepts optional-parameters. Besides the required 
parameter rp, the function accepts an arbitrary number of additional parameters, the list of which 
are bound to the formal parameter optional-parameter-list. The function optional-parameter from 
the LAML general library accesses information from optional-parameter-list. In case an optional 
parameter is not passed, the default value (the last parameter of optional-parameter) applies.  

 

 

The following dialogue with a Scheme system shows optional parameters in play. 

0> 
(define (f rp . optional-parameter-list) 
  (let ((op1 (optional-parameter 1 optional-parameter-list 1)) 
 (op2 (optional-parameter 2 optional-parameter-list "a")) 
 (op3 (optional-parameter 3 optional-parameter-list #f))) 
    (list rp op1 op2 op3))) 
 
1> (f 7) 
(7 1 "a" #f) 
 
2> (f 7 "c") 
(7 "c" "a" #f) 
 
3> (f 7 8) 
(7 8 "a" #f) 
 
4> (f 7 8 9) 
(7 8 9 #f) 
 
5> (f 7 8 9 10) 
(f 7 8 9 10) 
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6> (f 7 8 9 10 11) 
(7 8 9 10) 

 Program 8.5    A number of calls of the function f. For clarity we define f as the first interaction.   

In the next section we will discuss a major shortcoming of the optional parameter mechanism. 

  

8.10.  Optional parameters of Scheme functions (2) 
Lecture 2 - slide 41 

Optional parameters, as discussed in Section 8.9 is not a perfect solution in all respects. On this 
page we will discuss a major weakness. 

 • Observations about optional parameters: 
• The function optional-parameter is a LAML function from the general library 
• The optional parameter idea works well if there is a natural ordering of the 

relevance of the parameters 
• If parameter n is passed, it is also natural to pass parameter 1 to n-1 

• The idea does not work well if we need to pass optional parameter number n, but 
not number 1 .. n-1 

 
  

 Keyword parameters is a good alternative to optional parameter lists in case many, 
'unordered' parameters need to passed to a function  

 

We have demonstrated how we simulate optional parameter via the 'rest parameter list' mechanism 
in Scheme. It is also possible to simulate a keyword parameter mechanism. In a LAML context, this 
is done with respect to the passing of attributes to the HTML mirror functions. 

For more information about the simulation of keyword parameters in HTML and XML mirror 
functions, please consult Section 26.2. 

  

8.11.  Closures 
Lecture 2 - slide 42 

Function objects are also called closures. In this section we will see why. 

 Functions capture the free names in the context of the lambda expression 
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The illustration below shows a closure. For a better visualization, you should visit the web version 
of the page, which uses animation to illustrate the capturing of free names.  

When we talk about a free name it is always relative to a given construct, such as a lambda 
expression. A free name in the construct is used, but not bound in the construct. The formal 
parameter names of a lambda expression are 'binding positions'. Thus, names in the body of a 
lambda expression, which correspond to formal parameter names of the lambda expressions, are not 
free names. 

   
Figure 8.1    A lambda expression with a free name y. The name y is 
bound outside the lambda expression. A closure is formed by associating 
the lambda expressions (the syntactic form) with the binding of the free 
names. 

In the table below we illustrate free names and closures. Notice that in the inner lambda expression, 
(lambda (txt) ...), both p and b are free names, whereas in the lambda expression bound to f 
only p is a free name. 

 

Expression Value  
(define f 
 (let ((b (lambda (x)  
            (string-append x ":" x)))) 
  (lambda (txt) (p (b txt))))) 
 
(f "A text") 

A text:A text 

(b "A text") A text 
(f (b "A text")) A text:A text 

Table 8.2    Examples of the closuring effect. In the first example b is 
locally bound to a function which replicates its parameter with a colon in 
between. f is bound to a function (the inner lambda) in which b refers to 
the string replicating function. Notice that outside this this context, b is 
the HTML mirror function that renders a text in bold face. 
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8.12.  Function definition in Scheme 
Lecture 2 - slide 43 

In Section 8.1 we studied definitions in general. In a definition we associate a name with a value 
through the evaluation of an expression. As already discussed there, we can define functions in the 
same way we associate names with other types of values. 

In this section we will study a particular twist on function definitions. 

 A function object can be bound to a name via define like any other kind of value. 

But we often use a slightly different, equivalent syntax for function definitions, where 
the 'lambda' is implicitly specified 

 

 

In Syntax 8.4 we show the ordinary way of defining a function. With this, f is bound to a function 
object. 

 
(define f (lambda (p1 p2) ...))  

 Syntax 8.4    The ordinary way to bind f to the value of a lambda expressions   

In Syntax 8.5 we show an alternative way of defining a function. The second element of the define 
form is a list, which corresponds to the calling profile of the function. The two definitions are fully 
equivalent, and it is a matter of style and personal preference which one to use. 

I typically use the form in Syntax 8.5 because it is a little more shallow (with respect to 
parentheses) than the one in Syntax 8.4. As another reason, it is nice to have the calling form as a 
constituent of the definition. It is often convenient to copy it out of the definition to some context, 
in which the function is to be called. 

 
(define (f p1 p2) ...)  

 

Syntax 8.5    An equivalent syntactic sugaring with a more shallow parenthesis structure. Whenever 
Scheme identifies a list at the 'name place' in a define form, it carries out the transformation 
(define (f p1 p2) ...) => (define f (lambda (p1 p2) ...)) . Some Scheme 
programmers like the form (define (f p1 p2) ...) because the calling form (f p1 p2) 
is a constituent of the form (define (f p1 p2) ...) 

 

 

  

8.13.  Simple web-related functions (1) 
Lecture 2 - slide 44 

We will here give a simple example of a web-related function. Much more interesting examples will 
appear later in the material. 
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The programs in Program 8.6 and Program 8.7 show the definition and a call of a www-document 
function, which abstracts the outer HTML elements. In the web version of the material you will, in 
addition, find an illustration with all the LAML details necessary to execute the example. 

(define (www-document the-title . body-forms) 
 (html 
  (head (title the-title)) 
  (body body-forms))) 

 
Program 8.6    The definition of a www-document function. The www-document function is 
useful if you want to abstract the HTML envelope formed by the elements html, head, title, and body. 
If you need to pass attributes to html or body the proposed function is not adequate. 

 
 

(www-document    
  "This is the document title" 
  (h1 "Document title") 
 
  (p "Here is the first paragraph of the document") 
 
  (p "The second paragraph has an" (em "emphasized item") 
      "and a" (em "bold face item")_".")) 

 Program 8.7    A sample application of the function www-document. Notice the way we pass a 
number of body contributions, which - as a list - are bound to the formal parameter body-forms.  

 

  

 

8.14.  Simple web-related functions (2) 
Lecture 2 - slide 45 

The example on this page shows an indent-pixel function, which indents a block of text a number of 
pixels to the right. 

In Program 8.8 you find a version which is implemented in terms of tables. 

(define (indent-pixels p . contents) 
  (table 'border "0" 
   (tbody 
     (tr  
      (td 'width (as-string p) "") 
      (td 'width "*" contents))))) 

 
Program 8.8    The definition of the indent-pixel function. This is a function which we use in 
many web documents to indent the contents a number of pixels relative to its context. Here we 
implement the indentation by use of a table, in which the first column cell is empty. As we will se, 
other possibilities exist. 

 

 

In Program 8.9 we show an alternative version of indent-pixels, which is implement by use of 
Cascading Style Sheets (CSS) features. 
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(define (indent-pixels p . contents) 
  (div 'css:margin-left (as-string p)  
    contents)) 

 
Program 8.9    An alternative version of theindent-pixel function. This version uses Cascading 
Style Sheets expressiveness. As it appears, this is a more compact, and more direct way of achieving 
our indentation goal.  

 
 

Below, in Program 8.10 we show a sample application of the indent-pixels function. The 
program in Program 8.10 is complete and self contained relative to the LAML libraries. 

In the web version of the material (slide or annotated slide view) you will find references to the 
generated documents. 

(load (string-append laml-dir "laml.scm")) 
(laml-style "simple-xhtml1.0-strict-validating") 
 
(define (indent-pixels p . contents) 
  (div 'css:margin-left (as-string p)  
    contents)) 
 
(write-html 'raw 
 (html 
  (head (title "Indent Pixel Example")) 
  (body 
 
    (p "Here is some initial text") 
 
    (indent-pixels 45 
       (p "First paragraph of indented text") 
       (p "Second paragraph of indented text") 
    ) 
 
    (p "Here is some final text")))) 

 Program 8.10    A sample application of indent-pixel with some initial LAML context (software 
loading). Notice the use of the XHTML mirror.  
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8.15.  Function exercises 
Lecture 2 - slide 46 

In this last section of the chapter we provide a couple of extra exercises. 

 
 Exercise 2.7. Colors in HTML 

In HTML we define colors as text strings of length 7: 

    "#rstuvw" 

The symbols r, s, t, u, v, and w are all hexadecimal numbers between 0 and f (15). rs is in that way 
the hexadecimal representation for red, tu is the code for green, and vw is the code for blue. 

As an example, the text string 

    "#ffffff" 

represents white and 

    "#ff0000" 

is red. 

In Scheme we wish to represent a color as the list 

    (color r g b) 

where color is a symbol, r is number between 0 and 255 which represents the amount of red, and g 
and b in a similar way the amount of green and blue in the color. 

Write a Scheme function that transforms a Scheme color to a HTML color string. 

It is a good training to program the function that converts decimal numbers to hexa decimal 
numbers. I suggest that you do that - I did it in fact in my solution! If you want to make life a little 
easier, the Scheme function (number->string n radix) is helpful (pass radix 16 as second 
parameter). 

 
 Exercise 2.8. Letter case conversion 

In many web documents it is desirable to control the letter case of selected words. This allows us 
to present documents with consistent appearances. Therefore it is helpful to be able to capitalize a 
string, to transform a string to consist of upper case letters only, and to lower case letters only. Be 
sure to leave non-alphabetic characters untouched. Also, be sure to handle the Danish characters 
'æ', 'ø', and 'å' (ASCII 230, 248, and 229 respectively). In addition, let us emphasize that we want 
functions that do not mutate the input string by any means. (It means that you are not allowed to 
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modify the strings passed as input to your functions). 

Write functions capitalize-a-string, upcase-a-string, downcase-a-string for these 
purposes. 

As examples of their use, please study the following: 

    (capitalize-a-string "monkey") => "Monkey" 
    (upcase-a-string "monkey") => "MONKEY" 
    (downcase-a-string "MONkey") => "monkey" 

Hint: I suggest that you program the necessary functions yourself. Convert the string to a list of 
ASCII codes, do the necessary transformations on this list, and convert the list of modified ASCII 
codes back to a string. The Scheme functions list->string and string->list are useful. 

Hint: If you want to make life a little easier (and learn less from this exercise...) you can use the 
Scheme functions char-upcase and char-downcase, which work on characters. But these 
functions do maybe not work on the Danish letters, so you you probably need some patches. 
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9.  Name binding constructs 

In Section 8.1 we saw how to bind names globally, at top level, by use of define. In this chapter 
we will study local name binding constructs - let constructs - and we will se how they are made by 
means of lambda expressions. 

  

9.1.  The let name binding expression 
Lecture 3 - slide 2 

Let us first define what we mean by name binding constructs. 

 A name binding expression establishes a number of local name bindings in order to ease 
the evaluation of a body expression  

 

In a name binding construct a number of names are bound to values. The name bindings can be 
used in the body, which must be an expression when we are working in the functional paradigm. 
There are a number of variations in the way the names can refer to each other mutually. We will 
meet some of them on the following pages. 

The syntax a let form follows. 

 
(let ((n1 e1) 
      ... 
      (nk ek)) 
  body-expr)  

 
Syntax 9.1    The names n 1 ... n k are bound to the respective values e 1 ... e k , and the body 
expression is evaluated relative to these name bindings. Free names in the body expression are 
bound to names defined in the surround of the let construct. 

 
 

 

 • Characteristics of a let construct: 
• In body-expr n1 refers to the value of e1, ..., and nk refers to the value of ek 
• Syntactic sugar for an immediate call of a lambda expression 

• To be illustrated on the next page 
• As a consequence, the names are bound simultaneously relative to the name 

bindings in effect in the context of the let construct. 

 

The idea of simultaneous name binding is especially important to understand. Take a close look at 
the second example of Table 9.1 If you understand the result of the let expression in this example, 
you probably understand simultaneous name binding. 
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9.2.  The equivalent meaning of let 
Lecture 3 - slide 3 

A let construct can be defined by use of the name binding features of a lambda expression. In the 
rest of this section, we will see how it is done. 

 We will here understand the underlying, equivalent form of a let name binding 
construct 

 

 

Below we show a syntactic equivalence. The let form in Syntax 9.2 is fully equivalent with the 
lambda expression in Syntax 9.3 

Whenever a form like Syntax 9.2 is encountered it is transformed to the equivalent, but more basic 
form of Syntax 9.3. The syntactic transformation is done by a Scheme macro. 

 
(let ((n1 e1) 
      ... 
      (nk ek)) 
  body-expr)  

 Syntax 9.2       
 
((lambda (n1 ... nk) body-expr) 
   e1 ... ek)  

 Syntax 9.3       

  

9.3.  Examples with let name binding 
Lecture 3 - slide 4 

We provide a couple of examples of name binding with let. The examples are drawn from the web 
domain. 

Expression Value after rendering 
(let ((anchor "An anchor text") 
      (url "http://www.cs.auc.dk") 
      (tag a) 
     ) 
  (tag 'href url anchor)) 

An anchor text 

(let ((f b)) 
  (let ((f em) 
        (g f)) 
    (p (f "Text 1") (g "Text 2")))) 

Text 1 Text 2 

(let ((phrase-elements  • foo 
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        (list em strong dfn code samp 
              kbd var cite abbr acronym)) 
     ) 
  (ul  
   (map  
    (lambda (f) (li (f "foo"))) 
    phrase-elements))) 

• foo 
• foo 
• foo 
• foo 
• foo 
• foo 
• foo 
• foo 
• foo 

Table 9.1    Examples of namebindings with let. The first example 
shows that all constituents of a function call can be bound to local names 
- in the example both the function object referred to by a, and two string 
parameters. The second example illustrates that alternative names, 
aliases, can be defined for a couple of functions. Notice in particular that 
g is bound to b (the bold face function), not em (the emphasis function). 
This can also be seen in the second column. The third example is a little 
more advanced, and it can first be understood fully on the ground of the 
material in the lecture about higher-order functions. We bind the name 
phrase-elements to a list of ten functions. Via mapping, we apply 
each function to foo, and we present the results in an ul list. 

  

 

9.4.  The let* name binding construct 
Lecture 3 - slide 5 

It is often useful to use a sequential alternative to simultaneous name binding, ala let. In this section 
we will study let*, which provides for sequential name binding. 

 It is often useful to be able to use previous name bindings in a let construct, which binds 
several names  

 

The syntax of let*, as shown in Syntax 9.4 is very close to the syntax of let, which we saw in 
Syntax 9.1. 

 
(let* ((n1 e1) 
       ... 
       (ni-1 ei-1) 
       (ni ei) 
       ... 
       (nk ek)) 
  body-expr)  

 Syntax 9.4       
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 • Characteristics of let*: 
• It is possible to refer to n1 through ni-1 from the expression ei 
• Syntactic sugar for k nested let name bindings 

 

Take a moment to understand the last item above. Thus, try to understand that it is possible to 
obtain the effect of sequential name bindings by nesting a number of ordinary let constructs. In 
that way, we can devise a rewriting of a let* construct to a construct with nested lambda 
expressions. 

  

9.5.  An example with let* 
Lecture 3 - slide 6 

In the example on this page we show a function from the LAML time library. There is access to this 
library from the web material, cf. [timelib]. 

(define (how-many-days-hours-minutes-seconds n) 
  (let* ((days     (quotient n seconds-in-a-day)) 
         (n-rest-1 (modulo n seconds-in-a-day)) 
         (hours    (quotient n-rest-1 seconds-in-an-hour)) 
         (n-rest-2 (modulo n-rest-1 seconds-in-an-hour)) 
         (minutes  (quotient n-rest-2 60)) 
         (seconds  (modulo n-rest-2 60)) 
        )  
    (list days hours minutes seconds))) 

 

Program 9.1    A typical example using sequential name binding. The task is to calculate the number 
of days, hours, minutes, and seconds given a number of seconds. We subsequently calculate a 
number of quotients and rest. While doing so we find the desired results. In this example we would 
not be able to use let; let* is essential because a given calculation depends on previous name 
bindings. The full example, including the definition of the constants, can be found in the 
accompanying elucidative program. The function is part of the LAML time library in lib/time.scm of 
the LAML distribution. The time library is used whenever we need to display time information, such 
as 'the time of generation' of some HTML files. 

 

 

In the web version of the material we provide a link to an elucidator which explains the basic time 
calculations in LAML. Please refer to the web version to get access to this resource. 

Examples that illustrate uses of the LAML time functions are given later in the material, in Section 
9.7. 

  

9.6.  The letrec namebinding construct 
Lecture 3 - slide 7 
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There exists a third local name binding form, called letrec. It is used for local definition of mutually 
recursive functions, as sketched in Program 9.2. 

 The letrec name binding construct allows for definition of mutually recursive 
functions  

 

 
(letrec ((n1 e1) 
         ... 
         (nk ek)) 
  body-expr)  

 Syntax 9.5       
 

(letrec ((f1 (lambda (...) ... (f2 ...))) 
         (f2 (lambda (...) ... (f1 ...))) 
        ) 
  body-expr) 

 Program 9.2    An schematic example of a typical application of letrec for local definition of two 
mutually recursive functions.   

 
 
 

 • Characteristics of letrec 
• Each of the name bindings have effect in the entire letrec construct, including e1 

to ek 

 

  

9.7.  LAML time functions 
Lecture 3 - slide 8 

In section Section 9.5 we discussed the function how-many-days-hours-minutes-second. We 
will now illustrate some other useful LAML time functions. 

Expression Value  
(current-time) 999789132 
(time-decode 1000000000) (2001 9 9 3 46 40) 
(time-decode 0) (1970 1 1 2 0 0) 

(time-interval 1000000000) (31 8 2 5 1 46 40) 
(weekday (current-time)) Thursday 
(danish-week-number (current-time)) 36 

Table 9.2    Example use of some of the LAML time library functions 
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Strictly speaking, the abstractions which are applied in the example above, are not functions. They 
all depend on some state, which is updated every second due to the fact that time does not stand 
still. 

9.8.  References 

[timelib] Manual of the LAML time library 
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/time.html 

[-] Foldoc: let 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=let 

[-] R5RS: Binding Constructs (let, let*, letrec) 
http://www.cs.auc.dk/~normark/prog3-03/external-material/r5rs/r5rs-html/r5rs_33.html 
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10.  Conditional expressions 

In this chapter we will be interested in conditional expressions ala if and cond. 

  

10.1.  Conditional expressions 
Lecture 3 - slide 10 

In this section we introduce if and cond , both at the syntactic level (through Syntax 10.1 and 
Syntax 10.2) and at the semantic level (below the syntax boxes). 

 if and cond are special forms which evaluate their expressions according to the value of 
one or more boolean selectors 

if and cond are not control structures when applied in the functional paradigm 
 

 

Control structures belong to the imperative paradigm. In the functional paradigm, if and cond are 
used in conditional expressions. By that we mean expressions, of which subexpressions are selected 
for evaluation based on one or or more boolean selectors. 

 
(if bool-expr expr1 expr2)  

 Syntax 10.1       
 
(cond (bool-expr1 expr1) 
      ... 
      (bool-exprk exprk) 
      (else exprk+1))  
 Syntax 10.2       

 • if evaluates expr1 if bool-expr is true, and expr2 if bool-expr is false 
• cond evaluates the first expression expri whose guarding bool-expri is true. If bool-

expr1, ..., bool-exprkare all fa lse, the value of cond becomes the value of exprk+1 

 
 

 Exercise 3.1. HTML Header functions 

This is a small exercise that aims at construction of slightly different header functions than those 
provided by the native header functions h1, ..., h6. 

Define a function (header level) which takes a parameter level. The header function should 
return the similar basic header function provided that n is between one and six. If n is outside this 
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interval, we want header to return the identity function of one parameter. 

It means that ((header 3) "Header text") is equal to (h3 "Header text") and that ((h 0) "Header 
text") is just "Header text". 

Hint : Arrange the header functions in a list, and let header select the appropriate header function 
from this list. 

Define a variant of header which returns a native header function if it receives a single parameter 
(level), and which returns the value, such as, ((header 3) "Header text"), if it receives both a level 
parameter and a header text string. 

10.2.  Examples with if 
Lecture 3 - slide 11 

The examples in the table below gives web-related examples of if. 

Expression Value  
(body 
  (if (string=? (weekday (current-
time)) "Wednesday") 
      (p (em "Remember the Thursday 
meeting tomorrow!")) 
      '( )) 
 
  (h1 "Schedule") 
 
  (p "...")) 

Remember the Thursday meeting tomorrow! 

Schedule 
... 

(body 
  (p (if (string=? (weekday (current-
time)) "Wednesday") 
         (em "Remember the Thursday 
meeting tomorrow!") 
         '( ))) 
 
  (h1 "Schedule") 
 
  (p "...")) 

Remember the Thursday meeting tomorrow! 

Schedule 
... 

Table 10.1    Examples using an if conditional expression on a 
Wednesday. In both examples we extract the weekday (a string) from the 
current time. If it is a Wednesday we emit a paragraph which serves as a 
reminder of a meeting the following day. If not executed on a Wednesday, 
we do not want any special text. We achieve this by returning the empty 
list, which is spliced into the the body context (in the first example) and 
into the paragraph context (in the second example). The splicing is a 
result of the handling of lists by the HTML mirror functions in LAML. 
The two examples differ slightly. In the first example the if is placed on 
the outer level, feeding information to body. In the second row, the if is 
placed at an inner level, feeding information to the p function. The two 
examples also give slightly different results. Can you characterize the 
results?  
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10.3.  Example with cond: leap-year? 
Lecture 3 - slide 12 

The leap year function is a good example of a function, which calls for use of a cond conditional. It 
would, of course, also be possible to program the function with nested if expressions. 

(define (leap-year? y) 
  (cond ((= (modulo y 400) 0) #t) 
        ((= (modulo y 100) 0) #f) 
        ((= (modulo y 4) 0) #t) 
        (else #f))) 

 

Program 10.1    The function leap-year?. The function returns whether a year y is a leap year. 
For clarity we have programmed the function with a conditional. In this case, we can express the 
leap year condition as a simple boolean expression using and and or. We refer to this variation 
below, and we leave it to you to decide which version you prefer. 

 

 

It is also possible to program the leap year function with simple, boolean arithmetic. This is shown 
below. It is probably easier for most of us to understand the version in Program 10.1 because it is 
closer to the way we use to formulate the leap year rules. 

(define (leap-year? y) 
  (or (= (modulo y 400) 0) 
      (and (= (modulo y 4) 0) 
           (not (= (modulo y 100) 0))))) 

 Program 10.2    The function leap year programmed without a conditional.    

In the web version of this material we provide a link to the same elucidator as already discussed in 
Section 9.5. The elucidator shows the leap year function in a larger context. 

  

10.4.  Example with cond: american-time 
Lecture 3 - slide 13 

In this section we will study an extended example of the use of cond. We carry out a calculation of 
'American time', such as 2:30PM given the input of 14 30 00. There are several different cases to 
consider, as it appears in Program 10.3. 
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(define (american-time h m s) 
  (cond ((< h 0) 
           (laml-error "Cannot handle this hour:" h)) 
 
        ((and (= h 12) (= m 0) (= s 0)) 
             "noon") 
 
        ((< h 12) 
           (string-append 
             (format-hour-minutes-seconds h m s)  
             " " "am")) 
 
        ((= h 12)   
           (string-append 
             (format-hour-minutes-seconds h m s)  
             " " "pm")) 
 
        ((and (= h 24) (= m 0) (= s 0)) 
             "midnight") 
 
        ((<= h 24) 
           (string-append  
             (format-hour-minutes-seconds (- h 12) m s)  
             " " "pm")) 
 
        (else 
           (laml-error "Cannot handle this hour:" h)))) 

 Program 10.3    The function american-time. The function returns a string displaying the 
'am/pm/noon' time given hour h, minute m, and seconds s.  

 

In the web version of the material - slide or annotated slide view - we include a version of the 
program which includes the helping functions format-hour-minutes-seconds and zero-pad-
string. 

  

10.5.  Example with cond: as-string 
Lecture 3 - slide 14 

As a final example with cond, we show as-string, which is a function from the general LAML 
library. Given an almost arbitrary piece of data the function will attempt to convert it to a string. 
Similar functions named as-number, as-symbol, and as-boolean exist in the library, cf. 
[generallib]. 
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(define (as-string x) 
  (cond ((number? x) (number->string x)) 
        ((symbol? x) (symbol->string x)) 
        ((string? x) x) 
        ((boolean? x)  
            (if x "true" "false"))   ; consider "#t" and "#f" as alternatives 
        ((char? x) (char->string x)) 
        ((list? x) 
            (string-append "("  
               (string-merge (map as-string x) (make-list (- (length x) 1) " ")) 
               ")")) 
        ((vector? x) 
          (let ((lst (vector->list x))) 
            (string-append "#("  
               (string-merge (map as-string lst) (make-list (- (length lst) 1) " 
")) 
               ")"))) 
        ((pair? x) 
            (string-append "("  
               (apply string-append 
                  (map (lambda (y) (string-append (as-string y) " ")) (proper-
part x)) 
               ) 
               " . " (as-string (first-improper-part x)) 
               ")")) 
        (else "??"))) 

 

Program 10.4    The function as-string converts a variety of Scheme data types to a string. This 
function makes use of the fact that any kind of data can be passed to the function, without 
intervening static type check. At run time we dispatch on the type of x. The function string-merge is 
discussed later in this section, cf. the reference from this page. The function as-string, and its 
sibling functions as-number, as-char, as-symbol , and as-list are used heavily in all 
LAML software. The functions are convenient because they do not need to know the type of the input 
data. In functional languages with static type checking, we cannot program these functions as shown 
above. In these language we could overload the function name as-string, and underneath define 
a number of individual functions each taking a particular type of input. 

 

 

  

10.6.  References 

[generallib] Manual of the LAML general library 
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/general.html 

[-] R5RS: cond 
http://www.cs.auc.dk/~normark/prog3-03/external-material/r5rs/r5rs-html/r5rs_32.html 

[-] R5RS: if 
http://www.cs.auc.dk/~normark/prog3-03/external-material/r5rs/r5rs-html/r5rs_29.html 
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11.  Recursion and iteration 

Recursion plays an important role for non-trivial functional programs. One of the reasons is that 
recursive data structures are used heavily in functional programs. Just take, as example, linear lists, 
cf. Chapter 6. 

As another reason, most non-trivial needs some kinds of repeating structures - iteration. In our style 
of Scheme programming, we use recursive functions for iterative purposes. In this chapter we will 
see how this can be done without excessive use of memory resources. 

And as before we attempt to illustrate also this topic with examples from the web domain. 

  

11.1.  Recursion 
Lecture 3 - slide 16 

In this section we characterize the basic ideas of recursion, and the kinds of problem solving which 
are aided by recursion. 

 Recursive functions are indispensable for the processing of recursive data structures  
 

   

 Recursion is an algorithmic program solving idea that involves solution of subproblems 
of the same nature as the overall problem  

 

   

 • Given a problem P 
• If P is trivial then solve it immediately 
• If P is non-trivial, divide P into subproblems P1 ,..., Pn 
• Observe if Pi (i=1..n) are of the same nature as P 
• If so, use the overall problem solving idea on each of P1 ... Pn 
• Combine solutions of the subproblems P1 ... Pn to a solution of the overall 

problem P 

 

The problem solving technique sketched here is called divide and conquer. It is not all divide and 
conquer problems that involve recursion. But many do in fact. Recursion comes into play when the 
subproblems P1 ... Pn turn out to be of the same nature as the overall problem, and as such they can 
be solved by the same 'medicine' as used for the overall problem P. 

We would like to refer the reader to an ECIU material on recursion, which in a more careful way 
discusses and illustrates the ideas [eciu-recursion]. Notice that there is some overlap with the ECIU 
material and the material you are reading now.  
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11.2.  List processing 
Lecture 3 - slide 17 

We have already discussed lists as a recursive data type in Section 6.1. In this section we will give 
an extended LAML related example of recursive list processing in Scheme. 

 A list is a recursive data structure 

As a consequence list processing is done via recursive functions 

We illustrate list processing by extracting attribute values from a LAML attribute 
property list 

 

 

The function find-href-attribute in Program 11.1 extracts the href attribute value from an 
attribute property list. Property lists have already been discussed in Section 6.6. 

Notice the recursive nature of the function find-href-attribute. The recursive call is highlighted with 
red color. 

It happens to be the case that the function in Program 11.1 is tail recursive, cf. the discussion in 
Section 11.5. 

; Return the href attribute value from a property list 
; Return #f if no href attribute is found. 
; Pre-condition: attr-p-list is a property list -  
; of even length.   
(define (find-href-attribute attr-p-list) 
 (if (null? attr-p-list) 
     #f 
     (let ((attr-name (car attr-p-list)) 
           (attr-value (cadr attr-p-list)) 
           (attr-rest (cddr attr-p-list))) 
      (if (eq? attr-name 'href) 
          attr-value 
          (find-href-attribute attr-rest))))) 

 Program 11.1    A function for extraction of the href attribute from a property list.    

To stay concrete, we show an example of using the function find-href-attribute in Program 
11.2. 

1> (define a-clause  
    (a 'id "myid" 'class "myclass" 'href "http://www.cs.auc.dk")) 
 
2> a-clause 
(ast "a" ()  
  (id "myid" class "myclass" href "http://www.cs.auc.dk" shape "rect")  
  double xhtml10-strict) 
 
 



 71

3> (render a-clause) 
"<a id = \"myid\" class = \"myclass\" href = \"http://www.cs.auc.dk\"></a>" 
 
4> (define attr-list (ast-attributes a-clause)) 
 
5> attr-list 
(id "myid" class "myclass" href "http://www.cs.auc.dk" shape "rect") 
 
6> (find-href-attribute attr-list) 
"http://www.cs.auc.dk"   
>  
 

 Program 11.2    An example with property lists that represent HTML attributes in LAML. As the last 
interaction, we see the function find-href-attribute in play.   

 

  

11.3.  Tree processing (1) 
Lecture 3 - slide 18 

Trees are another classical example of recursive data types. 

In this section we show a web document and its internal structure. In Section 11.4 we show how to 
traverse this document, by means of tree traversal, with the purpose of extracting and collecting all 
URLs from href attributes of anchor elements in the document. 

 

 A tree is a recursive data structure 

We illustrate how to extract information from an HTML syntax tree  

 

   

The LAML document in Program 11.3 shows a web document, in which we have highlighted all the 
anchor elements - the a elements. The tree structure in Figure 11.1 shows the hierarchical 
composition of the document, in terms of HTML elements. In the web version of the material - slide 
or annotated slide view - you can also access the actual abstract syntax tree - AST - which is the 
internal document representation of LAML. We do not include it in this version of the material 
because it is relatively long.  
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(load (string-append laml-dir "laml.scm")) 
(laml-style "simple-xhtml1.0-strict-validating") 
 
(write-html 'raw 
(html 
 (head (title "Demo Links")) 
 (body 
  (p "ACM has a useful" (a 'href "http://www.acm.org/dl" "digital library") ) 
 
  (p "The following places are also of 
     interest:") 
 
 
  (ul 
   (li (a 'href "http://www.ieee.org/ieeexplore/" "The IEEE")) 
   (li "The" (a 'href "http://www.w3c.org" "W3C") "for web standards") 
   (li (a 'href "http://link.springer.de/link/service/series/0558/"  
           "Lecture Notes in Computer Science"))) 
 
  (p "Kurt Nørmark" (br)  
     (a 'href "http://www.cs.auc.dk" "Department of Computer Science") (br) 
     (a 'href "http://www.auc.dk" "Aalborg University"))))) 
 
(end-laml) 
 
 
     

 Program 11.3    A sample web document with a number of links. The link forms - represented by a 
elements - are highlighted.   

 
 

 
Figure 11.1    The syntax tree of the web document with the root made up 
by the html element. 

  

11.4.  Tree processing (2) 
Lecture 3 - slide 19 

We continue the example from Section 11.3 . 

In Program 11.4 we show the function extract-links . The function is indirectly recursive via the 
function extract-links-ast-list . 
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; Return a list of URLS as located in the a elements of ast.   
(define (extract-links ast) 
 (if (ast? ast) 
     (let ((name (ast-element-name ast)) 
           (subtrees (ast-subtrees ast)) 
          ) 
       (if (equal? name "a") 
           (let ((href-attr-value  
                  (find-href-attribute (ast-attributes ast)))) 
             (if href-attr-value (list href-attr-value) '())) 
           (extract-links-ast-list subtrees))) 
     '())) 
 
; Return a list of URLS as located in the a elements of  
; the list of ast's as passed in ast-list.   
(define (extract-links-ast-list ast-list) 
 (if (null? ast-list) 
     '() 
     (append  
      (extract-links (car ast-list)) 
      (extract-links-ast-list (cdr ast-list))))) 

 Program 11.4    The link extraction functions.   

The extract-links function above traverses the internal AST structure of a web document. When 
an anchor element is encountered, when (equal? name "a") becomes true, we collect the href 
attribute by means of the function find-href-attribute, which we described in Section 11.2, see 
Program 11.1. In the cases where we do not encounter an anchor element, the call (extract-
links-ast-list subtrees) causes traversal of the list of subtrees. 

In the dialogue shown below we illustrate how to extract the URLs from a demo document, which 
we assume is identical with the document in Program 11.3. 

 

1> (define doc-ast  
    (html 
     (head (title "Demo Links")) 
     (body 
       ...))) 
 
2 > (extract-links doc-ast) 
("http://www.acm.org/dl" "http://www.ieee.org/ieeexplore/" "http://www.w3c.org" 
 "http://link.springer.de/link/service/series/0558/" "http://www.cs.auc.dk" 
 "http://www.auc.dk") 

 Program 11.5    A link extraction dialogue.   
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 Exercise 3.2. The function outline-copy 

Program a function outline-copy which makes a deep copy of a list structure. Non-list data in 
the list should all be translated to a symbol, such as '-. You should be able to handle both proper 
lists and improper lists. 

As an example: 

 
  (outline-copy '((a b c) (d e . f) (h i))) => 
     ((- - -) (- - . -) (- -)) 

 

 11.5.  Recursion versus iteration 
Lecture 3 - slide 20 

The purpose of this section is to introduce and not least motivate the idea of tail recursion. 

 Recursive functions are - modulo use of memory resources - sufficient for any iterative 
need 

Tail recursive functions in Scheme are memory efficient for programming of any 
iterative process 

 

 

   

 Tail recursion is a variant of recursion in which the recursive call takes place without 
contextual, surrounding calculations in the recursive function.   

 

A tail call is the last 'thing' to be done before the function returns. Therefore there is no need to 
maintain any activation record of such a recursive call - we can reuse the callers activation record.  

The main source of insight to understand tail recursiveness is a series of images, which are available 
in the web version of the material (slide view). You should definitively consult this before you go 
on in this material. 

 

 11.6.  Example of recursion: number-interval 
Lecture 3 - slide 21 

We provide an example of a recursive function, namely number-interval. 

 The function number-interval returns a list of integers from a lower bound to an upper 
bound 
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The version of number-interval shown in Program 11.6 is not tail recursive. The rewriting of the 
function in Program 11.7 is tail recursive however. Notice that the function in Program 11.7 needs a 
helping function, number-interval-iter-help, with an appropriate parameter profile. 

(define (number-interval f t) 
 (if (<= f t) 
     (cons f (number-interval (+ f 1) t)) 
    '())) 

 Program 11.6    The function number-interval from the general LAML library. This function 
returns a list of t-f+1 numbers from f to t .Try it out!.   

 
 
(define (number-interval-iter f t) 
  (reverse (number-interval-iter-help f t '()))) 
 
 
(define (number-interval-iter-help f t res) 
  (if (<= f t) 
      (number-interval-iter-help (+ f 1) t (cons f res)) 
      res))    

 Program 11.7    The function number-interval-iter is an iterative, tail recursive variant of 
number-interval.   

 

We show below a couple of concrete applications of the functions in Program 11.6 and Program 
11.7. 

1> (number-interval 1 10) 
(1 2 3 4 5 6 7 8 9 10) 
 
2> (number-interval-iter 10 20) 
(10 11 12 13 14 15 16 17 18 19 20) 
 
3> (number-interval-iter 20 10) 
() 
 

 Program 11.8    A sample dialogue with the number interval functions.    
 

 
 Exercise 3.3. The append function 

The function append, which is a standard Scheme function, concatenates two or more lists. Let us 
here show a version which appends two lists: 

  (define (my-append lst1 lst2) 
       (cond ((null? lst1) lst2) 
             (else (cons (car lst1) (my-append (cdr lst1) lst2))))) 

We will now challenge ourselves by programming an iterative solution, by means of tail 



 76

recursion. We start with the standard setup: 

  (define (my-next-append lst1 lst2) 
    (my-next-append-1 lst1 lst2 ...)) 

where my-next-append-1 is going to be the tail recursive function: 

  (define (my-next-append-1 lst1 lst2 res) 
    (cond ((null? lst1) ...) 
          (else (my-next-append-1 (cdr lst1) lst2 ...)))) 

Fill out the details, and try out your solution. 

Most likely, you will encounter a couple of problems! Now, do your best to work around these 
problems, maybe by changing aspects of the templates I have given above. 

One common problem with iterative solutions and tail recursive functions is that lists will be built 
in the wrong order. This is due to our use of cons to construct lists, and the fact that cons operates 
on the front end of the list. The common medicine is to reverse a list, using the function reverse, 
either on of the input, or on the output. 

 
 Exercise 3.4. A list replication function 

Write a tail recursive function called { t replicate-to- length}, which in a cyclic way (if necessary) 
replicates the elements in a list until the resulting list is of certain exact length. The following 
serves as an example: 

 
        (replicate-to-length '(a b c) 8) => 
        (a b c a b c a b) 
 
        (replicate-to-length '(a b c) 2) => 
        (a b) 
       

In other words, in (replicate-to-length lst n), take elements out of lst, cyclically if 
necessary, until you reach n elements. 

 

 11.7.  Examples of recursion: string-merge 
Lecture 3 - slide 22 

This section and the next give yet other examples of recursive functions. We start with string-
merge. 

 The function string-merge zips two lists of strings to a single string. The lists are not 
necessarily of equal lengths  
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(define (string-merge str-list-1 str-list-2) 
 (cond ((null? str-list-1) (apply string-append str-list-2)) 
       ((null? str-list-2) (apply string-append str-list-1)) 
       (else (string-append 
                 (car str-list-1) (car str-list-2) 
                 (string-merge (cdr str-list-1) (cdr str-list-2)))))) 

 
Program 11.9    The recursive function string-merge. Notice that this function is a general recursive 
function. The recursive call, emphasized above, is not in a tail position, because of the embedding in 
string-append. 

 
 

The function in Program 11.9 not tail recursive. To remedy this weakness, we make another version 
which is. It is shown in Program 11.10. 

As it is characteristic for all tail recursive functions, the state of the iteration needs to be represented 
in the parameter list, here in the helping function called merge-iter-helper. The necessary state 
for string merging purpose is reduced to the resulting, merged string - the res parameter. 

(define (string-merge-iter str-list-1 str-list-2) 
 (merge-iter-helper  str-list-1 str-list-2 "")) 
 
(define (merge-iter-helper str-list-1 str-list-2 res) 
 (cond ((null? str-list-1)  
          (string-append res (apply string-append str-list-2))) 
       ((null? str-list-2)  
          (string-append res (apply string-append str-list-1))) 
       (else (merge-iter-helper 
                (cdr str-list-1)  
                (cdr str-list-2) 
                (string-append  
                    res (car str-list-1) (car str-list-2)))))) 

 Program 11.10    A tail recursive version of string-merge.    

In the LAML software, the function string-merge is used in several contexts. One of them is in 
the function list-to-string , which we show in Program 11.11 We could in fact have applied 
list-to-string in the function as-string, which we discussed in Program 10.4. 

(define (list-to-string str-lst separator) 
  (string-merge  
     str-lst 
     (make-list (- (length str-lst) 1) separator))) 

 

Program 11.11    An application of string-merge which converts a list of strings to a string with a 
given separator. This is a typical task in a web program, where a list of elements needs to be 
aggregated for HTML presentation purposes. Notice the merging of a list of n elements with a list of 
length n-1. The function make-list is another LAML function; (make-list n el) makes a list of n 
occurrences of el. 

 

 

  

 



 78

11.8.  Examples with recursion: string-of-char-list? 
Lecture 3 - slide 23 

The last example in this chapter is a boolean function that can check if a string is formed by the 
characters from a given alphabet. 

 The function string-of-char-list? is a predicate (a boolean function) that finds out 
if a string is formed exclusively by characters from a particular alphabet.  

 

   
(define (string-of-char-list? str char-list) 
  (string-of-char-list-1? str char-list 0 (string-length str))) 
 
(define (string-of-char-list-1? str char-list i lgt) 
  (if (= i lgt) 
      #t 
      (and (memv (string-ref str i) char-list) 
           (string-of-char-list-1? str char-list (+ i 1) lgt)))) 

 
Program 11.12    The function string-of-char-list? which relies on the tail recursive function string-
of-char-list-1?. The function string-of-char-list-1? iterates through the characters in str, via the 
controlling parameters i and lst.  

 
 

The predicates blank-string? and numeric-string? in Program 11.13 are very useful for many 
practical purposes. The first function checks if a string represents white space only. The latter 
function checks if a string represents a decimal integer. 

;; A list of characters considered as blank space characters 
(define white-space-char-list 
   (list #\space (as-char 13) (as-char 10) #\tab)) 
 
;; Is the string str empty or blank (consists of white space) 
(define (blank-string? str) 
  (or (empty-string? str)  
      (string-of-char-list? str white-space-char-list))) 
 
;; Returns if the string str is numeric. 
;; More specifically, does str consist exclusively of the 
;; ciffers 0 through 9.  
(define (numeric-string? str) 
  (string-of-char-list? str  
    (list #\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9 ))) 

 

Program 11.13    Applications of string-of-char-list?. The function blank -string? determines if a 
string is formed entirely of white space characters. The function numeric-string? is a predicate that 
returns true if the string consists exclusively of decimal digits. This is, for instance, useful to check 
the form input of dates and time in some server-based web applications. The version of numeric-
string? in the lib/general.scm of LAML is slightly more general than the version shown above (it 
allows + or - signs as well, depending on an optional parameter). 
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 Exercise 3.5. Sublists of a list 

In this exercise we will program a function front-sublist which returns the first n elements of a 
list. The signature (the head) of the function should be (front-sublist lst n) where lst is a 
list and n is a number. As a precondition it can be assumed that lst is a proper list and that n is a 
non-negative integer. As a postcondition we want to guarantee that the length of the result is n. 

As an example 

 
        (front-sublist '(a b c d e) 3)  => 
        (a b c) 
       
        (front-sublist '(a b c d e) 6)  => 
        ERROR 

First, identify the extreme, border cases and be sure that you know how to handle these. Next, 
program the function with due respect to both the precondition and the postcondition. Next, test 
the function carefully in a dialogue with your Scheme system. 

Given the function front-sublist we will program the function sublists, which breaks a 
proper list into a list of sublists of some given size. As an example 

 
        (sublists '(a b c d e f) 3) => 
        ((a b c) (d e f)) 

Program the function sublists with use of front-sublist. Be careful to prepare you solution 
by recursive thinking. It means that you should be able to break the overall problem into a smaller 
problem of the same nature, as the original problem. You are free to formulate both preconditions 
and postconditions of the function sublists, such that existing function front-sublist fits well. 

Hint : The Scheme function list-tail is probably useful when you program the function 
sublists. 

A table can be represented as a list of rows. This is, in fact, the way tables are represented in 
HTML. The tr tag is used to mark each row; the td tag is used to mark each cell. The table tag 
is used to mark the overall table. Thus, the list of rows ((a b c) (d e f)) will be marked up as: 

 
         <table> 
           <tr> <td>a</td> <td>b</td> <td>c</td> </tr> 
           <tr> <td>d</td> <td>e</td> <td>f</td> </tr> 
         </table> 

Write a Scheme function called table-render that takes a list of rows as input (as returned by 
the function sublists, which we programmed above) and returns the appropriate HTML 
rendering of the rows. Use the LAML mirror functions table, tr, and td. Be sure to call the 
LAML function xml-render to see the textual HTML rendering of the result, as opposed to 



 80

LAML's internal representation. 

Notice: During the course we will see better and better ways to program table-render. 
Nevertheless, it is a good idea already now to program a first version of it. 
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12.  Example of recursion: Hilbert Curves 

In this chapter we will give examples of recursive curves. The examples are taken from the ECIU 
material on recursion [eciu-recursion] which we have mentioned earlier on. 

The primary value of this chapter is the animations, which show the building of the Hilbert Curves. 
These animations must be approached in the web version of the material. 

In this paper version of the material we only give a shallow and superficial coverage. You are 
referred to the web version to get the real outcome. 

  

12.1.  Hilbert Curves 
Lecture 3 - slide 26 

 The Hilbert Curve is a space filling curve that visits every point in a square grid  
 

At this spot in the web version of the material you will find a Hilbert curve of order 5, i.e, a quite 
complicated curve. 

 The path taken by a Hilbert Curve appears as a sequence - or a certain iteration - of up, 
down, left, and right.   

 

  

12.2.  Building Hilbert Curves of order 1 
Lecture 3 - slide 27 

Here we will study the recursive composition of the most simple Hilbert Curve. 

This section is only meaningful in the web version of the material - please take a look at it. 

  

12.3.  Building Hilbert Curves of order 2 
Lecture 3 - slide 28 

Here will study the recursive composition of Hilbert Curves in additional details. 

This section is only meaningful in the web version of the material - please take a look at it. 
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12.4.  Building Hilbert Curves of order 3 
Lecture 3 - slide 29 

In the same way we made a Hilbert Curve of order 2, we will here see how a Hilbert Curve of order 
3 is made. 

This section is only meaningful in the web version of the material - please take a look at it. 

  

12.5.  Building Hilbert Curves of order 4 
Lecture 3 - slide 30 

In the same way we made a Hilbert Curve of order 3, we will here see how a Hilbert Curve of order 
4 is made. This is the final development along these lines in this material.  

This section is only meaningful in the web version of the material - please take a look at it. 

  

12.6.  A program making Hilbert Curves 
Lecture 3 - slide 31 

Given our understanding of Hilbert Curves obtained from the previous pages, we will now study a 
computer program that generates Hilbert Curves of order n, where n is any non-negative number. 

 We will here discuss a concrete program which draws Hilbert Curves of order n 
 

 

The program below, Program 12.1 shows the hilbert function, which returns a rendering of 
Hilbert Curves. 
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(define (hilbert n turn) 
 (cond ((= n 0) (empty-hilbert-curve)) 
       ((> n 0) 
         (cond  
             ((eq? turn 'up)  
               (concat-path 
                 (hilbert (- n 1) 'right)   
                 (up-line) 
                 (hilbert (- n 1) 'up)   
                 (right-line) 
                 (hilbert (- n 1) 'up)   
                 (down-line) 
                 (hilbert (- n 1) 'left) )) 
 
             ((eq? turn 'left)  
               (concat-path 
                 (hilbert (- n 1) 'down)   
                 (left-line) 
                 (hilbert (- n 1) 'left)   
                 (down-line) 
                 (hilbert (- n 1) 'left)   
                 (right-line) 
                 (hilbert (- n 1) 'up))) 
 
             ((eq? turn 'right) 
               (concat-path 
                 (hilbert (- n 1) 'up)   
                 (right-line) 
                 (hilbert (- n 1) 'right)   
                 (up-line) 
                 (hilbert (- n 1) 'right)   
                 (left-line) 
                 (hilbert (- n 1) 'down))) 
 
             ((eq? turn 'down) 
               (concat-path 
                 (hilbert (- n 1) 'left)   
                 (down-line) 
                 (hilbert (- n 1) 'down)   
                 (left-line) 
                 (hilbert (- n 1) 'down)   
                 (up-line) 
                 (hilbert (- n 1) 'right))) )))) 

 

Program 12.1    The function hilbert programmed in Scheme as a functional program. The 
function returns the path of the Hilbert Curver of order n. The parameter turn  determines the 
rotation of the curve. In the top level call we ask for an upward Hilbert Curve: As an example, 
(hilbert 3 'up) produces an upward Hilbert Curve of order 3. The red fragments are 
responsible for all line drawing. The blue fragments represent all the recursive calls of the 
hilbert function. Finally, the green fragment represent the level 0 'basis' case. The level 0 case 
returns the empty Hilbert Curve, which is literally empty (no drawing at all - no contribution to the 
resulting path). What does it mean that the the program is a functional program? Well, it basically 
means that hilbert returns a value which can be rendered somehow by another function or 
procedure. The value returned is a path, composed by concat-path. The hilbert function does not 
carry out any action itself. 
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The actual rendering of a Hilbert Curve is done by use of SVG stuff [svg]. SVG is a W3C standard 
for Scalable Vector Graphics. In case you want to get started with SVG we will recommend that 
you start with an excellent tutorial made by Ivan Herman, F.R.A. Hopgood, and D.A. Duce [svg-
tutorial]. 

In the web version of the material - in slide or annotated slide view - you will have access to the 
additional implementation details of the primitives used in Program 12.1. 
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13.  Continuations 

Continuations represent one of the advanced concepts in Scheme. In this section we will introduce 
continuations, and we will show some examples of their use within the functional programming 
paradigm. 

  

13.1.  Introduction and motivation 
Lecture 3 - slide 33 

We start by motivating our interest in continuations. One part of the story is the usefulness of a 
mechanism that allows us to 'jump out of a deep subexpression'. Another part is the possibility of 
controlling and manipulating the 'remaining part of the calculation' relative to some given control 
point.  

 It is sometimes necessary to escape from a deep expression, for instance in an 
exceptional case 

We are interested in a primitive which allows us to control the remaining part of a 
calculation - a so-called continuation.  

 

   

 • Exit or exception mechanism: 
• The need to abandon some deep evaluation 

• Continuation 
• Capturing of continuations 
• Exploring new control mechanisms by use of continuations 

 
  

 Scheme support first class continuations dressed as functions  
 

Both needs mentioned above are handled by first class continuations in Scheme. 

  

13.2.  The catch and throw idea 
Lecture 3 - slide 34 

In this section, and section Section 13.3 we explore a catch and throw escape mechanism. This 
mechanism is used in Common Lisp, but it is not directly available in Scheme. As we will see in 
Section 13.8 first class continuations can easily play the role of catch and throw. A similar Scheme-
base example is given in Section 13.9. 
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 Catch and throw provides for an intuitively simple escape mechanism on functional 
ground 

 

 

We introduce an imaginary syntax of catch and throw, see Syntax 13.1 and Syntax 13.2. The 
meaning is intended to be that catch identifies an expression, catch-expr with an id. id is a 
symbol. Within the expression, or within a function called directly or indirectly in catch-expr, we 
may encounter a throw form, which mention the id of the catch. The value of the thrown expression, 
throw-expr, is passed back along the chain of calls to the catcher, and it becomes the return value of 
the catch form. If no throw form with an appropriate id is met during the evaluation of the catch 
form, the value of the catch form just becomes the value of catch-expr. 

 
(catch id catch-expr)  

 Syntax 13.1       
 
(throw id throw-expression)  

 Syntax 13.2       
 

 Scheme does not support catch and throw 

Rather Scheme supports a much more powerful mechanisms based on continuations 
 

 

In case you are interested in more precise details of catch and throw in Common Lisp, you should 
consult the book about Common Lisp, [cltl], (full text on the web). More specifically you should 
consult the chapter about dynamic non-local exists [cltl-non-local-exists]. 

  

13.3.  A catch and throw example 
Lecture 3 - slide 35 

We now study an concrete, real- life example of catch and throw. This is not a Scheme example. 

 Exit from a list length function in case it discovers a non-empty tail of the list  
 

The function list-length returns the length of the list. The function counts the cons cells. If we 
encounter an improper list (a list without an empty list in the end of the cdr chain, see Section 6.2) 
we wish to return the symbol improper-list. In order to provide for this we set of a catcher 
around the a local function, list- length1, which does the real job. The function list- length calls list-
length1. If list- length1 encounters an improper termination of the list, it throws the symbol 
improper-list to the catcher, which returns it. If not, it just returns the count, which also is returned 
by catch via the letrec form. 
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(define (list-length lst) 
  (catch 'exit 
    (letrec ((list-length1 
               (lambda (lst)  
                 (cond ((null? lst) 0) 
                   ((pair? lst) (+ 1 (list-length1 (cdr lst)))) 
                   (else (throw 'exit 'improper-list)))))) 
       (list-length1 lst)))) 

 Program 13.1    An example using catch and throw. Please notice that the example is not a proper 
Scheme program. Catch and throw are not defined in Scheme.  

 

  

13.4.  The intuition behind continuations 
Lecture 3 - slide 36 

The rest of this chapter is about concepts that are fully supported in Scheme. 

We start with an overall definition of a continuations. Then follows some intuitive examples of 
continuations of given expressions within given contexts (surrounding expressions). 

 A continuation of the evaluation of an expression E in a surrounding context C 
represents the future of the computation, which waits for, and depends on, the value of E  

 

It may very well be difficult to grasp the intuition of continuations. We hope the following table 
will help you. It is intended to explain the intuitive understanding of the continuations of the blue, 
emphasized expressions in the leftmost column. 

Context C and expression E Intuitive continuation of E in C 
(+ 5 (* 4 3)) The adding of 5 to the value of E 
(cons 1 (cons 2 (cons 3 '()))) The consing of 3, 2 and 1 to the value of E 
(define x 5) 
(if (= 0 x) 
    'undefined 
    (remainder (* (+ x 1) (- x 1)) x)) 

The multiplication of E by x - 1 followed by a 
division by x 

Table 13.1    An intuitive understanding of continuations of an expression 
in some context. 

  

13.5.  Being more precise 
Lecture 3 - slide 37 

Instead of relying of an informal understanding of continuations we will now introduce lambda 
expressions that represent the continuations. 
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 We can form a lambda expression that to some degree represents a continuation 
 

 

The continuation of the expression (* 3 4) within (+ 5 (* 3 4)) is a function that adds 5. 
Written precisely, it is the function (lambda (e) (+ 5 e)). The other two examples of Table 13.2 
(corresponding to the second and third rows) are similar. 

Context C and expression E The continuation of E in C 
(+ 5 (* 4 3)) (lambda (e) (+ 5 e)) 

(cons 1 (cons 2 (cons 3 '()))) (lambda (e) (cons 1 (cons 2 (cons 3 
e)))) 

(define x 5) 
(if (= 0 x) 
    'undefined 
    (remainder (* (+ x 1) (- x 1)) x)) 

(lambda (e) (remainder (* e (- x 1)) 
x)) 

Table 13.2    A more precise notation of the continuations of E 

The representation of continuations with lambda expressions is part of the truth, but not the whole 
truth. The problem is that if we activate the continuation, by calling the function that represents it, it 
will return the normal way, and its calling context will finish the evaluation the normal way. We do 
not want that. Therefore a mechanism known as escape functions are invented and used. An escape 
function ignores its context in every call. We will not go into the technical details of escape 
functions in this text. The interested reader should consult [Springer89]. 

  

13.6.  The capturing of continuations 
Lecture 3 - slide 38 

It is now time to introduce the Scheme primitive that allows us to capture a continuation. 

 Scheme provides a primitive that captures a continuation of an expression E in a context 
C 

The primitive is called call-with-current-continuation, or call/cc as a short alias 

call/cc takes a parameter, which is a function of one parameter. 

The parameter of the function is bound to the continuation, and the body of the function 
is E  

 

   

We will use the brief form call/cc in our examples. 
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Context C and the capturing  
(+ 5 (call/cc (lambda (e) (* 4 3)) )) 
(cons 1 (cons 2 (cons 3 (call/cc (lambda (e) '()) )))) 
(define x 5) 
(if (= 0 x) 
    'undefined 
    (remainder (* (call/cc (lambda (e) (+ x 1)) ) (- x 1)) 
x)) 

Table 13.3    Use of call/cc and capturing of continuations. 

We elaborate the examples from Table 13.1 and Table 13.2. In the first line of Table 13.3 we 
capture the continuation of (* 4 3) in (+ 5 (* 4 3)). In the second line we capture the 
continuation of '() in (cons 1 (cons 2 (cons 3 '()))). And in the third line we capture the 
continuation of (+ x 1) in the if expression. This is the same as the continuation of the (+ x 1) in 
the remainder expression. 

One thing is capturing continuations. Another is to make good use of them. Table 13.3 does not 
illustrate the latter aspect at all. This is seen by the fact the the continuations, bound to the names e 
in all three examples, are not used. 

It should be noticed that a captured continuation is dressed like a function. Somehow we can think 
of a continuation as a 'wolf in sheep's clothing'. A continuation is activated in the same way as a 
function is called. However, the continuation is defined (captured) differently than the way 
functions are defined. Notice also that continuations inherit their first class status from functions, 
see Section 8.6. 

  

13.7.  Capturing, storing, and applying continuations 
Lecture 3 - slide 39 

In this section we will illustrate applications of the captured continuations. Once captured, we 
assign the continuations to a global variable cont-remember. We assume that cont-remember has 
been defined before any of the expressions in table Table 13.4 are evaluated. Use of assignments is 
of course not functional programming, but it provides an easy way to illustrate the working and the 
nature the captured continuations. Later in this section we will show uses of continuations in 
functional programming. For a brief review of imperative programming in Scheme the reader is 
referred to Chapter 29. 

 We here show capturing, imperative assignment, and a subsequent application of a 
continuation  

 



 90

In table Chapter 29 below we show the context expression C, its value, the application of the 
captured continuation that we have stored in the variable cont-remember, and the value of the 
application. We explain the rightmost column below the table. 

Context C and expression E Value of 
C 

Application 
of 
continuation 

Value  

(+ 5  
 (call/cc  
  (lambda (e)  
   (set! cont-remember e) 
   (* 4 3)))) 

17 
(cont-
remember 
3) 

8 

(cons 1  
 (cons 2  
  (cons 3  
   (call/cc  
    (lambda (e)  
     (set! cont-remember e) 
     '()))))) 

(1 2 3) 
(cont-
remember 
'(7 8)) 

(1 2 3 7 
8) 

(define x 5) 
(if (= 0 x) 
    'undefined 
    (remainder  
     (* (call/cc  
         (lambda (e)  
          (set! cont-remember 
e) 
          (+ x 1) )) 
        (- x 1)) 
     x)) 

4 
(cont-
remember 
3) 

2 

Table 13.4    Capturing and applying continuations. The captured 
continuations are stored in a global variable. The application of the 
continuation is shown in the third column, and the result of the 
application of the continuation is shown in the fourth column. 

First we explain the first row in the table. The application (cont-remember 3) passes 3 to the 
continuation e. It means that we fuel the expression (+ 5 X) with an X which is 3. The result is 8. 

In the second row, (cont-remember '(7 8)) passes the list (7 8) into the innermost point Y of 
(cons 1 (cons 2 (cons 3 Y))). The result is the list (1 2 3 7 8). 

In the last row, we activate (cont-remember 3). It implies that 3 is passed into the Z of 
(remainder (* Z (- x 1)) x), where x is 5. The value is (remainder 12 5) = 2. Notice in 
particular that the if has made the choice of the 'else part'. If is not a function, but a special form 
with special evaluation rules. Once it the choice of the if is made, there is no trace left of it in the 
continuation. For more details of the evaluation of if special forms see Chapter 19 to Chapter 21, 
and in particular Section 20.10. 
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13.8.  Use of continuations for escaping purposes 
Lecture 3 - slide 40 

In this section we will illustrate how to apply the captured continuations for escaping purposes. 

 We here illustrate applications of the continuations for escaping purposes 
 

 

In Table 13.5 we basically show the same expressions as in Table 13.1, Table 13.2, Table 13.3, and 
Table 13.4. In the light blue fragments, of the form (e X) we send a value X to the continuation, 
which is bound to e. In the first row we send 5 to the addition, and the value of the context 
becomes 15. In the second row we send the symbol x to the continuation, whereby the value of the 
context is the pair (1 . x). (Notice that the second example captures a continuation at a more outer 
level than in the other tables). In the second row we send the integer 111 to the else part of the if 
form, and hereby the value of the context becomes 111. 

Context C, capturing, and escape call Value  
(+ 5  
 (call/cc  
  (lambda (e) 
   (* 4 (e 10)))) ) 

15 

(cons 1  
 (call/cc 
  (lambda (e) 
   (cons 2  
    (cons 
     3 (e 'x))))) ) 

(1 . x) 

(define x 5) 
 
(if (= 0 x) 
    'undefined 
    (call/cc  
     (lambda (e) 
      (remainder  
       (* (+ x 1) 
          (- x (e 111))) 
       x))) ) 

111 

Table 13.5    Capturing and use of a continuation for escaping purposes 

  

13.9.  Practical example: Length of an improper list 
Lecture 3 - slide 41 

Now that we have seen how to capture and use continuations for escaping purposes we will study a 
number of real examples. The first is similar to the catch throw example in Program 13.1. Like the 
examples in Section 13.8 we also deal with escape values in this example. 



 92

Recall from Program 13.1 that we are about to program a list length function. If we, during the 
element counting, realize that we deal with an improper list (a list not terminated by the empty list) 
we want some special result, namely the symbol improper-list. 

 The length of an improper list is undefined 

We chose to return the symbol improper-list if list-length encounters an improper 
list 

This example is similar to the catch and throw example shown earlier in this section 
 

 

It is easy to program the escaping version of list-length with continuations, see Program 13.2. At 
the outer level we capture the continuation that immediately returns from list-length. We can 
freely name the continuation, and we chose the name do-exit. Within the scope of the continuation 
we define a local helping function list-length1, which does the real counting job. We follow the 
cdr chain in the recursion of list-length1. If we encounter a data object which is not a cons pair 
or the empty list we have identified an improper list. In this situation we send the symbol 
improper-list to do-exit. The effect is that we immediately return this symbol, and the count of 
of cons pairs is not used. 

(define (list-length l) 
  (call-with-current-continuation 
   (lambda (do-exit) 
     (letrec ((list-length1 
                (lambda (l) 
                   (cond ((null? l) 0) 
                         ((pair? l) (+ 1 (list-length1 (cdr l)))) 
                         (else (do-exit 'improper-list)))))) 
       (list-length1 l)))  )) 

 Program 13.2    The function list-length, which returns the symbol 'improper-list in case it 
encounters an improper list.   

 

  

13.10.  Practical example: Searching a binary tree 
Lecture 3 - slide 42 

The next example is about traversal of a tree, with the purpose of finding a subtree which satisfy a 
given predicate. 

 Searching a binary tree involves a recursively defined tree traversal 

If we find the node we are looking for it is convenient to throw the out of the tree 
traversal  
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The function find-in-tree is shown in Program 13.3. As in the list length example in Program 
13.2 we set up a continuation at the outer level of find-in-tree. The continuation is called found. 
This is not a continuation used for an exceptional value, but for the expected 'normal' value of the 
function. 

The local function find-in-tree1 is a recursive pre-order tree traversal function. In case the 
predicate holds on a subtree, it is passed to the continuation found. If not, the subtrees are searched 
recursively. The recursion stops when we reach the leaves, on which (subtree-list ...) returns 
the empty list. In case we finish the traversal without ever finding a subtree that satisfies pred we 
drop through the if form. In that case we will have to return #f. Notice that this is a rare example of 
having two expression in sequence in the body of a functional abstraction. 

(define (find-in-tree tree pred) 
 (call-with-current-continuation 
  (lambda (found) 
   (letrec 
    ((find-in-tree1 
       (lambda (tree pred) 
            (if (pred tree) 
                (found tree) 
                (let ((subtrees (subtree-list tree))) 
                   (for-each 
                      (lambda (subtree) (find-in-tree1 subtree pred)) 
                      subtrees))) 
            #f))) 
    (find-in-tree1 tree pred)))  )) 

 
Program 13.3    A tree search function which uses a continuation found if we find what we search 
for. Notice that this examples requires the function subtree-list, in order to work. The function 
returns #f in case we do not find node we are looking for. Notice that it makes sense in this example 
to have both the if expression and the #f value in sequence! 
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14.  Introduction to higher-order functions 

Higher-order functions is another key area in the functional programming paradigm; Perhaps the 
most important at all. In this chapter we will explore this exiting area, and we will give a number of 
web-related examples.  

  

14.1.  Higher-order functions 
Lecture 4 - slide 2 

The idea of higher-order functions is of central importance for the functional programming 
paradigm. As we shall see on this and the following pages, this stems from the fact that higher-order 
functions can be further generalized by accepting functions as parameters. In addition, higher-order 
functions may act as function generators, because they allow functions to be returned as the result 
from other functions. 

Let us first define the concepts of higher-order functions and higher-order languages. 

 A higher-order function accepts functions as arguments and is able to return a function 
as its result  

A higher-order language supports higher-order functions and allows functions to be 
constituents of data structures  

 

When some functions are 'higher-order' others are bound to be 'lower-order'. What, exactly, do we 
mean by the 'order of functions'. This is explained in below.  

 • The order of data 
• Orde r 0: Non function data 
• Order 1: Functions with domain and range of order 0 
• Order 2: Functions with domain and range of order 1 
• Order k: Functions with domain and range of order k-1 

 

Order 0 data have nothing to do with functions. Numbers, lists, and characters are example of such 
data. 

Data of order 1 are functions which work on 'ordinary' order 0 data. Thus order 1 data are the 
functions we have been concerned with until now. 

Data of order 2 - and higher - are example of the functions that have our interest in this lecture. 

With this understanding, we can define higher-order functions more precisely. 
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 Functions of order i, i >= 2, are called higher-order functions 
 

 

  

 

14.2.  Some simple and general higher-order functions 
Lecture 4 - slide 3 

It is time to look at some examples of higher-order functions. We start with a number of simple 
ones. 

The flip function is given in two versions below. flip takes a function as input, which is returned 
with reversed parameters, cf. Program 14.1. 

The first version of flip uses the shallow syntactic form, discussed in Section 8.12. The one in ??? 
uses the raw lambda expression, also at the outer level. 

(define (flip f) 
  (lambda (x y) 
    (f y x))) 

 
Program 14.1    The function flip changes the order of it's parameters. The function takes a function 
of two parameters, and returns another function of two parameters. The only difference between the 
input and output function of flip is the ordering of their parameters. 

 
 

The read expression in Program 14.1 and ??? are the values returned from the function flip. 

(define flip 
  (lambda (f) 
    (lambda (x y) 
      (f y x)))) 

 Program 14.2    An alternative formulation of flip without use of the sugared define syntax.    

The function negate, as shown in Program 14.3, takes a predicate p as parameter. negate returns 
the negated predicate. Thus, if (p x) is true, then ((negate p) x) is false. 

(define (negate p) 
  (lambda (x)  
    (if (p x) #f #t))) 

 
Program 14.3    The function negate negates a predicate. Thus, negate takes a predicate function 
(boolean function) as parameter and returns the negated predicate. The resulting negated predicate 
returns true whenever the input predicate returns false, and vise versa. 

 
 

The function compose in Program 14.4 is the classical function composition operator, known by all 
high school students as 'f o g' 
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(define (compose f g) 
  (lambda (x) 
    (f (g x)))) 

 

Program 14.4    The function compose composes two functions which both are assumed to take a 
single argument. The resulting function composed of f and g returns f(g(x)), or in Lisp (f (g 
x)), given the input x . The compose function from the general LAML library accepts two or 
more parameters, and as such it is more general than the compose function shown here. 

 

 
 

 Exercise 4.1. Using flip, negate, and compose 

Define and play with the functions flip, negate, and compose, as they are defined on this page . 

Define, for instance, a flipped cons function and a flipped minus function. 

Define the function odd? in terms of even? and negate. 

Finally, compose two HTML mirror functions, such as b and em, to a new function. 

Be sure you understand your results. 

 

  

14.3.  Linear search in lists 
Lecture 4 - slide 4 

Let us program a simple, but useful higher-order function which searches a list by linear search. The 
function find-in-list, shown in Program 14.5 takes a predicate pred and a list lst as 
parameters. This predicate is applied on the elements in the list. The first element which satisfy the 
predicate is returned.  

 Search criterias can be passed as predicates to linear search functions  
 

;; A simple linear list search function. 
;; Return the first element which satisfies the predicate pred. 
;; If no such element is found, return #f. 
(define (find-in-list pred lst) 
  (cond ((null? lst) #f) 
        ((pred (car lst)) (car lst)) 
        (else (find-in-list pred (cdr lst))))) 

 

Program 14.5    A linear list search function. A predicate accepts as input an element in the list, and 
it returns either true ( #t) or false (#f). If the predicate holds (if it returns true), we have found what 
we searched for. The predicate pred is passed as the first parameter to find-in-list. As it is 
emphasized in blue color, the predicate is applied on the elements of the list. The first successful 
application (an application with true result) terminates the search, and the element is returned. If 
the first case in the conditional succeeds (the brown condition) we have visited all elements in the 
list, and we conclude that the element looked for is not there. In that case we return false. 
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The dialogue below shows examples of linear list search with find-in-list. 

1> (define hair-colors (pair-up '(ib per ann) '("black" "green" "pink"))) 
 
2> hair-colors 
((ib . "black") (per . "green") (ann . "pink")) 
 
3> (find-in-list (lambda (ass) (eq? (car ass) 'per)) hair-colors) 
(per . "green") 
 
4> (find-in-list (lambda (ass) (equal? (cdr ass) "pink")) hair-colors) 
(ann . "pink") 
 
5> (find-in-list (lambda (ass) (equal? (cdr ass) "yellow")) hair-colors) 
#f 
 
6> (let ((pink-person 
          (find-in-list 
            (lambda (ass) (equal? (cdr ass) "pink")) hair-colors))) 
    (if pink-person (car pink-person) #f)) 
ann 

 

Program 14.6    A sample interaction using find-in-list. We define a simple association list 
which relates persons (symbols) and hair colors (strings). The third interaction searches for per's 
entry in the list. The fourth interaction searches for a person with pink hair color. In the fifth 
interaction nothing is found, because no person has yellow hair color. In the sixth interaction we 
illustrate the convenience of boolean convention in Scheme: everything but #f counts as true. From 
a traditional typing point of view the let expression is problematic, because it can return either a 
person (a symbol) or a boolean value. Notice however, from a pragmatic point of view, how useful 
this is.  

 

 
 
 

 
 Exercise 4.2. Linear string search 

Lists in Scheme are linear linked structures, which makes it necessary to apply linear search 
techniques. 

Strings are also linear structures, but based on arrays instead of lists. Thus, strings can be linearly 
searched, but it is also possible to access strings randomly, and more efficiently. 

First, design a function which searches a string linearly, in the same way as find-in-list. Will 
you just replicate the parameters from find-in-list, or will you prefer something different? 

Next program your function in Scheme. 

 
 Exercise 4.3. Index in list 

It is sometimes useful to know where in a list a certain element occurs, if it occurs at all. Program 
the function index-in-list-by-predicate which searches for a given element. The comparion 
between the given element and the elements in the list is controlled by a comparison parameter to 
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index-in-list-by-predicate. The function should return the list position of the match (first 
element is number 0), or #f if no match is found. 

Some examples will help us understand the function: 

 
   (index-in-list-by-predicate '(a b c c b a) 'c eq?) => 2 
 
   (index-in-list-by-predicate '(a b c c b a) 'x eq?) => #f 
 
   (index-in-list-by-predicate '(two 2 "two") 2  
     (lambda (x y) (and (number? x) (number? y) (= x y)))) => 1 
      

Be aware if your function is tail recursive. 

 
 Exercise 4.4. Binary search in sorted vectors 

Linear search, as illustrated by other exercises, is not efficient. It is often attractive to organize 
data in a sorted vector, and to do binary search in the vector. 

This exercise is meant to illustrate a real- life higher-order function, generalized with several 
parameters that are functions themselves. 

Program a function binary-search-in-vector, with the following signature: 

 
  (binary-search-in-vector v el sel el-eq? el-leq?) 

v is the sorted vector. el is the element to search for. If v-el is an element in the vector, the 
actual comparison is done between el and (sel v-el). Thus, the function sel is used as a 
selector on vector elements. Equality between elements is done by the el-eq? function. Thus, 
(el-eq? (sel x) (sel y)) makes sense on elements x and y in the vector. The ordering of 
elements in the vector is defined by the el-leq? function. (el-leq? (sel x) (sel y)) makes 
sense on elements x and y in the vector. 

The call (binary-search-in-vector v el sel el-eq? el-leq?) searches the vector via 
binary search and it returns an element el-v from the vector which satisfies (el-eq? (sel el-v) el). 
If no such element can be located, it returns #f. 

Here are some examples, with elements being cons pairs: 

 
  (binary-search-in-vector '#( (2 . x) (4 . y) (5 . z) (7 . i) (9 . c)  
                               (11 . c)) 7 car = <=)    => 
  (7 . i) 
 
  (binary-search-in-vector '#( (2 . x) (4 . y) (5 . z) (7 . i) (9 . c)  
                               (11 . c)) 2 car = <=)    => 
  (2 . x) 
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  (binary-search-in-vector '#( (2 . x) (4 . y) (5 . z) (7 . i) (9 . c)  
                               (11 . c)) 10 car = <=)   => 
  #f 

Be sure to program a tail recursive solution. 

 

  

14.4.  Generation of list selectors 
Lecture 4 - slide 5 

The function find-in-list took a function as parameter. In this section we will give an example 
of a higher-order function which returns a function as result. 

 It is attractive to generate generalizations of the list selector functions car, cadr, etc 
 

 

The function make-selector-function generates a list selector function which returns element 
number n from a list. It should be noticed that the first element in a list is counted as number one. 
This is contrary to the convention of the function list-ref and other similar Scheme function, 
which counts the first element in a list as number zero. This explains the (- n 1) expression in 
Program 14.7. 

(define (make-selector-function n) 
  (lambda (lst) (list-ref lst (- n 1)))) 

 Program 14.7    A simple version of the make-selector-function function.    

In the web version of the material (slide view or annotated slide view) you will find yet another 
version of the function make-selector-function, which provides for better error messages, in 
case element number n does not exist in the list. We have taken it out of this version because of its 
size and format. 

The dialogue below shows examples of definitions and uses of list selector functions generated by 
make-selector-function. 

1> (define first (make-selector-function 1 "first")) 
 
2> (first '(a b c)) 
a 
 
3> (first '()) 
The selector function first: The list () is is too short for selection.  
It must have at least 1 elements. 
>  
 
4> (define (make-person-record firstname lastname department)  
      (list 'person-record firstname lastname department)) 
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5> (define person-record  
      (make-person-record "Kurt" "Normark" "Computer Science")) 
 
6> (define first-name-of (make-selector-function 2 "first-name-of")) 
 
7> (define last-name-of (make-selector-function 3 "last-name-of")) 
 
8> (last-name-of person-record) 
"Normark" 
 
9> (first-name-of person-record) 
"Kurt" 

 

Program 14.8    Examples usages of the function make-selector-function. In interaction 1 through 3 
we demonstrate generation and use of the first function. Next we outline how to define accessors of 
data structures, which are represented as lists. In reality, we are dealing with list-based record 
structures. In my every day programming, such list structures are quite common. It is therefore 
immensely important, to access data abstractly (via name accessors, instead of via the position in 
the list (car, cadr, etc). In this context, the make-selector-function comes in handy. 
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15.  Mapping and filtering 

In this chapter we will focus on higher-order functions that work on lists. It turns out that the 
appropriate combinations of these make it possible to solve a variety of different list processing 
problems. 

  

15.1.  Classical higher-order functions: Overview 
Lecture 4 - slide 7 

We start with an overview of the classical higher-order functions on lists, not just mapping and 
filtering, but also including reduction and zipping functions which we cover in subsequent sections. 

 There exists a few higher-order functions via which a wide variety of problems can be 
solved by simple combinations 

 

 
 

   

 • Overview: 
• Mapping : Application of a function on all elements in a list 
• Filtering : Collection of elements from a list which satisfy a particular condition 
• Accumulation: Pair wise combination of the elements of a list to a value of 

another type 
• Zipping : Combination of two lists to a single list 

 
  

 The functions mentioned above represent abstractions of algorithmic patterns in the 
functional paradigm  

 

The idea of patterns has been boosted in the recent years, not least in the area of object-oriented 
programming. The classical higher-order list functions encode recursive patterns on the recursive 
data type list. As a contrast to many patterns in the object-oriented paradigm, the patterns encoded 
by map, filter, and others, can be programmed directly. Thus, the algorithmic patterns we study 
here are not design patterns. Rather, they are programming patterns for the practical functional 
programmer. 

  

15.2.  Mapping 
Lecture 4 - slide 8 

The idea of mapping is to apply a function on each element of a list, hereby collecting the list of the 
function applications 
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 A mapping function applies a function on each element of a list and returns the list of 
these applications 

The function map is an essential Scheme function 
 

 

The idea of mapping is illustrated below. 

 
Figure 15.1    Mapping a function m on a list. m is applied on every 
element, and the list of these applications is returned. 

  

15.3.  The mapping function 
Lecture 4 - slide 9 

It is now time to study the implementation of the mapping function. We program a function called 
mymap in order not to redefine Scheme's own mapping function (a standard function in all Scheme 
implementations). 

(define (mymap f lst) 
  (if (null? lst) 
      '() 
       (cons (f (car lst)) 
             (mymap f (cdr lst))))) 

 
Program 15.1    An implementation of map. This is not a good implementation because the recursive 
call is not a tail call. We leave it as an exercise to make a memory efficient implementation with tail 
recursion - see the exercise below. 

 
 

 
 Exercise 4.5. Iterative mapping function 

In contrast to the function mymap on this page , write an iterative mapping function which is tail 
recursive. 

Test your function against mymap on this page, and against the native map function of your 
Scheme system. 

 
 Exercise 4.6. Table exercise: transposing, row elimination, and column elimination. 

In an earlier section we have shown the application of some very useful table manipulation 
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functions. Now it is time to program these functions, and to study them in further details. 

Program the functions transpose, eliminate-row, and eliminate-column, as they have been 
illustrated earlier. As one of the success criteria of this exercise, you should attempt to use higher-
order functions as much and well as possible in your solutions. 

Hint: Program a higher-order function, (eliminate-element n). The function should return a 
function which eliminates element number n from a list. 

 

 15.4.  Examples of mapping 
Lecture 4 - slide 10 

We will now study a number of examples. 

Expresion Value  
(map  
  string? 
  (list 1 'en "en" 2 'to "to")) 

(#f #f #t #f #f #t) 

(map  
   (lambda (x) (* 2 x)) 
   (list 10 20 30 40)) 

(20 40 60 80) 

(ul 
  (map  
   (compose li b 
     (lambda (x) (font-color red x))) 
   (list "a" "b" "c") 
  ) 
) 

(ul (map (compose li (compose b (lambda (x) 
(font-color red x)))) (list "a" "b" "c") ) ) 

Same as above 

(ul 
  (map  
   (compose li  
    (compose b  
     (lambda (x) (font-color red x)))) 
   (list "a" "b" "c") 
  ) 
) 

Table 15.1    In the first row we map the string? predicate on a list of 
atoms (number, symbols, and strings). This reveals (in terms of boolean 
values) which of the elements that are strings. In the second row of the 
table, we map a 'multiply with 2' function on a list of numbers. The third 
row is more interesting. Here we map the composition of li , b  , and red 
font coloring on the elements a, b, and c. When passed to the HTML 
mirror function ul , this makes an unordered list with red and bold i tems. 
Notice that the compose function used in the example is a higher-order 
function that can compose two or more functions. The function compose 
from lib/general.scm is such a function. Notice also that the HTML 
mirror function ul receives a list, not a string. The fifth and final row 
illustrates the raw HTML output, instead of the nicer rendering of the 
unordered list, which we used in the third row.  
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15.5.  Filtering 
Lecture 4 - slide 11 

As the name indicates, the filter function is good for examining elements of a list for a certain 
property. Only elements which possess the property are allowed through the filter. 

 A filtering function applies a predicate (boolean function) on every element of a list. 
Only elements on which the predicate returns true are returned from the filtering 
function. 

The function filter is not an essential Scheme function - but is part of the LAML 
general library  

 

   

The figure below illustrates the filtering idea. 

 
Figure 15.2    Filtering a list with a predicate f. The resulting list is the 
subset of the elements which satisfy f (the elements on which f returns 
true). 

 

  

15.6.  The filtering function 
Lecture 4 - slide 12 

The next item on the agenda is an implementation of filter . 

 For practical purposes it is important to have a memory efficient filter function 
 

 

As a consequence of the observation above, we now program a tail recursive version of filter. 
Notice that it is the function filter-help, which does the real filtering job. 
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(define (filter pred lst) 
  (reverse (filter-help pred lst '()))) 
 
(define (filter-help pred lst res) 
  (cond ((null? lst) res) 
        ((pred (car lst))  
           (filter-help pred (cdr lst)  (cons (car lst) res))) 
        (else  
           (filter-help pred (cdr lst)  res)))) 

 
Program 15.2    An implementation of filter which is memory efficient. If the predicate holds on an 
element of the list (the red fragment) we include the element in the result (the brown fragment). If 
not (the green fragment), we drop the element from the result (the purple fragment).  

 
 

 

 
 Exercise 4.7. A straightforward filter function 

The filter function illustrated in the material is memory efficient, using tail recursion. 

Take a moment here to implement the straightforward recursive filtering function, which isn't tail 
recursive. 

 

  

15.7.  Examples of filtering 
Lecture 4 - slide 13 

As we did for mapping, we will also here study a number of examples. As before, we arrange the 
examples in a table where the example expressions are shown to the left, and their values to the 
right. 
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Expression Value  
(filter  
  even? 
 '(1 2 3 4 5)) 

(2 4) 

(filter  
  (negate even?) 
  '(1 2 3 4 5)) 

(1 3 5) 

(ol  
 (map li 
  (filter string? 
   (list 1 'a "First" "Second" 3)))) 

1. First 
2. Second 

Same as above <ol><li>First</li> <li>Second</li></ol> 

Table 15.2    In the first row we filter the first five natural numbers with 
the even? predicate. In the second row, we filter the same list of 
numbers with the odd? predicate. Rather than using the name odd? we 
form it by calculating (negate even?) . We have seen the higher-
order function negate earlier in this lecture. The third and final 
example illustrates the filtering of a list of atoms with the string? 
predicate. Only strings pass the filter, and the resulting list of strings is 
rendered in an ordered list by means of the mirror function of the ol 
HTML element. 

  

15.8.  References 

[-] Foldoc: filter 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=filter 

[-] The LAML general library 
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/general.html 

[-] Foldoc: map 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=map 
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16.  Reduction and zipping 

The reduction and zipping functions work on lists, like map and filter from Chapter 15. 

  

16.1.  Reduction 
Lecture 4 - slide 15 

List reduction is useful when we need somehow to 'boil down' a list to a 'single value'. The boiling 
is done with a binary function, as illustrated in Figure 16.1. 

 Reduction of a list by means of a binary operator transforms the list to a value in the 
range of the binary operator.  

 

 
Figure 16.1    Left and right reduction of a list. Left  reduction is - quite 
naturally - shown to the left, and right reduction to the right. 
 
 

 There is no natural value for reduction of the empty list. Therefore we assume as a 
precondition that the list is non-empty.  

 

 
 

  

The intuitive idea of reduction will probably be more clear when we meet examples in Table 16.1 
below. 

Examples of left and right reduction are given in the table below. Be sure to understand the 
difference between left and right reduction, when the function, with which we reduce, is not 
commutative. 
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Expression Value  
(reduce-left - '(1 2 3 4 5)) -13 
(reduce-right - '(1 2 3 4 5)) 3 
(reduce-left string-append (list "The" " 
" "End")) "The End" 

(reduce-left append (list (list 1 2 3) 
(list 'a 'b 'c))) (1 2 3 a b c) 

Table 16.1    Examples of reductions. The - left reduction of the list 
corresponds to calculating the expression (- (- (- (- 1 2) 3) 4) 5). The - 
right reduction of the list corresponds to calculating the expression (- 1 (- 
2 (- 3 (- 4 5)))).  

  

16.2.  The reduction functions 
Lecture 4 - slide 16 

We will now implement the reduction functions introduced above in Section 16.1. Both right 
reduction and left reduction will be implemented, not least because they together illustrate a good 
point about iterative and tail recursive processing of lists. The explanations of this is found in the 
captions of Program 16.1 and Program 16.2. 

 The function reduce-right is a straightforward recursive function 

The function reduce-left is a straightforward iterative function 
 

 

   
(define (reduce-right f lst) 
  (if (null? (cdr lst)) 
      (car lst) 
      (f (car lst)  
         (reduce-right f (cdr lst))))) 

 Program 16.1    The function reduce-right. Notice the fit between the composition of the list and the 
recursive pattern of the right reduction.  

 
(define (reduce-left f lst) 
  (reduce-help-left f (cdr lst) (car lst))) 
 
(define (reduce-help-left f lst res) 
  (if (null? lst) 
      res 
      (reduce-help-left f (cdr lst) (f res (car lst))))) 

 
Program 16.2    The function reduce-left. There is a misfit between left reduction and the recursive 
composition of the list with heads and tails. However, an iterative process where we successively 
combine e1 and e2 (giving r1), r1 and e3 etc., is straightforward. As we have seen several times, this 
can be done by a tail recursive function, here reduce-help-left. 
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In summary, right reduction is easy to program with a recursive function. The reason is that we can 
reduce the problem to (f (car lst) X), where X a right reduction of (cdr lst) with f. The right 
reduction of (cdr lst) is smaller problem than the original problem, and therefore we eventually 
meet the case where the list is trivial (in this case, a single element list). 

The left reduction combines the elements one after the other, iteratively. First we calculate (f (car 
el) (cadr el)), provided that the list is of length 2 or longer. Let us call this value Y. Next (f Y 
(caddr el)) is calculated, and so on in an iterative way. We could easily program this with a 
simple loop control structure, like a for loop. 

  

16.3.  Accumulation 
Lecture 4 - slide 17 

In this section we introduce a variation of reduction, which allows us also to reduce the empty list. 
We chose to use the word accumulation for this variant.  

 It is not satisfactory that we cannot reduce the empty list 

We remedy the problem by passing an extra parameter to the reduction functions 

We call this variant of the reduction functions for accumulation  

 

It also turns out that the accumulation function is slightly more useful than reduce-left and 
reduce-right from Section 16.2. The reason is that we control the type of the parameter init to 
accumulate-right in Program 16.3. Because of that, the signature of the accumulate function 
becomes more versatile than the signatures of reduce-left and reduce-right. Honestly, this is 
not easy to spot in Scheme, whereas in languages like Haskell and ML, it would have been more 
obvious. 

Below we show the function accumulate-right, which performs right accumulation. In contrast to 
reduce-right from Program 16.1accumulate-right also handles the extreme case of the empty 
list. If the list is empty, we use the explicitly passed init value as the result. 

(define (accumulate-right f init lst) 
  (if (null? lst) 
      init 
      (f (car lst) (accumulate-right f init (cdr lst))))) 

 Program 16.3    The function accumulate-right. The recursive pattern is similar to the pattern of 
reduce-right.  

 

The table below shows a few examples of right accumulation, in the sense introduced above. 
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Expression Value  
(accumulate-right - 0 '()) 0 
(accumulate-right - 0 '(1 2 3 4 5)) 3 
(accumulate-right append '() 
  (list (list 1 2 3) (list 'a 'b 'c))) (1 2 3 a b c) 

Table 16.2    Examples of right accumulations. The first row illustrates 
that we can accumulate the empty list. The second and third rows are 
similar to the second and third rows in Table 15.1.  
 

 In relation to web programming we most often append accumulate lists and strings 

accumulate-right is part of the general LAML library 

Due to their deficiencies, the reduction functions are not used in LAML 
 

 

  

16.4.  Zipping 
Lecture 4 - slide 18 

The zipping function is named after a zipper, as known from pants and shirts. The image below 
shows the intuition behind a list zipper. 

 Two equally long lists can be pair wise composed to a single list by means of zipping 
them  

 

 
Figure 16.2    Zipping two lists with the function z. The head of the 
resulting list is (z e i f i), where the element e i comes from the first list, 
and f i comes from the other. 

We implement the zipping function in the following section. 

  

16.5.  The zipping function 
Lecture 4 - slide 19 

The zip function in Program 16.4 takes two lists, which are combined element for element. As a 
precondition, it is assumed that both input list have the same size. 
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(define (zip z lst1 lst2) 
  (if (null? lst1) 
      '() 
      (cons  
        (z (car lst1) (car lst2)) 
        (zip z (cdr lst1) (cdr lst2))))) 
       

 Program 16.4    The function zip.    

Below we show examples of zipping with the zip function. For comparison, we also show an 
example that involves string-merge, which we discussed in Section 11.7. 

Expression Value  
(zip cons '(1 2 3) '(a b c)) ((1 . a) (2 . b) (3 . c)) 
(apply string-append 
 (zip  
  string-append 
  '("Rip" "Rap" "Rup") 
  '(", " ", and " ""))) 

"Rip, Rap, and Rup" 

(string-merge  
  '("Rip" "Rap" "Rup") '(", " ", and ")) "Rip, Rap, and Rup" 

Table 16.3    Examples of zipping.  
 
 

 Zip is similar to the function string-merge from the LAML general library 

However, string-merge handles lists of strings non-equal lengths, and it concatenates 
the zipped results  

 

 



 114



 115

17.  Currying 

Currying is an idea, which is important in contemporary functiona l programming languages, such as 
Haskell. In Scheme, however, the idea is less attractive, due to the parenthesized notation of 
function calls.  

Despite of this, we will discuss the idea of currying in Scheme via some higher-order functions like 
curry and uncurry. We will also study some ad hoc currying of Scheme functions, which has 
turned out to be useful for practical HTML authoring purposes, not least when we are dealing with 
tables. 

  

17.1.  The idea of currying 
Lecture 4 - slide 21 

Currying is the idea of interpreting an arbitrary function to be of one parameter, which returns a 
possibly intermediate function, which can be used further on in a calculation. 

 Currying allows us to understand every function as taking at most one parameter. 
Currying can be seen as a way of generating intermediate functions which accept 
additional parameters to complete a calculation  

 

The illustration below shows what happens to function signatures (parameter profiles) when we 
introduce currying. 

 
Figure 17.1    The signatures of curried functions. In the upper frame we 
show the signature of a function f, which takes three parameters. The 
frames below show the signature when f is curried. In the literature, the 
notation shown to the bottom right is most common. The frame to the left 
shows how to parse the notation (the symbol -> associates to the right). 
 
 

 Currying and Scheme is not related to each other. Currying must be integrated at a more 
basic level to be elegant and useful  
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17.2.  Currying in Scheme 
Lecture 4 - slide 22 

Despite the observations from above, we can explore and play with currying in Scheme. We will 
not, however, claim that it comes out as elegant as, for instance, in Haskell. 

 It is possible to generate curried functions in Scheme. 

But the parenthesis notation of Lisp does not fit very well with the idea of currying  

 

The function curry2 generates a curried version of a function, which accepts two parameters. The 
curried version takes one parameter at a time. Similarly, curry3 generates a curried version of a 
function that takes three parameters. 

The functions uncurry2 and uncurry3 are the inverse functions. 

It is worth a consideration if we can generalize curry2 and curry3 to a generation of curryn via a 
higher-order function curry, which takes n as parameter. We will leave that as an open question. 

(define (curry2 f) 
  (lambda(x) 
    (lambda(y) 
      (f x y)))) 
 
(define (curry3 f) 
  (lambda(x) 
    (lambda(y) 
      (lambda(z) 
       (f x y z))))) 
 
(define (uncurry2 f) 
  (lambda (x y) 
    ((f x) y))) 
 
(define (uncurry3 f) 
  (lambda (x y z) 
    (((f x) y) z))) 
 
 

 Program 17.1    Generation of curried and uncurried functions in Scheme.    
 

 Exercise 4.8. Playing with curried functions in Scheme 

Try out the functions curry2 and curry3 on a number of different functions. 

You can, for instance, use then curry functions on plus (+) and map. 

Demonstrate, by a practical example, that the uncurry functions and the curry functions are 
inverse to each other. 
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17.3.  Examples of currying 
Lecture 4 - slide 23 

Let us here show a couple of examples of the curry functions from Section 17.2. 

 Curried functions are very useful building blocks in the functional paradigm 

In particular, curried functions are adequate for mapping and filtering purposes  

 

The function font-1 is assumed to take three parameters. The font size (an integer), a color (in some 
particular representation that we do not care about here) and a text string on which to apply the font 
information. We show a possible implementation of font-1 in terms of the font mirror function in 
Program 17.2. 

Expression Value  
(font-1 4 red "Large red text") Large red text 
(define curried-font-1 (curry3 font-1)) 
(define large-font (curried-font-1 5)) 
((large-font blue) "Very large blue 
text") 

Very large blue text 

(define small-brown-font ((curried-font-
1 2) brown)) 
(small-brown-font "Small brown text") 

Small brown text  

(define large-green-font ((curried-font-
1 5) green)) 
(list-to-string (map large-green-font 
(list "The" "End")) " ") 

The End 

Table 17.1    Examples of currying in Scheme.  
 
 

(define (font-1 size color txt) 
  (font 'size (as-string size) 
        'color (rgb-color-encoding color) 
        txt)) 

 Program 17.2    A possible implementation of font-1 in terms of the font HTML mirror function.    

  

17.4.  Ad hoc currying in Scheme (1) 
Lecture 4 - slide 24 

In some situations we would wish that the map function, and similar functions, were curried in 
Scheme. But we cannot generate an f- mapper by evaluating the expression (map f). We get an 
error message which tells us that map requires at least two parameters. 



 118

In this section we will remedy this problem by a pragmatic, ad hoc currying made via use of a 
simple higher-order function we call curry-generalized. 

 It is possible to achieve 'the currying effect' by generalizing functions, which requires 
two or more parameters, to only require a single parameter  

 

In order to motivate ourselves, we will study a couple of attempts to apply a curried mapping 
function. 

Expression Value  

(map li (list "one" "two" "three")) 
("<li>one</li>" 
 "<li>two</li>" 
 "<li>three</li>") 

(define li-mapper (map li)) map: expects at least 2 arguments, given 1 

(define li-mapper ((curry2 map) li)) 
(li-mapper (list "one" "two" "three")) 

("<li>one</li>" 
 "<li>two</li>" 
 "<li>three</li>") 

Table 17.2    A legal mapping and an impossible attempt to curry the 
mapping function. The last example shows an application of curry2 to 
achieve the wanted effect, but as it appears, the solution is not very 
elegant. 

In Program 17.3 we program the function curry-generalized. It returns a function that 
generalizes the parameter f. If we pass a single parameter to the resulting function, the value of the 
red lambda expression is returned. If we pass more than one parameter to the resulting function, f is 
just applied in the normal way.  

(define (curry-generalized f) 
  (lambda rest 
    (cond ((= (length rest) 1) 
             (lambda lst (apply f (cons (car rest) lst)))) 
          ((>= (length rest) 2) 
             (apply f (cons (car rest) (cdr rest))))))) 

 
Program 17.3    The function curry-generalized. This is a higher-order function which generalizes 
the function passed as parameter to curry-generalized. The generalization provides for just 
passing a single parameter to f, in the vein of currying. 

 
 

The blue expression aggregates the parameters - done in this way to be compatible with the inner 
parts of the red expression. In a simpler version (cons (car rest) (cdr rest)) would be 
replace by rest. 

In the next section we see an example of curry generalizing the map function. 
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17.5.  Ad hoc currying in Scheme (2) 
Lecture 4 - slide 25 

We may now redefine map to (curry-generalized map). However, we usually bind the curry 
generalized mapping function to another name, such as gmap (for generalized map). 

This section shows an example, where we generate a li mapper, by (gmap li). 

Expression Value  
(define gmap (curry-generalized map)) 
(define li-mapper (gmap li)) 
(li-mapper (list "one" "two" "three")) 

("<li>one</li>"  
 "<li>two</li>"  
 "<li>three</li>") 

(gmap li (list "one" "two" "three")) 
("<li>one</li>"  
 "<li>two</li>" 
 "<li>three</li>") 

Table 17.3    Examples of curry generalization of map. Using curry-
generalized it is possible to make a li-mapper in an elegant and 
satisfactory way. The last row in the table shows that gmap can be used 
instead of map. Thus, gmap can in all respect be a substitution for map, 
and we may chose to redefine the name map to the value of (curry-
generalized map).  

If we redefine map to (curry-generalized map), the new mapping function can be used instead 
of the old one in all respects. In addition, (map f) now makes sense; (map f) returns a function, 
namely an f mapper. Thus ((map li) "one" "two" "three") does also make sense, and it gives 
the result shown in one of value cells to the right of Table 17.3. 

  

17.6.  References 

[-] Foldoc: curried function 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=curried+function 
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18.  Web related higher-order functions 

We finish our coverage of higher-order functions with a number of examples from the web domain. 

  

18.1.  HTML mirror generation 
Lecture 4 - slide 27 

In this section we will, in a principled way, show how to generate simple HTML mirror functions in 
Scheme. Please notice that the HTML mirror functions in LAML are more sophisticated and 
elaborate than the ones discussed here. 

 There are three different cases to consider: double tag elements, single tag elements, and 
tags that can be both single and double.  

 

A well-known tag, that can be both single and double is the p tag. 

The higher-order functions generate-double-tag-function and generate-single-tag-
function are the top level functions. They rely on a couple of other functions, which we program 
in Program 18.2 - Program 18.4. 

(define (generate-double-tag-function tag-name) 
  (lambda (contents . attributes) 
    (double-tag tag-name contents attributes))) 
 
(define (generate-single-tag-function tag-name) 
  (lambda attributes 
    (single-tag tag-name attributes))) 

 Program 18.1    The two higher-order functions for the HTML mirror generation. This version 
corresponds to the an earlier version of LAML's HTML mirror.   

 
 
(define (single-tag name attributes) 
 (start-tag name attributes)) 
 
(define (double-tag name contents attributes) 
 (string-append (start-tag name attributes) 
                (as-string contents) 
                (end-tag name))) 
 

 Program 18.2    Functions that generate single and double tags.    
 

The functions start-tag and end-tag are used in Program 18.2 and implemented in Program 18.3. 
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(define (start-tag kind attributes) 
  (if (null? attributes)  
      (string-append "<" kind ">") 
      (let ((html-attributes (linearize-attributes attributes))) 
         (string-append "<" kind " " html-attributes " >")))) 
 
(define (end-tag kind) 
  (string-append "</" kind ">")) 

 Program 18.3    Functions that generate individual single and double tags.    

The missing aspect at this point is the attribute handling stuff. It is made in Program 18.4. 

(define (linearize-attributes attr-list) 
  (string-append   
    (linearize-attributes-1 
      (reverse attr-list) "" (length attr-list)))) 
 
(define (linearize-attributes-1 attr-list res-string lgt) 
  (cond ((null? attr-list) res-string) 
        ((>= lgt 2)  
          (linearize-attributes-1  
           (cddr attr-list) 
           (string-append  
            (linearize-attribute-pair 
             (car attr-list) (cadr attr-list)) " " res-string) 
           (- lgt 2))) 
        ((< lgt 2)  
          (error "The attribute list must have even length")))) 
 
(define (linearize-attribute-pair val attr) 
  (string-append (as-string attr) 
                  " = " (string-it (as-string val)))) 

 Program 18.4    Functions for attribute linearization. The parameter attr-list is a property list.    

Recall that property lists, as passed to the function linearize-attributes in Program 18.4 have 
been discussed in Section 6.6. 

There are several things to notice relative to LAML. First, the HTML mirror in LAML does not 
generate strings, but an internal representation akin to abstract syntax trees. 

Second, the string concatenation done in Program 18.1 through Program 18.4, where a lot of small 
strings are aggregated, generates a lot of 'garbage strings'. The way this is handled (by the render 
functions in LAML) is more efficient, because we write string parts directly into a stream (or into a 
large, pre-allocated string). 

You will find more details about LAML in Chapter 25 and subsequent chapters. 
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18.2.  HTML mirror usage examples 
Lecture 4 - slide 28 

Let us now use the HTML mirror generation functions, which we prepared via generate-double-
tag-function and generate-single-tag-function in Section 18.1. 

 The example assumes loading of laml.scm and the function map-concat, which 
concatenates the result of a map application. 

The real mirrors use implicit (string) concatenation  

 

As noticed above, there some differences between the real LAML mirror functions and the ones 
programmed in Section 18.1. The functions from above require string appending of such 
constituents as the three tr element instances in the table; This is inconvenient. Also, the mirror 
functions from above require that each double element gets exactly one content string followed by a 
number of attributes. The real LAML mirror functions accept pieces of contents and attributes in 
arbitrary order (thus, in some sense generalizing the XML conventions where the attributes come 
before the contents inside the start tag). Finally, there is no kind of contents nor attribute validation 
in the mirror functions from above. The LAML mirror functions validate both the contents and the 
attributes relative to the XML Document Type Definition (DTD). 
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Expression Value  
(let* ((functions 
         (map generate-double-tag-
function  
              (list "table" "td" 
"tr"))) 
       (table (car functions)) 
       (td (cadr functions)) 
       (tr (caddr functions))) 
 (table 
  (string-append 
   (tr  
     (map-concat td (list "c1" "c2" 
"c3")) 
     'bgcolor "#ff0000") 
   (tr 
     (map-concat td (list "c4" "c5" 
"c6"))) 
   (tr 
     (map-concat td (list "c7" "c8" 
"c9")))) 
  'border 3)) 

<table border="3"> 
   <tr bgcolor="#ff0000"> 
     <td> c1 </td> 
     <td> c2 </td>  
     <td> c3 </td>   
   </tr> 
   <tr>  
     <td> c4 </td>  
     <td> c5 </td> 
     <td> c6 </td> 
   </tr> 
   <tr>  
     <td> c7 </td> 
     <td> c8 </td> 
     <td> c9 </td> 
   </tr> 
</table> 

Same as above 
c1 c2 c3 
c4 c5 c6 

c7 c8 c9 
 

Table 18.1    An example usage of the simple HTML mirror which we 
programmed on the previous page. The bottom example shows, as in 
earlier similar tables, the HTML rendering of the constructed table. The 
map-concat function used in the example is defined in the general 
LAML library as (define (map-concat f lst) (apply 
string-append (map f lst))). In order to actually evaluate the 
expression you should load laml.scm of the LAML distribution first. 

To show the differences between the simple mirror from Section 18.1 and the real mirror we will 
show the same example using the XHTML mirror functions in Section 18.3. 

  

18.3.  Making tables with the real mirror 
Lecture 4 - slide 29 

 The real mirror provide for more elegance than the simple mirror illustrated above 

Here we will use the XHTML1.0 transitional mirror  

 

In the example below there is no need to string append the tr forms, and there is no need to use a 
special string appending mapping function, like map-concat from Table 18.1. Attributes can appear 
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before, within, or after the textual content. This makes the HTML mirror expression simpler and 
less clumsy. The rendering result is, however, the same. 

Expression Rendered value  

(table 
  'border 3 
   (tr  
     (map td (list "c1" "c2" "c3")) 
     'bgcolor "#ff0000") 
   (tr 
     (map td (list "c4" "c5" "c6"))) 
   (tr 
     (map td (list "c7" "c8" "c9"))) 
) 

<table border = "3"> 
  <tr bgcolor = "#ff0000"> 
   <td>c1</td> 
   <td>c2</td> 
   <td>c3</td> 
  </tr>  
  <tr> 
   <td>c4</td>  
   <td>c5</td>  
   <td>c6</td> 
  </tr>  
  <tr> 
    <td>c7</td> 
    <td>c8</td> 
    <td>c9</td> 
  </tr> 
</table> 

Same as above 
c1 c2 c3 
c4 c5 c6 

c7 c8 c9 
 

Table 18.2    A XHTML mirror expression with a table corresponding to 
the table shown on the previous page and the corresponding HTML 
fragment. Notice the absence of string concatenation. Also notice that the 
border attribute is given before the first tr element. The border attribute 
could as well appear after the tr elements, or in between them.  

You might think, that the example above also could be HTML4.01. But, not quite, in fact. In 
HTML4.01 there need to be a tbody (table body) form in between the tr instances and the table 
instance. Without this extract level, the table expression will not be valid. Try it yourself! It is easy. 

[How, you may ask. In Emacs do M-x set-interactive-laml-mirror-library and enter html-
4.01. Then do M-x run-laml-interactively. Copy the table expression from above, and try it 
out. You can shift to XHTML1.0 by M-x set-interactive-laml-mirror-library and asking 
for xhtml-1.0-transitional, for instance. Then redo M-x run-laml-interactively. Be sure to 
use xml-render on the result of (table ...) to make a textual rendering. ] 

  

18.4.  Tables with higher-order functions 
Lecture 4 - slide 30 

In the context of higher-order functions there are even better ways to deal with tables than the one 
shown in Table 18.2 from Section 18.3. 

The table expression in the last line in Table 18.3 shows how. 
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 Instead of explicit composition of td and tr elements we can use a mapping to apply tr 
to rows and td to elements 

 

 

   

Expression Value  
(define rows  
  '(("This" "is" "first" "row") 
   ("This" "is" "second" "row") 
   ("This" "is" "third" "row") 
   ("This" "is" "fourth" "row")) 
) 
 
(table 'border 5 
    (gmap (compose tr (gmap td)) 
rows)) 

This is first row 
This is second row 

This is third row 
This is fourth row 

 

Table 18.3    In the table expression we map - at the outer level - a 
composition of tr and a td-mapper. The td-mapper is made by (gmap 
td). 

Recall that we already have discussed the ad hoc currying, which is involved in gmap, cf. the 
discussion in Section 17.4. 

 The last example illustrates that (gmap td) is a useful building block, which can be 
composed with other functions. 

The last example depends on the fact that the HTML mirror functions accept lists of 
elements and attributes. 

 

 

You should consult Chapter 26 to learn about the exact parameter passing rules of the HTML mirror 
functions in LAML. 

  

18.5.  HTML element modifications 
Lecture 4 - slide 31 

It is often useful in some context to bind an attribute of a HTML mirror function (or a number of 
attributes) to some fixed value(s). This can be done by the higher-order function modify-element, 
which we discuss below. 

 The idea behind the function modify-element is to perform an a priori binding of some 
attributes and some of the contents of a mirror function. 

 

 

The function modify-element is simple. First notice that it accepts a function, namely the element 
parameter. It also returns a function; In effect, it returns element with attributes-and-contents 
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appended to the parameters of the modified element. As another possibility, we could have 
prepended it. 

(define (modify-element element . attributes-and-contents) 
  (lambda parameters  
   (apply element  
    (append parameters attributes-and-contents)))) 

 Program 18.5    The function modify-element.    

In the table below we illustrate three examples where td, ol, and ul are modified with a priori 
bindings of selected attributes. 

Expression Value  

(define td1  
 (modify-element td  
  'bgcolor (rgb-color-list red) 
  'width 50)) 
 
(table 'border 5  
  (map (compose tr (gmap td1)) rows)) 

This is first row 
This is second row 

This is third row 
This is fourth row 

 

(define ol1  
  (modify-element ol 'type "A")) 
 
(ol1  
 (map 
   (compose li as-string) 
   (number-interval 1 10))) 

A. 1 
B. 2 
C. 3 
D. 4 
E. 5 
F. 6 
G. 7 
H. 8 
I. 9 
J. 10 

(define ul1  
  (modify-element ul 'type "square")) 
 
(ul1  
 (map 
  (compose li as-string) 
  (number-interval 1 10))) 

§ 1 
§ 2 
§ 3 
§ 4 
§ 5 
§ 6 
§ 7 
§ 8 
§ 9 
§ 10 

Table 18.4    Examples of element modification using the function 
modify-element. 

LAML supports two related, but more advanced functions called xml-in-laml-parametrization 
and xml-in-laml-abstraction. The first of these is intended to transform an 'old style function' to 
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a function with XML-in-LAML parameter conventions, as explained in Chapter 26. The second 
function is useful to generate functions with XML-in-LAML parameter conventions in general. 

  

18.6.  The function simple-html-table 
Lecture 4 - slide 32 

We will now show show an implementation of the function simple-html-table 

 In an earlier exercise - 'restructuring of lists' - we have used the function simple-html-
table 

We will now show how it can be implemented  

 

   
(define simple-html-table  
 (lambda (column-widht list-of-rows) 
  (let ((gmap (curry-generalized map)) 
        (td-width  
          (modify-element td 'width 
                          (as-string column-widht)))) 
    (table  
      'border 1 
      (tbody  
       (gmap (compose tr (gmap td-width)) list-of-rows)))))) 

 

Program 18.6    The function simple-html-table. Locally we bind gmap to the curry generalized map 
function. We also create a specialized version of td, which includes a width attribute the value of 
which is passed as parameter to simple-html-table . In the body of the let construct we 
create the table in the same way as we have seen earlier in this lecture.  

 

 

  

 

18.7.  The XHTML mirror in LAML 
Lecture 4 - slide 33 

In order to illustrate the data, on which the HTML mirrors in LAML rely, the web edition of the 
material includes a huge table with the content model and attribute details of each of the 77 
XHTML1.0 strict elements. 

 LAML supports an exact mirror of the 77 XHTML1.0 strict elements as well as the 
other XHTML variants 

The LAML HTML mirror libraries are based on a parsed representation of the HTML 
DTD (Document Type Definition). The table below is automatically generated from the 
same data structure. 
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The table is too large to be included in the paper version of the material. Please take a look in the 
corresponding part of the web material to consult the table. 

  

18.8.  Generation of a leq predicate from enumeration 
Lecture 4 - slide 34 

As the last example related to higher-order functions we show the function generate-leq, see 
Program 18.7. 

The idea is to generate a boolean 'less than or equal' (leq) function based on an explicit enumeration 
order, which is given as input to the function generate-leq. A number of technicalities are 
involved. You should read the details in Program 18.7 to grasp these details. 

 In some contexts we wish to specify a number of clauses in an arbitrary order 

For presentational clarity, we often want to ensure that the clauses are presented in a 
particular order 

Here we want to generate a leq predicate from an enumeration of the desired order  

 

   
;; Generate a less than or equal predicate from the 
;; enumeration-order. If p is the generated predicate, 
;; (p x y) is true if and only if (selector x) comes before 
;; (or at the same position) as (selector y) in the 
;; enumeration-order. Thus, (selector x) is assumed to give a 
;; value in enumeration-order. Comparison with elements in the 
;; enumeration-list is done with eq? 
(define (generate-leq enumeration-order selector) 
  (lambda (x y) 
     ; x and y supposed to be elements in enumeration order 
     (let ((x-index (list-index (selector x) enumeration-order)) 
           (y-index (list-index (selector y) enumeration-order))) 
       (<= x-index y-index)))) 
 
; A helping function of generate-leq. 
; Return the position of e in lst. First is 1 
; compare with eq? 
; if e is not member of lst return (+ 1 (length lst)) 
(define (list-index e lst) 
 (cond ((null? lst) 1) 
       ((eq? (car lst) e) 1) 
       (else (+ 1 (list-index e (cdr lst)))))) 

 Program 18.7    The functions generate-leq and the helping function list-index .    

The table below shows a very simple example, in which we use simple-leq?, which is generated 
by the higher-order function generate-leq from Program 18.7. 
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Expression Value  
(define simple-leq?  
  (generate-leq '(z a c b y x) id-1)) 
 
(sort-list '(a x y z c c b a) simple-
leq?) 

(z a a c c b y x) 

Table 18.5    A simple example of an application of generate-leq. 

The fragment in Program 18.8 gives a more realistic example of the use of generated 'less than or 
equal' functions. In Program 18.9 we show how the desired sorting of manual-page subelements is 
achieved. 

(manual-page  
 (form '(show-table rows)) 
 (title "show-table") 
 (description "Presents the table, in terms of rows") 
 (parameter "row" "a list of elements") 
 (pre-condition "Must be placed before the begin-notes clause") 
 (misc "Internally, sets the variable lecture-id") 
 (result "returns an HTML string") 
) 

 
Program 18.8    A hypothetical manual page clause. Before we present the clauses of the manual 
page we want to ensure, that they appear in a particular order, say title, form, description, pre-
condition, result, and misc. In this example we will illustrate how to obtain such an ordering in an 
elegant manner. 

 

 
(define (syntactic-form name) 
  (lambda subclauses (cons name subclauses))) 
 
(define form (syntactic-form 'form)) 
(define title (syntactic-form 'title)) 
(define description (syntactic-form 'description)) 
(define parameter (syntactic-form 'parameter)) 
(define pre-condition (syntactic-form 'pre-condition)) 
(define misc (syntactic-form 'misc)) 
(define result (syntactic-form 'result)) 
 
(define (manual-page . clauses) 
 (let ((clause-leq?  
         (generate-leq 
           '(title form description  
             pre-condition result misc) 
           first)) 
      ) 
  (let ((sorted-clauses (sort-list clauses clause-leq?))) 
    (present-clauses sorted-clauses)))) 
 
 
 
 
 

 Program 18.9    An application of generate-leq which sorts the manual clauses.    



 131

  

18.9.  References 

[-] The XHTML1.0 frameset validating mirror 
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/xml-in-
laml/mirrors/man/xhtml10-frameset-mirror.html 

[-] The XHTML1.0 transitional validating mirror 
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/xml-in-
laml/mirrors/man/xhtml10-transitional-mirror.html 

[-] The XHTML1.0 strict validating mirror 
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/xml-in-
laml/mirrors/man/xhtml10-strict-mirror.html 

[-] The HTML4.01 transitional validating mirror 
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/html4.01-transitional-
validating/man/surface.html 
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19.  Introduction to evaluation order 

At this point in the material we start our coverage of evaluation order. We start by discussing the 
idea of referential transparency. 

  

19.1.  Referential transparency 
Lecture 5 - slide 2 

The main idea behind the concept of referential transparency is captured by the point below. 

 Two equal expressions can substitute each other without affecting the meaning of a 
functional program  

 

As formulated above, the possibility of substituting one expression by another depends on whether 
or not the two expressions are considered as being equal. As noticed in Section 4.5 there are a 
number of different interpretations of equality around in Scheme, as well as in other programming 
languages. 

As we observe in the items below, we can use even the weakest form of equality, namely structural, 
deep equality, for our observations about referential transparency. In other words, if two structures 
are structurally equal, the expressions and values involved may substitute each other. 

 • Referential transparency 
• provides for easy equational reasoning about a program 
• does not rely on a particular notion of equality 

• Reference equality, shallow equality and deep equality cannot be 
distinguished by functional means 

• is a major contrast to imperative programming 

 

The idea of referential transparency can be stated very briefly in the following way: 

 Equals can be replaced by equals  
 

  

19.2.  An illustration of referential transparency 
Lecture 5 - slide 3 

Before we proceed we will illustrate some practical uses of referential transparency. 
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 With referential transparency it is possible to perform natural program transformations 
without any concern of side effects  

 

The two expressions in the top left and the top right boxes of Figure 19.1 may substitute each other, 
provided that the function F is a pure function (without side effects). 

In the case where F is a value returning procedure, as illustrated in the bottom box of Figure 19.1 it 
is clear that it is important how many times F is actually evaluated. The reason is that an evaluation 
of F affects the value of the variable c, which is used in the top level expressions. (Thus, F is an 
imperative abstraction - a procedure). 

 
Figure 19.1    It is possible to rewrite one of the expressions above to the 
other, provided that F is a function. Below, we have illustrated an 
example where F is of procedural nature. Notice that F assigns the 
variable c, such that it becomes critical to know how many times F is 
called. 

On the ground of this example it is worth observing that equational reasoning about functional 
programs is relatively straightforward. If procedures are involved, as F in the bottom box of Figure 
19.1, it is much harder to reason about the expression, for instance with the purpose of simplifying 
it (as it is the case when substituting the expression to the left with the expression to the right in the 
top-part of Figure 19.1). 

  

19.3.  Arbitrary evaluation order - with some limits 
Lecture 5 - slide 5 

In this section we will discuss the order of subexpression evaluation in a composite expression. 

 In a functional program an expression is evaluated with the purpose of producing a 
value 

An expression is composed of subexpressions  
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Take a look at one of the expressions in Figure 19.2. The underlying syntax trees are shown below 
the expressions in the figure. The question is which of the subexpressions to evaluate first, which 
comes next, and which one is to be the last. 

 
Figure 19.2    An illustration of an expression with subexpressions. 

To be concrete, we can propose to start from the left leaf, from the right leaf, from the top, or 
perhaps from some location in the middle of the expression. 

In the functional programming context, with expressions and pure functions, we will probably 
expect that an arbitrary evaluation order is possible. If we should devise a practical recipe we will 
probably start from one of leafs (say the leftmost leaf) and work our way to the expression in the 
root. 

As noticed below, we can actually use an arbitrary evaluation order, provided that there are no 
errors in any of the subexpressions, and provided that all of the involved evaluations terminate. 

 • Subexpressions can be evaluated in an arbitrary order provided that 
• no errors occur in subexpressions 
• the evaluation of all subexpressions terminates 

• It is possible, and without problems, to evaluate subexpressions in parallel 

 

In the rest of this section, as well as in Chapter 20 we will study and understand the premises and 
the limits of 'arbitrary evaluation order'. 

  

19.4.  A motivating example 
Lecture 5 - slide 6 

It is valuable to understand the problems and the quirks of evaluation order by looking at a very 
simple program example. 

 What is the value of the following expression? 
 

 



 136

The lambda expression in Program 19.1 shows a pseudo application of the constant function, which 
returns 1 for every possible input x. The tricky part is, however, that we pass an actual parameter 
expression which never terminates. 

((lambda (x) 1) some-infinite-calculation) 

 Program 19.1    A constant function with an actual parameter expression, the evaluation of which 
never terminates.   

 

It is not difficult to write a concrete Scheme program, which behave in the same way as Program 
19.1. Such a program is shown in Program 19.2. The parameter less function infinite-
calculation just calls itself forever recursively. 

(define (infinite-calculation) 
  (infinite-calculation)) 
 
((lambda (x) 1) (infinite-calculation)) 

 Program 19.2    A more concrete version of the expression from above. The function infinite-
calculation just calls itself without ever terminating.   

 

  

19.5.  A motivating example - clarification 
Lecture 5 - slide 7 

As noticed below, it can be argued that the value of the expression in Program 19.1 is 1, due to the 
reasoning that the the result of the function (lambda (x) 1) is independent of the formal 
parameter x. 

It can also be argued that an evaluation of the actual parameter expression (infinite-
calculation) stalls the evaluation of the surrounding expression, such that the expression in 
Program 19.1 does not terminate. In Scheme, as well as in most other programming languages, this 
will be the outcome. 

The items below summarizes these two possibilities, and they introduce two names of the two 
different function semantics, which are involved. 

 • Different evaluation orders give different 'results' 
• The number 1 
• A non-terminating calculation 

• Two different semantics of function application are involved: 
• Strict: A function call is well-defined if and only if all actual parameters are 

well-defined 
• Non-strict: A function call can be well-defined even if one or more actual 

parameters cause an error or an infinite calculation 
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In most languages, functions are strict. This is also the case in Scheme. In some languages, 
however, such as Haskell and Miranda, functions are non-strict. As we will see in the following, 
languages with non-strict functions are very interesting, and they open up new computational 
possibilities. 

  

19.6.  References 

[-] Foldoc: referential transparency 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=referential+transparency 
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20.  Rewrite rules, reduction, and normal forms 

At this point in the material it will be assumed that the reader is motivated to study evaluation order 
in some detail. 

An evaluation of an expression can be understood as a transformation of the expressions which 
preserves its meaning. In this chapter we will see that transformations can be done incrementally in 
rewriting steps. A rewriting of an expression gives a new expression which is semantically 
equivalent to the original one. Usually, we go for rewritings which simplify an expression. In 
theory, however, we could also rewrite an expression to more complicated expression. 

In this chapter we will formally characterize the value of an expression, using the concept of a 
normal form. We will see that the value of an expression is an expression in itself that cannot be 
rewritten to simpler forms by use of any rewriting rules. 

As a key insight in this chapter, we will also see that an expression can be reduced to a value (a 
normal form) in many different ways. We will identify and name a couple of these, and we will 
discuss which of the evaluation strategies is the 'best'. 

  

20.1.  Rewrite rules 
Lecture 5 - slide 9 

This section gives an overview of the rewrite rules, we will study in the subsequent sections.  

 The rewrite rules define semantics preserving transformations of expressions 

The goal of applying the rewrite rules is normally to reduce an expression to the 
simplest possible form, called a normal form.  

 

   

 • Overview of rewrite rules 
• Alpha conversion: rewrites a lambda expression 
• Beta conversion: rewrites general function calls 

• Expresses the idea of substitution, as described by the substitution model 
• Eta conversion: rewrites certain lambda expressions to a simpler form 

 

The Beta conversion corresponds to the substitution model of function calls, which is explained in 
[Abelson96]. (See section of 1.1.5 of [Abelson96] for the details). 
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20.2.  The alpha rewrite rule 
Lecture 5 - slide 10 

The first rewrite rule we encounter is called the alpha rewrite rule. From a practical point of view 
this rule is not very interesting, however. The rule tells under which circumstances it is possible to 
use other names of the formal parameters. Recall in this context that the formal parameter names 
are binding name occurrences, cf. Section 8.8. 

 An alpha conversion changes the names of lambda expression formal parameters 
 

 

Here comes the formulation of the alpha rewrite rule. 

 Formal parameters of a lambda expression can be substituted by other names, which are 
not used as free names in the body  

 

Recall in the context of this discussion that a free name in a construct is applied, but not bound (or 
defined) in the construct. See Section 8.11 for additional details about free names. 

In Table 20.1 we see an example of a legal use of the alpha rewrite rule. The formal names x and y 
of the lambda expression are changed to a and b, respectively. It is fairly obvious that this causes no 
problems nor harm. The resulting lambda expression is fully equivalent with the original one. 

Expression Converted Expression 
(lambda (x y) (f x y)) (lambda (a b) (f a b)) 

Table 20.1    An example of an alpha rewriting. The name a replaces x 
and the name y replaces y. 

More interesting, we show an example of an illegal use of the alpha rewrite rule in Table 20.2. 
Again we change the name x to a. The name of the other formal parameter is changed to f. But f is 
a free name in the lambda expression. It is easy to see that the converted expression in Table 20.2 
has changed its meaning. The name f is now bound in the formal parameter list. Thus, the rewriting 
in Table 20.2 is illegal. 

Expression Converted Expression 
(lambda (x y) (f x y)) (lambda (a f) (f a f)) 

Table 20.2    Examples of an illegal alpha conversion. f is a free name in 
the lambda expression. A free name is used, but not defined (bound) in 
the lambda expression. In case we rename one of the parameters to f, the 
free name will be bound, hereby causing an erroneous name binding. 
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20.3.  The beta rewrite rule 
Lecture 5 - slide 11 

The beta rewrite rule is the one to watch carefully, due to its central role in any evaluation process 
that involves the calling of functions. 

 A beta conversion tells how to evaluate a function call  
 

The beta rewrite rules goes as follows. 

 An application of a function can be substituted by the function body, in which formal 
parameters are substituted by the corresponding actual parameters  

 

It is worth noticing that there are no special conditions for the application of the beta rewrite rule. In 
that way the rule is different from both the alpha rewrite rule, which we studied in Section 20.2, and 
it is also different from the eta rewrite rule which we encounter in Section 20.4 below. All the 
examples in Table 20.3 are legal examples of beta rewritings. 

Expression Converted Expression 
((lambda(x) (f x)) a) (f a) 
((lambda(x y) (* x (+ x y))) (+ 3 4) 5) (* 7 (+ 7 5)) 
((lambda(x y) (* x (+ x y))) (+ 3 4) 5) (* (+ 3 4) (+ (+ 3 4) 5)) 

Table 20.3    Examples of beta conversions. In all the three examples the 
function calls are replaced by the bodies. In the bodies, the formal 
parameters are replaced by actual parameters. 

Be sure to understand that the beta rewrite rule tells us how to implement a function call, at least in 
a principled way. In a practical implementation, however, the substitution of formal parameters by 
(more or less evaluated) actual parameters is not efficient. Therefore, in reality, the bindings of the 
formal parameters are organized in name binding frames, in so-called environments. Thus, instead 
of name substitution (as called for in the beta rewrite rules), the formal names are looked up in a 
name binding environment, when they are needed in the body of the lambda expression. 

The implementation of eval in a Scheme interpreter describes the details of a practical and real life 
use of the beta rewrite rule. See Section 24.3 for additional details. 

  

20.4.  The eta rewrite rule 
Lecture 5 - slide 12 

The eta rewrite rules transforms certain lambda expressions. As such the eta rewrite rule is similar 
to the alpha rewrite rule, but radically different from the beta rewrite rule. 



 142

 An eta conversion lifts certain function calls out of a lambda convolute 
 

 

In loose terms, the eta rewrite rule can be formulated in the following way. Be aware, however, that 
there is a condition associated with applications of the eta rewrite rule. The condition is described 
below. 

 A function f, which only passes its parameters on to another function e, can be 
substituted by e  

 

Here is a slightly more formal - and more precise - description of the eta rewrite rule: 

 (lambda(x) (e x)) <=> e   provided that x is not free in the expression e 

In the same way as above for alpha conversions in Section 20.2 we will give examples of legal and 
illegal uses of the eta rule. 

The example in Table 20.4 shows that the lambda expression around square is superfluous. In the 
eta-rewritten expression, the lambda surround of square is simply discarded. 

Expression Converted Expression 
(lambda (x) (square x)) square 

Table 20.4    An example of an eta rewriting. 

It is slightly more complicated to illustrate an illegal use of the rule. In the expression of the left cell 
in Table 20.5 we are attempting to eliminate the outer lambda expression by use of the eta rewrite 
rule. Notice, however, that x is free in the inner blue lambda expression. Therefore the eta rewriting 
illustrated in Table 20.5 is not legal. By applying the rewriting rule on the left part of Table 20.5 
anyway we loose the binding of x, and therefore the rewriting does not preserve the semantics of the 
left cell expression.  

Expression Converted Expression 
(lambda(x) ((lambda(y) (f x y)) x)) (lambda(y) (f x y)) 

Table 20.5    An example of an illegal eta conversion. The eta conversion 
rule says in general how 'e' is lifted out of the lambda expressions. In this 
example, e corresponds to the emphasized inner lambda expression 
(which is blue on a color medium.) However, x is a free name in the inner 
lambda expression, and therefore the application of the eta rewrite rule is 
illegal. 

This completes our discussion of rewriting rules, and we will now look at the concept of normal 
forms. 
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20.5.  Normal forms 
Lecture 5 - slide 13 

As already mentioned above, the value v of an expression e is a particular simple expression which 
is semantically equivalent with e. The expression v is obtained from e by a number of rewriting 
steps. 

 Normal forms represent our intuition of the value of an expression  
 

Here is the definition of a normal form. 

 An expressions is on normal form if it cannot be reduced further by use of beta and eta 
conversions  

 

Notice in the definition that we talk about reduction. By this is meant application of the rewrite 
rules 'from left to right'. 

 • About normal forms 
• Alpha conversions can be used infinitely, and as such they do not play any role in 

the formulation of a normal form 
• A normal form is a particular simple expression, which is equivalent to the 

original expression, due to the application of the conversions 

 

Normal forms are simple to understand. But there are a number of interesting and important 
questions that need to be addressed. One of them is formulated below. 

 Is a normal form always unique?  
 

The answer to the question will be found in Section 20.9. 

  

20.6.  The ordering of reductions 
Lecture 5 - slide 14 

As discussed in Section 19.3 we can expect that the concrete order of eva luation steps will matter, 
especially in the cases where errors or infinite calculations are around in some of the 
subexpressions. 

Evaluation steps are now understood as reductions with the beta or eta rewrite rule. 

In this section we will identify and name a couple of evaluation strategies or plans. Such a strategy 
determines the order of use of the beta and eta reduction rules. 
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 Given a complex expression, there are many different orderings of the applicable 
reductions  

 

   

 Using normal-order reduction, the first reduction to perform is the one at the outer level 
of the expression 

Using applicative-order reduction, the first reduction to perform is the inner leftmost 
reduction  

 

   

 • Normal-order reduction represents evaluation by need 
• Applicative-order reduction evaluates all constituent expressions, some of which are 

unnecessary or perhaps even harmful. As such, there is often a need to control the 
evaluation process withspecial formsthat use a non-standard evaluation strategy 

 

Let it be clear here, that many other evaluation strategies could be imagined. The practical 
relevance of additional strategies is another story, however. 

Applicative-order reduction represents 'the usual' evaluation strategy, used for expressions in most 
programming languages. Normal-order reduction represents a new approach, which is used in a few 
contemporary functional programming languages.  

In Section 20.10 we will discuss examples of the special forms mentioned in the item discussing the 
applicative-order reduction. 

  

 

20.7.  An example of normal versus applicative evaluation 
Lecture 5 - slide 15 

Let us illustrate the difference between normal-order reduction and applicative-order reduction via a 
concrete example. 

 Reduction of the expression ((lambda(x y) (+ (* x x) (* y y))) (fak 5) (fib 
10))  

 

The example involves an application of the blue function (lambda(x y) (+ (* x x) (* y y))) 
on the actual parameters (fak 5) and (fib 10). The functions fak and fib are shown in Program 
20.1. 

In Program 20.1 we show definitions of fak and fib, together with the example expression. 
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(define (fak n) 
  (if (= n 0) 1 (* n (fak (- n 1))))) 
 
(define (fib n) 
  (cond ((= n 0) 0) 
        ((= n 1) 1) 
        (else (+ (fib (- n 1)) (fib (- n 2)))))) 
 
((lambda(x y) (+ (* x x) (* y y)))  (fak 5)  (fib 10)) 

 Program 20.1    The necessary Scheme stuff to evaluate the expression.    

In Figure 20.1 applicative-order reduction is outlined in the leftmost path of the graph. With 
applicative-order reduction we first evaluate the lambda expression, then (fak 5) and (fib 10). 
The evaluation of the lambda expression gives a function object. Notice that the expensive 
calculations of (fak 5) and (fib 10) are only made once. The last step before the addition and the 
multiplications is a beta reduction, with which the function is called.  

The normal order reduction is illustrated with the path to the right in Figure 20.1. The outer 
reduction is a beta reduction, in which we substitute the non-reduced parameter expressions (fak 
5) and (fib 10). Notice that the calculation of (fak 5) and (fib 10) are made twice. 

 
Figure 20.1    Normal vs. applicative reduction of a Scheme expression 

As an immediate insight from the example we will emphasize the following: 

 It appears to be the case that normal order reduction can lead to repeated evaluation of 
the same subexpression  

 

  

20.8.  Theoretical results 
Lecture 5 - slide 16 

We will now cite some theoretical results of great importance to the field. 

 The theoretical results mentioned on this page assure some very satisfactory properties 
of functional programming  
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The results are based on a definition of confluence, which appears in the figure below. 

 
Figure 20.2    The rewriting => is confluent if for all e, e1 and e2, for 
which e => e1 and e => e2, there exists an e3 such that e1 => e3 and e2 => 
e3 

The results which we will use below are the following: 

 The first Church-Rosser theorem. Rewriting with beta and eta conversions are confluent. 

 The second Church-Rosser theorem. If e0 => ... => e1, and if e1 is on normal form, then there 
exists a normal order reduction of e0 to e1 

The practical consequences of the results will be discussed in the following section. 

  

20.9.  Practical implications 
Lecture 5 - slide 17 

 We will here describe the practical consequences of the theoretical results mentioned on 
the previous page 

 

 

   

 • During the evaluation of an expression, it will never be necessary to backtrack the 
evaluation process in order to reach a normal form. 

• An expression cannot be converted to two different normal forms (modulo alpha 
conversions, of course). 

• If an expression e somehow can be reduced to f in one or more steps, f can be reached by 
normal order reduction - but not necessarily by applicative order reduction 

 

Because rewriting with beta and eta reduction is confluent, according to the first Church-Rosser 
theorem in Section 20.8, we see that there can be no dead ends in an evaluation process. Assume 
there is, and you will get an immediate contradiction. 

The middle item is of particular importance because it guaranties that a normal form is unique. 
Assume that two different normal forms exist, and get a contraction with the first of the theorems. 

The last result is a direct consequence of the second Church-Rosser theorem. It says more or less 
that normal-order reduction is the most powerful evaluation strategy. Notice, however, the 
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efficiency penalties with are involved, due to repeated evaluation of expressions. This is the theme 
of Section 20.11. 

We can summarize as follows. 

 Normal-order reduction is more powerful than the applicative-order reduction 

Scheme and ML uses applicative-order reduction 

Haskell is an example of a functional programming language with normal-order 
reduction 

 

 

  

 

20.10.  Conditionals and sequential boolean operators 
Lecture 5 - slide 18 

In languages with applicative-order reduction there is a need to control the evaluation process in 
order to avoid the traps of erroneous and infinite calculations. In this section we review a couple of 
widely used and important forms from Scheme and Lisp. The evaluation control of these should in 
particular be noticed. 

 There are functional language constructs - special forms - for which applicative order 
reduction would not make sense  

 

   

 • (if b x y) 
• Depending on the value of b, either x or y are evaluated 
• It would often be harmful to evaluate both x and y before the selection 

• (define (fak n) (if (= n 0) 1 (* n (fak (- n 1))))) 

 
 • (and x y z) 

• and evaluates its parameter from left to right  
• In case x is false, there is no need to evaluate y and z 
• Often, it would be harmful to evaluate y and z 

• (and (not (= y 0)) (even? (quotient x y))) 

 

In the items above we discuss the general semantics of if and and. In the deepest items we give a 
concrete examples of if and and where the evaluation order matters.  

  



 148

20.11.  Lazy evaluation 
Lecture 5 - slide 19 

Lazy evaluation is a particular implementation of normal-order reduction which takes care of the 
lurking multiple evaluations identified in Section 20.7. 

 We will now deal with a practical variant of normal-order reduction  
 

   

 Lazy evaluation is an implementation of normal-order reduction which avoids repeated 
calculation of subexpressions  

 

In Figure 20.3 we show an evaluation idea which is based on normal-order reduction without 
multiple evaluation of parameters, which are used two or more times in the body of a function. 

It is not our intention in this material to go deeper into the realization of an interpreter that supports 
lazy evaluation. 

 
Figure 20.3    An illustration of lazy evaluation of a Scheme expression. 
Notice, that Scheme does not evaluate the expression in this way. Scheme 
uses applicative-order reduction. 

This end the general coverage of evaluation order. In the next chapter we will see how to explore 
the insights from this chapter in Scheme, which is a language with traditional, applicative-order 
reduction. 

  

20.12.  References 

[-] Foldoc: lazy evaluation 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=lazy+evaluation 
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http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=church-rosser 
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Computer Programs, second edition. The MIT Press, 1996.  
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21.  Delayed evaluation and infinite lists in 
Scheme 

As noticed in Chapter 19 and Chapter 20 the evaluation strategy in Scheme is the one called 
applicative order, cf. Section 20.6. 

In contrast to normal-order reduction and lazy evaluation - as described in Section 20.6 and Section 
20.11 - we can think of Scheme as eager in the evaluation of the function parameters. 

In this chapter we will see how to make use of a new eva luation idea in terms of explicitly delaying 
the evaluation of certain expressions. This is the topic of Section 21.1 and Section 21.2. 

  

21.1.  Delayed evaluation in Scheme 
Lecture 5 - slide 21 

The starting point of our discussion is now clear. 

 Scheme does not support normal-order reduction nor lazy evaluation 

Scheme has an explicit primitive which delays an evaluation  

 

The delay and force primitives are described in Syntax 21.1 and Syntax 21.2. The delay primitive 
returns a so-called promise, which can be redeemed by the force primitive. Thus, the composition 
of delay and force carry out a normal evaluation step. 

 
(delay expr) => promise  
 Syntax 21.1       
 
(force promise) => value  
 Syntax 21.2       

In Program 21.1 we show simple implementations of delay and force. In Program 21.2 we show 
possible implementations of delay by means of Scheme macros. 

(delay expr) ~ (lambda() expr) 
 
(define (force promise) (promise)) 

 Program 21.1    A principled implementation of delay and force in Scheme.    
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The thing to notice is the semantic idea behind the implementation of delay. The expression 
(delay expr) is equivalent to the expression (lambda () expr). The first expression is supposed 
to replace the other expression at program source level. The value of the lambda expression is a 
closure, cf. Section 8.11, which captures free names in its context together with the syntactic form 
of expr. As it appears from the definition of the function force in Program 21.1 the promise 
returned by the delay form is redeemed by calling the parameter less function object. It is easy to 
see that this carries out the evaluation of expr. 

Be sure to observe that force can be implemented by a func tion, whereas delay cannot. The reason 
is, of course, that we cannot allow a functional implementation of delay to evaluate the parameter 
of delay. The whole point of delay is to avoid such evaluation. This rules out an implementation 
of delay as a function. The force primitive, on the other hand, can be implemented by a function, 
because it works on the value of a lambda expression. 

Please notice that other implementations of delay and force can easily be imagined. The Scheme 
Report describes language implementations of delay and force, which may use other means than 
described above to obtain the same semantic effect, cf. [delay-primitive] and [force-primitive]. 

 

; R5RS syntactic abstraction: 
(define-syntax my-delay  
  (syntax-rules () 
    ((delay expr) 
     (lambda () 
        expr)))) 
 
; MzScheme syntactic abstraction: 
(define-macro my-delay 
  (lambda (expr) 
    `(lambda () ,expr))) 

 
Program 21.2    Real implementations of delay. The first definition uses the R5RS macro facility, 
whereas the last one uses a more primitive macro facility, which happens to be supported in 
MzScheme.  

 
 

  

 

21.2.  Examples of delayed evaluation 
Lecture 5 - slide 22 

Let us look at a few very simple examples of using delay and force. In the first line of the table 
below we delay the expression (+ 5 6). The value is a promise that enables us to evaluate the sum 
when necessary, i.e, when we choose to force it. The next line shows that we cannot force a non-
promise value. The last line shows an immediate forcing of the promise, which we bind to the name 
delayed in the let construct. 



 153

Expression Value  
(delay (+ 5 6)) #<promise> 

(force 11) error 
(let ((delayed (delay (+ 5 6)))) 
  (force delayed)) 11 

Table 21.1    Examples of use of delay and force. 

  

21.3.  Infinite lists in Scheme: Streams 
Lecture 5 - slide 23 

We are now done with the toy examples. It is time to use delayed evaluation in Scheme to 
something of real value. In this material we focus on streams. A stream is an infinite list. The 
inspiration to our coverage of streams comes directly from the book Structure and Interpretation of 
Computer Programs [Abelson98]. 

The crucial observation is the following. 

 We can work with lists of infinite length by delaying the evaluation of every list tail 
using delay 

As an invariant, every list tail will be delayed  

 

Every tail of a list is a promise. The promise covers an evaluation which gives a new cons cell, in 
which the tail contains another promise. 

It is simple to define a vocabulary of stream functions. There is an obvious relationship between list 
functions (see Section 6.1) and the stream functions shown below in Program 21.3. 

 

(cons-stream a b)   ~   (cons a (delay b)) 
 
(define head car) 
 
(define (tail stream) (force (cdr stream))) 
 
 
(define empty-stream? null?) 
 
(define the-empty-stream '()) 
 

 Program 21.3    Stream primitives. Notice the way head is defined to be an alias of car.    
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In that same way as we defined delay as a macro in Program 21.2 , we also need to define cons-
stream as a macro. The reason is that we are not allowed to evaluate the second parameter; The 
second parameter of cons-cell is going to be delayed, and as such it must be passed unevaluated 
to cons-stream. 

(define-macro cons-stream 
  (lambda (a b) 
    `(cons ,a (delay ,b)))) 

 Program 21.4    A MzScheme implementation of cons-stream.    

In the following sections we will study a number of interesting examples of streams from the 
numerical domain. 

 

  

21.4.  Example streams 
Lecture 5 - slide 24 

In the first example line in Table 21.2 we define a stream of ones. In other words, the name ones is 
bound to an infinite list of ones: (1 1 1 ...). 

Please notice the very direct use of recursion in the definition of ones. We are used to a conditional 
such as cond or if when we deal with recursion, in order to identify a basis case which stops the 
recursive evaluation process. We do not have such a construction here. The reason is that we never 
reach any basis (or terminating case) of the reduction. Due to the use of delayed evaluation we 
never attempt to expand the entire list. Instead, there is a promise in the end of the list which can 
deliver more elements if needed.  

In the second row of the example we use the function stream-section to extract a certain prefix of 
the list (determined by the first parameter of stream-section). The function stream-section is 
defined in Program 21.5 together with another useful stream function called add-streams which 
adds elements of two numeric streams together. 

In the third row we define a stream of all natural numbers, using the function integers-starting-
from . 

The fourth row shows an alternative definition of nat-nums. We use add-streams on nat-nums 
and ones to produce nat-nums. Please notice the recursion which is involved. 

In the bottom row of the table we define the Fibonacci numbers, in a way similar to the definition of 
nat-nums just above. fibs is defined by adding fibs to its own tail. This works out because we 
provide enough staring numbers (0 1) to get the process started. 
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Expression Value  
(define ones (cons-stream 1 ones)) (1 . #<promise>) 
(stream-section 7 ones) (1 1 1 1 1 1 1) 
(define (integers-starting-from n) 
 (cons-stream n  
  (integers-starting-from (+ n 1)))) 
 
(define nat-nums 
  (integers-starting-from 1)) 
 
(stream-section 10 nat-nums) 

(1 2 3 4 5 6 7 8 9 10) 

(define nat-nums  
 (cons-stream 1  
  (add-streams ones nat-nums))) 
 
(stream-section 10 nat-nums) 

(1 2 3 4 5 6 7 8 9 10) 

(define fibs 
  (cons-stream 0 
    (cons-stream 1 
      (add-streams (tail fibs) fibs)))) 
 
(stream-section 15 fibs) 

(0 1 1 2 3 5 8 13 21 34 55 89 144  
 233 377) 

Table 21.2    Examples of streams. ones  is an infinite streams of the 
element 1. stream-section is a function that returns a finite section 
of a potentially infinite stream. nat-nums is stream of all the natural 
numbers, made by use of the recursive function integers-
starting-from. The fourth row shows an alternative definition of 
nat-nums. Finally, fibs is the infinite stream of Fibonacci numbers. 

As mentioned above, the functions stream-section and add-streams in Program 21.5 are used in 
Table 21.2. 

In the web version of the material (slide and annotated slide view) there is an additional program 
with all the necessary definitions which allow you to play with streams in MzScheme or DrScheme. 

(define (stream-section n stream) 
  (cond ((= n 0) '()) 
        (else  
          (cons  
            (head stream) 
            (stream-section  
             (- n 1) 
             (tail stream)))))) 
 
(define (add-streams s1 s2) 
 (let ((h1 (head s1)) 
       (h2 (head s2))) 
   (cons-stream  
     (+ h1 h2) 
     (add-streams (tail s1) (tail s2))))) 

            Program 21.5    The functions stream-section and add-streams.    
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21.5.  Stream example: The sieve of Eratosthenes 
Lecture 5 - slide 25 

Still with direct inspiration from the book Structure and Interpretation of Computer Programs 
[Abelson98] we will look at a slightly more complicated example, namely generation of the stream 
of prime numbers. This is an infinite list, because the set of prime numbers is not finite.  

The algorithmic idea behind the generation of prime numbers, see Program 21.6 was originally 
conceived by Eratosthenes (a Greek mathematician, astronomer, and geographer who devised a map 
of the world and estimated the circumference of the earth and the distance to the moon and the sun - 
according to the American Heritage Dictionary of the English Language).  

The input of the function sieve in Program 21.6 is the natural numbers starting from 2. See also the 
example in Table 21.3. The first element in the input is taken to be a prime number. Let us say the 
first such number is p. No number p*n, where n is a natural number greater than one, can then be a 
prime number. Program 21.6 sets up a sieve which disregards such numbers. 

Recursively, the first number which comes out of the actual chain of sieves is a prime number, and 
it is used set up a new filter. This is due to the simple fact that the sieve function calls itself. 

 The Sieve of Eratosthenes is a more sophisticated example of the use of streams  
 

   
(define (sieve stream) 
   (cons-stream 
     (head stream) 
     (sieve  
       (filter-stream 
         (lambda (x) (not (divisible? x (head stream)))) 
         (tail stream))))) 

                                           Program 21.6    The sieve  stream function.    
 

Program 21.6 uses the functions cons-stream, head and tail from Program 21.3. The functions 
filter-stream and divisible? are defined in Program 21.7. 

Figure Figure 21.1 shows a number of sieves, and it sketches the way the numbers (2 3 4 ...) 
are sieved. Notice that an infinite numbers of sieves are set up - on demand - when we in the end 
requests prime numbers. 
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Figure 21.1    An illustration of the generation of prime numbers in The 
Sieve of Eratosthenes 

  

21.6.  Applications of The sieve of Eratosthenes 
Lecture 5 - slide 26 

In this section we show an example of prime number generation with the sieve function from 
Program 21.6. 

Notice that the prime numbers are really generated on demand. In the call (stream-section 25 
primes) we are requesting 25 prime numbers. This triggers generation of sufficient natural 
numbers via (integers-starting-from 2), and it triggers the set up of sufficient sieves to 
produce the result. 

We see that the evaluations are done on demand. 

 The sieve process produces the stream of all prime numbers  
 

   

Expression Value  
(define primes  
  (sieve  
    (integers-starting-from 2))) 
 
(stream-section 25 primes) 

(2 3 5 7 11 13 17 19 23 29 31 37 41  
 43 47 53 59 61 67 71 73 79 83 89 97) 

Table 21.3    The first 25 prime numbers made by sieving a sufficiently 
long prefix of the integers starting from 2. 
 

You can use the definitions in Program 21.7 to play with the sieve function. You should first load 
the stream stuff discussed in Section 21.4. More specifically, you should load the definitions on the 
last program clause in the slide view of Section 21.4. Then load the definitions in Program 21.7. 
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(define (sieve stream) 
   (cons-stream 
     (head stream) 
     (sieve  
       (filter-stream 
         (lambda (x) (not (divisible? x (head stream)))) 
         (tail stream))))) 
 
(define (divisible? x y) 
  (= (remainder x y) 0)) 
 
(define (filter-stream p lst) 
  (cond ((empty-stream? lst) the-empty-stream) 
        ((p (head lst)) (cons-stream (head lst) (filter-stream p (tail lst)))) 
        (else (filter-stream p (tail lst))))) 
 
(define (integers-starting-from n) 
 (cons-stream n  
  (integers-starting-from (+ n 1)))) 
 
(define primes (sieve (integers-starting-from 2))) 
 
 

 
Program 21.7    All the functions necessary to use the Sieve of Eratosthenes. In addition, however, 
you must load the Scheme stream stuff. The most remarkable function is filter-streams, which 
illustrates that it is necessary to rewrite all our classical higher order function to stream variants. 
This is clearly a drawback! 
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22.  Introduction to linguistic abstraction 

This section if about linguistic abstraction in Scheme, with and without LAML. Linguistic 
abstraction is the act of making new languages. Thus, with linguistic abstraction we form new ways 
to express ourselves far beyond functional abstraction, as it has been studied until now.  

  

22.1.  Linguistic abstraction 
Lecture 6 - slide 2 

Linguistic abstraction can be defined very briefly, as follows. 

 Linguistic abstraction is the act of establishing a new language  
 

In many contexts, linguistic abstraction is qualified with the word 'meta'. Thus we speak about 
metalinguistic abstraction, emphasizing that we enter a higher language level than the level we 
came from. 

We introduce linguistic abstraction by comparing it with the more well-known discipline of making 
abstractions with functions (or for that sake, procedural abstraction). 

 • Abstraction by means of functions 
• Encapsulation, naming and parametrization of a potentially complex expression 
• Use of good abstractions makes a program easier to understand 
• Use of abstractions makes a program shorter, because the functions can be called 

from more than one context 
• Abstraction by means of languages 

• Involves primitive means of expressions as well as the way the primitives can be 
meaningfully composed  

• A more global kind of abstraction than functional abstraction 
• Raises lexical, syntactical and - most important - semantical concerns 
• Specialized or general purpose language 

 

Abstraction is a central discipline in all serious programming efforts. We have discussed functional 
abstraction in earlier parts of this material. Procedural abstraction is central in both the imperative 
paradigm and the object-oriented paradigm. Here we have contrasted functional abstraction with 
linguistic abstraction.  

 Problem solving by means of linguistic abstraction is a very powerful approach  
 

The idea of defining and implementing a new language as part of a problem solving process is a 
very strong idea. Expert programmers tend to work in that way.  
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22.2.  Linguistic abstraction in Lisp 
Lecture 6 - slide 3 

The primary language of interest in this material is Scheme, and with it the family of Lisp 
languages. Therefore we will at this point study linguistic abstraction in Lisp languages.  

 The are several possible approaches to linguistic abstractions in Lisp  
 

Below we discuss an incremental approach to linguistic abstraction in Lisp. This approach is based 
on the point of view that definition of functions, procedures, and macros in Lisp contribute with 
new aspects of the Lisp language. This is discussed in additional detail in Section 22.3 and Section 
22.4. 

The contrast to an incremental approach will be called a total approach. As it appears from the 
items below, compilation and interpretation are considered as 'a total linguistic abstraction 
implementation technique'. Total linguistic abstraction is discussed in more details in Section 22.5 
and Section 22.6. 

 • Incremental approaches 
• Each new construct is defined by a function or a macro 

• Macros are used for new surface syntax, and in cases where evaluation 
order issues prevent use of functions 

• Fine grained linguistic abstraction 
• Total approaches 

• Writing an interpreter for the new language    or 
• Translating the new language to an existing language (compilation) 
• Coarse grained linguistic abstraction 

 
  

 In some cases we embed the new language in an existing language, hereby combining 
the use of two or more languages in a single program or document  

 

Language embedding is the issue of Chapter 23. 

  

22.3.  Fine grained linguistic abstraction in Lisp 
Lecture 6 - slide 4 

In this section, and in Section 22.4, we will discuss and give examples of fine grained linguistic 
abstraction in Lisp. 
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The main insight is that program contributions in terms of function definitions can be regarded as 
extensions of the Scheme language. The reason is that the status, use, and appearance of a new 
function is similar to both core language constructs and the pre-existing Scheme functions and 
procedures. In most other languages, there is a clear distinction of core language constructs and 
contributions made in terms of programs written in the language. 

 Due to the uniform notation of language constructs and functions, a set of Scheme 
functions can be seen as an extension of the Scheme language  

 

   

 • Incremental extension of the language 
• The functional paradigm is well-suited because application of functions can be 

nested into each other 
• The definitions of the functions implement the language 
• A possible approach: 

• the inner functions are more or less self evaluating 
• the outermost function is responsible for the realization of the language 

 

A function call is an expression, which can be embedded into other function calls. In this way it is 
possible to build complex expressions by combination of programmed, functional abstractions. 

As a contrast in the imperative programming paradigm, a procedure call is a command. A command 
can not normally be passed as a parameter to other commands. Thus, the combination of 
programmed abstractions is different, when we compare imperative and functional programming. 

In section Section 22.4 we will see an example of the observations made above. 

 Programming in Lisp can be seen as incremental language development  
 

  

22.4.  An example of fine grained abstraction 
Lecture 6 - slide 5 

In this section we will study a simple formulation of a course home page, built by means of 
functions, and combined in the way discussed at the end of Section 22.3. 

The course-home-page clause of Program 22.1 is to be processed somehow to create a set of 
course home pages. The functions used in Program 22.1 are defined in Program 22.2. As illustrated 
in Program 22.2 the subclauses of a course-home-page page are very simple, almost 'self-
evaluating functions'. The course-home-page function itself is assumed to do the bulk part of the 
work - the real work so to say. This part of the program is only outlined in Program 22.2. 
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 A fine grained implementation of a course home page language 

Each of the forms in the language are implemented as a Scheme function  

 

   
(course-home-page 
 
  (name "Programming Paradigms") 
 
  (number-of-lectures 15) 
 
  (lecture-names 
    "intr" "scheme" "higher-order-fn"  
    "eval-order" "lisp-languages") 
 
  (current-lecture 3) 
 
  (links 
    "schemers.org" "http://www.schemers.org/" 
    "LAML" "http://www.cs.auc.dk/~normark/laml/" 
    "Haskell" "http://haskell.org/" 
  ) 
) 

 

Program 22.1    A sample document in a course home page language. The outer 'keyword' is 
course-home-page . Inside a course-home-page form there may be a number of 
subclauses. We see a name clause, a number-of-lectures clause etc. The important point of 
the example is that the expression is regarded as a clause in a new language, which we somehow 
want to implement with the purpose of 'solving some problem' - here to generate a set of coherent 
web pages for some activity. 
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(define (course-home-page name-form number-form lecture-list current-form 
                          link-form process-form) 
 
  ; The real implementation of 
  ; the course home page language 
 
) 
 
 
 
(define (name nm)  
 (list 'name nm)) 
 
(define (number-of-lectures n)  
 (list 'number-of-lectures n)) 
 
(define (lecture-names . name-lst)  
 (cons 'lecture-names name-lst)) 
 
(define (current-lecture n)  
 (list 'current-lecture n)) 
 
(define (links . lnk-list)  
 (cons 'links lnk-list)) 
 
 
 
    
 
 

 
Program 22.2    An almost empty outline of the functions that implement the course home page 
language. Each kind of subexpression is either implemented as a function or as a macro. In this 
simple example, macros are not used. 

 
 

The ideas in this section have been explored and developed in a LAML context. Early LAML 
languages, such as the 'Manual' language (for definition of library interface documentation) has 
been defined in the way illustrated above. More recent LAML-related language have been defined 
as XML-in-LAML language, and implemented as mirrors of an XML language in LAML. This 
approach is addressed in Chapter 24. 

  

22.5.  Coarse grained linguistic abstraction in Lisp 
Lecture 6 - slide 6 

As mentioned in Section 22.2 coarse grained linguistic abstraction is related to translation 
(compilation) and interpretation, as known from courses in compiler technology. 

As a Scheme and Lisp topic related to transformation and interpretation, we notice on this page that 
parsing of an expression or program made in Lisp syntax (cf. parenthesized notation, Section 6.8), 
is very easy. The reason is that a generic parser can be written that translates a parenthesized string 
to a proper or improper list structure. 
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 It is relatively easy and straightforward to establish a new language in Lisp syntax 
 

   

 • Establishing a new 'Lisp language' 
• Generic parsing can be done by the Lisp reader 
• It is possible to concentrate on the semantic issues 
• Language checking and error handling should not be forgotten 

 

  

 

22.6.  An example of coarse grained abstraction 
Lecture 6 - slide 7 

In this section we will discuss how to 'process' the course home page document (see Program 22.1), 
which we discussed earlier in Section 22.4. 

Below we will assume that the course home page fragment of Program 22.1 is located on the file 
named "new-document.lsp". 

In Program 22.3 we show how to open, read and close the file (in blue color). The processing of the 
parsed expression is shown in red color. 

(let* ((port (open-input-file "new-document.lsp")) 
       (new-document (read port)) 
      ) 
 
   ; new-document is a reference to the list structure 
   ; representation of the new document. 
 
   (process-document! new-document) 
 
   (close-input-port port) 
) 

 
Program 22.3    Reading the document as a list structure. We open a port to the document and use 
the read primitive in Scheme to read the list expression on the file. The procedure or function 
process-document is supposed to implement the processing semantics of the new language. 

 
 

In this material we will not go into any detail of the transformation. In Program 22.4 we limit 
ourselves to a superficial demo processing, in which we extract and print the keyword of each 
subform of the course home page form. 

The important thing to notice is that it is very easy to come to the point where the semantic 
processing (as sketched in Program 22.4) can begin. The only preparation is that of Program 22.3. 
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(define (process-document! doc) 
  (file-write (transform-document doc) "res.lsp")) 
 
(define (transform-document doc) 
  (let ((top-level-forms (document-forms doc))) 
   (map 
     (lambda (subform)  
       (subform-keyword subform)) 
     top-level-forms))) 
 
 
(define document-forms cdr) 
(define subform-keyword car) 
 

 
Program 22.4    A simple demo processing of the document. We just extract some information about 
the document. No attempt is made here to implement the language, nor to process the document in 
any realistic way. 

 
 

In Program 22.5 we see a sample dialog and execution of the abstractions in Program 22.3 and 
Program 22.4. 

1> (let* ((port (open-input-file "new-document.lsp")) 
          (new-document (read port)) 
         ) 
 
   ; new-document is a reference to the list structure 
   ; representation of the new document. 
 
   (process-document new-document) 
 
   (close-input-port port)) 
 
name 
number-of-lectures 
lecture-names 
current-lecture 
links 
do-process 
 

 Program 22.5    Execution dialogue. We show what happens when the document is read and 
processed in the simple manner programmed above.  

 

  

22.7.  References 

[course-plan-
examples] 

Example of the LAML course home page system 
http://www.cs.auc.dk/~normark/scheme/examples/course-plan-xml-in-laml/index.html
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23.  Language embedding 

In Chapter 22 we discussed how to establish languages, especially in Lisp. 

In this chapter we will discuss how to combine two (or more) existing languages. More specifically, 
we will look at ways to embed one language into another.  

  

23.1.  Embedded languages 
Lecture 6 - slide 9 

We start with a definition of language embedding. 

 A new language N is an embedded language in an existing language E if an expression 
in N can be used as a subexpression of a construct in E.  

 

As a possible practical organization of the embedding of a new language into another language, the 
interpreter of the new language N is made available as a function in the existing language E. 

In the web domain there are many examples of language embeddings. Below we mention some of 
them. 

 • There are many examples of embedding web languages and programming languages 
• Embedding of CSS in HTML, SVG and other XML languages 
• Embedding of Javascript in HTML for client dynamics 
• Embedding of a programming language in HTML at the server-side 

• ASP: HTML embedding of Visual Basic fragments 
• JSP: HTML embedding of Java fragments 
• PHP: HTML embedding of C-like fragments 
• BRL: HTML embedding of Scheme fragments 

 

  

23.2.  Examples of language embedding in HTML 
Lecture 6 - slide 10 

In this section we will illustrate some examples of language embedding from the web domain. More 
specifically, we will see how fragments in various programming languages can be embedded into 
HTML. Such language embedding is widely used at the server side of the World Wide Web.  

 Concrete illustrations of JSP, ASP, and BRL documents  
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The ASP and JSP examples are available via the slide and the annotated slide view of this material. 
(The examples are too large to warrant inclusion at this location of the material). Please take a look 
at the web material for the details. 

The BRL [Lewis00] example is included here, because it is relatively small. In some sense it also 
covers the essence of the two others. We see Scheme fragments (emphasized with red color) within 
a conventional HTML document. When the web document is delivered by the server, the program 
fragments are executed. The functional results of the program execution become part of the web 
document. In a nutshell, this is a very common way to deal with dynamic web contents.  

<html> 
 <head> 
 [ 
  (inputs word) ; HTML input.  Will be null if no such input. 
  (define newword 
    (if (null? word) 
        "something" 
        word)) 
 ] 
  <title>Backwards</title> 
 </head> 
  
 <body> 
  <form> 
  Type a word: <input name="word"> 
  <input type="Submit"> 
  </form> 
   
  <p>[newword] spelled backwards is 
     [(list->string (reverse (string->list newword)))] 
  </p> 
   
  <p>This message brought to you by [(cgi SERVER_NAME)] as a public 
  service.</p> 
   
 </body> 
</html> 
 

 
Program 23.1    An example of a BRL document. BRL - Beautiful Report Language - is a Scheme 
based web server framework which allows the web programmer to embed Scheme fragments into 
HTML 

 
 

  

23.3.  Course home page embedding in Scheme 
Lecture 6 - slide 11 

We will illustrate embedded languages with an embedded list-based language in Scheme. This is 
done as a direct continuation of the course home page example from Section 22.4. 

 The simple course home page language is an embedded list language in Scheme  
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In Program 23.2 we see the course home page expression, emphasized with red color. This is a list 
structure, formed in its own language: A simple course home page language. The language is list-
based, and the non-constant parst of the language are brought in via quasiquotation (also known as 
backquoting). Thus, the course home page subdocument makes use of variables and expressions 
from the surrounding Scheme program. Notice, however, that a special interpreter is needed to 
process the backquoted course-home-page expression.  

(let ((ttl "Programming Paradigms") 
      (max 5) 
      (current 3) 
     ) 
 
 `(course-home-page 
 
   (name ,ttl) 
 
   (number-of-lectures ,max) 
 
   ,(cons  
     'lecture-names 
     (map downcase-string   
       (list "intr" "scheme" "HIGHER-ORDER-FN"  
       "eval-order" "lisp-languages"))) 
 
   (current-lecture ,current) 
 
   (links 
     "schemers.org" "http://www.schemers.org/" 
     "LAML" "http://www.cs.auc.dk/~normark/laml/" 
     "Haskell" "http://haskell.org/" 
   ) 
  )    
) 

 
Program 23.2    A sample embedding of a course home document in a Scheme program. We use a 
quasiquotation to provide for a representation of the course home page as a list structure in the 
Scheme context. 

 
 

  

23.4.  References 

[-] BRL 
http://brl.sourceforge.net/ 

[lewis00] Bruce R. Lewis, "BRL---A database-oriented language to embed in HTML and 
other markup", October 2000.  
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24.  Language Mirroring 

In this chapter we will discuss language mirroring, in part as a contrast to language embedding from 
Chapter 23. 

  

24.1.  Mirrored Languages 
Lecture 6 - slide 13 

Let us start with a definition of a mirrored language.  

 A new language N is a mirrored language in an existing language E if an expression in 
N in a systematic way can be represented as an expression in E.  

 

The mirror of N in E does not call for a new interpreter. A new interpreter as need for an embedded 
language i E. A mirror expression N-expr is written in E, and it can be evaluated by the processor 
(interpreter) of E.  

 • LAML provides mirrors of a number of XML languages in Scheme: 
• HTML 4.01 and XHTML1.0 
• SVG 
• A number educational languages, such as LENO and the Course Home Page 

language (Course Plan) 

 

  

 

24.2.  Course home page mirroring in Scheme (1) 
Lecture 6 - slide 14 

Let us now illustrate how to mirror the simple course home page language in Scheme. The mirror 
which we deal with is a mirror of an XML language in LAML. Recall that we programmed the 
course home page document with simple functional abstractions in Section 22.4 and that we 
embedded the course home page language in Scheme in Section 23.3. Thus, the treatment below is 
actually our third attempt to accommodate the simple course home page abstractions in Scheme. 

 The simple course home page is mirrored as an XML language in Scheme and LAML 
 

We will start by giving an overview of the practical process that leads to the creation of mirror of 
some XML language in Scheme and LAML.  
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 • Steps involved in the mirroring process: 
• Write an XML DTD of the language 
• Parse the XML DTD to a Scheme data structure 
• Synthesize the mirror of the language by the XML-in-LAML mirror generation 

tool 
• When using the course home page language, load the mirror as a Scheme library 

 

It is fairly straightforward to write an XML DTD for a new 'little language', although the SGML 
inherited language may seem a little strange at first sight. Take a look at Program 24.1. 

<!ENTITY % Number "CDATA"> 
    <!-- one or more digits --> 
 
<!ENTITY % URI "CDATA"> 
    <!-- a Uniform Resource Identifier, see [RFC2396] --> 
 
<!ELEMENT course-home-page 
  (lecture-names, links) 
> 
 
<!ATTLIST course-home-page 
  name                 CDATA          "#REQUIRED" 
  number-of-lectures   %Number;        "#REQUIRED" 
  current-lecture      %Number;        "#IMPLIED" 
> 
 
<!ELEMENT lecture-names 
  (lecture-name+) 
> 
 
<!ELEMENT lecture-name 
  (#PCDATA) 
> 
 
<!ELEMENT links 
  (link*) 
> 
 
<!ELEMENT link 
  (#PCDATA) 
> 
 
<!ATTLIST link 
  href               %URI;             "#REQUIRED" 
> 

 
Program 24.1    The course home page DTD. The DTD is essentially a context free grammar of the 
new XML language. XML DTDs are a heritages from SGML (The Standard Generalized Markup 
Language).  

 
 

The XML DTD can be parsed with the LAML DTD parser. We usually make a simple LAML 
script for such purposes, as shown in Program 24.2. 
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(load (string-append laml-dir "laml.scm")) 
(load (string-append laml-dir "tools/dtd-parser/dtd-parser-4.scm")) 
 
(parse-dtd "course-home-page") 

 Program 24.2    The script that parses the DTD.   

The DTD parser creates a Lisp list structure representation of the DTD. This list structure is passed 
as input to the LAML mirror generator. The LAML script in Program 24.3 shows how the mirror 
generator is activated.  

(load (string-append laml-dir "laml.scm")) 
(laml-tool-load "xml-in-laml/xml-in-laml.scm") 
 
; ------------------------------------------------------------------------ 
; Tool parameters 
 
; The name of the language for which we create a mirror 
(define mirror-name "course-homepage") 
 
; The full path to the parsed DTD: 
(define parsed-dtd-path 
  (in-startup-directory "course-home-page.lsp")) 
 
; The full path of the mirror target directory 
(define mirror-target-dir (string-append (startup-directory) "../mirror/")) 
 
(define action-elements '(course-home-page)) 
 
(define default-xml-represent-white-space "#f") 
 
(define auto-lib-loading "#t") 
 
 
; End tool parameters 
; ------------------------------------------------------------------------- 
 
(let ((mirror-destination-file 
        (string-append mirror-target-dir mirror-name "-mirror" ".scm"))) 
  (generate-mirror parsed-dtd-path mirror-destination-file mirror-name)) 
 
 

 Program 24.3    The script that generates the mirror.   

The output of the mirror generator is a Scheme source file, which represents the mirror of the course 
home page language from Program 24.1. As most other automatically generated source files, the 
mirror library of the demonstrational course home language is not easy to read. We have therefore 
not included it in this version of the material. You can access it from the web version via the slide 
view. 
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24.3.  Course home page mirroring in Scheme (2) 
Lecture 6 - slide 15 

In this section we will se how to use the mirror of the course home page language, which we created 
in Section 24.2. 

 A sample course home page document that uses the XML-in-LAML course home page 
mirror functions  

 

   
(load (string-append laml-dir "laml.scm"))        
(define (course-home-page! doc) 'nothing) 
(load "../mirror/course-homepage-mirror.scm") 
 
(let ((ttl "Programming Paradigms") 
      (max 5) 
      (current 3)) 
 
 (course-home-page  'name ttl 'number-of-lectures "5" 
                   'current-lecture "3" 
   (lecture-names 
     (map  
       (compose lecture-name  downcase-string)   
       (list "intr" "scheme" "HIGHER-ORDER-FN"  
             "eval-order" "lisp-languages"))) 
   (links 
     (link  "schemers.org" 'href "http://www.schemers.org/") 
     (link  "LAML" 'href "http://www.cs.auc.dk/~normark/laml/") 
     (link  "Haskell" 'href "http://haskell.org/") 
   ))) 

 Program 24.4    A sample course home page that uses the course home page mirror functions.    

The first three lines in Program 24.4 loads the laml library and the mirror library. Before loading the 
mirror library we need to define an action procedure of the top-level element, course-home-page. 
Notice that this element was announced as an action element in Program 24.3. As an action 
element, the action procedure takes over the rest of the transformation process, typically to HTML. 
In this demo setup, the action procedure is empty. 

The mirror function applications in the course-home-page expression are all emphasized in red. 
Notice the smooth integration of the course home page mirror functions and other Scheme 
functions. You should in particular compare the way mapping is done with the similar mapping in 
Program 23.2. 

 Further processing and transformation is done by the action procedure course-home-
page!  
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24.4.  Course home pages ala Course Plan 
Lecture 6 - slide 16 

The course home pages of the Programming Paradigms is made by the Course Plan system. The 
principles used in the Course Plan system are the same as illustrated about for the toy course home 
pages. 

 A real life course home page mirror in Scheme - The Course Plan system  
 

In the web version of this material there is a program that shows a real course home page from 
LAML. This is called a course plan. The example is too long for the paper version.  

  

24.5.  Embedding versus mirroring 
Lecture 6 - slide 17 

In this section we compare language embedding ala the example from Section 23.3 with language 
mirroring as discussed in this chapter. 

 How does a list-embedding of new language in Scheme compare to a mirroring of the 
language Scheme?  

 

   

Embedding in Scheme  Mirroring in Scheme 
New language fragments are 
represented as lists 

 New language fragments are represented as Scheme 
expressions 

Many different interpretations can be 
provided for 

 The most typical transformation is 'built in', as 
obtained by evaluation of the Scheme expression 

Processing requires a specialized 
interpreter 

 The (first level of) processing is done by the standard 
Scheme interpreter 

Relatively awkward to combine with 
use of higher-order functions 

 Mixes well with higher-order functions 

  

24.6.  References 

[course-plan-
examples] 

The generated Course Plan page (web only) 
http://www.cs.auc.dk/~normark/scheme/examples/course-plan-xml-in-laml/html/example.html

[transf] LAML transformation functions 
http://www.cs.auc.dk/~normark/scheme/lib/xml-in-laml/man/xml-in-laml.html#SECTION18 
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25.  Lisp in Lisp 

Let us now jump to a topic, which is quite different from language embedding and language 
mirroring as discussed in Chapter 23 and Chapter 24. Recall, however, that the topic of the current 
lecture is linguistic abstraction, which is about establishing new languages in an existing language. 

We will now see how to establish Lisp in Lisp. Thus, we will study a situation where the new 
language and the existing language are (almost) identical. This calls for a more detailed explanation 
and rationale, which is given in Section 25.1. 

  

25.1.  Why 'Lisp in Lisp' 
Lecture 6 - slide 19 

In this section we will look at a principled implementation of Lisp in Lisp. In concrete terms we 
will study a partial Scheme implementation in Scheme itself. 

 Why do we study an implementation of Scheme in Scheme?  
 

   

 • Motivations: 
• To illustrate the idea of linguistic abstraction in Lisp 

• Lisp is both the implementation language and the new language 
• To understand the overall principles of interpreters  
• To illustrate the use of important Lisp implementation concepts, such as 

environments 
• To provide a playground that provides for easy experimentation with the 

semantics of Scheme 
 

  

 We will refer to a concrete Scheme implementation from the book 'Structure and 
Interpretation of Computer Programs' (SICP).  

 

We have earlier referred to the book 'Structure and Interpretation of Computer Programs' 
[Abelson96]. The part of the book which is relevant for linguistic abstraction and Scheme 
interpreters is chapter 4. 
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25.2.  An overview of Scheme constructs 
Lecture 6 - slide 20 

When we are interested in implementing Scheme in Scheme it is important to have a good 
classification of constructs in Scheme. 

As a basic distinction, some forms are denoted as syntax, and others as procedures. (In this 
particular context, 'procedures' also covers 'functions'). As another distinction, some abstractions are 
fundamental - they form the core language; Others are library abstractions in the sense that they can 
be implemented by use of the fundamental abstractions. You can consult section 1.3 of the Scheme 
report [Abelson98] to learn more about these distinctions. 

 What is the basic classification of constructs in Scheme?  
 

   

 • Syntax 
• Fundamental syntactical constructs such as lambda , define , and if 

• Primitive functions and procedures 
• Fundamental functions and procedures, which cannot in a reasonable way be 

implemented in the language 
• Library Syntax 

• Syntactical extensions which can be implemented by macros 
• Library functions and procedures 

• Functions and procedures which can be implemented on the ground of more 
primitive features 

 
  
 Parenthesized prefix notation is used as a common notation for all kinds of constructs 

This provides for an uniform notation across the different kinds of constructs in the 
language  

 

  

25.3.  Scheme in Scheme 
Lecture 6 - slide 21 

It is interesting and instructive to understand the most general processing primitive in a Scheme 
system, namely eval. Together with apply - which calls primitive functions, library functions, and 
your own functions - it is shown in Program 25.1. 

 It is possible to write a relatively full, but brief meta circular Scheme interpreter in 
Scheme  
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(define (eval exp env) 
  (cond ((self-evaluating? exp) exp) 
        ((quoted? exp) (text-of-quotation exp)) 
        ((variable? exp) (lookup-variable-value exp env)) 
        ((definition? exp) (eval-definition exp env)) 
        ((assignment? exp) (eval-assignment exp env)) 
        ((lambda? exp) (make-procedure exp env)) 
        ((conditional? exp) (eval-cond (clauses exp) env)) 
        ((application? exp)  (apply (eval (operator exp) env) 
                                          (list-of-values (operands exp) env))) 
        (else (error "Unknown expression type -- EVAL" exp)))) 
 
 
(define (apply procedure arguments) 
  (cond ((primitive-procedure? procedure 
            (apply-primitive-procedure procedure arguments))) 
        ((compound-procedure? procedure) 
            (eval-sequence (procedure-body procedure) 
                                  (extend-environment 
                                     (parameters procedure) 
                                     arguments 
                                     (procedure-environment procedure)))) 
        (else  (error "Unknown procedure type -- APPLY" procedure)))) 
 

 Program 25.1    The eval and apply functions (procedures) of the Scheme interpreters. The full 
interpreter needs a lot of relatively small helping functions (procedures) that we do not show here.  

 
 

 The two central functions of the language implementation - eval and apply - are made 
available in the language itself  

 

You are encouraged to read a much more comprehensive story about the Scheme in Scheme 
interpreter in chapter 4 of [Abelson96]. 

Below we will dwell a little on eval and apply, in the form they are available in Scheme. 

  

25.4.  The eval and apply primitives 
Lecture 6 - slide 22 

The eval procedure makes the Scheme interpreter directly available as a primitive in the language. 

The apply procedure is handy when we call a function on a 'first class parameter list'; That is, in 
situations where the parameters are available in a list. 
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 The implementation primitive eval of a Lisp systems is typically made available in the 
language, hereby providing access to evaluation of syntactical expressions (lists) in a 
given environment 

The apply primitive is also available as a convenient mechanism for application of a 
function, in cases where all the parameters are available in a list  

 

Examples of both are given in Table 25.1 below. 

Expression Value 
(let* ((ttl "My Document") 
       (bdy (list 'p "A paragraph")) 
       (doc 
        (list 'html 
         (list 'head 
          (list 'title ttl)) 
         (list 'body bdy))) 
      )  
 (render (eval doc))) 

<html> 
 <head> 
  <title>My Document</title> 
 </head> 
 <body> 
  <p>A paragraph</p> 
 </body> 
</html> 

(let* ((ttl "My Document") 
       (bdy (list 'p "A paragraph")) 
       (doc 
        `(html  
           (head (title ,ttl)) 
           (body ,bdy)))) 
  (render (eval doc))) 

<html> 
 <head> 
  <title>My Document</title> 
 </head> 
 <body> 
  <p>A paragraph</p> 
 </body> 
</html> 

(+ 1 2 3 4) 10 

(+ (list 1 2 3 4)) 
Error: + expects argument of type 
number;  
 given (1 2 3 4) 

(apply + (list 1 2 3 4)) 10 

Table 25.1    An illustration of eval and apply. In the first two rows we 
construct a list structure of the usual html , head , title , and body 
HTML mirror functions. In the first row, the list structure is made by 
the list function. In the second row, we use the convenient backquote 
(semiquote) facility. In both cases we get the same result. The last three 
rows illustrate the use of apply . apply is handy in the cases where the 
parameters of a function is already organized in a list. What it interesting 
in our current context, however, is that apply is really an 
implementation primitive of Scheme, which is made available in the 
language itself.  

With this we are done with Linguistic abstraction, and as such with the main lectures of this 
material. 

The remaining chapters represent side tracks, in which we cover additional details about LAML, 
object-oriented programming in Scheme, and the imperative aspects of Scheme.  
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25.5.  References 

[-] R5RS: Apply 
http://www.cs.auc.dk/~normark/prog3-03/external-material/r5rs/r5rs-html/r5rs_63.html 

[-] R5RS: Eval 
http://www.cs.auc.dk/~normark/prog3-03/external-material/r5rs/r5rs-
html/r5rs_64.html#SEC66 

[abelson98] Richard Kelsey, William Clinger and Jonathan Rees, "Revised^5 Report on the 
Algorithmic Language Scheme", Higher-Order and Symbolic Computation, 
Vol. 11, No. 1, August 1998, pp. 7--105.  

[abelson96] Abelson, H., Sussman G.J. and Sussman J., Structure and Interpretation of 
Computer Programs, second edition. The MIT Press, 1996.  
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