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9.  Name binding constructs 

In Section 8.1 we saw how to bind names globally, at top level, by use of define. In this chapter 
we will study local name binding constructs - let constructs - and we will se how they are made by 
means of lambda expressions. 

  

9.1.  The let name binding expression 
Lecture 3 - slide 2 

Let us first define what we mean by name binding constructs. 

 A name binding expression establishes a number of local name bindings in order to ease 
the evaluation of a body expression  

 

In a name binding construct a number of names are bound to values. The name bindings can be 
used in the body, which must be an expression when we are working in the functional paradigm. 
There are a number of variations in the way the names can refer to each other mutually. We will 
meet some of them on the following pages. 

The syntax a let form follows. 

 
(let ((n1 e1) 
      ... 
      (nk ek)) 
  body-expr)  

 
Syntax 9.1    The names n 1 ... n k are bound to the respective values e 1 ... e k , and the body 
expression is evaluated relative to these name bindings. Free names in the body expression are 
bound to names defined in the surround of the let construct. 

 
 

 

 • Characteristics of a let construct: 
• In body-expr n1 refers to the value of e1, ..., and nk refers to the value of ek 
• Syntactic sugar for an immediate call of a lambda expression 

• To be illustrated on the next page 
• As a consequence, the names are bound simultaneously relative to the name 

bindings in effect in the context of the let construct. 

 

The idea of simultaneous name binding is especially important to understand. Take a close look at 
the second example of Table 9.1 If you understand the result of the let expression in this example, 
you probably understand simultaneous name binding. 
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9.2.  The equivalent meaning of let 
Lecture 3 - slide 3 

A let construct can be defined by use of the name binding features of a lambda expression. In the 
rest of this section, we will see how it is done. 

 We will here understand the underlying, equivalent form of a let name binding 
construct 

 

 

Below we show a syntactic equivalence. The let form in Syntax 9.2 is fully equivalent with the 
lambda expression in Syntax 9.3 

Whenever a form like Syntax 9.2 is encountered it is transformed to the equivalent, but more basic 
form of Syntax 9.3. The syntactic transformation is done by a Scheme macro. 

 
(let ((n1 e1) 
      ... 
      (nk ek)) 
  body-expr)  

 Syntax 9.2       
 
((lambda (n1 ... nk) body-expr) 
   e1 ... ek)  

 Syntax 9.3       

  

9.3.  Examples with let name binding 
Lecture 3 - slide 4 

We provide a couple of examples of name binding with let. The examples are drawn from the web 
domain. 

Expression Value after rendering 
(let ((anchor "An anchor text") 
      (url "http://www.cs.auc.dk") 
      (tag a) 
     ) 
  (tag 'href url anchor)) 

An anchor text 

(let ((f b)) 
  (let ((f em) 
        (g f)) 
    (p (f "Text 1") (g "Text 2")))) 

Text 1 Text 2 

(let ((phrase-elements  • foo 
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        (list em strong dfn code samp 
              kbd var cite abbr acronym)) 
     ) 
  (ul  
   (map  
    (lambda (f) (li (f "foo"))) 
    phrase-elements))) 

• foo 
• foo 
• foo 
• foo 
• foo 
• foo 
• foo 
• foo 
• foo 

Table 9.1    Examples of namebindings with let. The first example 
shows that all constituents of a function call can be bound to local names 
- in the example both the function object referred to by a, and two string 
parameters. The second example illustrates that alternative names, 
aliases, can be defined for a couple of functions. Notice in particular that 
g is bound to b (the bold face function), not em (the emphasis function). 
This can also be seen in the second column. The third example is a little 
more advanced, and it can first be understood fully on the ground of the 
material in the lecture about higher-order functions. We bind the name 
phrase-elements to a list of ten functions. Via mapping, we apply 
each function to foo, and we present the results in an ul list. 

  

 

9.4.  The let* name binding construct 
Lecture 3 - slide 5 

It is often useful to use a sequential alternative to simultaneous name binding, ala let. In this section 
we will study let*, which provides for sequential name binding. 

 It is often useful to be able to use previous name bindings in a let construct, which binds 
several names  

 

The syntax of let*, as shown in Syntax 9.4 is very close to the syntax of let, which we saw in 
Syntax 9.1. 

 
(let* ((n1 e1) 
       ... 
       (ni-1 ei-1) 
       (ni ei) 
       ... 
       (nk ek)) 
  body-expr)  

 Syntax 9.4       
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 • Characteristics of let*: 
• It is possible to refer to n1 through ni-1 from the expression ei 
• Syntactic sugar for k nested let name bindings 

 

Take a moment to understand the last item above. Thus, try to understand that it is possible to 
obtain the effect of sequential name bindings by nesting a number of ordinary let constructs. In 
that way, we can devise a rewriting of a let* construct to a construct with nested lambda 
expressions. 

  

9.5.  An example with let* 
Lecture 3 - slide 6 

In the example on this page we show a function from the LAML time library. There is access to this 
library from the web material, cf. [timelib]. 

(define (how-many-days-hours-minutes-seconds n) 
  (let* ((days     (quotient n seconds-in-a-day)) 
         (n-rest-1 (modulo n seconds-in-a-day)) 
         (hours    (quotient n-rest-1 seconds-in-an-hour)) 
         (n-rest-2 (modulo n-rest-1 seconds-in-an-hour)) 
         (minutes  (quotient n-rest-2 60)) 
         (seconds  (modulo n-rest-2 60)) 
        )  
    (list days hours minutes seconds))) 

 

Program 9.1    A typical example using sequential name binding. The task is to calculate the number 
of days, hours, minutes, and seconds given a number of seconds. We subsequently calculate a 
number of quotients and rest. While doing so we find the desired results. In this example we would 
not be able to use let; let* is essential because a given calculation depends on previous name 
bindings. The full example, including the definition of the constants, can be found in the 
accompanying elucidative program. The function is part of the LAML time library in lib/time.scm of 
the LAML distribution. The time library is used whenever we need to display time information, such 
as 'the time of generation' of some HTML files. 

 

 

In the web version of the material we provide a link to an elucidator which explains the basic time 
calculations in LAML. Please refer to the web version to get access to this resource. 

Examples that illustrate uses of the LAML time functions are given later in the material, in Section 
9.7. 

  

9.6.  The letrec namebinding construct 
Lecture 3 - slide 7 
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There exists a third local name binding form, called letrec. It is used for local definition of mutually 
recursive functions, as sketched in Program 9.2. 

 The letrec name binding construct allows for definition of mutually recursive 
functions  

 

 
(letrec ((n1 e1) 
         ... 
         (nk ek)) 
  body-expr)  

 Syntax 9.5       
 

(letrec ((f1 (lambda (...) ... (f2 ...))) 
         (f2 (lambda (...) ... (f1 ...))) 
        ) 
  body-expr) 

 Program 9.2    An schematic example of a typical application of letrec for local definition of two 
mutually recursive functions.   

 
 
 

 • Characteristics of letrec 
• Each of the name bindings have effect in the entire letrec construct, including e1 

to ek 

 

  

9.7.  LAML time functions 
Lecture 3 - slide 8 

In section Section 9.5 we discussed the function how-many-days-hours-minutes-second. We 
will now illustrate some other useful LAML time functions. 

Expression Value  
(current-time) 999789132 
(time-decode 1000000000) (2001 9 9 3 46 40) 
(time-decode 0) (1970 1 1 2 0 0) 

(time-interval 1000000000) (31 8 2 5 1 46 40) 
(weekday (current-time)) Thursday 
(danish-week-number (current-time)) 36 

Table 9.2    Example use of some of the LAML time library functions 
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Strictly speaking, the abstractions which are applied in the example above, are not functions. They 
all depend on some state, which is updated every second due to the fact that time does not stand 
still. 

9.8.  References 

[timelib] Manual of the LAML time library 
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/time.html 

[-] Foldoc: let 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=let 

[-] R5RS: Binding Constructs (let, let*, letrec) 
http://www.cs.auc.dk/~normark/prog3-03/external-material/r5rs/r5rs-html/r5rs_33.html 
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10.  Conditional expressions 

In this chapter we will be interested in conditional expressions ala if and cond. 

  

10.1.  Conditional expressions 
Lecture 3 - slide 10 

In this section we introduce if and cond , both at the syntactic level (through Syntax 10.1 and 
Syntax 10.2) and at the semantic level (below the syntax boxes). 

 if and cond are special forms which evaluate their expressions according to the value of 
one or more boolean selectors 

if and cond are not control structures when applied in the functional paradigm 
 

 

Control structures belong to the imperative paradigm. In the functional paradigm, if and cond are 
used in conditional expressions. By that we mean expressions, of which subexpressions are selected 
for evaluation based on one or or more boolean selectors. 

 
(if bool-expr expr1 expr2)  

 Syntax 10.1       
 
(cond (bool-expr1 expr1) 
      ... 
      (bool-exprk exprk) 
      (else exprk+1))  
 Syntax 10.2       

 • if evaluates expr1 if bool-expr is true, and expr2 if bool-expr is false 
• cond evaluates the first expression expri whose guarding bool-expri is true. If bool-

expr1, ..., bool-exprkare all fa lse, the value of cond becomes the value of exprk+1 

 
 

 Exercise 3.1. HTML Header functions 

This is a small exercise that aims at construction of slightly different header functions than those 
provided by the native header functions h1, ..., h6. 

Define a function (header level) which takes a parameter level. The header function should 
return the similar basic header function provided that n is between one and six. If n is outside this 
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interval, we want header to return the identity function of one parameter. 

It means that ((header 3) "Header text") is equal to (h3 "Header text") and that ((h 0) "Header 
text") is just "Header text". 

Hint : Arrange the header functions in a list, and let header select the appropriate header function 
from this list. 

Define a variant of header which returns a native header function if it receives a single parameter 
(level), and which returns the value, such as, ((header 3) "Header text"), if it receives both a level 
parameter and a header text string. 

10.2.  Examples with if 
Lecture 3 - slide 11 

The examples in the table below gives web-related examples of if. 

Expression Value  
(body 
  (if (string=? (weekday (current-
time)) "Wednesday") 
      (p (em "Remember the Thursday 
meeting tomorrow!")) 
      '( )) 
 
  (h1 "Schedule") 
 
  (p "...")) 

Remember the Thursday meeting tomorrow! 

Schedule 
... 

(body 
  (p (if (string=? (weekday (current-
time)) "Wednesday") 
         (em "Remember the Thursday 
meeting tomorrow!") 
         '( ))) 
 
  (h1 "Schedule") 
 
  (p "...")) 

Remember the Thursday meeting tomorrow! 

Schedule 
... 

Table 10.1    Examples using an if conditional expression on a 
Wednesday. In both examples we extract the weekday (a string) from the 
current time. If it is a Wednesday we emit a paragraph which serves as a 
reminder of a meeting the following day. If not executed on a Wednesday, 
we do not want any special text. We achieve this by returning the empty 
list, which is spliced into the the body context (in the first example) and 
into the paragraph context (in the second example). The splicing is a 
result of the handling of lists by the HTML mirror functions in LAML. 
The two examples differ slightly. In the first example the if is placed on 
the outer level, feeding information to body. In the second row, the if is 
placed at an inner level, feeding information to the p function. The two 
examples also give slightly different results. Can you characterize the 
results?  
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10.3.  Example with cond: leap-year? 
Lecture 3 - slide 12 

The leap year function is a good example of a function, which calls for use of a cond conditional. It 
would, of course, also be possible to program the function with nested if expressions. 

(define (leap-year? y) 
  (cond ((= (modulo y 400) 0) #t) 
        ((= (modulo y 100) 0) #f) 
        ((= (modulo y 4) 0) #t) 
        (else #f))) 

 

Program 10.1    The function leap-year?. The function returns whether a year y is a leap year. 
For clarity we have programmed the function with a conditional. In this case, we can express the 
leap year condition as a simple boolean expression using and and or. We refer to this variation 
below, and we leave it to you to decide which version you prefer. 

 

 

It is also possible to program the leap year function with simple, boolean arithmetic. This is shown 
below. It is probably easier for most of us to understand the version in Program 10.1 because it is 
closer to the way we use to formulate the leap year rules. 

(define (leap-year? y) 
  (or (= (modulo y 400) 0) 
      (and (= (modulo y 4) 0) 
           (not (= (modulo y 100) 0))))) 

 Program 10.2    The function leap year programmed without a conditional.    

In the web version of this material we provide a link to the same elucidator as already discussed in 
Section 9.5. The elucidator shows the leap year function in a larger context. 

  

10.4.  Example with cond: american-time 
Lecture 3 - slide 13 

In this section we will study an extended example of the use of cond. We carry out a calculation of 
'American time', such as 2:30PM given the input of 14 30 00. There are several different cases to 
consider, as it appears in Program 10.3. 
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(define (american-time h m s) 
  (cond ((< h 0) 
           (laml-error "Cannot handle this hour:" h)) 
 
        ((and (= h 12) (= m 0) (= s 0)) 
             "noon") 
 
        ((< h 12) 
           (string-append 
             (format-hour-minutes-seconds h m s)  
             " " "am")) 
 
        ((= h 12)   
           (string-append 
             (format-hour-minutes-seconds h m s)  
             " " "pm")) 
 
        ((and (= h 24) (= m 0) (= s 0)) 
             "midnight") 
 
        ((<= h 24) 
           (string-append  
             (format-hour-minutes-seconds (- h 12) m s)  
             " " "pm")) 
 
        (else 
           (laml-error "Cannot handle this hour:" h)))) 

 Program 10.3    The function american-time. The function returns a string displaying the 
'am/pm/noon' time given hour h, minute m, and seconds s.  

 

In the web version of the material - slide or annotated slide view - we include a version of the 
program which includes the helping functions format-hour-minutes-seconds and zero-pad-
string. 

  

10.5.  Example with cond: as-string 
Lecture 3 - slide 14 

As a final example with cond, we show as-string, which is a function from the general LAML 
library. Given an almost arbitrary piece of data the function will attempt to convert it to a string. 
Similar functions named as-number, as-symbol, and as-boolean exist in the library, cf. 
[generallib]. 
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(define (as-string x) 
  (cond ((number? x) (number->string x)) 
        ((symbol? x) (symbol->string x)) 
        ((string? x) x) 
        ((boolean? x)  
            (if x "true" "false"))   ; consider "#t" and "#f" as alternatives 
        ((char? x) (char->string x)) 
        ((list? x) 
            (string-append "("  
               (string-merge (map as-string x) (make-list (- (length x) 1) " ")) 
               ")")) 
        ((vector? x) 
          (let ((lst (vector->list x))) 
            (string-append "#("  
               (string-merge (map as-string lst) (make-list (- (length lst) 1) " 
")) 
               ")"))) 
        ((pair? x) 
            (string-append "("  
               (apply string-append 
                  (map (lambda (y) (string-append (as-string y) " ")) (proper-
part x)) 
               ) 
               " . " (as-string (first-improper-part x)) 
               ")")) 
        (else "??"))) 

 

Program 10.4    The function as-string converts a variety of Scheme data types to a string. This 
function makes use of the fact that any kind of data can be passed to the function, without 
intervening static type check. At run time we dispatch on the type of x. The function string-merge is 
discussed later in this section, cf. the reference from this page. The function as-string, and its 
sibling functions as-number, as-char, as-symbol , and as-list are used heavily in all 
LAML software. The functions are convenient because they do not need to know the type of the input 
data. In functional languages with static type checking, we cannot program these functions as shown 
above. In these language we could overload the function name as-string, and underneath define 
a number of individual functions each taking a particular type of input. 

 

 

  

10.6.  References 

[generallib] Manual of the LAML general library 
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/general.html 

[-] R5RS: cond 
http://www.cs.auc.dk/~normark/prog3-03/external-material/r5rs/r5rs-html/r5rs_32.html 

[-] R5RS: if 
http://www.cs.auc.dk/~normark/prog3-03/external-material/r5rs/r5rs-html/r5rs_29.html 
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11.  Recursion and iteration 

Recursion plays an important role for non-trivial functional programs. One of the reasons is that 
recursive data structures are used heavily in functional programs. Just take, as example, linear lists, 
cf. Chapter 6. 

As another reason, most non-trivial needs some kinds of repeating structures - iteration. In our style 
of Scheme programming, we use recursive functions for iterative purposes. In this chapter we will 
see how this can be done without excessive use of memory resources. 

And as before we attempt to illustrate also this topic with examples from the web domain. 

  

11.1.  Recursion 
Lecture 3 - slide 16 

In this section we characterize the basic ideas of recursion, and the kinds of problem solving which 
are aided by recursion. 

 Recursive functions are indispensable for the processing of recursive data structures  
 

   

 Recursion is an algorithmic program solving idea that involves solution of subproblems 
of the same nature as the overall problem  

 

   

 • Given a problem P 
• If P is trivial then solve it immediately 
• If P is non-trivial, divide P into subproblems P1 ,..., Pn 
• Observe if Pi (i=1..n) are of the same nature as P 
• If so, use the overall problem solving idea on each of P1 ... Pn 
• Combine solutions of the subproblems P1 ... Pn to a solution of the overall 

problem P 

 

The problem solving technique sketched here is called divide and conquer. It is not all divide and 
conquer problems that involve recursion. But many do in fact. Recursion comes into play when the 
subproblems P1 ... Pn turn out to be of the same nature as the overall problem, and as such they can 
be solved by the same 'medicine' as used for the overall problem P. 

We would like to refer the reader to an ECIU material on recursion, which in a more careful way 
discusses and illustrates the ideas [eciu-recursion]. Notice that there is some overlap with the ECIU 
material and the material you are reading now.  
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11.2.  List processing 
Lecture 3 - slide 17 

We have already discussed lists as a recursive data type in Section 6.1. In this section we will give 
an extended LAML related example of recursive list processing in Scheme. 

 A list is a recursive data structure 

As a consequence list processing is done via recursive functions 

We illustrate list processing by extracting attribute values from a LAML attribute 
property list 

 

 

The function find-href-attribute in Program 11.1 extracts the href attribute value from an 
attribute property list. Property lists have already been discussed in Section 6.6. 

Notice the recursive nature of the function find-href-attribute. The recursive call is highlighted with 
red color. 

It happens to be the case that the function in Program 11.1 is tail recursive, cf. the discussion in 
Section 11.5. 

; Return the href attribute value from a property list 
; Return #f if no href attribute is found. 
; Pre-condition: attr-p-list is a property list -  
; of even length.   
(define (find-href-attribute attr-p-list) 
 (if (null? attr-p-list) 
     #f 
     (let ((attr-name (car attr-p-list)) 
           (attr-value (cadr attr-p-list)) 
           (attr-rest (cddr attr-p-list))) 
      (if (eq? attr-name 'href) 
          attr-value 
          (find-href-attribute attr-rest))))) 

 Program 11.1    A function for extraction of the href attribute from a property list.    

To stay concrete, we show an example of using the function find-href-attribute in Program 
11.2. 

1> (define a-clause  
    (a 'id "myid" 'class "myclass" 'href "http://www.cs.auc.dk")) 
 
2> a-clause 
(ast "a" ()  
  (id "myid" class "myclass" href "http://www.cs.auc.dk" shape "rect")  
  double xhtml10-strict) 
 
 



 71

3> (render a-clause) 
"<a id = \"myid\" class = \"myclass\" href = \"http://www.cs.auc.dk\"></a>" 
 
4> (define attr-list (ast-attributes a-clause)) 
 
5> attr-list 
(id "myid" class "myclass" href "http://www.cs.auc.dk" shape "rect") 
 
6> (find-href-attribute attr-list) 
"http://www.cs.auc.dk"   
>  
 

 Program 11.2    An example with property lists that represent HTML attributes in LAML. As the last 
interaction, we see the function find-href-attribute in play.   

 

  

11.3.  Tree processing (1) 
Lecture 3 - slide 18 

Trees are another classical example of recursive data types. 

In this section we show a web document and its internal structure. In Section 11.4 we show how to 
traverse this document, by means of tree traversal, with the purpose of extracting and collecting all 
URLs from href attributes of anchor elements in the document. 

 

 A tree is a recursive data structure 

We illustrate how to extract information from an HTML syntax tree  

 

   

The LAML document in Program 11.3 shows a web document, in which we have highlighted all the 
anchor elements - the a elements. The tree structure in Figure 11.1 shows the hierarchical 
composition of the document, in terms of HTML elements. In the web version of the material - slide 
or annotated slide view - you can also access the actual abstract syntax tree - AST - which is the 
internal document representation of LAML. We do not include it in this version of the material 
because it is relatively long.  
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(load (string-append laml-dir "laml.scm")) 
(laml-style "simple-xhtml1.0-strict-validating") 
 
(write-html 'raw 
(html 
 (head (title "Demo Links")) 
 (body 
  (p "ACM has a useful" (a 'href "http://www.acm.org/dl" "digital library") ) 
 
  (p "The following places are also of 
     interest:") 
 
 
  (ul 
   (li (a 'href "http://www.ieee.org/ieeexplore/" "The IEEE")) 
   (li "The" (a 'href "http://www.w3c.org" "W3C") "for web standards") 
   (li (a 'href "http://link.springer.de/link/service/series/0558/"  
           "Lecture Notes in Computer Science"))) 
 
  (p "Kurt Nørmark" (br)  
     (a 'href "http://www.cs.auc.dk" "Department of Computer Science") (br) 
     (a 'href "http://www.auc.dk" "Aalborg University"))))) 
 
(end-laml) 
 
 
     

 Program 11.3    A sample web document with a number of links. The link forms - represented by a 
elements - are highlighted.   

 
 

 
Figure 11.1    The syntax tree of the web document with the root made up 
by the html element. 

  

11.4.  Tree processing (2) 
Lecture 3 - slide 19 

We continue the example from Section 11.3 . 

In Program 11.4 we show the function extract-links . The function is indirectly recursive via the 
function extract-links-ast-list . 
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; Return a list of URLS as located in the a elements of ast.   
(define (extract-links ast) 
 (if (ast? ast) 
     (let ((name (ast-element-name ast)) 
           (subtrees (ast-subtrees ast)) 
          ) 
       (if (equal? name "a") 
           (let ((href-attr-value  
                  (find-href-attribute (ast-attributes ast)))) 
             (if href-attr-value (list href-attr-value) '())) 
           (extract-links-ast-list subtrees))) 
     '())) 
 
; Return a list of URLS as located in the a elements of  
; the list of ast's as passed in ast-list.   
(define (extract-links-ast-list ast-list) 
 (if (null? ast-list) 
     '() 
     (append  
      (extract-links (car ast-list)) 
      (extract-links-ast-list (cdr ast-list))))) 

 Program 11.4    The link extraction functions.   

The extract-links function above traverses the internal AST structure of a web document. When 
an anchor element is encountered, when (equal? name "a") becomes true, we collect the href 
attribute by means of the function find-href-attribute, which we described in Section 11.2, see 
Program 11.1. In the cases where we do not encounter an anchor element, the call (extract-
links-ast-list subtrees) causes traversal of the list of subtrees. 

In the dialogue shown below we illustrate how to extract the URLs from a demo document, which 
we assume is identical with the document in Program 11.3. 

 

1> (define doc-ast  
    (html 
     (head (title "Demo Links")) 
     (body 
       ...))) 
 
2 > (extract-links doc-ast) 
("http://www.acm.org/dl" "http://www.ieee.org/ieeexplore/" "http://www.w3c.org" 
 "http://link.springer.de/link/service/series/0558/" "http://www.cs.auc.dk" 
 "http://www.auc.dk") 

 Program 11.5    A link extraction dialogue.   
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 Exercise 3.2. The function outline-copy 

Program a function outline-copy which makes a deep copy of a list structure. Non-list data in 
the list should all be translated to a symbol, such as '-. You should be able to handle both proper 
lists and improper lists. 

As an example: 

 
  (outline-copy '((a b c) (d e . f) (h i))) => 
     ((- - -) (- - . -) (- -)) 

 

 11.5.  Recursion versus iteration 
Lecture 3 - slide 20 

The purpose of this section is to introduce and not least motivate the idea of tail recursion. 

 Recursive functions are - modulo use of memory resources - sufficient for any iterative 
need 

Tail recursive functions in Scheme are memory efficient for programming of any 
iterative process 

 

 

   

 Tail recursion is a variant of recursion in which the recursive call takes place without 
contextual, surrounding calculations in the recursive function.   

 

A tail call is the last 'thing' to be done before the function returns. Therefore there is no need to 
maintain any activation record of such a recursive call - we can reuse the callers activation record.  

The main source of insight to understand tail recursiveness is a series of images, which are available 
in the web version of the material (slide view). You should definitively consult this before you go 
on in this material. 

 

 11.6.  Example of recursion: number-interval 
Lecture 3 - slide 21 

We provide an example of a recursive function, namely number-interval. 

 The function number-interval returns a list of integers from a lower bound to an upper 
bound 
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The version of number-interval shown in Program 11.6 is not tail recursive. The rewriting of the 
function in Program 11.7 is tail recursive however. Notice that the function in Program 11.7 needs a 
helping function, number-interval-iter-help, with an appropriate parameter profile. 

(define (number-interval f t) 
 (if (<= f t) 
     (cons f (number-interval (+ f 1) t)) 
    '())) 

 Program 11.6    The function number-interval from the general LAML library. This function 
returns a list of t-f+1 numbers from f to t .Try it out!.   

 
 
(define (number-interval-iter f t) 
  (reverse (number-interval-iter-help f t '()))) 
 
 
(define (number-interval-iter-help f t res) 
  (if (<= f t) 
      (number-interval-iter-help (+ f 1) t (cons f res)) 
      res))    

 Program 11.7    The function number-interval-iter is an iterative, tail recursive variant of 
number-interval.   

 

We show below a couple of concrete applications of the functions in Program 11.6 and Program 
11.7. 

1> (number-interval 1 10) 
(1 2 3 4 5 6 7 8 9 10) 
 
2> (number-interval-iter 10 20) 
(10 11 12 13 14 15 16 17 18 19 20) 
 
3> (number-interval-iter 20 10) 
() 
 

 Program 11.8    A sample dialogue with the number interval functions.    
 

 
 Exercise 3.3. The append function 

The function append, which is a standard Scheme function, concatenates two or more lists. Let us 
here show a version which appends two lists: 

  (define (my-append lst1 lst2) 
       (cond ((null? lst1) lst2) 
             (else (cons (car lst1) (my-append (cdr lst1) lst2))))) 

We will now challenge ourselves by programming an iterative solution, by means of tail 
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recursion. We start with the standard setup: 

  (define (my-next-append lst1 lst2) 
    (my-next-append-1 lst1 lst2 ...)) 

where my-next-append-1 is going to be the tail recursive function: 

  (define (my-next-append-1 lst1 lst2 res) 
    (cond ((null? lst1) ...) 
          (else (my-next-append-1 (cdr lst1) lst2 ...)))) 

Fill out the details, and try out your solution. 

Most likely, you will encounter a couple of problems! Now, do your best to work around these 
problems, maybe by changing aspects of the templates I have given above. 

One common problem with iterative solutions and tail recursive functions is that lists will be built 
in the wrong order. This is due to our use of cons to construct lists, and the fact that cons operates 
on the front end of the list. The common medicine is to reverse a list, using the function reverse, 
either on of the input, or on the output. 

 
 Exercise 3.4. A list replication function 

Write a tail recursive function called { t replicate-to- length}, which in a cyclic way (if necessary) 
replicates the elements in a list until the resulting list is of certain exact length. The following 
serves as an example: 

 
        (replicate-to-length '(a b c) 8) => 
        (a b c a b c a b) 
 
        (replicate-to-length '(a b c) 2) => 
        (a b) 
       

In other words, in (replicate-to-length lst n), take elements out of lst, cyclically if 
necessary, until you reach n elements. 

 

 11.7.  Examples of recursion: string-merge 
Lecture 3 - slide 22 

This section and the next give yet other examples of recursive functions. We start with string-
merge. 

 The function string-merge zips two lists of strings to a single string. The lists are not 
necessarily of equal lengths  
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(define (string-merge str-list-1 str-list-2) 
 (cond ((null? str-list-1) (apply string-append str-list-2)) 
       ((null? str-list-2) (apply string-append str-list-1)) 
       (else (string-append 
                 (car str-list-1) (car str-list-2) 
                 (string-merge (cdr str-list-1) (cdr str-list-2)))))) 

 
Program 11.9    The recursive function string-merge. Notice that this function is a general recursive 
function. The recursive call, emphasized above, is not in a tail position, because of the embedding in 
string-append. 

 
 

The function in Program 11.9 not tail recursive. To remedy this weakness, we make another version 
which is. It is shown in Program 11.10. 

As it is characteristic for all tail recursive functions, the state of the iteration needs to be represented 
in the parameter list, here in the helping function called merge-iter-helper. The necessary state 
for string merging purpose is reduced to the resulting, merged string - the res parameter. 

(define (string-merge-iter str-list-1 str-list-2) 
 (merge-iter-helper  str-list-1 str-list-2 "")) 
 
(define (merge-iter-helper str-list-1 str-list-2 res) 
 (cond ((null? str-list-1)  
          (string-append res (apply string-append str-list-2))) 
       ((null? str-list-2)  
          (string-append res (apply string-append str-list-1))) 
       (else (merge-iter-helper 
                (cdr str-list-1)  
                (cdr str-list-2) 
                (string-append  
                    res (car str-list-1) (car str-list-2)))))) 

 Program 11.10    A tail recursive version of string-merge.    

In the LAML software, the function string-merge is used in several contexts. One of them is in 
the function list-to-string , which we show in Program 11.11 We could in fact have applied 
list-to-string in the function as-string, which we discussed in Program 10.4. 

(define (list-to-string str-lst separator) 
  (string-merge  
     str-lst 
     (make-list (- (length str-lst) 1) separator))) 

 

Program 11.11    An application of string-merge which converts a list of strings to a string with a 
given separator. This is a typical task in a web program, where a list of elements needs to be 
aggregated for HTML presentation purposes. Notice the merging of a list of n elements with a list of 
length n-1. The function make-list is another LAML function; (make-list n el) makes a list of n 
occurrences of el. 
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11.8.  Examples with recursion: string-of-char-list? 
Lecture 3 - slide 23 

The last example in this chapter is a boolean function that can check if a string is formed by the 
characters from a given alphabet. 

 The function string-of-char-list? is a predicate (a boolean function) that finds out 
if a string is formed exclusively by characters from a particular alphabet.  

 

   
(define (string-of-char-list? str char-list) 
  (string-of-char-list-1? str char-list 0 (string-length str))) 
 
(define (string-of-char-list-1? str char-list i lgt) 
  (if (= i lgt) 
      #t 
      (and (memv (string-ref str i) char-list) 
           (string-of-char-list-1? str char-list (+ i 1) lgt)))) 

 
Program 11.12    The function string-of-char-list? which relies on the tail recursive function string-
of-char-list-1?. The function string-of-char-list-1? iterates through the characters in str, via the 
controlling parameters i and lst.  

 
 

The predicates blank-string? and numeric-string? in Program 11.13 are very useful for many 
practical purposes. The first function checks if a string represents white space only. The latter 
function checks if a string represents a decimal integer. 

;; A list of characters considered as blank space characters 
(define white-space-char-list 
   (list #\space (as-char 13) (as-char 10) #\tab)) 
 
;; Is the string str empty or blank (consists of white space) 
(define (blank-string? str) 
  (or (empty-string? str)  
      (string-of-char-list? str white-space-char-list))) 
 
;; Returns if the string str is numeric. 
;; More specifically, does str consist exclusively of the 
;; ciffers 0 through 9.  
(define (numeric-string? str) 
  (string-of-char-list? str  
    (list #\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9 ))) 

 

Program 11.13    Applications of string-of-char-list?. The function blank -string? determines if a 
string is formed entirely of white space characters. The function numeric-string? is a predicate that 
returns true if the string consists exclusively of decimal digits. This is, for instance, useful to check 
the form input of dates and time in some server-based web applications. The version of numeric-
string? in the lib/general.scm of LAML is slightly more general than the version shown above (it 
allows + or - signs as well, depending on an optional parameter). 
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 Exercise 3.5. Sublists of a list 

In this exercise we will program a function front-sublist which returns the first n elements of a 
list. The signature (the head) of the function should be (front-sublist lst n) where lst is a 
list and n is a number. As a precondition it can be assumed that lst is a proper list and that n is a 
non-negative integer. As a postcondition we want to guarantee that the length of the result is n. 

As an example 

 
        (front-sublist '(a b c d e) 3)  => 
        (a b c) 
       
        (front-sublist '(a b c d e) 6)  => 
        ERROR 

First, identify the extreme, border cases and be sure that you know how to handle these. Next, 
program the function with due respect to both the precondition and the postcondition. Next, test 
the function carefully in a dialogue with your Scheme system. 

Given the function front-sublist we will program the function sublists, which breaks a 
proper list into a list of sublists of some given size. As an example 

 
        (sublists '(a b c d e f) 3) => 
        ((a b c) (d e f)) 

Program the function sublists with use of front-sublist. Be careful to prepare you solution 
by recursive thinking. It means that you should be able to break the overall problem into a smaller 
problem of the same nature, as the original problem. You are free to formulate both preconditions 
and postconditions of the function sublists, such that existing function front-sublist fits well. 

Hint : The Scheme function list-tail is probably useful when you program the function 
sublists. 

A table can be represented as a list of rows. This is, in fact, the way tables are represented in 
HTML. The tr tag is used to mark each row; the td tag is used to mark each cell. The table tag 
is used to mark the overall table. Thus, the list of rows ((a b c) (d e f)) will be marked up as: 

 
         <table> 
           <tr> <td>a</td> <td>b</td> <td>c</td> </tr> 
           <tr> <td>d</td> <td>e</td> <td>f</td> </tr> 
         </table> 

Write a Scheme function called table-render that takes a list of rows as input (as returned by 
the function sublists, which we programmed above) and returns the appropriate HTML 
rendering of the rows. Use the LAML mirror functions table, tr, and td. Be sure to call the 
LAML function xml-render to see the textual HTML rendering of the result, as opposed to 
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LAML's internal representation. 

Notice: During the course we will see better and better ways to program table-render. 
Nevertheless, it is a good idea already now to program a first version of it. 
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12.  Example of recursion: Hilbert Curves 

In this chapter we will give examples of recursive curves. The examples are taken from the ECIU 
material on recursion [eciu-recursion] which we have mentioned earlier on. 

The primary value of this chapter is the animations, which show the building of the Hilbert Curves. 
These animations must be approached in the web version of the material. 

In this paper version of the material we only give a shallow and superficial coverage. You are 
referred to the web version to get the real outcome. 

  

12.1.  Hilbert Curves 
Lecture 3 - slide 26 

 The Hilbert Curve is a space filling curve that visits every point in a square grid  
 

At this spot in the web version of the material you will find a Hilbert curve of order 5, i.e, a quite 
complicated curve. 

 The path taken by a Hilbert Curve appears as a sequence - or a certain iteration - of up, 
down, left, and right.   

 

  

12.2.  Building Hilbert Curves of order 1 
Lecture 3 - slide 27 

Here we will study the recursive composition of the most simple Hilbert Curve. 

This section is only meaningful in the web version of the material - please take a look at it. 

  

12.3.  Building Hilbert Curves of order 2 
Lecture 3 - slide 28 

Here will study the recursive composition of Hilbert Curves in additional details. 

This section is only meaningful in the web version of the material - please take a look at it. 
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12.4.  Building Hilbert Curves of order 3 
Lecture 3 - slide 29 

In the same way we made a Hilbert Curve of order 2, we will here see how a Hilbert Curve of order 
3 is made. 

This section is only meaningful in the web version of the material - please take a look at it. 

  

12.5.  Building Hilbert Curves of order 4 
Lecture 3 - slide 30 

In the same way we made a Hilbert Curve of order 3, we will here see how a Hilbert Curve of order 
4 is made. This is the final development along these lines in this material.  

This section is only meaningful in the web version of the material - please take a look at it. 

  

12.6.  A program making Hilbert Curves 
Lecture 3 - slide 31 

Given our understanding of Hilbert Curves obtained from the previous pages, we will now study a 
computer program that generates Hilbert Curves of order n, where n is any non-negative number. 

 We will here discuss a concrete program which draws Hilbert Curves of order n 
 

 

The program below, Program 12.1 shows the hilbert function, which returns a rendering of 
Hilbert Curves. 
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(define (hilbert n turn) 
 (cond ((= n 0) (empty-hilbert-curve)) 
       ((> n 0) 
         (cond  
             ((eq? turn 'up)  
               (concat-path 
                 (hilbert (- n 1) 'right)   
                 (up-line) 
                 (hilbert (- n 1) 'up)   
                 (right-line) 
                 (hilbert (- n 1) 'up)   
                 (down-line) 
                 (hilbert (- n 1) 'left) )) 
 
             ((eq? turn 'left)  
               (concat-path 
                 (hilbert (- n 1) 'down)   
                 (left-line) 
                 (hilbert (- n 1) 'left)   
                 (down-line) 
                 (hilbert (- n 1) 'left)   
                 (right-line) 
                 (hilbert (- n 1) 'up))) 
 
             ((eq? turn 'right) 
               (concat-path 
                 (hilbert (- n 1) 'up)   
                 (right-line) 
                 (hilbert (- n 1) 'right)   
                 (up-line) 
                 (hilbert (- n 1) 'right)   
                 (left-line) 
                 (hilbert (- n 1) 'down))) 
 
             ((eq? turn 'down) 
               (concat-path 
                 (hilbert (- n 1) 'left)   
                 (down-line) 
                 (hilbert (- n 1) 'down)   
                 (left-line) 
                 (hilbert (- n 1) 'down)   
                 (up-line) 
                 (hilbert (- n 1) 'right))) )))) 

 

Program 12.1    The function hilbert programmed in Scheme as a functional program. The 
function returns the path of the Hilbert Curver of order n. The parameter turn  determines the 
rotation of the curve. In the top level call we ask for an upward Hilbert Curve: As an example, 
(hilbert 3 'up) produces an upward Hilbert Curve of order 3. The red fragments are 
responsible for all line drawing. The blue fragments represent all the recursive calls of the 
hilbert function. Finally, the green fragment represent the level 0 'basis' case. The level 0 case 
returns the empty Hilbert Curve, which is literally empty (no drawing at all - no contribution to the 
resulting path). What does it mean that the the program is a functional program? Well, it basically 
means that hilbert returns a value which can be rendered somehow by another function or 
procedure. The value returned is a path, composed by concat-path. The hilbert function does not 
carry out any action itself. 
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The actual rendering of a Hilbert Curve is done by use of SVG stuff [svg]. SVG is a W3C standard 
for Scalable Vector Graphics. In case you want to get started with SVG we will recommend that 
you start with an excellent tutorial made by Ivan Herman, F.R.A. Hopgood, and D.A. Duce [svg-
tutorial]. 

In the web version of the material - in slide or annotated slide view - you will have access to the 
additional implementation details of the primitives used in Program 12.1. 
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13.  Continuations 

Continuations represent one of the advanced concepts in Scheme. In this section we will introduce 
continuations, and we will show some examples of their use within the functional programming 
paradigm. 

  

13.1.  Introduction and motivation 
Lecture 3 - slide 33 

We start by motivating our interest in continuations. One part of the story is the usefulness of a 
mechanism that allows us to 'jump out of a deep subexpression'. Another part is the possibility of 
controlling and manipulating the 'remaining part of the calculation' relative to some given control 
point.  

 It is sometimes necessary to escape from a deep expression, for instance in an 
exceptional case 

We are interested in a primitive which allows us to control the remaining part of a 
calculation - a so-called continuation.  

 

   

 • Exit or exception mechanism: 
• The need to abandon some deep evaluation 

• Continuation 
• Capturing of continuations 
• Exploring new control mechanisms by use of continuations 

 
  

 Scheme support first class continuations dressed as functions  
 

Both needs mentioned above are handled by first class continuations in Scheme. 

  

13.2.  The catch and throw idea 
Lecture 3 - slide 34 

In this section, and section Section 13.3 we explore a catch and throw escape mechanism. This 
mechanism is used in Common Lisp, but it is not directly available in Scheme. As we will see in 
Section 13.8 first class continuations can easily play the role of catch and throw. A similar Scheme-
base example is given in Section 13.9. 
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 Catch and throw provides for an intuitively simple escape mechanism on functional 
ground 

 

 

We introduce an imaginary syntax of catch and throw, see Syntax 13.1 and Syntax 13.2. The 
meaning is intended to be that catch identifies an expression, catch-expr with an id. id is a 
symbol. Within the expression, or within a function called directly or indirectly in catch-expr, we 
may encounter a throw form, which mention the id of the catch. The value of the thrown expression, 
throw-expr, is passed back along the chain of calls to the catcher, and it becomes the return value of 
the catch form. If no throw form with an appropriate id is met during the evaluation of the catch 
form, the value of the catch form just becomes the value of catch-expr. 

 
(catch id catch-expr)  

 Syntax 13.1       
 
(throw id throw-expression)  

 Syntax 13.2       
 

 Scheme does not support catch and throw 

Rather Scheme supports a much more powerful mechanisms based on continuations 
 

 

In case you are interested in more precise details of catch and throw in Common Lisp, you should 
consult the book about Common Lisp, [cltl], (full text on the web). More specifically you should 
consult the chapter about dynamic non-local exists [cltl-non-local-exists]. 

  

13.3.  A catch and throw example 
Lecture 3 - slide 35 

We now study an concrete, real- life example of catch and throw. This is not a Scheme example. 

 Exit from a list length function in case it discovers a non-empty tail of the list  
 

The function list-length returns the length of the list. The function counts the cons cells. If we 
encounter an improper list (a list without an empty list in the end of the cdr chain, see Section 6.2) 
we wish to return the symbol improper-list. In order to provide for this we set of a catcher 
around the a local function, list- length1, which does the real job. The function list- length calls list-
length1. If list- length1 encounters an improper termination of the list, it throws the symbol 
improper-list to the catcher, which returns it. If not, it just returns the count, which also is returned 
by catch via the letrec form. 
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(define (list-length lst) 
  (catch 'exit 
    (letrec ((list-length1 
               (lambda (lst)  
                 (cond ((null? lst) 0) 
                   ((pair? lst) (+ 1 (list-length1 (cdr lst)))) 
                   (else (throw 'exit 'improper-list)))))) 
       (list-length1 lst)))) 

 Program 13.1    An example using catch and throw. Please notice that the example is not a proper 
Scheme program. Catch and throw are not defined in Scheme.  

 

  

13.4.  The intuition behind continuations 
Lecture 3 - slide 36 

The rest of this chapter is about concepts that are fully supported in Scheme. 

We start with an overall definition of a continuations. Then follows some intuitive examples of 
continuations of given expressions within given contexts (surrounding expressions). 

 A continuation of the evaluation of an expression E in a surrounding context C 
represents the future of the computation, which waits for, and depends on, the value of E  

 

It may very well be difficult to grasp the intuition of continuations. We hope the following table 
will help you. It is intended to explain the intuitive understanding of the continuations of the blue, 
emphasized expressions in the leftmost column. 

Context C and expression E Intuitive continuation of E in C 
(+ 5 (* 4 3)) The adding of 5 to the value of E 
(cons 1 (cons 2 (cons 3 '()))) The consing of 3, 2 and 1 to the value of E 
(define x 5) 
(if (= 0 x) 
    'undefined 
    (remainder (* (+ x 1) (- x 1)) x)) 

The multiplication of E by x - 1 followed by a 
division by x 

Table 13.1    An intuitive understanding of continuations of an expression 
in some context. 

  

13.5.  Being more precise 
Lecture 3 - slide 37 

Instead of relying of an informal understanding of continuations we will now introduce lambda 
expressions that represent the continuations. 
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 We can form a lambda expression that to some degree represents a continuation 
 

 

The continuation of the expression (* 3 4) within (+ 5 (* 3 4)) is a function that adds 5. 
Written precisely, it is the function (lambda (e) (+ 5 e)). The other two examples of Table 13.2 
(corresponding to the second and third rows) are similar. 

Context C and expression E The continuation of E in C 
(+ 5 (* 4 3)) (lambda (e) (+ 5 e)) 

(cons 1 (cons 2 (cons 3 '()))) (lambda (e) (cons 1 (cons 2 (cons 3 
e)))) 

(define x 5) 
(if (= 0 x) 
    'undefined 
    (remainder (* (+ x 1) (- x 1)) x)) 

(lambda (e) (remainder (* e (- x 1)) 
x)) 

Table 13.2    A more precise notation of the continuations of E 

The representation of continuations with lambda expressions is part of the truth, but not the whole 
truth. The problem is that if we activate the continuation, by calling the function that represents it, it 
will return the normal way, and its calling context will finish the evaluation the normal way. We do 
not want that. Therefore a mechanism known as escape functions are invented and used. An escape 
function ignores its context in every call. We will not go into the technical details of escape 
functions in this text. The interested reader should consult [Springer89]. 

  

13.6.  The capturing of continuations 
Lecture 3 - slide 38 

It is now time to introduce the Scheme primitive that allows us to capture a continuation. 

 Scheme provides a primitive that captures a continuation of an expression E in a context 
C 

The primitive is called call-with-current-continuation, or call/cc as a short alias 

call/cc takes a parameter, which is a function of one parameter. 

The parameter of the function is bound to the continuation, and the body of the function 
is E  

 

   

We will use the brief form call/cc in our examples. 
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Context C and the capturing  
(+ 5 (call/cc (lambda (e) (* 4 3)) )) 
(cons 1 (cons 2 (cons 3 (call/cc (lambda (e) '()) )))) 
(define x 5) 
(if (= 0 x) 
    'undefined 
    (remainder (* (call/cc (lambda (e) (+ x 1)) ) (- x 1)) 
x)) 

Table 13.3    Use of call/cc and capturing of continuations. 

We elaborate the examples from Table 13.1 and Table 13.2. In the first line of Table 13.3 we 
capture the continuation of (* 4 3) in (+ 5 (* 4 3)). In the second line we capture the 
continuation of '() in (cons 1 (cons 2 (cons 3 '()))). And in the third line we capture the 
continuation of (+ x 1) in the if expression. This is the same as the continuation of the (+ x 1) in 
the remainder expression. 

One thing is capturing continuations. Another is to make good use of them. Table 13.3 does not 
illustrate the latter aspect at all. This is seen by the fact the the continuations, bound to the names e 
in all three examples, are not used. 

It should be noticed that a captured continuation is dressed like a function. Somehow we can think 
of a continuation as a 'wolf in sheep's clothing'. A continuation is activated in the same way as a 
function is called. However, the continuation is defined (captured) differently than the way 
functions are defined. Notice also that continuations inherit their first class status from functions, 
see Section 8.6. 

  

13.7.  Capturing, storing, and applying continuations 
Lecture 3 - slide 39 

In this section we will illustrate applications of the captured continuations. Once captured, we 
assign the continuations to a global variable cont-remember. We assume that cont-remember has 
been defined before any of the expressions in table Table 13.4 are evaluated. Use of assignments is 
of course not functional programming, but it provides an easy way to illustrate the working and the 
nature the captured continuations. Later in this section we will show uses of continuations in 
functional programming. For a brief review of imperative programming in Scheme the reader is 
referred to Chapter 29. 

 We here show capturing, imperative assignment, and a subsequent application of a 
continuation  
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In table Chapter 29 below we show the context expression C, its value, the application of the 
captured continuation that we have stored in the variable cont-remember, and the value of the 
application. We explain the rightmost column below the table. 

Context C and expression E Value of 
C 

Application 
of 
continuation 

Value  

(+ 5  
 (call/cc  
  (lambda (e)  
   (set! cont-remember e) 
   (* 4 3)))) 

17 
(cont-
remember 
3) 

8 

(cons 1  
 (cons 2  
  (cons 3  
   (call/cc  
    (lambda (e)  
     (set! cont-remember e) 
     '()))))) 

(1 2 3) 
(cont-
remember 
'(7 8)) 

(1 2 3 7 
8) 

(define x 5) 
(if (= 0 x) 
    'undefined 
    (remainder  
     (* (call/cc  
         (lambda (e)  
          (set! cont-remember 
e) 
          (+ x 1) )) 
        (- x 1)) 
     x)) 

4 
(cont-
remember 
3) 

2 

Table 13.4    Capturing and applying continuations. The captured 
continuations are stored in a global variable. The application of the 
continuation is shown in the third column, and the result of the 
application of the continuation is shown in the fourth column. 

First we explain the first row in the table. The application (cont-remember 3) passes 3 to the 
continuation e. It means that we fuel the expression (+ 5 X) with an X which is 3. The result is 8. 

In the second row, (cont-remember '(7 8)) passes the list (7 8) into the innermost point Y of 
(cons 1 (cons 2 (cons 3 Y))). The result is the list (1 2 3 7 8). 

In the last row, we activate (cont-remember 3). It implies that 3 is passed into the Z of 
(remainder (* Z (- x 1)) x), where x is 5. The value is (remainder 12 5) = 2. Notice in 
particular that the if has made the choice of the 'else part'. If is not a function, but a special form 
with special evaluation rules. Once it the choice of the if is made, there is no trace left of it in the 
continuation. For more details of the evaluation of if special forms see Chapter 19 to Chapter 21, 
and in particular Section 20.10. 
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13.8.  Use of continuations for escaping purposes 
Lecture 3 - slide 40 

In this section we will illustrate how to apply the captured continuations for escaping purposes. 

 We here illustrate applications of the continuations for escaping purposes 
 

 

In Table 13.5 we basically show the same expressions as in Table 13.1, Table 13.2, Table 13.3, and 
Table 13.4. In the light blue fragments, of the form (e X) we send a value X to the continuation, 
which is bound to e. In the first row we send 5 to the addition, and the value of the context 
becomes 15. In the second row we send the symbol x to the continuation, whereby the value of the 
context is the pair (1 . x). (Notice that the second example captures a continuation at a more outer 
level than in the other tables). In the second row we send the integer 111 to the else part of the if 
form, and hereby the value of the context becomes 111. 

Context C, capturing, and escape call Value  
(+ 5  
 (call/cc  
  (lambda (e) 
   (* 4 (e 10)))) ) 

15 

(cons 1  
 (call/cc 
  (lambda (e) 
   (cons 2  
    (cons 
     3 (e 'x))))) ) 

(1 . x) 

(define x 5) 
 
(if (= 0 x) 
    'undefined 
    (call/cc  
     (lambda (e) 
      (remainder  
       (* (+ x 1) 
          (- x (e 111))) 
       x))) ) 

111 

Table 13.5    Capturing and use of a continuation for escaping purposes 

  

13.9.  Practical example: Length of an improper list 
Lecture 3 - slide 41 

Now that we have seen how to capture and use continuations for escaping purposes we will study a 
number of real examples. The first is similar to the catch throw example in Program 13.1. Like the 
examples in Section 13.8 we also deal with escape values in this example. 
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Recall from Program 13.1 that we are about to program a list length function. If we, during the 
element counting, realize that we deal with an improper list (a list not terminated by the empty list) 
we want some special result, namely the symbol improper-list. 

 The length of an improper list is undefined 

We chose to return the symbol improper-list if list-length encounters an improper 
list 

This example is similar to the catch and throw example shown earlier in this section 
 

 

It is easy to program the escaping version of list-length with continuations, see Program 13.2. At 
the outer level we capture the continuation that immediately returns from list-length. We can 
freely name the continuation, and we chose the name do-exit. Within the scope of the continuation 
we define a local helping function list-length1, which does the real counting job. We follow the 
cdr chain in the recursion of list-length1. If we encounter a data object which is not a cons pair 
or the empty list we have identified an improper list. In this situation we send the symbol 
improper-list to do-exit. The effect is that we immediately return this symbol, and the count of 
of cons pairs is not used. 

(define (list-length l) 
  (call-with-current-continuation 
   (lambda (do-exit) 
     (letrec ((list-length1 
                (lambda (l) 
                   (cond ((null? l) 0) 
                         ((pair? l) (+ 1 (list-length1 (cdr l)))) 
                         (else (do-exit 'improper-list)))))) 
       (list-length1 l)))  )) 

 Program 13.2    The function list-length, which returns the symbol 'improper-list in case it 
encounters an improper list.   

 

  

13.10.  Practical example: Searching a binary tree 
Lecture 3 - slide 42 

The next example is about traversal of a tree, with the purpose of finding a subtree which satisfy a 
given predicate. 

 Searching a binary tree involves a recursively defined tree traversal 

If we find the node we are looking for it is convenient to throw the out of the tree 
traversal  
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The function find-in-tree is shown in Program 13.3. As in the list length example in Program 
13.2 we set up a continuation at the outer level of find-in-tree. The continuation is called found. 
This is not a continuation used for an exceptional value, but for the expected 'normal' value of the 
function. 

The local function find-in-tree1 is a recursive pre-order tree traversal function. In case the 
predicate holds on a subtree, it is passed to the continuation found. If not, the subtrees are searched 
recursively. The recursion stops when we reach the leaves, on which (subtree-list ...) returns 
the empty list. In case we finish the traversal without ever finding a subtree that satisfies pred we 
drop through the if form. In that case we will have to return #f. Notice that this is a rare example of 
having two expression in sequence in the body of a functional abstraction. 

(define (find-in-tree tree pred) 
 (call-with-current-continuation 
  (lambda (found) 
   (letrec 
    ((find-in-tree1 
       (lambda (tree pred) 
            (if (pred tree) 
                (found tree) 
                (let ((subtrees (subtree-list tree))) 
                   (for-each 
                      (lambda (subtree) (find-in-tree1 subtree pred)) 
                      subtrees))) 
            #f))) 
    (find-in-tree1 tree pred)))  )) 

 
Program 13.3    A tree search function which uses a continuation found if we find what we search 
for. Notice that this examples requires the function subtree-list, in order to work. The function 
returns #f in case we do not find node we are looking for. Notice that it makes sense in this example 
to have both the if expression and the #f value in sequence! 
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