9. Name binding constructs

In Section 8.1 we saw how to bind names globally, at top level, by use of def i ne. In this chapter
we will study local name binding constructs - | et constructs - and we will se how they are made by
means of lambda expressions.

9.1. Thel et name binding expression

Lecture 3 - slide 2

Let us first define what we mean by name binding constructs.

A name binding expression establishes a number of local name bindings in order to ease

the evaluation of a body expression

In a name binding construct a number of names are bound to values. The name bindings can be

used in the body, which must be an expression when we are working in the functional paradigm.
There are a number of variations in the way the names can refer to each other mutualy. We will
meet some of them on the following pages.

The syntax a let form follows.

(let ((ng ey)

(nk ex))
body- expr)

Syntax 9.1 Thenamesn; ... nyare bound to the respective valuese ... ex, and the body
expression is evaluated rel ative to these name bindings. Free names in the body expression are
bound to names defined in the surround of the let construct.

Characteristics of al et construct:
Inbody- expr my refersto the value of ey, ..., and r refersto the value of e
Syntactic sugar for an immediate call of alambda expression
To beillustrated on the next page
As aconsequence, the names are bound simultaneously relative to the name
bindings in effect in the context of the | et construct.

Theideaof simultaneous name binding is especially important to understand. Take a close look at
the second example of Table 9.1 If you understand the result of the let expression in this example,
you probably understand simultaneous name binding.

57

9.2. The equivalent meaning of | et

Lecture 3 - slide 3

Al et construct can be defined by use of the name binding features of a lambda expression. In the
rest of this section, we will see how it is done.

We will here understand the underlying, equivalent form of al et name binding
construct

Below we show a syntactic equivalence. The let form in Syntax 9.2 is fully equivaent with the
lambda expression in Syntax 9.3

Whenever aform like Syntax 9.2 is encountered it is transformed to the equivalent, but more basic
form of Syntax 9.3. The syntactic transformation is done by a Scheme macro.

(let ((ny ey)

(nk ex))
body- expr)
Syntax 9.2
((lambda (ny ... ng) body-expr)
€1 ... €
Syntax 9.3

9.3. Exampleswith e name binding

Lecture 3 - slide 4

We provide a couple of examples of name binding with let. The examples are drawn from the web
domain.

[Expression \Value after rendering

(let ((anchor "An anchor text")
(url "http://ww.cs. auc. dk")
(tag a) An anchor text
)

(tag 'href url anchor))

(let ((f b))

e Text 1 Text 2
g
(p (f "Text 1") (g "Text 2"))))
‘(Iet ((phrase-el ement s | . foo

58

(list emstrong dfn code sanp . foo

kbd var cite abbr acronym) . foo

)
(ul
(lambda (f) (li (f "foo0"))) - foo
phrase-el enents))) . foo
foo
foo
foo

f oo

Table9.1 Examples of namebindingswith| et . Thefirst example
shows that all constituents of a function call can be bound to local names
- in the example both the function object referred to by a, and two string
parameters. The second exampleillustrates that alter native names,
aliases, can be defined for a couple of functions. Noticein particular that
g isbound to b (the bold face function), not em (the emphasis function).
This can also be seen in the second column. The third exampleisalittle
mor e advanced, and it can first be understood fully on the ground of the
material in the lecture about higher-order functions. We bind the name
phrase- el ement s toalist of ten functions. Via mapping, we apply
each function tof oo, and we present the resultsin an ul list.

9.4. Thel et * name binding construct

Lecture 3 - slide 5

It is often useful to use a sequential alternative to simultaneous name binding, ala let. In this section
we will study let*, which provides for sequential name binding.

It is often useful to be able to use previous name bindings in alet construct, which binds
several names

The syntax of | et *, as shown in Syntax 9.4 is very close to the syntax of | et , which we saw in
Syntax 9.1.

(let* ((n1 ey

(n|1 €i-1)

(ni e)

(nk €k))
body- expr)

Syntax 9.4

59

Characteristicsof | et * :
It is possible to refer to n through n.; from the expression g
Syntactic sugar for k nested | et name bindings

Take a moment to understand the last item above. Thus, try to understand that it is possible to
obtain the effect of sequential name bindings by nesting a number of ordinary | et constructs. In
that way, we can devise arewriting of al et * construct to a construct with nested lambda
expressions.

9.5. Anexamplewith| et *

Lecture 3 - slide 6

In the example on this page we show a function from the LAML time library. There is access to this
library from the web material, cf. [timelib].

(defi ne (how many-days- hours-n nutes-seconds n)

(let* ((days (quotient n seconds-in-a-day))
(n-rest-1 (nodul o n seconds-in-a-day))
(hours (quotient n-rest-1 seconds-in-an-hour))

(n-rest-2 (nodulo n-rest-1 seconds-in-an-hour))
(m nutes (quotient n-rest-2 60))
(seconds (nodulo n-rest-2 60))

(l'i st days hours ninutes seconds)))

Program9.1 A typical example using sequential name binding. The task is to cal culate the number
of days, hours, minutes, and seconds given a number of seconds. We subsequently calculate a
number of quotients and rest. While doing so we find the desired results. In this example we would
not be ableto use let; let* isessential because a given cal culation depends on previous name
bindings. The full example, including the definition of the constants, can be found in the
accompanying elucidative program. The function is part of the LAML timelibrary in lib/time.scm of
the LAML distribution. Thetimelibrary is used whenever we need to display time information, such
as 'the time of generation' of some HTML files.

In the web version of the material we provide a link to an elucidator which explains the basic time
calculations in LAML. Please refer to the web version to get access to this resource.

Examples that illustrate uses of the LAML time functions are given later in the material, in Section
9.7.

9.6. Theetrec Nnamebinding construct

Lecture 3 - slide 7

60

There exists a third local name binding form, called letrec. It is used for local definition of mutually
recursive functions, as sketched in Program 9.2.

Thel et r ec name binding construct allows for definition of mutually recursive

functions
(letrec ((ny ey
(nk ex))
body- expr)
Syntax 9.5
(letrec ((f1 (lanmbda (...) ... (f2 ...)))
(f2 (lanbda (...) ... (f1 ...)))

)
body- expr)

Program 9.2 An schematic example of a typical application of letrec for local definition of two
mutually recursive functions.

Characteristicsof | et rec
Each of the name bindings have effect in the entire | et r ec construct, including e;

o &

9.7. LAML time functions

Lecture 3 - slide 8

In section Section 9.5 we discussed the function how many- days- hour s- mi nut es- second. We
will now illustrate some other useful LAML time functions.

[Expression \Value
((current-time) 1999789132

\(ti me- decode 1000000000) (2001 9 9 3 46 40)
(time-decode 0) (1970 1 1 2 0 0)
((time-interval 1000000000) (31 8 2 5 1 46 40)
\(weekday (current-tine)) Thur sday

((dani sh- week- nunber (current-tine)) 36

Table9.2 Example use of some of the LAML time library functions

61

Strictly speaking, the abstractions which are applied in the example above, are not functions. They
all depend on some state, which is updated every second due to the fact that time does not stand
still.

9.8. References

[timelib] Manua of the LAML time library
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/time.html
[-] Foldoc: let
http://wombat.doc.ic.ac.uk/foldoc/fol doc.cgi ?query=let
[-] R5RS: Binding Constructs (let, let*, letrec)

http://www.cs.auc.dk/~normark/prog3-03/external - material/r5rs/r5rs-html/r5rs_33.html

62

10. Conditional expressions

In this chapter we will be interested in conditional expressions dai f and cond.

10.1. Conditional expressions

Lecture 3 - dide 10

In this section we introduce i f and cond , both at the syntactic level (through Syntax 10.1 and
Syntax 10.2) and at the semantic level (below the syntax boxes).

i f and cond are specia forms which evaluate their expressions according to the value of
one or more boolean selectors

i f and cond are not control structures when applied in the functional paradigm

Control structures belong to the imperative paradigm. In the functiona paradigm, i f and cond are
used in conditional expressions. By that we mean expressions, of which subexpressions are selected
for evaluation based on one or or more boolean selectors.

(i f bool -expr expri expry)

Syntax 10.1

(cond (bool -expr, expr;)

.(.b.ool - eXprg expry)
(el se exprg+))

Syntax 10.2

i f evaluatesexpr ; if bool - expr istrue, and expr , if bool - expr isfase
cond evaluates the first expression expr ; whose guarding bool - expr ; istrue. If bool -
expr, ..., bool - expr are al false, the value of cond becomes the value of expr .1

Exercise 3.1. HTML Header functions

Thisisasmall exercise that aims at construction of dightly different header functions than those
provided by the native header functions hi, ..., h6.

Define afunction (header | evel) which takes a parameter | evel . The header function should
return the similar basic header function provided that n is between one and six. If nis outside this

63

interval, we want header to return the identity function of one parameter.

It means that ((header 3) "Header text") is equal to (h3 "Header text") and that ((h 0) "Header
text") isjust "Header text".

Hint: Arrange the header functionsin alist, and let header select the appropriate header function
from this list.

Define a variant of header which returns a native header function if it receives a single parameter
(level), and which returns the value, such as, ((header 3) "Header text"), if it receives both alevel
parameter and a header text string.

10.2. Exampleswithi f

Lecture 3 - slide 11

The examples in the table below gives web-related examplesof i f .

[Expression Value

(body
(if (string=? (weekday (current-
tinme)) "Wednesday")
(p (em "Renmenber the Thursday

neeting(t;);TDHOW!")) &:hedUIe

(h1 " Schedul e")

(p"..."))

Remember the Thursday meeting tomor row!

(body
(p (if (string=? (weekday (current-
time)) "Wednesday")
(em "Renenber the Thursday

neet i ng t.OEm;;;)\M“) &hedUIe
(h1l "Schedul e")

(p"..."))

Remember the Thursday meeting tomor row!

Table10.1 Examplesusing anif conditional expression on a
Wednesday. In both examples we extract the weekday (a string) fromthe
current time. If it is a Wednesday we emit a paragraph which serves as a
reminder of a meeting the following day. If not executed on a Wednesday,
we do not want any special text. We achieve this by returning the empty
list, which is spliced into the the body context (in the first example) and
into the paragraph context (in the second example). The splicingisa
result of the handling of lists by the HTML mirror functionsin LAML.
The two examples differ slightly. Inthefirst examplethei f isplaced on
the outer level, feeding information tobody. In the second row, thei f is
placed at an inner level, feeding information to the p function. The two
examples also give slightly different results. Can you characterize the
results?

64

10.3. Examplewithcond: | eap- year ?

Lecture 3 - dide 12

The leap year function is a good example of afunction, which calls for use of acond conditional. It
would, of course, aso be possible to program the function with nested i f expressions.

(define (
(cond (

(
(
(

(modul o y 400) 0) #t)
(modul o y 100) 0) #f)
(modul o y 4) 0) #t)

eap-year? y)
lse #f)))

I
(
(
(
e

Program 10.1 The function| eap- year ?. The function returns whether a year yisaleap year.

For clarity we have programmed the function with a conditional. In this case, we can express the
leap year condition as a simple boolean expression usingand and or . We refer to thisvariation
below, and we leave it to you to decide which version you prefer.

It is also possible to program the leap year function with simple, boolean arithmetic. Thisis shown
below. It is probably easier for most of us to understand the version in Program 10.1 because it is
closer to the way we use to formulate the leap year rules.

(define (leap-year? vy)
(or (= (modulo y 400) 0)
(and (= (rmodulo y 4) 0)
(not (= (npdulo y 100) 0)))))

Program 10.2 The function leap year programmed without a conditional.

In the web version of this material we provide alink to the same elucidator as already discussed in
Section 9.5. The elucidator shows the leap year function in alarger context.

10.4. Examplewith cond: aneri can-ti nme

Lecture 3 - dlide 13

In this section we will study an extended example of the use of cond. We carry out a calculation of
'‘American time', such as 2:30PM given the input of 14 30 00. There are severa different cases to
consider, as it appears in Program 10.3.

65

(define (anmerican-time h ms)
(cond ((< h 0)
(lam -error "Cannot handle this hour:" h))

((and (= h 12) (= mO0) (= s 0))
"noon")

((< h 12)
(string-append
(f ormat - hour - m nut es-seconds h m s)
© vant))

((= h 12)
(string-append
(format - hour - m nut es-seconds h m s)

© vpnt))
((and (= h 24) (= m0) (=s 0))
"m dni ght")
((<= h 24)

(string-append
(format - hour - mi nut es-seconds (- h 12) ms)
" "pnt))

(el se
(lam -error "Cannot handle this hour:" h))))

Program 10.3 The functionamer i can-t i me. The function returnsa string displaying the
‘am/pm/noon’ time given hour h, mi nute m, and secondss.

In the web version of the material - dide or annotated slide view - we include a version of the
program which includes the helping functions f or mat - hour - mi nut es- seconds and zer o- pad-

string.

10.5. Examplewithcond: as-stri ng

Lecture 3 - dlide 14

Asafina example with cond, we show as- st ri ng, which is a function from the general LAML
library. Given an almost arbitrary piece of data the function will attempt to convert it to a string.
Similar functions named as- nunber , as- synbol , and as- bool ean exist in the library, cf.
[generdlib].

66

(define (as-string x)

(cond ((numnber->string x))
((symbol ->string x))
(X)
(
(if x "true" "false")) ; consider "#t" and "#f" as alternatives
E(char? x) (char->string x))
(string-append " ("
(string-nmerge (map as-string x) (make-list (- (length x) 1) " "))
"))

(let ((lIst (vector->list x)))
(string-append "#("
(string-nmerge (map as-string Ist) (make-list (- (length Ist) 1) "

"))

")")))

(string-append " ("
(apply string-append
(map (lanmbda (y) (string-append (as-string y) " ")) (proper-

part x))

" . " (as-string (first-inproper-part X))

")"))

("2?2")))

Program 10.4 The function as-string converts a variety of Scheme data typesto a string. This
function makes use of the fact that any kind of data can be passed to the function, without
intervening static type check. At run time we dispatch on the type of x. The function string-mergeis
discussed later in this section, cf. the reference fromthis page. The functionas- st ri ng, and its
sibling functionsas- nunber ,as- char,as- synbol ,andas- | i st areused heavilyin all
LAML software. The functions are convenient because they do not need to know the type of the input
data. In functional languages with static type checking, we cannot program these functions as showr
above. In these language we could overload the function nameas- st r i ng, and underneath define
a number of individual functions each taking a particular type of input.

10.6. References

[generallib] Manual of the LAML general library
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/general .html
[-] R5RS: cond
http://www.cs.auc.dk/~normark/prog3-03/external -material/r5rs/r5rs-html/rbrs_32.html
[-] R5RS: if

http://www.cs.auc.dk/~normark/prog3-03/external - material/r5rs/r5rs-html/r5rs_29.html

67

68

11. Recursion and iteration

Recursion plays an important role for nonttrivial functional programs. One of the reasonsis that
recursive data structures are used heavily in functional programs. Just take, as example, linear lists,
cf. Chapter 6.

As another reason, most norttrivial needs some kinds of repeating structures - iteration. In our style
of Scheme programming, we use recursive functions for iterative purposes. In this chapter we will
see how this can be done without excessive use of memory resources.

And as before we attempt to illustrate also this topic with examples from the web domain.

11.1. Recursion

Lecture 3 - slide 16

In this section we characterize the basic ideas of recursion, and the kinds of problem solving which
are aided by recursion.

|Recursi ve functions are indispensable for the processing of recursive data structures

Recursion is an algorithmic program solving idea that involves solution of subproblems

of the same nature as the overall problem

Given a problem P
- If Pistrivia then solve it immediately
If Pisnontrivial, divide P into subproblems Py ..., P,
Observeif P (i=1..n) are of the same nature as P
If s0, use the overall problem solving idea on each of P; ... P,
Combine solutions of the subproblems P; ... P, to a solution of the overall
problem P

The problem solving technique sketched here is called divide and conquer. It is not al divide and
conquer problems that involve recursion. But many do in fact. Recursion comes into play when the
subproblems P; ... P, turn out to be of the same nature as the overall problem, and as such they can
be solved by the same 'medicine’ as used for the overall problem P.

We would like to refer the reader to an ECIU materia on recursion, which in a more careful way

discusses and illustrates the ideas [eciu-recursion]. Notice that there is some overlap with the ECIU
material and the material you are reading now.

69

11.2. List processing

Lecture 3 - dide 17

We have already discussed lists as a recursive data type in Section 6.1. In this section we will give
an extended LAML related example of recursive list processing in Scheme.

A list isarecursive data structure
As a consequence list processing is done via recursive functions

Weiillustrate list processing by extracting attribute values from a LAML attribute
property list

Thefunction fi nd- href -attri but e in Program 11.1 extracts the href attribute value from an
attribute property list. Property lists have aready been discussed in Section 6.6.

Notice the recursive nature of the function find- href-attribute. The recursive cal is highlighted with
red color.

It happens to be the case that the function in Program 11.1 is tail recursive, cf. the discussionin
Section 11.5.

Return the href attribute value froma property I|i st
Return #f if no href attribute is found
Pre-condition: attr-p-list is a property |ist
; of even |ength.
(define (find-href-attribute attr-p-1ist)
(if (null? attr-p-1ist)
#f
(let ((attr-name (car attr-p-list))
(attr-value (cadr attr-p-list))
(attr-rest (cddr attr-p-list)))
(if (eqg? attr-name 'href)
attr-val ue
(find-href-attribute attr-rest)))))

Program 11.1 Afunction for extraction of the href attribute from a property list.

To stay concrete, we show an example of using the function fi nd- href - att ri but e in Program
11.2.

1> (define a-clause
(a 'id "myid" 'class "myclass" 'href "http://ww.cs.auc.dk"))

2> a-cl ause

(ast "a" ()
(id "nyid" class "myclass" href "http://ww.cs. auc. dk" shape "rect")
doubl e xhtm 10-strict)

70

3> (render a-cl ause)
""

4> (define attr-list (ast-attributes a-clause))

5> attr-1list
(id "nyid" class "nmyclass" href "http://ww.cs.auc.dk” shape "rect")

6> (find-href-attribute attr-Ilist)

"http://ww.cs. auc. dk"
>

Program 11.2 An example with property lists that represent HTML attributesin LAML. Asthelast
interaction, we see the function find-href-attribute in play.

11.3. Treeprocessing (1)

Lecture 3 - slide 18
Trees are another classical example of recursive data types.

In this section we show aweb document and its internal structure. In Section 11.4 we show how to
traverse this document, by means of tree traversal, with the purpose of extracting and collecting all
URLSs from href attributes of anchor elements in the document.

A treeis arecursive data structure

We illustrate how to extract information from an HTML syntax tree

The LAML document in Program 11.3 shows a web document, in which we have highlighted al the
anchor elements - the a elements. The tree structure in Figure 11.1 shows the hierarchical
composition of the document, in terms of HTML elements. In the web version of the material - dide
or annotated slide view - you can aso access the actua abstract syntax tree - AST - which isthe
internal document representation of LAML. We do not include it in this version of the material
because it is relatively long.

71

(load (string-append lam -dir "lam .scnl))
(lam -style "sinple-xhtm 1. 0-strict-validating")

(wite-html 'raw
(htm
(head (title "Denmp Links"))
(body
(p "ACM has a useful" (a "href "http://ww.acmorg/dl" "digital library"))

(p "The follow ng places are al so of
interest:")

(ul
(l'i (a "href "http://ww.ieee.org/ieeexplore/" "The |EEE"))
(l'i "The" (a "href "http://ww.w3c.org" "WBC') "for web standards")

(l'i (a "href "http://link.springer.de/link/servicel/series/0558/"
"Lecture Notes in Conputer Science")))

(p "Kurt Nermark" (br)
(a "href "http://ww.cs.auc. dk" "Departnment of Conputer Science") (br)
(a "href "http://ww. auc. dk" "Aal borg University")))))

(end-Iam)

Program 11.3 A sample web document with a number of links. The link forms - represented by a
elements - are highlighted.

html
-.---i_ff -\'\‘\H
head baody
.-"'-f:f II'l 1"““-,___H
p p U p
| I N

a 1|1 llj Ilj a a

a a a

Figure 11.1 The syntax tree of the web document with the root made up
by theht m element.

11.4. Tree processing (2)

Lecture 3 - slide 19
We continue the example from Section 11.3.

In Program 11.4 we show the function ext ract - 1 i nks . The function is indirectly recursive via the
functionextract-1inks-ast-1ist .

72

Return a list of URLS as |located in the a elenents of ast.
(define (extract-links ast)
(if (ast? ast)
(let ((nane (ast-el enent-nanme ast))
(subtrees (ast-subtrees ast))
)
(if (equal ? name "a")
(let ((href-attr-val ue
(find-href-attribute (ast-attributes ast))))
(if href-attr-value (list href-attr-value) '()))
(extract-links-ast-list subtrees)))

“()))

Return a list of URLS as located in the a el enents of
the list of ast's as passed in ast-list.
(define (extract-links-ast-list ast-Ilist)
(if (null? ast-list)
"0
(append
(extract-links (car ast-list))
(extract-links-ast-list (cdr ast-list)))))

Program 11.4 Thelink extraction functions.

Theextract - 1i nks function above traverses the internal AST structure of a web document. When
an anchor element is encountered, when (equal ? nane "a") becomes true, we collect the hr ef
attribute by means of the function f i nd- href - at t ri but e, which we described in Section 11.2, see
Program 11.1. In the cases where we do not encounter an anchor element, the call (extr act -
links-ast-list subtrees) causestraversal of thelist of subtrees.

In the dialogue shown below we illustrate how to extract the URLs from a demo document, which
we assume is identical with the document in Program 11.3.

1> (define doc-ast

(htm
(head (title "Denmp Links"))
(body
-)))
2 > (extract-1links doc-ast)
("http://ww. acmorg/dl" "http://ww.ieee.org/ieeexplore/"™ "http://ww. w3c. org"

"http://link.springer.de/link/servicel/series/0558/" "http://ww.cs.auc. dk"
“http://ww. auc. dk")

Program 11.5 Alink extraction dialogue.

73

Exercise 3.2. The function outline-copy

Program afunction out I i ne- copy which makes a deep copy of alist structure. Non-list datain
the list should all be trandated to a symbol, such as'-. Y ou should be able to handle both proper
lists and improper lists.

As an example:

(outline-copy '"((abzc) (de. f) (hi))) =>
(C---)y ¢ -.-) (- -))

11.5. Recursion versus iteration

Lecture 3 - dlide 20

The purpose of this section is to introduce and not least motivate the idea of tail recursion.

Recursive functions are - modulo use of memory resources - sufficient for any iterative
need

Tail recursive functions in Scheme are memory efficient for programming of any
iterative process

Tail recursion is a variant of recursion in which the recursive call takes place without

contextual, surrounding calculations in the recursive function.

A tail cal isthe last 'thing' to be done before the function returns. Therefore there is no need to
maintain any activation record of such arecursive call - we can reuse the callers activation record.

The main source of insight to understand tail recursiveness is a series of images, which are available
in the web version of the materia (slide view). Y ou should definitively consult this before you go
on in this material.

11.6. Example of recursion: nunber-interval

Lecture 3 - slide 21

We provide an example of arecursive function, namely nunber -i nt erval .

The function nurber - i nt er val returnsalist of integers from alower bound to an upper
bound

74

The version of number -i nt erval shown in Program 11.6 is not tail recursive. The rewriting of the
function in Program 11.7 is tail recursive however. Notice that the function in Program 11.7 needs a
helping function, nunber - i nt erval -i t er - hel p, with an appropriate parameter profile.

(define (nunber-interval f t)
(if (<=1 1t)
(cons f (nunber-interval (+ f 1) t))

“()))

Program 11.6 The function nunber - i nt er val fromthe general LAML library. This function
returnsalist of t-f+1 numbersfromf tot .Tryit out!.

(define (nunber-interval-iter f t)
(reverse (nunmber-interval-iter-help f t "())))

(define (nunber-interval-iter-help f t res)
(if (<=1 1t)
(nunber-interval-iter-help (+ f 1) t (cons f res))
res))

Program 11.7 The function nunber - i nt erval -i t er isaniterative, tail recursive variant of
nunber-interval .

We show below a couple of concrete applications of the functionsin Program 11.6 and Program
11.7.

1> (nunber-interval 1 10)
(123456789 10)

2> (nunmber-interval -iter 10 20)
(10 11 12 13 14 15 16 17 18 19 20)

3> (nunber-interval -iter 20 10)
0

Program 11.8 A sample dialogue with the number interval functions.

Exer cise 3.3. The append function

The function append, which is a standard Scheme function, concatenates two or more lists. Let us
here show a version which appends two lists:

(define (nmy-append |Istl |st2)
(cond ((null? Istl) Ist2)
(el se (cons (car Istl) (ny-append (cdr Istl) Ist2)))))

We will now challenae ourselves bv proarammina an iterative solution. bv means of tail

75

recursion. We start with the standard setup:

(define (ny-next-append |Istl |st2)
(ny-next-append-1 Istl Ist2 ...))

where my- next - append- 1 is going to be the tail recursive function:

(define (ny-next-append-1 Istl Ist2 res)
(cond ((null? Istl) ...)
(el se (ny-next-append-1 (cdr Istl) Ist2 ...))))

Fill out the details, and try out your solution.

Most likely, you will encounter a couple of problems! Now, do your best to work around these
problems, maybe by changing aspects of the templates | have given above.

One common problem with iterative solutions and tail recursive functions is that lists will be built
in the wrong order. Thisis dueto our use of cons to construct lists, and the fact that cons operates
on the front end of the list. The common medicine is to reverse alist, using the function r ever se,
either on of the input, or on the output.

Exercise 3.4. Alist replication function

Write atail recursive function called { t replicate-to-length}, which in a cyclic way (if necessary)
replicates the elements in alist until the resulting list is of certain exact length. The following
serves as an example:

(replicate-to-length "(a b ¢c) 8) =>
(abcabcahb)

(replicate-to-length "(a b c) 2) =>
(a b)

In other words, in (replicate-to-l1ength |st n),takeelementsout of I st, cyclicaly if
necessary, until you reach n elements.

11.7. Examples of recursion: string-merge

Lecture 3 - dide 22

This section and the next give yet other examples of recursive functions. We start with st ri ng-
nmer ge.

Thefunction st ri ng- mer ge zips two lists of strings to a single string. The lists are not
necessarily of equal lengths

76

(define (string-nmerge str-list-1 str-1list-2)
(cond ((null? str-list-1) (apply string-append str-1list-2))
((null? str-list-2) (apply string-append str-list-1))
(el se (string-append
(car str-list-1) (car str-list-2)
(string-nmerge (cdr str-list-1) (cdr str-list-2))))))

Program 11.9 The recursive function string-merge. Notice that this function is a general recursive
function. Therecursive call, emphasized above, is not in a tail position, because of the embedding in

string-append.

The function in Program 11.9 not tail recursive. To remedy this weakness, we make another version
which is. It is shown in Program 11.10.

Asit is characteristic for al tail recursive functions, the state of the iteration needs to be represented
in the parameter list, here in the helping function called mer ge-i t er - hel per . The necessary state
for string merging purpose is reduced to the resulting, merged string - ther es parameter.

(define (string-nmerge-iter str-list-1 str-list-2)
(nmerge-iter-helper str-list-1 str-list-2 ""))

(define (nmerge-iter-helper str-list-1 str-list-2 res)
(cond ((null? str-list-1)
(string-append res (apply string-append str-list-2)))
((null? str-1list-2)
(string-append res (apply string-append str-list-1)))
(el se (nerge-iter-hel per
(cdr str-list-1)
(cdr str-list-2)
(string-append
res (car str-list-1) (car str-list-2))))))

Program 11.10 Atail recursive version of string-merge.

In the LAML software, the function st ri ng- mer ge isused in several contexts. One of themisin
thefunction | i st -t o- string , which we show in Program 11.11 We could in fact have applied
l'ist-to-string inthefunction as-string, which we discussed in Program 10.4.

(define (list-to-string str-|st separator)
(string-nerge
str-1Ist
(make-list (- (length str-lst) 1) separator)))

Program 11.11 An application of string-merge which converts alist of stringsto a string with a
given separator. Thisisatypical task in a web program, where a list of elements needs to be
aggregated for HTML presentation purposes. Notice the merging of a list of n elementswith a list of
length n-1. The function make-list is another LAML function; (makelist n el) makesalist of n

occurrences of €l.

77

11.8. Exampleswithrecursion: stri ng-of -char-1list?

Lecture 3 - dide 23

The last example in this chapter is a boolean function that can check if a string is formed by the
characters from a given alphabet.

Thefunction st ri ng- of - char -1 i st ? is apredicate (a boolean function) that finds out
If astring isformed exclusively by characters from a particular alphabet.

(define (string-of-char-list? str char-list)
(string-of-char-list-1? str char-list O (string-length str)))

(define (string-of-char-list-1? str char-list i |gt)
(if (=1 lgt)
#t

(and (nmenmv (string-ref str i) char-1list)
(string-of-char-list-1? str char-list (+i 1) Igt))))

Program 11.12 The function string-of-char-list? which relies on the tail recursive function string-
of-char-list-1?. The function string-of-char-list-17? iterates through the charactersin str, via the
controlling parametersi and Ist.

The predicates bl ank- st ri ng? and numeri c-string? in Program 11.13 are very useful for many
practical purposes. The first function checks if a string represents white space only. The latter
function checks if a string represents a decimal integer.

;7 Alist of characters considered as bl ank space characters
(defi ne white-space-char-1Ii st
(l'i st #\space (as-char 13) (as-char 10) #\tab))

i, |Is the string str enpty or blank (consists of white space)
(define (blank-string? str)
(or (enpty-string? str)
(string-of-char-list? str white-space-char-list)))

;7 Returns if the string str is numeric.
i, More specifically, does str consist exclusively of the
;; ciffers O through 9.
(define (numeric-string? str)
(string-of-char-list? str
(list #10 #\1 #\2 #\3 #\4 #\5 #6 #7 #8 #9)))

Program 11.13 Applications of string-of-char-list?. The function blank -string? determinesif a
string is formed entirely of white space characters. The function numeric-string? is a predicate that
returnstrueif the string consists exclusively of decimal digits. Thisis, for instance, useful to check
the forminput of dates and time in some server-based web applications. The version of numeric-
string? in the lib/general.scm of LAML is slightly more general than the version shown above (it
allows + or - signsaswell, depending on an optional parameter).

78

Exercise 3.5. Qublistsof alist

In this exercise we will program afunction f r ont - subl i st which returns the first n elements of a
list. The signature (the head) of the function should be (front - subli st Ist n) wherelst isa
list and n is a number. As a precondition it can be assumed that | st isaproper list and that n isa
non-negative integer. As a postcondition we want to guarantee that the length of the result isn.

Asan example

(front-sublist "(a b c de 3) =>
(a b c)

(front-sublist '(abcde) 6) =>
ERROR

First, identify the extreme, border cases and be sure that you know how to handle these. Next,
program the function with due respect to both the precondition and the postcondition. Next, test
the function carefully in a dialogue with your Scheme system.

Given the function f r ont - subl i st we will program the function subl i st s, which breaks a
proper list into alist of sublists of some given size. As an example

(sublists "(abcdef) 3) =>
((abec) (def))

Program the function subl i st s with use of f ront - subl i st . Be careful to prepare you solution
by recursive thinking. It means that you should be able to break the overall problem into a smaller
problem of the same nature, as the original problem. Y ou are free to formulate both preconditions
and postconditions of the function sublists, such that existing function front-sublist fits well.

Hint: The Scheme function | i st -t ai | isprobably useful when you program the function
sublists.

A table can be represented as a list of rows. Thisis, in fact, the way tables are represented in
HTML. Thetr tagisused to mark each row; thet d tag is used to mark each cell. Thet abl e tag
is used to mark the overall table. Thus, the list of rows((a b ¢) (d e f)) will be marked up as:

<t abl e>
<tr> <td>a</td> <td>b</td> <td>c</td> </tr>
<tr> <td>d</td> <td>e</td> <td>f</td> </tr>
</t abl e>

Write a Scheme function called t abl e- r ender that takes alist of rows as input (as returned by
the function subl i st s, which we programmed above) and returns the appropriate HTML
rendering of the rows. Use the LAML mirror functionst abl e, t r, and t d. Be sure to call the
LAML function xm - r ender to see the textual HTML renderina of the result, as opposed to

79

LAML'sinternal representation.

Notice: During the course we will see better and better ways to programt abl e- r ender .
Nevertheless, it is a good idea aready now to program afirst version of it.

11.9. References

[-]

[eciu-recursion]

[-]

Foldoc: iteration
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=iteration

R5RS: Proper tail recursion
http://www.cs.auc.dk/~normark/prog3-03/external - material/r5rs/r5rs-html/rbrs_22.html

The HTML version of the web document that illustrates tree traversal
external-material/ast-example.html

AST functionsin LAML
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/xml -in-laml/man/xml -in-
laml.html#SECTION 4

Recursion - an ECIU material
http://www.cs.auc.dk/~normark/eciu-recursion/htmi/recit.html

Foldoc: recursion
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=recursion

80

12. Example of recursion: Hilbert Curves

In this chapter we will give examples of recursive curves. The examples are taken from the ECIU
material on recursion [eciu-recursion] which we have mentioned earlier on.

The primary value of this chapter is the animations, which show the building of the Hilbert Curves.
These animations must be approached in the web version of the material.

In this paper version of the material we only give a shallow and superficial coverage. You are
referred to the web version to get the real outcome.

12.1. Hilbert Curves

Lecture 3 - dide 26

The Hilbert Curveis a space filling curve that visits every point in a square grid

At this spot in the web version of the material you will find a Hilbert curve of order 5, i.e, aquite
complicated curve.

The path taken by a Hilbert Curve appears as a sequence - or acertain iteration - of up,
down, left, and right.

12.2. Building Hilbert Curves of order 1

Lecture 3 - dlide 27

Here we will study the recursive composition of the most simple Hilbert Curve.

This section is only meaningful in the web version of the material - please take a look at it.

12.3. Building Hilbert Curves of order 2

Lecture 3 - dlide 28

Here will study the recursive composition of Hilbert Curvesin additional details.

This section is only meaningful in the web version of the material - please take a look at it.

81

12.4. Building Hilbert Curves of order 3

Lecture 3 - dlide 29

In the same way we made a Hilbert Curve of order 2, we will here see how a Hilbert Curve of order
3 ismade.

This section is only meaningful in the web version of the material - please take a look at it.

12.5. Building Hilbert Curves of order 4

Lecture 3 - dide 30

In the same way we made a Hilbert Curve of order 3, we will here see how a Hilbert Curve of order
4 is made. Thisisthe final development along these lines in this material.

This section is only meaningful in the web version of the material - please take a ook at it.

12.6. A program making Hilbert Curves

Lecture 3 - slide 31

Given our understanding of Hilbert Curves obtained from the previous pages, we will now study a
computer program that generates Hilbert Curves of order n, where n is any non-negative number.

\We will here discuss a concrete program which draws Hilbert Curves of order n

The program below, Program 12.1 shows the hi | bert function, which returns a rendering of
Hilbert Curves.

82

(define (hilbert n turn)
(cond ((=n 0))
((>n0)
(cond
((eq? turn 'up)
(concat - path
(hilbert (- n 1) 'right)

(up-1ine)
(hilbert (- n 1) "up)
(right-1line)

(hilbert (- n 1) "up)
(down-1i ne)
(hilbert (- n 1) 'left)))

((eq? turn "left)
(concat - path
(hilbert (- n 1) 'down)
(left-1ine)
(hilbert (- n 1) '"left)
(down- 1 i ne)
(hilbert (- n 1) "left)
(right-Iline)
(hilbert (- n 1) 'up)))

((eq? turn 'right)
(concat - path
(hilbert (- n 1) "up)

(right-1line)

(hilbert (- n 1) 'right)
(up-1line)

(hilbert (- n 1) 'right)
(left-1ine)

(hilbert (- n 1) 'down)))

((eg? turn ' down)

(concat - pat h
(hilbert (- n 1) '"left)
(down- 1 i ne)
(hilbert (- n 1) 'down)
(left-1ine)
(hilbert (- n 1) 'down)
(up-1ine)
(hilbert (- n 1) 'right)))))))

Program 12.1 The function hi | ber t programmed in Scheme as a functional program. The
function returnsthe path of the Hilbert Curver of order n. The parameter t ur n determinesthe
rotation of the curve. In the top level call we ask for an upward Hilbert Curve: Asan example,
(hil bert 3 "up) producesan upward Hilbert Curve of order 3. Thered fragments are
responsible for all line drawing. The blue fragments represent all the recursive calls of the

hi | bert function. Finally, the green fragment represent the level 0 'basis case. The level Ocase
returns the empty Hilbert Curve, which isliterally empty (no drawing at all - no contribution to the
resulting path). What does it mean that the the programis a functional program? Well, it basically
means that hi | ber t returns a value which can be rendered somehow by another function or
procedure. The value returned is a path, composed by concat-path. The hi | ber t function does not
carry out any action itself.

83

The actual rendering of a Hilbert Curveisdone by use of SVG stuff [svg]. SVG isaW3C standard
for Scalable Vector Graphics. In case you want to get started with SVG we will recommend that
you start with an excellent tutorial made by Ivan Herman, F.R.A. Hopgood, and D.A. Duce [svg-
tutorial].

In the web version of the material - in dide or annotated dlide view - you will have access to the
additional implementation details of the primitives used in Program 12.1.

84

13. Continuations

Continuations represent one of the advanced concepts in Scheme. In this section we will introduce
continuations, and we will show some examples of their use within the functional programming

paradigm.

13.1. Introduction and motivation

Lecture 3 - slide 33

We start by motivating our interest in continuations. One part of the story is the usefulness of a
mechanism that allows us to 'jump out of a deep subexpression’. Another part is the possibility of
controlling and manipulating the 'remaining part of the calculation' relative to some given control

point.

It is sometimes necessary to escape from a deep expression, for instance in an
exceptiona case

We are interested in a primitive which allows us to control the remaining part of a
calculation - aso-called continuation.

Exit or exception mechanism:
The need to abandon some deep evaluation
Continuation
Capturing of continuations
Exploring new control mechanisms by use of continuations

|Scheme support first class continuations dressed as functions

Both needs mentioned above are handled by first class continuations in Scheme.

13.2. The catch and throw idea

Lecture 3 - dide 34

In this section, and section Section 13.3 we explore a catch and throw escape mechanism. This
mechanism is used in Common Lisp, but it is not directly available in Scheme. Aswe will seein
Section 13.8 first class continuations can easily play the role of catch and throw. A similar Scheme-
base exampleis given in Section 13.9.

85

Cat ch andt hr ow provides for an intuitively simple escape mechanism on functional
ground

We introduce an imaginary syntax of catch and throw, see Syntax 13.1 and Syntax 13.2. The
meaning is intended to be that catch identifies an expression, cat ch- expr with anid. idisa
symbol. Within the expression, or within a function called directly or indirectly in catch-expr, we
may encounter a throw form, which mention the id of the catch. The value of the thrown expression,
throw-expr, is passed back along the chain of calls to the catcher, and it becomes the return value of
the catch form. If no throw form with an appropriate id is met during the evaluation of the catch
form, the value of the catch form just becomes the value of cat ch- expr .

(catch id catch-expr)

Syntax 13.1

(throw id throw expression)

Syntax 13.2

Scheme does not support cat ch and t hr ow

Rather Scheme supports a much more powerful mechanisms based on continuations

In case you are interested in more precise details of catch and throw in Common Lisp, you should
consult the book about Common Lisp, [cltl], (full text on the web). More specifically you should
consult the chapter abou dynamic non-local exists [cltl-nonlocal-exists].

13.3. A catch and throw example

Lecture 3 - dlide 35

We now study an concrete, real-life example of catch and throw. Thisis not a Scheme example.

\Exit from alist length function in case it discovers a non-empty tail of the list

Thefunction I i st -1 engt h returns the length of the list. The function counts the cons cells. If we
encounter an improper list (alist without an empty list in the end of the cdr chain, see Section 6.2)
we wish to return the symbol i nproper - 1i st . In order to provide for this we set of a catcher
around the a local function, list-lengthl, which does the real job. The function list-length calls list-
lengthl. If list-lengthl encounters an improper termination of the list, it throws the symbol
improper-list to the catcher, which returnsit. If not, it just returns the count, which also is returned
by catch via the letrec form.

86

(define (list-length Ist)
(catch '"exit
(letrec ((list-lengthl
(I anbda (I st)
(cond ((null? Ist) 0)
((pair? Ist) (+ 1 (list-lengthl (cdr Ist))))

(el se (throw "exit "inproper-list))))))
(list-lengthl Ist))))

Program 13.1 An example using catch and throw. Please notice that the exampleis not a proper
Scheme program. Catch and throw are not defined in Scheme.

13.4. Theintuition behind continuations

Lecture 3 - slide 36

The rest of this chapter is about concepts that are fully supported in Scheme.

We start with an overall definition of a continuations. Then follows some intuitive examples of
continuations of given expressions within given contexts (surrounding expressions).

A continuation of the evaluation of an expression E in a surrounding context C

represents the future of the computation, which waits for, and depends on, the value of E

It may very well be difficult to grasp the intuition of continuations. We hope the following table
will help you. It is intended to explain the intuitive understanding of the continuations of the blue,

emphasized expressions in the leftmost column.

IContext C and expression E lIntuitive continuation of E in C

(+ 5 (* 43)) "The adding of 5 to the value of E

(cons 1 (cons 2 (cons 3 '()))) "The consing of 3, 2 and 1 to the value of E
(define x 5)

(if (=0 x) The multiplication of E by x - 1 followed by a

" undef i ned division by x
(remainder (* (+ x 1) (- x 1)) x))

Table13.1 Anintuitive understanding of continuations of an expression
in some context.

13.5. Being more precise

Lecture 3 - dide 37

Instead of relying of an informal understanding of continuations we will now introduce lambda
expressions that represent the continuations.

87

\We can form alambda expression that to some degree represents a continuation

The continuation of the expression (* 3 4) within (+ 5 (* 3 4)) isafunction that adds 5.
Written precisaly, it is the function (1 anbda (e) (+ 5 e)). The other two examples of Table 13.2
(corresponding to the second and third rows) are similar.

(Context C and expression E The continuation of E in C

(+ 5 (* 4 3)) ((lanbda (e) (+ 5 e))

(lanbda (e) (cons 1 (cons 2 (cons 3

e))))

(cons 1 (cons 2 (cons 3 '())))

(define x 5)
(if (=0 x) (lanbda (e) (remainder (* e (- x 1))
"undefi ned X))
(remainder (* (+ x 1) (- x 1)) x))

Table13.2 A more precise notation of the continuations of E

The representation of continuations with lambda expressions is part of the truth, but not the whole
truth. The problem is that if we activate the continuation, by calling the function that represents it, it
will return the normal way, and its calling context will finish the evaluation the normal way. We do
not want that. Therefore a mechanism known as escape functions are invented and used. An escape
function ignores its context in every call. We will not go into the technical details of escape
functions in this text. The interested reader should consult [Springer89].

13.6. The capturing of continuations

Lecture 3 - dlide 38

It is now time to introduce the Scheme primitive that allows us to capture a continuation.

Scheme provides a primitive that captures a continuation of an expression E in a context
C

The primitiveiscaled cal | - wi t h-current -conti nuation, Orcal | / cc asashort alias
cal | / cc takes a parameter, which is afunction of one parameter.

The parameter of the function is bound to the continuation, and the body of the function
ISE

We will use the brief form call/cc in our examples.

88

IContext C and the capturing
I(+ 5 (call/cc (lanbda (e) (* 4 3))))
|(cons 1 (cons 2 (cons 3 (call/cc (lambda (e) "())))))

(define x 5)
(if (=0 x)
"undefi ned
(remai nder (* (call/cc (lanmbda (e) (+ x 1))) (- x 1))

X))

Table13.3 Useof call/cc and capturing of continuations.

We elaborate the examples from Table 13.1 and Table 13.2. In the first line of Table 13.3 we
capture the continuation of (* 4 3) in(+ 5 (* 4 3)).Inthe second line we capture the
continuationof * () in(cons 1 (cons 2 (cons 3 '()))).Andinthethird line we capture the
continuationof (+ x 1) intheif expression. Thisis the same as the continuation of the (+ x 1) in
ther emai nder expression.

One thing is capturing continuations. Another is to make good use of them. Table 13.3 does not
illustrate the latter aspect at all. Thisis seen by the fact the the continuations, bound to the names e
in al three examples, are not used.

It should be noticed that a captured continuation is dressed like a function. Somehow we can think
of a continuation as a 'wolf in sheep's clothing'. A continuation is activated in the same way as a
function is called. However, the continuation is defined (captured) differently than the way
functions are defined. Notice aso that continuations inherit their first class status from functions,
See Section 8.6.

13.7. Capturing, storing, and applying continuations

Lecture 3 - slide 39

In this section we will illustrate applications of the captured continuations. Once captured, we
assign the continuations to a global variable cont - r emenber . We assume that cont - r enenber has
been defined before any of the expressions in table Table 13.4 are evaluated. Use of assignmentsis
of course not functional programming, but it provides an easy way to illustrate the working and the
nature the captured continuations. Later in this section we will show uses of continuationsin
functional programming. For a brief review of imperative programming in Scheme the reader is
referred to Chapter 29.

We here show capturing, imperative assignment, and a subsequent application of a
continuation

89

In table Chapter 29 below we show the context expression C, its value, the application of the
captured continuation that we have stored in the variable cont - r enenber , and the value of the
application. We explain the rightmost column below the table.

Value of Application
Context C and expression E C of Value
continuation
(+5
(call/cc (cont -
(lanbda (e) 17 remenber 8
(set! cont-renenber e) 3)
(* 43))))
(cons 1
(cons 2
(cons 3 (cont -
(call/cc (12 3 remenber g1237
(1 anbda (e) (7 8)))
(set! cont-renenber e)
*0))))))
(define x 5)
(if (=0 x)
"undefi ned
(remai nder
(* (call/cc (cont -
(lanbda (e) 4 r emember 2
(set! cont-renenber 3)
e)
(+x1)))
(- x 1))
X))

Table13.4 Capturing and applying continuations. The captured
continuations are stored in a global variable. The application of the
continuation is shown in the third column, and the result of the
application of the continuation is shown in the fourth column.

First we explain the first row in the table. The application (cont - renenber 3) passes 3 to the
continuation e. It means that we fuel the expression (+ 5 X) with an X which is 3. The result is 8.

In the second row, (cont -renenber ' (7 8)) passesthelist (7 8) into the innermost point Y of
(cons 1 (cons 2 (cons 3 Y))). Theresultisthelist(1 2 3 7 8).

In the last row, we activate (cont - renenber 3). It impliesthat 3 is passed into the z of

(remai nder (* Z (- x 1)) x),wherex is5. Thevalueis(remi nder 12 5) =2. Noticein
particular that the i f has made the choice of the 'else part'. 1 f is not afunction, but a special form
with special evaluation rules. Once it the choice of thei f is made, there is no trace left of it in the
continuation. For more details of the evaluation of i f special forms see Chapter 19 to Chapter 21,
and in particular Section 20.10.

90

13.8. Use of continuations for escaping purposes

Lecture 3 - dlide 40

In this section we will illustrate how to apply the captured continuations for escaping purposes.

We here illustrate applications of the continuations for escaping purposes

In Table 13.5 we basically show the same expressions asin Table 13.1, Table 13.2, Table 13.3, and
Table 13.4. In the light blue fragmerts, of theform (e X) we send a vaue X to the continuation,
which isboundtoe. In thefirst row we send 5 to the addition, and the value of the context
becomes 15. In the second row we send the symbol x to the continuation, whereby the value of the
context isthe pair (1 . x) . (Notice that the second example captures a continuation at a more outer
level than in the other tables). In the second row we send the integer 111 to the else part of thei f
form, and hereby the value of the context becomes 111.

Context C, capturing, and escape call \Value

(+5
(call/cc
(I anbda (e) 15
(* 4))))

(cons 1
(call/cc
(I anbda (e)
(cons 2
(cons

3)))))

(1. x)

(define x 5)

(if (=0 x)

"undefi ned

(call/cc

(lanbda (e)
(remai nder
(* (+x 1)

(- x))

X))))

111

Table13.5 Capturing and use of a continuation for escaping purposes

13.9. Practical example: Length of an improper list

Lecture 3 - dlide 41

Now that we have seen how to capture and use continuations for escaping purposes we will study a
number of real examples. The first is similar to the catch throw example in Program 13.1. Like the
examples in Section 13.8 we aso deal with escape values in this example.

91

Recall from Program 13.1 that we are about to program alist length function. If we, during the
element counting, realize that we deal with an improper list (alist not terminated by the empty list)
we want some specia result, namely the symbol i npr oper -1 st.

The length of an improper list is undefined

We chose to return the symbol i mproper-1i st if I'i st-1 engt h encounters an improper
list

This example is similar to the cat ch and t hr ow example shown earlier in this section

It is easy to program the escaping version of | i st - 1 engt h with continuations, see Program 13.2. At
the outer level we capture the continuation that immediately returnsfrom1i st -1 engt h. Wecan
freely name the continuation, and we chose the name do- exi t . Within the scope of the continuation
we define alocal helping function |i st -1 engt h1, which does the real counting job. We follow the
cdr chainintherecursion of 1i st -1 engt h1. If we encounter a data object which is not a cons pair
or the empty list we have identified an improper list. In this situation we send the symbol

i mproper -1ist todo-exit. The effect is that we immediately return this symbol, and the count of
of cons pairsis not used.

(define (list-length I)
(call-wth-current-continuation
(I anbda (do-exit)
(letrec ((list-lengthl
(lanmbda (1)
(cond ((null? 1) 0)
((pair? 1) (+ 1 (list-lengthl (cdr 1))))
(else (do-exit "inproper-list))))))
(list-lengthl 1)))))

Program 13.2 The function list-length, which returns the symbol 'improper-list in case it
encounters an improper list.

13.10. Practical example: Searching abinary tree

Lecture 3 - slide 42

The next example is about traversal of atree, with the purpose of finding a subtree which satisfy a
given predicate.

Searching a binary tree involves a recursively defined tree traversal

If we find the node we are looking for it is convenient to throw the out of the tree
traversal

92

Thefunction fi nd-i n-tree isshown in Program 13.3. Asin the list length example in Program
13.2 we set up a continuation at the outer level of fi nd-i n-tree. The continuation is called f ound.
Thisis not a continuation used for an exceptional value, but for the expected 'normal’ value of the
function.

Thelocal function fi nd-i n-treel iSarecursive pre-order tree traversal function. In case the
predicate holds on a subtree, it is passed to the continuation f ound. If not, the subtrees are searched
recursively. The recursion stops when we reach the leaves, on which (subtree-1ist ...) returns
the empty list. In case we finish the traversal without ever finding a subtree that satisfies pr ed we
drop through the if form. In that case we will have to return #f . Notice that thisis arare example of
having two expression in sequence in the body of afunctional abstraction.

(define (find-in-tree tree pred)
(call-with-current-continuation
(I ambda (found)
(letrec
((find-in-treel
(lanbda (tree pred)
(if (pred tree)
(found tree)
(let ((subtrees (subtree-list tree)))
(for-each
(lambda (subtree) (find-in-treel subtree pred))
subtrees)))

#t)))
(find-in-treel tree pred)))))

Program 13.3 A tree search function which uses a continuation found if we find what we search
for. Notice that this examples requires the function subtree-list, in order to work. The function
returns#f in case we do not find node we are looking for. Notice that it makes sense in this example
to have both the if expression and the #f value in sequence!

13.11. References

[cltl- nontlocal- Dynamic Non-local exists (Common Lisp)

exi StS] http://www.ida.liu.se/imported/cltl/clm/node96.html

[cItl] Common Lisp the Language, 2nd Edition.
http://www.ida.liu.se/imported/cltl/cltl2.html

[springer89] George Springer and Daniel P. Friedman, Scheme and the art of programming.

The MIT Press and McGraw-Hill Book Company, 1989.

93

94

