Memory Allocation

Morten Kuhnrich
mokyhn@cs.aau.dk

Implementing myalloc, myfree
and myrealloc

Introduction

A memory allocator (MA) manages the
memory.

* A process may perform the following
operations

— Request MEeMOry:. void *mymalloc(size t s);
— Free memory: void myfree (void *p);
— Get more (or less) memory: void

*myrealloc (void *p, size t s);

Functional specification

vold *mymalloc(size t s);

e A call tomymalloc returns a pointer to a
free memory part of size s -bytes.

* |f there is not room enough — return the
NULL pointer.

« Caution The user might supply strange
numbers for s, such as 0 or 17. Your MA

should be able to handle that.

Functional specification

vold myfree (void *p);

 The function releases the allocated
memory chunk with start adress *p.

« Caution Running myfree on some pointer
*p without a previous allocation for *p is

not defined. You can do whatever you like.

Functional specification
vold *myrealloc(void *p, size t s);

* The function extends (or shrinks) an
allocated memory chunk at *p to a size of

s bytes.

* When extending a chunk it should not
change the memory content of the
previosly allocated area.

Functional specification
void *myrealloc (void *p, size t s);

* |f the new size of the memory chunk can
be obtained though an extension of the
present chunk, do so.

* If the new size of the memory chunk
requires movement of the chunk
then free the space for the previous
allocation and return a pointer to a new

drea

* |f the space cannot be allocated, return
NULL.

Implementation ideas

e You are advised to use a linked list.

Memory layout

Yes Data . .

\> Null
The concrete data area available to a process

Status bit. Yes means "In use" and No means "Unused"
Pointer to next memory chunk

Implementation ideas..

* Initial memory layout

 The first allocation

‘& Null

— Memory is divided in two chunks

Implementation ideas....

 On allocation more

Yes Data Yes | Data -

\

A deallocation

| v

- |

\ —

A deallocation changes the status bit

Implementation ideas......

* The previous memory layout repeated
| v

Yes Data . Data .

\

A memory cleanup

Yes Data - Data .

/ K’ Null
is pointer was changed. The effect: One big free block of memory

Implementation ideas........

* Given the memory layout

Yes

Data

Y

gl -

* do a reallocation (simple)

\

Yes

Data

1 B

/

A pointer to this chunk is returned from
realloc

-

Implementation ideas..........

* Given the memory layout

Yes | Data Yes | Data -
k» Null

 do a reallocation (difficult)

K—» Null
—- Data Yes | Data Yes | Data (

| A

A pointer to this chunk is returned from
realloc

In pratice

You should implement a simple cleanup
function, otherwise you might end up
having trouble.

The cleanup collapses consecutive chunks
which are free.

Since different threads might allocate and
deallocate memory there is a mutual
exclusion problem.

You implementation should therefore be
thread safe.

In pratice..

Use the code templates from the webpage

It should pass the test by running
testalloc.c

Do you own tests of myrealloc.

Use buddy blocks if time permits and you
want to.

Output from a test session

Welcome to the test program ver 1.0
On this architecture, an integer is of size 4 bytes
On this architecture, an size t is of size 8 bytes
Good luck...
The size of the header is 16
Beginning basic test
—-——part
—-——part
—-——part
—-——part
—-——part
—-——part
Basic test passed
Beginning stress test
Doing cycle 0 out of 25
Doing cycle 5 out of 25
Doing cycle 10 out of 25
Doing cycle 15 out of 25
Doing cycle 20 out of 25
Stress test passed
Beginning thread test

U wbdN

Cycle 1 of 5
Cycle 2 of 5
Cycle 3 of 5
Cycle 4 of 5
Cycle 5 of 5

Thread test passed
Congratulations, all tests passed

