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Motivation
● Scenarios with continuous spatial data 

sampling are getting more and more common
– 1 mln LBS users that send 1 update/hour
– 280 updates/second!
– Queries are relatively rare

● Wanted: a spatial disk-based index that can 
handle high volume of updates

● Is R-tree good enough?
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Example: Updates with R-tree
● R-tree: index of choice for low-dimensionality 

spatial data
● Index structure suited for efficient range queries 

on mostly static data
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Example: Updates with R-tree
● Let's update position of b2

1)Delete the old b
2
: 2 traversals!

2) Insert the new b
2
: 2 traversals! a
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● 1 traversal = 3 I/Os
● 1 update = 12 I/Os!
● Conclusion: R-tree updates are expensive
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How to Make Updates Cheaper?
● Top-down traversals do not do anything useful 

on upper tree levels if new object position is 
close to the old one

● Top-down traversal during deletion is redudant 
if leaf level can be accessed directly
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Related Work: Bottom-up Updates
● FUR-tree by Lee et al in VLDB 2003
● Updates are processed bottom-up as locally as 

possible
– If new position is close to the old one: update leaf
– If not so close: traverse tree bottom-up as little as 

possible
● Performance is unstable and depends on 

characteristics of updates
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A Different Approach: RUM-tree
● RUM-tree – „R-tree with Update Memo“
● Skip performing deletions altogether!

– Store deletions in main memory – „Update Memo“
– No top-down or bottom-up traversals at all
– Let obsolete entries stay in the tree
– But clean the tree periodically from them – 

„Garbage Cleaner“
● Perform insertions as for ordinary R-tree
● Enhance query algorithm to filter obsolete 

entries
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RUM-tree: the Data Structure
● Leaf entries are timestamped to differentiate 

between up to date and obsolete entries:
– <MBR, oid, stamp>

● Update Memo structure:
– Entry format:
– <object-id, latest-timestamp, max-num-of-obsolete>
– Primary access on object-id
– Invariant max-num-of-obsolete > 0
– Requires very little amount of main memory
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RUM-tree: Deletions

● Let's delete the old position of a
3

● No obsolete a
3
 entries in the tree yet

● No disk I/O!
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RUM-tree: Deletions, cont.
● Let's delete the old position of b2
● One old position of b2 already in the tree
● No disk I/O Update Memo
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RUM-tree: Insertions
● Let's insert a new position of b2
● Ordinary R-tree insertion
● Update Memo update
● If no old entry in Update Memo: create new one
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RUM-tree: Queries
● Ordinary R-tree query with Update Memo filter
● Intuition: the bigger UM, the slower the query
● Example: range query with MBR(s
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RUM-tree: Garbage Cleaning
● With previous algorithms:

– Disk tree only grows with time
– Update Memo only grows with time
– Performance, esp. of queries, drops with time

● So, sometimes the garbage must be disposed
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RUM-tree: Garbage Cleaning, cont.
● Leaf level nodes linked to a list
● All obsolete entries from each node are cleaned 

by a so-called token 
● After I updates token is passed to the next node
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RUM-tree: Garbage Cleaning, cont.
● Another way: to clean garbage whenever node 

is touched
● Combined with cleaning token method
● Useful definitions to measure GC effectiveness

– Garbage ratio (gr): number of obsolete entries 
divided by total number of objects

– Inspection ratio (ir):number of GC-inspected nodes 
divided by number of updates

● We want to minimize both gr and ir.
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Experimental Evaluation
● Los Angeles street network 
● Objects moving along the network generated by 

Brinkhoff generator
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GC Parameter Evaluation and 
Tuning
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Performance Comparison
● Trees compared:

– R*-tree
– FUR-tree

● Previously discussed related work: bottom-up updates
– RUM-tree

● All internal tree nodes stored in main memory
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Performance Comparison Results
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Performance Comparison Results, 
cont.
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Performance Comparison 
Conclusion

● RUM-tree update cost: ~3 I/O
– Twice better than FUR-tree
– 3-10-... times better than R*-tree
– Scales very well

● All trees have similar query cost
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Strong Points
● An important problem setting
● Works with any amount of main memory

– Update Memo is very small
● Stable performance
● Proposed solution discussed thouroughly

– Correctness, crash recovery, cost model, 
concurrency control

● Comprehensive experimental evaluation
– Although only with network dataset

● Clear and concise writing style
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Weak Points
● Fails to consider garbage cleaning with only 

clean-on-touch
– Much simpler data structures and algorithms

● No leaf-level linked list, no parent pointers, no tokens
– Garbage ratio = 6%, compared to ~1% in paper 

experiments
● Crash Recovery treatment has issues

– It is possible to lose deletions
● Cost model falls apart with ir = 0%
● Performance evaluation with uniform and 

skewed datasets would add value
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My Project (RR-tree)
● The same setting, but persistence is not 

assumed
– Frequent updates

● Disk-based R-tree
● Main memory buffer of incoming updates
● When buffer gets full, its updates are processed 

on the main tree in batch
– Performance win by making lots of updates share 

same I/O operations
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Relation to my Project
● Similar in that incoming deletions are procesed 

in memory, but data structures differ very much
● Different persistence assumptions, not really 

comparable performance
– RUM-tree and related work: index is persistent

● Each update costs at least 1 I/O by definition
– RR-tree: index is partially main-memory based

● Each update costs ~ 0.1 I/O
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Conclusion
● Well-written paper on important topic
● Contribution: an R-tree modification, that:

– Supports frequent updates
– Grounded by theoretical analysis
– Convincingly outperforms related work

● Problem setting similar to my project
– A key difference in persistence
– Thus cannot be directly compared


