Development and evaluation of a hybrid travel time forecasting model

Jinsoo You and Tschangho John Kim

Transportation Research Part C 8 - Emerging Technologies

Presented by Troels V. Larsen

Jinsoo You and Tschangho John Kim Development and evaluation of a hybrid travel time forecasting mo

・ロン ・雪 と ・ ヨ と ・

∃ <2 <</p>

3 Forecasting

5 Conclusion

イロト イポト イヨト イヨト

3

Introduction

Architecture Forecasting Experimental evaluation Conclusion

Overview Study focus

Introduction

ヘロト 人間 とくほとく ほとう

Ξ.

Overview Study focus

- Department of Urban and Regional Planning
- University of Illinois at Urbana-Champaign
- Travel time estimation is hard using only a single forecasting method.
- Goal: Implement a hybrid travel time forecasting model
- Based on GIS technologies
 - "...a computer system capable of integrating, storing, editing, analyzing, sharing and displaying geographically-referenced information."

ヘロト ヘヨト ヘヨト

Introduction

Overview Study focus

Introduction

- Department of Urban and Regional Planning
- University of Illinois at Urbana-Champaign
- Travel time estimation is hard using only a single forecasting method.
- Goal: Implement a hybrid travel time forecasting model
- Based on GIS technologies
 - "...a computer system capable of integrating, storing, editing, analyzing, sharing and displaying geographically-referenced information."

Overview Study focus

Introduction

- Department of Urban and Regional Planning
- University of Illinois at Urbana-Champaign
- Travel time estimation is hard using only a single forecasting method.
- Goal: Implement a hybrid travel time forecasting model

Based on GIS technologies

 "...a computer system capable of integrating, storing, editing, analyzing, sharing and displaying geographically-referenced information."

ヘロア 人間 アメヨア 人口 ア

Overview Study focus

M

Introduction

- Department of Urban and Regional Planning
- University of Illinois at Urbana-Champaign
- Travel time estimation is hard using only a single forecasting method.
- Goal: Implement a hybrid travel time forecasting model
- Based on GIS technologies
 - "...a computer system capable of integrating, storing, editing, analyzing, sharing and displaying geographically-referenced information."

くロト (調) (目) (目)

Overview Study focus

Study focus

Historical database development

- Historical database road network integration
- Hybrid travel time forecasting model

Overview Study focus

Study focus

- Historical database development
- Historical database road network integration
- Hybrid travel time forecasting model

Overview Study focus

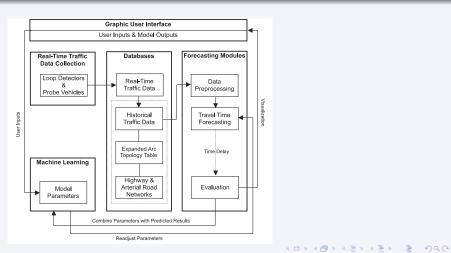
Study focus

М

- Historical database development
- Historical database road network integration
- Hybrid travel time forecasting model

Overview Scenario specifics Network representation Historical database

Architecture


Jinsoo You and Tschangho John Kim Development and evaluation of a hybrid travel time forecasting...

<ロト < 回 > < 回 > < 回 > 、

э.

Overview Scenario specifics Network representation Historical database

Architecture

Jinsoo You and Tschangho John Kim

Development and evaluation of a hybrid travel time forecasting...

Overview Scenario specifics Network representation Historical database

Scenario specifics

- Recording intervals:
 - Highway data: 30 seconds
 - Arterial data: 5 minutes
- Computation time: Max 15 minutes, preferably less than 1-2 minutes.
- Usage: Predict travel times 15-60 minutes into the future.

Overview Scenario specifics Network representation Historical database

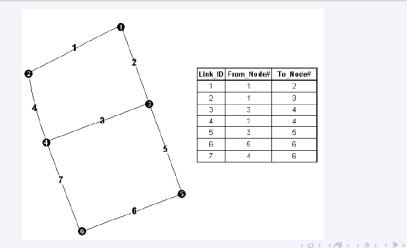
Scenario specifics

- Recording intervals:
 - Highway data: 30 seconds
 - Arterial data: 5 minutes
- Computation time: Max 15 minutes, preferably less than 1-2 minutes.
- Usage: Predict travel times 15-60 minutes into the future.

Overview Scenario specifics Network representation Historical database

Scenario specifics

М


- Recording intervals:
 - Highway data: 30 seconds
 - Arterial data: 5 minutes
- Computation time: Max 15 minutes, preferably less than 1-2 minutes.
- Usage: Predict travel times 15-60 minutes into the future.

Architecture

Network representation

Network representation

э

Overview Scenario specifics Network representation Historical database

Historical database

Time and link are recorded

• Each link is stored twice, unless it is a one way street.

• (Link ID, Historical DB ID, From Node, To Node)

Time	Link				
	1	2		n-1	n
0:00	34	29		27	14
0:05	33	31		33	12
0:10	29	27		32	11
0:15	27	25		29	9
			÷		·

Overview Scenario specifics Network representation Historical database

Historical database

- Time and link are recorded
- Each link is stored twice, unless it is a one way street.

• (Link ID, Historical DB ID, From Node, To Node)

Time	Link				
	1	2		n-1	n
0:00	34	29		27	14
0:05	33	31		33	12
0:10	29	27		32	11
0:15	27	25		29	9
			÷		·

・ロット (雪) () () () ()

Overview Scenario specifics Network representation Historical database

Historical database

- Time and link are recorded
- Each link is stored twice, unless it is a one way street.
- (Link ID, Historical DB ID, From Node, To Node)

Time	Link				
	1	2		n-1	n
0:00	34	29		27	14
0:05	33	31		33	12
0:10	29	27		32	11
0:15	27	25		29	9
			÷		·

Forecasting modules Data preprocessing Method learning Parameters Evaluation Parameter learning

Forecasting

Jinsoo You and Tschangho John Kim Development and evaluation of a hybrid travel time forecasting...

ヘロト 人間 とくほとく ほとう

э.

Forecasting modules Data preprocessing Method learning Parameters Evaluation Parameter learning

Forecasting modules

Data preprocessing

Travel time forecasting

Evaluation

イロト イポト イヨト イヨト

э

Forecasting modules Data preprocessing Method learning Parameters Evaluation Parameter learning

Forecasting modules

- Data preprocessing
- Travel time forecasting

Evaluation

М

イロト イポト イヨト イヨト

э

Forecasting modules Data preprocessing Method learning Parameters Evaluation Parameter learning

Forecasting modules

- Data preprocessing
- Travel time forecasting
- Evaluation

Μ

Forecasting modules Data preprocessing Method learning Parameters Evaluation Parameter learning

Data preprocessing

Screens and filters noise

- Wavelet transformation technique
- Outlier detection algorithm

Remove noise from probe vehicles such as delivery trucks

Forecasting modules Data preprocessing Method learning Parameters Evaluation Parameter learning

Data preprocessing

Screens and filters noise

- Wavelet transformation technique
- Outlier detection algorithm

Remove noise from probe vehicles such as delivery trucks

Forecasting modules Data preprocessing Method learning Parameters Evaluation Parameter learning

Data preprocessing

Screens and filters noise

- Wavelet transformation technique
- Outlier detection algorithm

Remove noise from probe vehicles such as delivery trucks

Forecasting modules Data preprocessing Method learning Parameters Evaluation Parameter learning

Data preprocessing

- Screens and filters noise
 - Wavelet transformation technique
 - Outlier detection algorithm
- Remove noise from probe vehicles such as delivery trucks

Forecasting modules Data preprocessing Method learning Parameters Evaluation Parameter learning

Forecasting through method learning

Parameter learning

Relies on k-nearest neighbour

M

Forecasting modules Data preprocessing Method learning Parameters Evaluation Parameter learning

Μ

Forecasting through method learning

- Parameter learning
- Relies on k-nearest neighbour

Data preprocessing Method learning Parameters Evaluation Parameter learning

Parameters

Domains of model parameters

Parameters	Туре	Domain	Unit
Forecasting range	Discrete	{15, 30, 45, 60}	Minute
Search data segment length	Discrete	{15, 30, 45, 60}	Minute
Day of the week	Binary	{Consider, Ignore}	_
Search range	Discrete	{1, 2, 3}	Hour
Large K	Discrete	$\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$	_
Small k	Discrete	$\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$	_
Local estimation method	Binary	{Local averaging, Local fitting}	_
Data preprocessing	Binary	{Wavelet, Outlier detection}	-

Jinsoo You and Tschangho John Kim Development and evaluation of a hybrid travel time forecasting...

ヘロト 人間 とくほとく ほとう

3

Evaluation

Is activated as actual travel times arrives

- If the difference between actual and estimated travel time is too large, the parameters are readjusted using the ML module.
- ML Module:
 - Generates training samples
 - Identifies the lowest forecasting error from each parameter

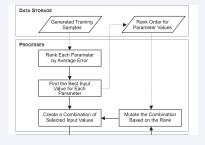
Evaluation

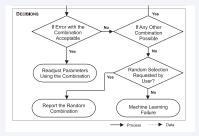
• Updates the hybrid model with the new parameters

Forecasting modules Data preprocessing Method learning Parameters Evaluation Parameter learning

Evaluation

- Is activated as actual travel times arrives
- If the difference between actual and estimated travel time is too large, the parameters are readjusted using the ML module.
- ML Module:
 - Generates training samples
 - Identifies the lowest forecasting error from each parameter
 - Updates the hybrid model with the new parameters


Forecasting modules Data preprocessing Method learning Parameters Evaluation Parameter learning


Evaluation

- Is activated as actual travel times arrives
- If the difference between actual and estimated travel time is too large, the parameters are readjusted using the ML module.
- ML Module:
 - Generates training samples
 - Identifies the lowest forecasting error from each parameter
 - Updates the hybrid model with the new parameters

Forecasting modules Data preprocessing Method learning Parameters Evaluation Parameter learning

Parameter learning

Jinsoo You and Tschangho John Kim Development and evaluation of a hybrid travel time forecasting...

・ロト ・ 同ト ・ ヨト ・ ヨト

э

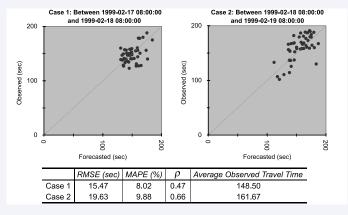
Overview Results

Experimental Evaluation

ヘロト 人間 とくほとく ほとう

э.

Overview Results


Experimental evaluation

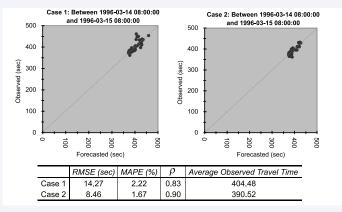
Experiment:

- 200 randomly selected points from the historical database
- Seperated into arterial and highway data
- Each experiment within 24 hours

Overview Results

Experimental evaluation

Μ


Jinsoo You and Tschangho John Kim Development and evaluation of a hybrid travel time forecasting..

・ロン ・四 ・ ・ ヨン ・ ヨン

Э

Overview Results

Experimental evaluation

Jinsoo You and Tschangho John Kim Development and evaluation of a hybrid travel time forecasting..

ヘロト ヘヨト ヘヨト

Relation to our project Strengths Weaknesses Related work

Conclusion

ヘロト 人間 とくほとくほとう

Ξ.

Relation to our project Strengths Weaknesses Related work

Relation to our project

Travel time estimation

- Offline / Online
- Method learning
- Evaluation of actual travel time
- GIS
 - Shape files
 - Software built on top of GIS
- Data storage
 - Relational database
 - Datawarehouse

イロン 不同 とくほう イヨン

Relation to our project Strengths Weaknesses Related work

Relation to our project

Travel time estimation

- Offline / Online
- Method learning
- Evaluation of actual travel time
- GIS
 - Shape files
 - Software built on top of GIS
- Data storage
 - Relational database
 - Datawarehouse

イロン 不同 とくほう イヨン

Relation to our project Strengths Weaknesses Related work

Relation to our project

- Travel time estimation
 - Offline / Online
 - Method learning
 - Evaluation of actual travel time
- GIS
 - Shape files
 - Software built on top of GIS
- Data storage
 - Relational database
 - Datawarehouse

イロン 不同 とくほう イヨン

Relation to our project Strengths Weaknesses Related work

Relation to our project

- Travel time estimation
 - Offline / Online
 - Method learning
 - Evaluation of actual travel time
- GIS
 - Shape files
 - Software built on top of GIS
- Data storage
 - Relational database
 - Datawarehouse

イロト イポト イヨト イヨト

Relation to our project Strengths Weaknesses Related work

Relation to our project

- Travel time estimation
 - Offline / Online
 - Method learning
 - Evaluation of actual travel time
- GIS
 - Shape files
 - Software built on top of GIS
- Data storage
 - Relational database
 - Datawarehouse

Relation to our project Strengths Weaknesses Related work

Relation to our project

- Travel time estimation
 - Offline / Online
 - Method learning
 - Evaluation of actual travel time
- GIS
 - Shape files
 - Software built on top of GIS
- Data storage
 - Relational database
 - Datawarehouse

Relation to our project Strengths Weaknesses Related work

Relation to our project

- Travel time estimation
 - Offline / Online
 - Method learning
 - Evaluation of actual travel time
- GIS
 - Shape files
 - Software built on top of GIS
- Data storage
 - Relational database
 - Datawarehouse

Relation to our project Strengths Weaknesses Related work

Relation to our project

- Travel time estimation
 - Offline / Online
 - Method learning
 - Evaluation of actual travel time
- GIS
 - Shape files
 - Software built on top of GIS
- Data storage
 - Relational database
 - Datawarehouse

Relation to our project Strengths Weaknesses Related work

Relation to our project

- Travel time estimation
 - Offline / Online
 - Method learning
 - Evaluation of actual travel time
- GIS
 - Shape files
 - Software built on top of GIS
- Data storage
 - Relational database
 - Datawarehouse

Relation to our project Strengths Weaknesses Related work

Relation to our project

- Travel time estimation
 - Offline / Online
 - Method learning
 - Evaluation of actual travel time
- GIS
 - Shape files
 - Software built on top of GIS
- Data storage
 - Relational database
 - Datawarehouse

イロト イポト イヨト イヨト

Relation to our project Strengths Weaknesses Related work

Relation to our project

- Travel time estimation
 - Offline / Online
 - Method learning
 - Evaluation of actual travel time
- GIS
 - Shape files
 - Software built on top of GIS
- Data storage
 - Relational database
 - Datawarehouse

イロト イポト イヨト イヨト

Relation to our project Strengths Weaknesses Related work

Strengths

М

Interesting ideas

- Sensible work
- Possibly a good average error rate

Jinsoo You and Tschangho John Kim Development and evaluation of a hybrid travel time forecasting...

イロト イポト イヨト イヨト

Relation to our project Strengths Weaknesses Related work

Strengths

М

- Interesting ideas
- Sensible work
- Possibly a good average error rate

Jinsoo You and Tschangho John Kim Development and evaluation of a hybrid travel time forecasting...

イロト イポト イヨト イヨト

Relation to our project Strengths Weaknesses Related work

- Interesting ideas
- Sensible work
- Possibly a good average error rate

Jinsoo You and Tschangho John Kim Development and evaluation of a hybrid travel time forecasting...

イロト イポト イヨト イヨト

Relation to our project Strengths Weaknesses Related work

Illogical structure

- Lacks a good overview
- Spends too much time discussing subjects that are irrelevant to the solution
- Figures are not used optimally some should be explained better
- Inconclusive results
- Bad running time for highway data
- Nothing mentioned about time or space complexity. (Not a CS article)

・ロト ・ ア・ ・ ヨト ・ ヨト

Relation to our proje Strengths Weaknesses Related work

M

Weaknesses

Illogical structure

Lacks a good overview

- Spends too much time discussing subjects that are irrelevant to the solution
- Figures are not used optimally some should be explained better
- Inconclusive results
- Bad running time for highway data
- Nothing mentioned about time or space complexity. (Not a CS article)

・ロト ・ ア・ ・ ヨト ・ ヨト

Relation to our proje Strengths Weaknesses Related work

- Illogical structure
- Lacks a good overview
- Spends too much time discussing subjects that are irrelevant to the solution
- Figures are not used optimally some should be explained better
- Inconclusive results
- Bad running time for highway data
- Nothing mentioned about time or space complexity. (Not a CS article)

イロン 不同 とくほう イヨン

Relation to our project Strengths Weaknesses Related work

- Illogical structure
- Lacks a good overview
- Spends too much time discussing subjects that are irrelevant to the solution
- Figures are not used optimally some should be explained better
- Inconclusive results
- Bad running time for highway data
- Nothing mentioned about time or space complexity. (Not a CS article)

イロン 不同 とくほう イヨン

Relation to our project Strengths Weaknesses Related work

- Illogical structure
- Lacks a good overview
- Spends too much time discussing subjects that are irrelevant to the solution
- Figures are not used optimally some should be explained better
- Inconclusive results
- Bad running time for highway data
- Nothing mentioned about time or space complexity. (Not a CS article)

イロト イポト イヨト イヨト

Relation to our project Strengths Weaknesses Related work

- Illogical structure
- Lacks a good overview
- Spends too much time discussing subjects that are irrelevant to the solution
- Figures are not used optimally some should be explained better
- Inconclusive results
- Bad running time for highway data
- Nothing mentioned about time or space complexity. (Not a CS article)

イロト イポト イヨト イヨト

Relation to our proje Strengths Weaknesses Related work

- Illogical structure
- Lacks a good overview
- Spends too much time discussing subjects that are irrelevant to the solution
- Figures are not used optimally some should be explained better
- Inconclusive results
- Bad running time for highway data
- Nothing mentioned about time or space complexity. (Not a CS article)

ヘロト 人間 ト くほ ト くほ トー

Relation to our project Strengths Weaknesses Related work

Related work

- A simple and Effective Method for Predicting Travel Times on Freeways – John Rice and Erik van Zwet
 - Travel-time prediction on freeways
 - Uses linear regression
- Integration of GPS and GIS for traffic congestion studies Taylor, Wooley and Zito
 - Relies on several GIS layers
 - Same journal
- Traffic variable estimation and traffic signal based soft computation Conglin, Wu and Yuejin
 - Uses neural networks
 - Based on loop detectors

イロト イポト イヨト イヨト

Relation to our project Strengths Weaknesses Related work

Related work

- A simple and Effective Method for Predicting Travel Times on Freeways – John Rice and Erik van Zwet
 - Travel-time prediction on freeways
 - Uses linear regression
- Integration of GPS and GIS for traffic congestion studies Taylor, Wooley and Zito
 - Relies on several GIS layers
 - Same journal
- Traffic variable estimation and traffic signal based soft computation Conglin, Wu and Yuejin
 - Uses neural networks
 - Based on loop detectors

イロト 不得 とくほと くほとう

Relation to our project Strengths Weaknesses Related work

Related work

- A simple and Effective Method for Predicting Travel Times on Freeways – John Rice and Erik van Zwet
 - Travel-time prediction on freeways
 - Uses linear regression
- Integration of GPS and GIS for traffic congestion studies Taylor, Wooley and Zito
 - Relies on several GIS layers
 - Same journal
- Traffic variable estimation and traffic signal based soft computation Conglin, Wu and Yuejin
 - Uses neural networks
 - Based on loop detectors

イロト 不得 とくほと くほとう

Relation to our project Strengths Weaknesses Related work

Related work

- A simple and Effective Method for Predicting Travel Times on Freeways – John Rice and Erik van Zwet
 - Travel-time prediction on freeways
 - Uses linear regression
- Integration of GPS and GIS for traffic congestion studies Taylor, Wooley and Zito
 - Relies on several GIS layers
 - Same journal
- Traffic variable estimation and traffic signal based soft computation Conglin, Wu and Yuejin
 - Uses neural networks
 - Based on loop detectors

・ロト ・雪 ト ・ ヨ ト ・

1

Relation to our project Strengths Weaknesses Related work

Related work

- A simple and Effective Method for Predicting Travel Times on Freeways – John Rice and Erik van Zwet
 - Travel-time prediction on freeways
 - Uses linear regression
- Integration of GPS and GIS for traffic congestion studies Taylor, Wooley and Zito
 - Relies on several GIS layers
 - Same journal
- Traffic variable estimation and traffic signal based soft computation Conglin, Wu and Yuejin
 - Uses neural networks
 - Based on loop detectors

ヘロン ヘアン ヘビン ヘビン

Relation to our project Strengths Weaknesses Related work

Related work

- A simple and Effective Method for Predicting Travel Times on Freeways – John Rice and Erik van Zwet
 - Travel-time prediction on freeways
 - Uses linear regression
- Integration of GPS and GIS for traffic congestion studies Taylor, Wooley and Zito
 - Relies on several GIS layers
 - Same journal
- Traffic variable estimation and traffic signal based soft computation Conglin, Wu and Yuejin
 - Uses neural networks
 - Based on loop detectors

ヘロン ヘアン ヘビン ヘビン

Relation to our project Strengths Weaknesses Related work

Related work

- A simple and Effective Method for Predicting Travel Times on Freeways – John Rice and Erik van Zwet
 - Travel-time prediction on freeways
 - Uses linear regression
- Integration of GPS and GIS for traffic congestion studies Taylor, Wooley and Zito
 - Relies on several GIS layers
 - Same journal
- Traffic variable estimation and traffic signal based soft computation Conglin, Wu and Yuejin
 - Uses neural networks
 - Based on loop detectors

ヘロン 人間 とくほ とくほ と

Relation to our project Strengths Weaknesses Related work

Related work

- A simple and Effective Method for Predicting Travel Times on Freeways – John Rice and Erik van Zwet
 - Travel-time prediction on freeways
 - Uses linear regression
- Integration of GPS and GIS for traffic congestion studies Taylor, Wooley and Zito
 - Relies on several GIS layers
 - Same journal
- Traffic variable estimation and traffic signal based soft computation Conglin, Wu and Yuejin
 - Uses neural networks
 - Based on loop detectors

くロト (調) (目) (目)

Relation to our project Strengths Weaknesses Related work

Related work

- A simple and Effective Method for Predicting Travel Times on Freeways – John Rice and Erik van Zwet
 - Travel-time prediction on freeways
 - Uses linear regression
- Integration of GPS and GIS for traffic congestion studies Taylor, Wooley and Zito
 - Relies on several GIS layers
 - Same journal
- Traffic variable estimation and traffic signal based soft computation Conglin, Wu and Yuejin
 - Uses neural networks
 - Based on loop detectors

イロト イポト イヨト イヨト