
Optimizing Multidimensional 
Index Trees for Main Memory 

Access

1

Access
Authors: K. Kim, S. Cha, K. Kwon 
Seoul National University, Korea
SIGMOD 2001, California, USA

Presenter: Christian Christiansen



Outline

• Motivation
– Disk-based vs. Main memory databases

• The CR-tree (Cache conscious)
– Structure
– Techniques

2

– Techniques
• Pointer elimination
• MBR key compression
• Quantization

• Performance studies
• Conclusions
• Evaluation



Motivation

• Memory sizes grow, prices drop
• Increasing performance requirements
• Therefore, main memory databases become 

feasible solution

3

feasible solution

• However:
– Existing disk based index structures not suitable
– Existing main memory structures not optimal

• E.g. B+-tree, T-tree, etc.



Motivation

• Performance gap: Main memory vs. CPU

4



Motivation

• Main Memory hierarchy

5

• Loading consecutive chunks of data from main 
memory is faster



Motivation

• CSS and CSB+ tree techniques 
– Not applicable for multidimensional 
index structures
E.g. 16 Byte MBRs
16B 4B

MBR Ptr

6

• Pointer elimination will only reduce 
node size by 25%

• This does not change tree height 
significantly

MBR Ptr



CR-tree data structure

7



CR-tree

• MBR key compression
• Quantization

8



Reducing index search time

• Key compare
• Cache miss
• TLB miss

9

• Thus, index search time depends most on:



Reducing index search time

• Reducing
– Changing node size
– Compressing index entries
– Clustering index entries into nodes

10

– Clustering index entries into nodes



MBR compression

• Desirable properties
– Overlap check without decompression
– Simplicity

• Computationally simple

11

• Computationally simple
• Use already cached data

• Guarantees provided after quantization
– Relative representation: loss-less
– Quantization: lossy



CR-tree variants

• PE CR-tree
– Pointer Eliminated

• SE CR-tree
– Space-Efficient

12

– Space-Efficient

• FF CR-tree
– False-hit Free



Performance studies

• SUN UltraSPARC
– 400Mhz, 8MB L2 cache

• 6 implementations of 2D index structures
– Ordinary R-tree
– PE R-tree

13

– PE R-tree
– CR-tree
– PE CR-tree
– SE CR-tree
– FF CR-tree

• 2 data sets of one million small rectangles each



Search performance
• For 10.000 query rectangles

14



Update performance

• Inserting and deleting 100,000 objects

15



Impact of quantization levels

• Quantization levels 24, 28 and 216 correspond to 
• QRMBRs of 2B, 4B and 8B, respectively

16



Impact of quantization levels

17



More on search performance

18



Conclusions

• 2D CR-tree and its variants (PE, SE, FF) 
outperform ordinary R-tree
– Up to 2.5 times faster search time
– Use about 60% less memory space

19

– Use about 60% less memory space
– Maintains similar update performance



Evaluation

• The good:
– Original idea
– Well written paper. Provides good overview
– Actual implementation of structures to verify 

performance claims

20

performance claims

• The ’could-be-improved’
– Explanation of memory hierarchy issues
– Certain graphs are vaguely commented

• Fig. 5, 6+9 almost identical, 7

– English: ”selectivity” = ”query area size”?


