
Bin Cui, Dan Lin and Kian-Lee TanBin Cui, Dan Lin and Kian-Lee Tan

School of Computing & Singapore-MIT Alliance,
National University of Singapore

{cuibin, lindan, tankl}@comp.nus.edu.sg

Presented by Donatas Saulys
2007-11-12

�Motivation
�The IMPACT framework

• Twin-index
• Object classification• Object classification
• Object migration
• Memory partitioning

�Experimental results
�Conclusions
�Related work
�Evaluation

2

�Tracking moving objects requires a lot of
updates
• Main Memory is much faster than disk
• Buffering is not enough

�Three observations
1. object classification

� active and inactive objects
� active objects – more updates

2. most of the objects are inactive
3. High speed (active) objects degenerate the TPR-

Tree index performance

3

� IMPACT – Integrated Memory Partitioning and Activity
conscious Twin-Index

� Twin index
• A memory resident grid structure for active objects• A memory resident grid structure for active objects
• A disk based structure for inactive objects (TPR*-Tree)

� Object classification

� Object migration

� Memory partitioning

4

In-memory Hashing Structure

N6
N2
N1
N0L0

L1
L1
L2

OLRU buffer

5

Grid Hash table

Disk TPR*-Tree N0

N1 N2

N3 N4 N5 N6

N0L0

� A memory resident grid structure
• Stores active objects

Hash table Grid

0
400

400

0

Hash table

v
r

6

� A memory resident grid structure (example)
• grid 400x400 (1 grid cell = 100x100),
• 4 active objects
• Future query time horizon H = 2

Hash table Grid

0
400

400

0

Hash table

v
r

7

� A memory resident grid structure (example)
• Object 3 is inserted into the hash table
• Object 3 is inserted into the grid
• Future positions of object 3 are inserted into the grid (H=2)

Hash table

3 205 305 0 (-40,-40)

Hash table

v
r

Grid

0
400

400

0

8

3

3

� A memory resident grid structure (example)
• Object 4 is inserted into the structure

Hash table

3 205 305 0 (-40,-40)

4 260 310 0 (50, 0)

Hash table

v
r

Grid

0
400

400

0

3,4

3

4

9

� A memory resident grid structure (example)
• Object 5 is inserted into the structure

Hash table

3 205 305 0 (-40,-40)

4 260 310 0 (50, 0)

5 330 50 0 (-40, 0)

Hash table

v
r

Grid

0
400

400

0

3,4

3

4

55

10

� A memory resident grid structure (example)
• Object 6 is inserted into the structure

Hash table

3 205 305 0 (-40,-40)

4 260 310 0 (50, 0)

5 330 50 0 (-40, 0)

6 350 90 0 (0,60)

Hash table

v
r

Grid

0
400

400

0

3,4

3

4

5,65

6

6

11

� A memory resident grid structure (example)
• The grid is stored as an array
• Objects in the same cell are stored in a bucket (e.g. linked list)

Array

6

Grid

0

400

0

3,4

3

4

5,65

6

6

5

4400

5

12

� A disk-based structure (TPR*-Tree)
• Stores inactive objects

N6
N2
N1L1

L1
L2

OLRU buffer

OLRU buffer - In general, the OLRU
scheme allocates the available buffer
according to reference frequency of

13

Disk TPR*-Tree N0

N1 N2

N3 N4 N5 N6

N1
N0L0

L1according to reference frequency of
nodes.

� Velocity threshold V
• Fast objects (active) – huge expansions of MBRs
• Slow objects (inactive) – no significant influence on TPR*-tree’s

performance

� Determining V
• Velocity histogram
• Determine V according to the histogram and available memory
• Update the histogram on every update
• Adjust V periodically (e.g. rush hour)

14

� An active object becomes inactive
• v(OID) < V
• e.g. v(3) < V

Grid
Inactive object

queueGrid

3,4

3

4

5,65

6

6 3

queue

15

� An inactive object becomes active
• v(OID) > V, e.g. v(10) > V
• There is free memory

Grid
Inactive object

queue TPR*-TreeGrid

3,4

3

4

5,65

6

6 3

queue

10

10

TPR*-Tree

16

� An inactive object becomes active
• v(OID) > V, e.g. v(10) > V
• There is NO free memory

Grid
Inactive object

queue TPR*-TreeGrid

3,4

3

4

5,65

6

6

queue

4

3

10

� Frequent migration
is avoided

10

TPR*-Tree

3

17

�Memory allocation
• For the grid structure
• For the OLRU buffer of the tree

�What allocation is optimal?

�Cost analysis on Uniformly Distributed Data
• Buffer the 2 top levels of the TPR*-Tree
• Allocate the rest to the grid

18

�Experimental settings
• A default total Main Memory of 8 MB
• Comparison with TPR*-Tree
� All main memory used for OLRU buffering� All main memory used for OLRU buffering

• 200 range queries (4% of the space)

�Uniform and skew datasets
• 1000000 points (objects)

19

�Effect of Memory Allocation

� More memory for the
grid yields better
performanceperformance

� If all memory for the
buffer, then
IMPACT~TPR*-Tree

� Optimal – 80K for the
buffer (top 2 levels of
the tree)

20

�Effect of Memory Size

� If Total ~ 1M, then
IMPACT ~ TPR*-Tree

� If Total > 8M, then
IMPACT can be 100%
better than TPR*-Tree

� Traditional buffering
does not effectively
utilize main memory

21

�Effect of The Number of Updates

� Average update cost
is increasing over the
number of processed number of processed
updates (time)

� IMPACT efficiency
degenerates slower
� Fast memory

updates
� Less overlap
� Slower MBR

enlargement

22

�Effect of Varying Velocity Distribution
• Theta↑ => more inactive objects

� Both indices lead
better performance
with theta↑with theta↑

� The active objects
are the main
bottleneck in both
indices

� Handling them in
main memory pays
off.

23

� IMPACT framework
• Motivation - Object classification
• Twin-index
• Efficient memory partitioning• Efficient memory partitioning
� In-memory grid
� OLRU buffer for the disk based index

�Experiments show that IMPACT leads to
better performance than the TPR*-Tree

24

�DAT4 project –
Indexing Moving Objects in Main Memory

� ONLY Main Memory is used (no disk)
� Predictive queries are also supported (handled � Predictive queries are also supported (handled

differently)
� Hash table for fast access
� Grid structures, no Trees

�DAT5 project
• Using a Tree structure instead of a Grid

25

�Good points
• Well written, easy to read
• Memory partitioning strategy based on analysis
• Nice experimental result graphs and explanations• Nice experimental result graphs and explanations

26

�Could be improved
• Not enough details
� on grid maintenance when time evolves
� on predictive queries in the grid
� how the query performance is affected by the low

number of updates (TPR-Tree)

• Too few algorithms
� Range query?
� Velocity threshold V adjustment?

Grid, t = 0

3,4

3

4

5,65

6

6

Grid, t = 1?

27

The END

28

