
A Data Model and Data
Structures for Moving
Objects Databases
Luca Forlizzi, Ralf Hartmut Güting, Enrico Nardelli,
and Markus Schneider
SIGMOD 2000, Dallas, TX

Presented by Martin Lund Kristiansen
October 22, 2007

1

Outline

Motivation

Abstract model

Discrete model

Conclusion

Evaluation

2

Motivation

Many applications require DBMSs to
manage spatial objects

Countries, roads, power lines, etc.

But also moving (temporal) objects

Airplanes, hurricanes, precipitation
(nedbør)

Dubbed “moving objects
databases”

3

Motivation

A previous article presented an abstract model

Focuses on essential concepts

But no representation details

Now a discrete model is presented

Contains representation details

Implementable

4

Abstract model

5

Query example

We can query on the relation:
planes (airline: string, id: string, flight: moving(point))

All flights of Lufthansa > 5000 km:
SELECT airline, id
FROM planes
WHERE airline = “Lufthansa”
 AND length(trajectory(flight)) > 5000

6

Query example

Relation is still:
planes (airline: string, id: string, flight: moving(point))

All pairs of planes that came closer to each other than 500m:
SELECT p.airline, p.id, q.airline, q.id
FROM planes p, planes q
WHERE p.id != q.id
 AND val(initial(atmin(distance(p.flight, q.flight)))) < 0.5

7

distance — moving(real)

Type Constructors

Model specifies type system

Data type examples:

int, moving(point)

moving(point) value is a
function from time into point
values

Argument kind
Result
kind

Type
constructors

→ BASE
int, real,

string, bool

→ SPATIAL
point, points,
line, region

→ TIME instant

BASE ∪ TIME → RANGE range

BASE ∪ SPATIAL → TEMPORAL
intime,
moving

8

Operations

Model also specifies operators

Not in table:

atinstant, derivative, speed,
and others...

Operation Argument kind Result kind

trajectory moving(point) → line

length line → real

distance moving(point)
× moving(point)

→ moving(real)

atmin moving(real) → moving(real)

initial moving(real) → intime(real)

val intime(real) real

9

Discrete model

10

Discrete model

Defines domains for the data types in
the abstract model

Represents only a subset of the values
of the corresponding abstract model

All abstract type constructors have
discrete counterparts, except for the
moving constructor

11

y

x

y

x

y

x

y

x

Type Constructors

UNIT type is introduced to
explicitly support temporal
types

We therefore distinguish
between e.g. a non-temporal
real and its temporal
counterpart ureal

Argument kind
Result
kind

Type
constructors

→ BASE
int, real,

string, bool

→ SPATIAL
point, points,
line, region

→ TIME instant

BASE ∪ TIME → RANGE range

BASE ∪ SPATIAL → UNIT const

→ UNIT
ureal, upoint,
upoints, uline,

uregion

UNIT → MAPPING mapping

12

Sliced Representation

Built by mapping constructor

e.g. mapping(point)

Each slice consists of a UNIT
type (i,v)

i is a time interval

v is a a simple function

For discrete-only values
const constructor is used
(e.g. “moving” int, bool)

13

v

t x

y

t

Moving real Moving points

v

t
Moving int (using const)

Discretely changing values use
the const constructor

Continously changing values
use special UNIT types

v

t x

y

t

Moving real Moving points

v

t
Moving int (const)

Abstract & Discrete Temporal Types

Abstract Type Discrete Type

moving(int) mapping(const(int))

moving(bool) mapping(const(bool))

moving(real) mapping(ureal)

moving(point) mapping(upoint)

moving(points) mapping(upoints)

14

Basic Data Type Domains

Base types and time
type:

Spatial data types:

Dint = int ∪ {⊥}
Dstring = string ∪ {⊥}

Dreal = real ∪ {⊥}
Dbool = bool ∪ {⊥}

Dinstant = Instant ∪ {⊥}
(Instant = real)

15

Dpoint = Point ∪ {⊥}
(Point = real× real)

Dpoints = P(Point)

.

.

.

Line Data Type Domain

y

x

y

x

Seg = {(u, v)|u, v ∈ Point, u < v}

Dline = {S ⊆ Seg|∀s, t ∈ Seg :
s $= t ∧ collinear(s, t) ⇒ disjoint(s, t)}

16

Region Data Type Domain

y

x

y

x

Segments used to form polygons

Again, approximation is used

May result in false positives on e.g. joins (rain example)

Is formally defined in the paper

17

Units

A unit/slice is defined by:

First component is the unit interval,
second component the unit function

The function component maps a unit
function for a given instant of time
into a value

Unit(S) = Interval(Instant)× S

ια : Sα × Instant→ Dα

18

Slice Interval

S

Plane distance:

Moving Point Data Type Domain

Moving point is type
upoint (UNIT type)

A linearly moving point
is described by:

x0, y0

x1, y1

x

y

ι((x0, x1, y0, y1), t) = (x0 + x1 · t, y0 + y1 · t) ∀t ∈ Instant

19

Dupoint = Interval(Instant)×MPoint
MPoint = {(x0, x1, y0, y1)|x0, x1, y0, y1 ∈ real}

Moving Lines & Regions

Linear approximation is used again

Definitions for domains of moving lines and regions can
be found in the article

20

Conclusion

Discrete model implements all data types of the
abstract model

Data structures explained for an example
implementation

Devised two algorithms for operations on discrete data
structures

atinstant and inside

21

Evaluation

Positive

Well-written

Very concise and comprehensive

Negative

Very complex—tries to do A LOT!

Builds on previous work

Error in SQL statement

As far as I know, there is no working data blade implementation

22

23

That’s it!

