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Motivation

Many applications require DBMSs to 
manage spatial objects

Countries, roads, power lines, etc.

But also moving (temporal) objects

Airplanes, hurricanes, precipitation 
(nedbør)

Dubbed “moving objects 
databases”
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Motivation

A previous article presented an abstract model

Focuses on essential concepts

But no representation details

Now a discrete model is presented

Contains representation details

Implementable
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Abstract model
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Query example

We can query on the relation:
planes (airline: string, id: string, flight: moving(point))

All flights of Lufthansa > 5000 km:
SELECT airline, id
FROM planes
WHERE airline = “Lufthansa”
  AND length(trajectory(flight)) > 5000
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Query example

Relation is still:
planes (airline: string, id: string, flight: moving(point))

All pairs of planes that came closer to each other than 500m:
SELECT p.airline, p.id, q.airline, q.id
FROM planes p, planes q
WHERE p.id != q.id 
  AND val(initial(atmin(distance(p.flight, q.flight)))) < 0.5
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Type Constructors

Model specifies type system 

Data type examples:

int, moving(point)

moving(point) value is a 
function from time into point 
values

Argument kind
Result 
kind

Type 
constructors

→ BASE
int, real,

string, bool

→ SPATIAL
point, points, 
line, region

→ TIME instant

BASE ∪ TIME → RANGE range

BASE ∪ SPATIAL → TEMPORAL
intime,
moving
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Operations

Model also specifies operators

Not in table:

atinstant, derivative, speed, 
and others...

Operation Argument kind Result kind

trajectory moving(point) → line

length line → real

distance moving(point)
× moving(point)

→ moving(real)

atmin moving(real) → moving(real)

initial moving(real) → intime(real)

val intime(real) real
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Discrete model
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Discrete model

Defines domains for the data types in 
the abstract model

Represents only a subset of the values 
of the corresponding abstract model

All abstract type constructors have 
discrete counterparts, except for the 
moving constructor
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Type Constructors

UNIT type is introduced to 
explicitly support temporal 
types

We therefore distinguish 
between e.g. a non-temporal 
real and its temporal 
counterpart ureal

Argument kind
Result 
kind

Type 
constructors

→ BASE
int, real,

string, bool

→ SPATIAL
point, points, 
line, region

→ TIME instant

BASE ∪ TIME → RANGE range

BASE ∪ SPATIAL → UNIT const

→ UNIT
ureal, upoint, 
upoints, uline, 

uregion

UNIT → MAPPING mapping
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Sliced Representation

Built by mapping constructor 

e.g. mapping(point)

Each slice consists of a UNIT 
type (i,v)

i is a time interval

v is a a simple function

For discrete-only values 
const constructor is used 
(e.g. “moving” int, bool)
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Discretely changing values use 
the const constructor

Continously changing values 
use special UNIT types
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Abstract & Discrete Temporal Types

Abstract Type Discrete Type

moving(int) mapping(const(int))

moving(bool) mapping(const(bool))

moving(real) mapping(ureal)

moving(point) mapping(upoint)

moving(points) mapping(upoints)
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Basic Data Type Domains

Base types and time 
type:

Spatial data types:

Dint = int ∪ {⊥}
Dstring = string ∪ {⊥}

Dreal = real ∪ {⊥}
Dbool = bool ∪ {⊥}

Dinstant = Instant ∪ {⊥}
(Instant = real)
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Dpoint = Point ∪ {⊥}
(Point = real× real)

Dpoints = P(Point)

.

.

.



Line Data Type Domain
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Seg = {(u, v)|u, v ∈ Point, u < v}

Dline = {S ⊆ Seg|∀s, t ∈ Seg :
s $= t ∧ collinear(s, t) ⇒ disjoint(s, t)}
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Region Data Type Domain
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Segments used to form polygons

Again, approximation is used

May result in false positives on e.g. joins (rain example)

Is formally defined in the paper

17



Units

A unit/slice is defined by:

First component is the unit interval, 
second component the unit function

The function component maps a unit 
function for a given instant of time 
into a value

Unit(S) = Interval(Instant)× S

ια : Sα × Instant→ Dα
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Moving Point Data Type Domain

Moving point is type 
upoint (UNIT type)

A linearly moving point 
is described by:

x0, y0

x1, y1

x

y

ι((x0, x1, y0, y1), t) = (x0 + x1 · t, y0 + y1 · t) ∀t ∈ Instant
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Dupoint = Interval(Instant)×MPoint
MPoint = {(x0, x1, y0, y1)|x0, x1, y0, y1 ∈ real}



Moving Lines & Regions

Linear approximation is used again

Definitions for domains of moving lines and regions can 
be found in the article
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Conclusion

Discrete model implements all data types of the 
abstract model

Data structures explained for an example 
implementation

Devised two algorithms for operations on discrete data 
structures

atinstant and inside
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Evaluation

Positive

Well-written

Very concise and comprehensive

Negative

Very complex—tries to do A LOT!

Builds on previous work

Error in SQL statement

As far as I know, there is no working data blade implementation

22



23

That’s it!


