Implementing Data Cubes Efficiently

Written by:

Venky Harinarayan, Anand Rajaraman, Jeffrey D. Ullman
Stanford University

Published in:

Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Montreal, Quebec,
Canada, June 4-6, 1996

Awarded SIGMOD Best Paper Award 1996

Presented by:
Lars K. Schunk

Overview of the Presentation

» Introduction and Motivating Example
» The Lattice Framework

» Query-Cost Model

» The Greedy Algorithm

» Performance Guarantee

» Conclusion

» Paper Evaluation

Operational Databases
VS.
Data Warehouses

Operational databases:
» State information

Data warehouses:

» Historical information

» Very large and grow over time
» Used for identifying trends

Data Warehouse Cubes

» Data are presented as multidimensional data cubes
» Users explore the cubes and discover information

IBM __—— —

Cust
uinmer APP"?‘;,; — — Linda 7 9 2
Applelwf P —— ~
Lind
Dell f_ﬂ,-—-""f:#__ ""Ff__f,,.-—""ff Inda 5 2 3 /‘! Joe 4 5 3
Linda 8 9 4 ,f""f e 6 1 2
. James 2 1 6 /,
J
oe 3|2 5 f,.x"f James| 2 1 2 Laptop Mouse Monitor
- //
James ? 8 3 .‘.___.—""'LF’- Laptop Mouse Monitor
Laptop Mouse Monitor
/:pplier Part
-

Each cell (p, s, ¢) stores the sales of part p that was
bought from supplier s and sold to customer ¢

Aggregations

Consolidated sales

» Add "ALL” value to the domain of each
dimension

» Results in dependent cells

General example

» What is the total sales of a given part p from a
given supplier s?

» Look up value in cell (p, s, AIA_L)

All customers

Aggregations (Example)

» Specific example: What is the total sales of
laptops from Dell, i.e., what is in cell (laptop,
Dell, ALL)?

All
TN —
D “Applej_, o ~]
Customer e - /,.f T P
A Al 19 |12 | 49 /’/{/
rd //
tnda | 8 |9 | 4 |21 e P
]
Joe 312 | 5|10 e
vd P
James | 7 1 8 | 3 |18 |~ (laptop, Dell, ALL) =7 + 3 + 8 =
Laptop Mouse Maonitor All] 8
/{pplier Part .
» The number of dependent cells is

usually a large fraction of the total
number of cells in the cube, e.q.,
70 % 6

The Problem: Query Performance
in Data Warehouses

» Queries are very complex

» Make heavy use of aggregations
» Take very long to complete

» Limit productivity

Solution idea:

» Materialize query results, i.e., precompute
query results and store them on disk

Three Alternatives

Materialize the whole data cube
» Best query response time
» Not feasible for large data cubes

Materialize nothing
» No extra space required beyond that for the raw data
» We need to compute every cell on request

Materialize only part of the data cube (our solution)

» Trade-off between space required and query
response time

» Which cells should be materialized?

Which cells should be materialized?

Relevant questions
» Frequently asked queries?

» Not-so-frequently asked queries that can be
used to answer many other queries quickly?

Solution

» This paper presents an algorithm for picking
the right set of query results to materialize

Representing Data Cubes

» The data cube can be represented with a simple table
» The Sales Table:

Park: Supplier iZuskomer Sales
2 | Lapkap Apple James 2
Laptop Apple Joe f
Lapkop Apple Linda 5 OnIy independent
Laptop Dell lames 7 cells are stored in
Laptop Dell Joe 3 the table
Laptop Dell Linda a3
Laptop IBEM James 2
Laptop IEM Joe 4
Laptop IEM Linda 7
Monitor Apple lames z
Monitor Apple Joe z
Monitor Apple Linda 3

27 rows ...

v v

10

Representing Data Cubes

» Dependent cells are computed from
independent cells
» We use SQL queries on the Sales table

» Example: Compute cell (laptop, Dell, ALL)

SELECT Part, Supplier, SUM(Sales) AS Sales

FROM Sales
WHERE Part = 'Laptop' and Supplier = 'Dell'’
GROUP BY Part, Supplier

Fart Supplier Sales
ELaptn:up Crell 18

11

Overview of the Presentation

» Introduction and Motivating Example
» The Lattice Framework

» Query-Cost Model

» The Greedy Algorithm

» Performance Guarantee

» Conclusion

» Paper Evaluation

12

Cell Organization

» Cells are organized into sets based on the
positions of ALL in their addresses

» For example, all cells with address (p, s, ¢ =
(_, ALL, _) are placed in the same set.

» Each set corresponds to an SQL query result
» A set of cells = a query result = a view

13

Cell Organization (Example)

All

part, customer = (_, ALL, _): e
A //
w1819 (12 149 | A7)
SELECT Part, Customer, SUM(Sales) AS Sales we | 8 (9 |4 21| A7 y
FROM Sales w132 |5 [10] | P
L~
GROUP BY Part, Customer el 7 1 8 13 18| L

Fart Custormer Sales / |- Laptop Mouse Monitor Al

1 i Laptop James 11 Pt

2 Moritar James 11
3 Mouze James 10 Al -
4 Laptop Joe 13
5 konitor Joe 10 Al
G Mouse Joe 3 Linda
7 Laptop Linda 20
g Monitor Linda 9 Joe
9 Mouze Linda 200
James

Laptop Mouse Maonitor All

14

Eight Views

3 dimensions give 8 possible groupings.
The corresponding views:

.part, supplier, customer (27 rows)
.part, customer (9)

.part, supplier (9)

.supplier, customer (9)

9.part (3)

10.supplier (3)

11.customer (3)

12 .none (1)

o J oy Ul

Lattice Representation of Views

3 dimensions give 8 possible groupings.

The corresponding views:

9.part (3)
10.supplier (3)
11.customer (3) p3 s3 c3

12 .none (1) Hx“xxhhha fﬁ,ﬁfﬁfﬁf

psc 27
5.part, supplier, customer (27 rows)
6.part, customer (9)
7.part, supplier (9) pc 9 ps 9 sc 9
8.supplier, customer (9) ;:::;pdi;mt;ﬁiiii:

The Dependence Relation <

» Consider two queries Q, and Q..
» Q, < Q, if Q, can be answered using only the

results of Q, psc 27
» Q, is dependenton Q, / \
» There is a path downward rc? Ps 9 sc 9

from Q,to Q, iff Q, < Q, ><><
Examples: \ /

The Dependence Relation <

< is a partial ordering

Q< Q

» Antisymmetric:

Q<ULrQ,<Q =>0Q=Q T3
» Transitive: ><\/<

Q <Q:NQK Qg Q]<Qg p3 s 3 c3

Let L be a set of views hone 1
(L, X) is a partially ordered set

The Dependence Relation <

(L, X) is a lattice because every pair of views

has a least upper bound and greatest lower
bound

psc 27

We only need these assumptions: 0s 9 oc 9
» < is a partial ordering

» There is a top element upon ><><

which every view is dependent p3 s3 c3

Answering a Query using
Another View

SELECT Customer, SUM(Sales) AS Sales
FROM Part Customer

psc 27
GROUP BY Customer
pc 9 ps 9 sc 9
Customer | Sales ><><
: James a7
R 3 3
Joe A1 P ’
Linda 49
none 1

¢ can be answered using pc (or s¢

20

A More Realistic Example

Which views to materialize?

» pscis obligatory

.

pc 6M

p 0.2M

psc 6M

ps 0.8M sc 6M

-

s 0.01M c0.1M

N

none 1

21

Hierarchies

» Dimensions may have
hierarchies of attributes

Drill-down (more detail):

» Sales per year — sales per
month — sales on a given day

Roll-up (less detail):

» Sales on a given day — sales in
that month — sales in that
year

N

Week Month

Year

none

22

Composite Lattices

Two types of query dependencies:
» Dependencies caused by interaction of dimensions

» Dependencies within a dimension caused by
attribute hierarchies

» A view is represented by an n-tuple (a,, a,, ..., a),
where each a; is a point in the hierarchy for the /th

dimension
» @, a,, ...,a,)< (b, b, ..., b)iff a < b foralli

23

Composite Lattice Example

c
Customer dimension ‘
C = customer
h = nation T
none

p
Part dimension
p = part /’// \t
S = size 5

N

24

Overview of the Presentation

» Introduction and Motivating Example
» The Lattice Framework

» Query-Cost Model

» The Greedy Algorithm

» Performance Guarantee

» Conclusion

» Paper Evaluation

25

Linear Cost Model

To answer query Q:

» Choose an ancestor Q, that has been
materialized

» Process the table corresponding to Q,

» Cost of answering Q is the number of rows in
the table for query Q.,.

Simple, but realistic, cost model

26

Overview of the Presentation

» Introduction and Motivating Example
» The Lattice Framework

» Query-Cost Model

» The Greedy Algorithm

» Performance Guarantee

» Conclusion

» Paper Evaluation

27

Optimizing Data-Cube Lattices

Which views to materialize?

» Minimize time taken to evaluate the set of
queries identical to the views

» Constrained to materialize a fixed number of
views (regardless of space)

» Optimization problem is NP-complete.

28

The Benefit of a View

» (A{v) = cost of view v
» § = set of selected views

» B(v,S) = benefit of view v relative to S, as follows:
1. For each w < v, define quantity B, by:

(a) Let u be the view of least cost in S such that w < u.
(b) If v < (u), then B, = C(u) - C(v). Otherwise, B, = 0.

5 100
Define B(v,s) = &, , B, .
b 50 / \ 75

o/ N0/ \.
\/\/

29

The Benefit of a View (Example)

» Compute B(v, S) where v= band S = {a}
» First compute B, where w= b
Y u=a
' 1s QW) < Cu) <50 < 100 7? , /a\ ;
» Yes, SO w0
B, = Cuw-Cv)=100-50=50 f<><>4ﬂ
» Repeat for views d, e, g, and h
» B(v,S5) = 50x5 =250

1. For each w< v, define quantity B, by:

(@) Let v be the view of least cost in S such that w < u.
(b) If Cv) < (), then B, = C{u) - (V). Otherwise, B, = 0.

. Define Bv,s) = = ,_,8B,.
30

The Greedy Algorithm

» Purpose: Select a set of k views to materialize
in addition to the top view

S = {top view};

for 1i=1 to k do begin
select view v € S such that B(v,S) 1s maximized;
S =S U {v};

end;

resulting S is the greedy selection;

31

The Greedy Algorithm (Example)
SRl | Choice 1 (b) |Choice2 () |Choice3(d)

50 x 5 = 250

25 x5 =125 25 x2 =150 25 x 1 =25

80 x 2 =160 30x 2 =60 30x 2 =60

7/0x 3 =210 20 x 3 = 60 2x20+ 10 =50

60 x 2 = 120 60 + 10 = 70

99 x 1 =99 49 x 1 =49 49 x 1 =49
90 x 1 =90 40 x 1 =40 30x 1 =30

> Qo M M O N T Q

Result: S=1{a, b, d, f}

32

Greedy Algorithm Experiment

Views Benefit Total time Total space
(million rows) | (million (million rows)
72 6

1 cp infinite

2 ns 24 48 6

3 nt 12 36 6

4 C 5.9 30.1 6.1
5 p 5.8 24.3 6.3
6 CS 1 23.3 11.3
7/ np 1 22.3 16.3
8 ct 0.01 22.3 22.3
9 t small 22.3 22.3
10 n small 22.3 22.3

22.3 22.3
22.3 22.3

Experiment Results in Graphics

80

70

60

50

40

30

20

10

0

—@—Total Time

—a—Total Space

It’s clear when to stop picking
views, namely when we have
picked 5 views including the
top view, i.e., when k=4

34

Overview of the Presentation

» Introduction and Motivating Example
» The Lattice Framework

» Query-Cost Model

» The Greedy Algorithm

» Performance Guarantee

» Conclusion

» Paper Evaluation

35

Performance Guarantee

For no lattice does the greedy algorithm give a
benefit less than 63% of the optimal benefit.

k-1
It can be shown that: B, /B, 2 1- H . H

where B .., is the benefit of k views chosen by the

greedy algorithm, and B, , is the benefit of an
optimal set of k views.
Hk 1
As k —oo, I ¥ U approaches 1/e,
so B /B >1-1/e=0.63

greedy

36

Performance Guarantee

» Chekuri has shown using a result of Feige that
unless P = NPthere is no polynomial-time
algorithm that can guarantee a better bound
than the greedy

37

Overview of the Presentation

» Introduction and Motivating Example
» The Lattice Framework

» Query-Cost Model

» The Greedy Algorithm

» Performance Guarantee

» Conclusion

» Paper Evaluation

38

Conclusion

» Materialization of views is an essential query
optimization strategy

» The right selection of views to materialize is
critical

» It is important to materialize some but not all
views

» The greedy algorithm performs this selection

» No polynomial-time algorithm can perform
better than the greedy.

39

Overview of the Presentation

» Introduction and Motivating Example
» The Lattice Framework

» Query-Cost Model

» The Greedy Algorithm

» Performance Guarantee

» Conclusion

» Paper Evaluation

40

Paper Evaluation

Good things

» Well written

» Well structured

» Refers to a more detailed version of the paper

Things that could be better:

» A figure of an actual cube would have been
nice

» There were some mistakes, including a quite
critical one on page 212

41

Paper Evaluation

1. For each w =< v, define the quantity By, by:

(a) Let u be the view of least cost in S such that
w < u. Note that since the top view is in 5,
there must be at least one such view in S,

(b) If C(v) < Clu), then B, = C(v) — C(u).
Otherwise, B, = 0. A

2. Define B(v,S) = 3, <, Bu-

C(v) - (u) should be C(uv) - C(v)

42

Thank you for your attention

Any gquestions?

.

43

