
Written by:
Venky Harinarayan, Anand Rajaraman, Jeffrey D. Ullman
Stanford University

Presented by:
Lars K. Schunk

Published in:
Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Montreal, Quebec,
Canada, June 4-6, 1996
Awarded SIGMOD Best Paper Award 1996

*) Special Interest Group on Mangement of Data

 Introduction and Motivating Example
 The Lattice Framework
 Query-Cost Model
 The Greedy Algorithm
 Performance Guarantee
 Conclusion
 Paper Evaluation

2

Operational databases:
 State information

Data warehouses:
 Historical information
 Very large and grow over time
 Used for identifying trends

3

 Data are presented as multidimensional data cubes
 Users explore the cubes and discover information

4

Each cell (p, s, c) stores the sales of part p that was
bought from supplier s and sold to customer c

Consolidated sales
 Add ”ALL” value to the domain of each

dimension
 Results in dependent cells

General example
 What is the total sales of a given part p from a

given supplier s?
 Look up value in cell (p, s, ALL)

5

All customers

 Specific example: What is the total sales of
laptops from Dell, i.e., what is in cell (laptop,
Dell, ALL)?

(laptop, Dell, ALL) = 7 + 3 + 8 =
18

The number of dependent cells is
usually a large fraction of the total
number of cells in the cube, e.g.,
70 % 6

 Queries are very complex
 Make heavy use of aggregations
 Take very long to complete
 Limit productivity

Solution idea:
 Materialize query results, i.e., precompute

query results and store them on disk

7

Materialize the whole data cube
 Best query response time
 Not feasible for large data cubes

Materialize nothing
 No extra space required beyond that for the raw data
 We need to compute every cell on request

Materialize only part of the data cube (our solution)
 Trade-off between space required and query

response time
 Which cells should be materialized?

8

Relevant questions
 Frequently asked queries?
 Not-so-frequently asked queries that can be

used to answer many other queries quickly?

Solution
 This paper presents an algorithm for picking

the right set of query results to materialize

9

 The data cube can be represented with a simple table
 The Sales Table:

10

27 rows …

Only independent
cells are stored in
the table

 Dependent cells are computed from
independent cells

 We use SQL queries on the Sales table

 Example: Compute cell (laptop, Dell, ALL)

11

SELECT Part, Supplier, SUM(Sales) AS Sales
FROM Sales
WHERE Part = 'Laptop' and Supplier = 'Dell'
GROUP BY Part, Supplier

 Introduction and Motivating Example
 The Lattice Framework
 Query-Cost Model
 The Greedy Algorithm
 Performance Guarantee
 Conclusion
 Paper Evaluation

12

 Cells are organized into sets based on the
positions of ALL in their addresses

 For example, all cells with address (p, s, c) =
(_, ALL, _) are placed in the same set.

 Each set corresponds to an SQL query result
 A set of cells ≡ a query result ≡ a view

13

part, customer = (_, ALL, _):

14

SELECT Part, Customer, SUM(Sales) AS Sales
FROM Sales
GROUP BY Part, Customer

3 dimensions give 8 possible groupings.

The corresponding views:

5.part, supplier, customer (27 rows)
6.part, customer (9)
7.part, supplier (9)
8.supplier, customer (9)
9.part (3)
10.supplier (3)
11.customer (3)
12.none (1)

15

3 dimensions give 8 possible groupings.

The corresponding views:

5.part, supplier, customer (27 rows)
6.part, customer (9)
7.part, supplier (9)
8.supplier, customer (9)
9.part (3)
10.supplier (3)
11.customer (3)
12.none (1)

16

17

 Consider two queries Q1 and Q2.
 Q1 ≼ Q2 if Q1 can be answered using only the

results of Q2
 Q1 is dependent on Q2
 There is a path downward
 from Q2 to Q1 iff Q1 ≼ Q2

Examples:
 (c) ≼ (pc)
 (c) ≼ (p)

≼ is a partial ordering

 Reflexive:
Q ≼ Q

 Antisymmetric:
Q1 ≼ Q2 ∧ Q2 ≼ Q1 ⇒ Q1 = Q2

 Transitive:
Q1 ≼ Q2 ∧ Q2 ≼ Q3 ⇒ Q1 ≼ Q3

Let L be a set of views
(L, ≼) is a partially ordered set

18

19

(L, ≼) is a lattice because every pair of views
has a least upper bound and greatest lower
bound

We only need these assumptions:
 ≼ is a partial ordering
 There is a top element upon

which every view is dependent

20

SELECT Customer, SUM(Sales) AS Sales
FROM Part_Customer
GROUP BY Customer

c can be answered using pc (or sc)

21

Which views to materialize?

 psc is obligatory

22

 Dimensions may have
hierarchies of attributes

Drill-down (more detail):
 Sales per year → sales per

month → sales on a given day
Roll-up (less detail):
 Sales on a given day → sales in

that month → sales in that
year

Two types of query dependencies:
 Dependencies caused by interaction of dimensions
 Dependencies within a dimension caused by

attribute hierarchies

 A view is represented by an n-tuple (a1, a2, …, an),
where each ai is a point in the hierarchy for the ith
dimension

 (a1, a2, …, an) ≼ (b1, b2, …, bn) iff ai ≼ bi for all i

23

24

Customer dimension
c = customer
n = nation

Part dimension
p = part
s = size
t = type

 Introduction and Motivating Example
 The Lattice Framework
 Query-Cost Model
 The Greedy Algorithm
 Performance Guarantee
 Conclusion
 Paper Evaluation

25

To answer query Q:
 Choose an ancestor QA that has been

materialized
 Process the table corresponding to QA
 Cost of answering Q is the number of rows in

the table for query QA.

Simple, but realistic, cost model

26

 Introduction and Motivating Example
 The Lattice Framework
 Query-Cost Model
 The Greedy Algorithm
 Performance Guarantee
 Conclusion
 Paper Evaluation

27

Which views to materialize?

 Minimize time taken to evaluate the set of
queries identical to the views

 Constrained to materialize a fixed number of
views (regardless of space)

 Optimization problem is NP-complete.

28

29

 C(v) = cost of view v
 S = set of selected views
 B(v,S) = benefit of view v relative to S, as follows:

1. For each w ≼ v, define quantity Bw by:

(a) Let u be the view of least cost in S such that w ≼ u.
(b) If C(v) < C(u), then Bw = C(u) – C(v). Otherwise, Bw = 0.

• Define B(v,s) = ∑w ≼ b Bw.

 Compute B(v, S) where v = b and S = {a}
 First compute Bw where w = b
 u = a
 Is C(v) < C(u) ⇔50 < 100 ?
 Yes, so

Bw = C(u) – C(v) = 100 – 50 = 50
 Repeat for views d, e, g, and h
 B(v,S) = 50 x 5 = 250

30

1. For each w ≼ v, define quantity Bw by:

(a) Let u be the view of least cost in S such that w ≼ u.
(b) If C(v) < C(u), then Bw = C(u) – C(v). Otherwise, Bw = 0.

• Define B(v,s) = ∑w ≼ b Bw.

 Purpose: Select a set of k views to materialize
in addition to the top view

31

S = {top view};
for i=1 to k do begin

select view v ∉ S such that B(v,S) is maximized;
S = S ∪ {v};

end;
resulting S is the greedy selection;

Choice 1 (b) Choice 2 (f) Choice 3 (d)
a
b 50 x 5 = 250
c 25 x 5 = 125 25 x 2 = 50 25 x 1 = 25
d 80 x 2 = 160 30 x 2 = 60 30 x 2 = 60
e 70 x 3 = 210 20 x 3 = 60 2 x 20 + 10 = 50
f 60 x 2 = 120 60 + 10 = 70
g 99 x 1 = 99 49 x 1 = 49 49 x 1 = 49
h 90 x 1 = 90 40 x 1 = 40 30 x 1 = 30

32

k = 3

Result: S = { a, b, d, f }

Views Selection Benefit
(million rows)

Total time
(million
rows)

Total space
(million rows)

1 cp infinite 72 6
2 ns 24 48 6
3 nt 12 36 6
4 c 5.9 30.1 6.1
5 p 5.8 24.3 6.3
6 cs 1 23.3 11.3
7 np 1 22.3 16.3
8 ct 0.01 22.3 22.3
9 t small 22.3 22.3
10 n small 22.3 22.3
11 s small 22.3 22.3
12 none small 22.3 22.3

33

34

It’s clear when to stop picking
views, namely when we have
picked 5 views including the
top view, i.e., when k = 4

 Introduction and Motivating Example
 The Lattice Framework
 Query-Cost Model
 The Greedy Algorithm
 Performance Guarantee
 Conclusion
 Paper Evaluation

35

For no lattice does the greedy algorithm give a
benefit less than 63% of the optimal benefit.

It can be shown that:

where Bgreedy is the benefit of k views chosen by the
greedy algorithm, and Bopt is the benefit of an
optimal set of k views.

As k →∞, approaches 1/e,
so Bgreedy/Bopt ≥ 1-1/e ≅ 0.63

36

k

optgreedy k
kBB 





 −−≥ 11/

k

k
k






 − 1

 Chekuri has shown using a result of Feige that
unless P = NP there is no polynomial-time
algorithm that can guarantee a better bound
than the greedy

37

 Introduction and Motivating Example
 The Lattice Framework
 Query-Cost Model
 The Greedy Algorithm
 Performance Guarantee
 Conclusion
 Paper Evaluation

38

 Materialization of views is an essential query
optimization strategy

 The right selection of views to materialize is
critical

 It is important to materialize some but not all
views

 The greedy algorithm performs this selection
 No polynomial-time algorithm can perform

better than the greedy.

39

 Introduction and Motivating Example
 The Lattice Framework
 Query-Cost Model
 The Greedy Algorithm
 Performance Guarantee
 Conclusion
 Paper Evaluation

40

Good things
 Well written
 Well structured
 Refers to a more detailed version of the paper

Things that could be better:
 A figure of an actual cube would have been

nice
 There were some mistakes, including a quite

critical one on page 212

41

42

C(v) – C(u) should be C(u) – C(v)

43

Thank you for your attention

Any questions?

