
Written by:
Venky Harinarayan, Anand Rajaraman, Jeffrey D. Ullman
Stanford University

Presented by:
Lars K. Schunk

Published in:
Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Montreal, Quebec,
Canada, June 4-6, 1996
Awarded SIGMOD Best Paper Award 1996

*) Special Interest Group on Mangement of Data

 Introduction and Motivating Example
 The Lattice Framework
 Query-Cost Model
 The Greedy Algorithm
 Performance Guarantee
 Conclusion
 Paper Evaluation

2

Operational databases:
 State information

Data warehouses:
 Historical information
 Very large and grow over time
 Used for identifying trends

3

 Data are presented as multidimensional data cubes
 Users explore the cubes and discover information

4

Each cell (p, s, c) stores the sales of part p that was
bought from supplier s and sold to customer c

Consolidated sales
 Add ”ALL” value to the domain of each

dimension
 Results in dependent cells

General example
 What is the total sales of a given part p from a

given supplier s?
 Look up value in cell (p, s, ALL)

5

All customers

 Specific example: What is the total sales of
laptops from Dell, i.e., what is in cell (laptop,
Dell, ALL)?

(laptop, Dell, ALL) = 7 + 3 + 8 =
18

The number of dependent cells is
usually a large fraction of the total
number of cells in the cube, e.g.,
70 % 6

 Queries are very complex
 Make heavy use of aggregations
 Take very long to complete
 Limit productivity

Solution idea:
 Materialize query results, i.e., precompute

query results and store them on disk

7

Materialize the whole data cube
 Best query response time
 Not feasible for large data cubes

Materialize nothing
 No extra space required beyond that for the raw data
 We need to compute every cell on request

Materialize only part of the data cube (our solution)
 Trade-off between space required and query

response time
 Which cells should be materialized?

8

Relevant questions
 Frequently asked queries?
 Not-so-frequently asked queries that can be

used to answer many other queries quickly?

Solution
 This paper presents an algorithm for picking

the right set of query results to materialize

9

 The data cube can be represented with a simple table
 The Sales Table:

10

27 rows …

Only independent
cells are stored in
the table

 Dependent cells are computed from
independent cells

 We use SQL queries on the Sales table

 Example: Compute cell (laptop, Dell, ALL)

11

SELECT Part, Supplier, SUM(Sales) AS Sales
FROM Sales
WHERE Part = 'Laptop' and Supplier = 'Dell'
GROUP BY Part, Supplier

 Introduction and Motivating Example
 The Lattice Framework
 Query-Cost Model
 The Greedy Algorithm
 Performance Guarantee
 Conclusion
 Paper Evaluation

12

 Cells are organized into sets based on the
positions of ALL in their addresses

 For example, all cells with address (p, s, c) =
(_, ALL, _) are placed in the same set.

 Each set corresponds to an SQL query result
 A set of cells ≡ a query result ≡ a view

13

part, customer = (_, ALL, _):

14

SELECT Part, Customer, SUM(Sales) AS Sales
FROM Sales
GROUP BY Part, Customer

3 dimensions give 8 possible groupings.

The corresponding views:

5.part, supplier, customer (27 rows)
6.part, customer (9)
7.part, supplier (9)
8.supplier, customer (9)
9.part (3)
10.supplier (3)
11.customer (3)
12.none (1)

15

3 dimensions give 8 possible groupings.

The corresponding views:

5.part, supplier, customer (27 rows)
6.part, customer (9)
7.part, supplier (9)
8.supplier, customer (9)
9.part (3)
10.supplier (3)
11.customer (3)
12.none (1)

16

17

 Consider two queries Q1 and Q2.
 Q1 ≼ Q2 if Q1 can be answered using only the

results of Q2
 Q1 is dependent on Q2
 There is a path downward
 from Q2 to Q1 iff Q1 ≼ Q2

Examples:
 (c) ≼ (pc)
 (c) ≼ (p)

≼ is a partial ordering

 Reflexive:
Q ≼ Q

 Antisymmetric:
Q1 ≼ Q2 ∧ Q2 ≼ Q1 ⇒ Q1 = Q2

 Transitive:
Q1 ≼ Q2 ∧ Q2 ≼ Q3 ⇒ Q1 ≼ Q3

Let L be a set of views
(L, ≼) is a partially ordered set

18

19

(L, ≼) is a lattice because every pair of views
has a least upper bound and greatest lower
bound

We only need these assumptions:
 ≼ is a partial ordering
 There is a top element upon

which every view is dependent

20

SELECT Customer, SUM(Sales) AS Sales
FROM Part_Customer
GROUP BY Customer

c can be answered using pc (or sc)

21

Which views to materialize?

 psc is obligatory

22

 Dimensions may have
hierarchies of attributes

Drill-down (more detail):
 Sales per year → sales per

month → sales on a given day
Roll-up (less detail):
 Sales on a given day → sales in

that month → sales in that
year

Two types of query dependencies:
 Dependencies caused by interaction of dimensions
 Dependencies within a dimension caused by

attribute hierarchies

 A view is represented by an n-tuple (a1, a2, …, an),
where each ai is a point in the hierarchy for the ith
dimension

 (a1, a2, …, an) ≼ (b1, b2, …, bn) iff ai ≼ bi for all i

23

24

Customer dimension
c = customer
n = nation

Part dimension
p = part
s = size
t = type

 Introduction and Motivating Example
 The Lattice Framework
 Query-Cost Model
 The Greedy Algorithm
 Performance Guarantee
 Conclusion
 Paper Evaluation

25

To answer query Q:
 Choose an ancestor QA that has been

materialized
 Process the table corresponding to QA
 Cost of answering Q is the number of rows in

the table for query QA.

Simple, but realistic, cost model

26

 Introduction and Motivating Example
 The Lattice Framework
 Query-Cost Model
 The Greedy Algorithm
 Performance Guarantee
 Conclusion
 Paper Evaluation

27

Which views to materialize?

 Minimize time taken to evaluate the set of
queries identical to the views

 Constrained to materialize a fixed number of
views (regardless of space)

 Optimization problem is NP-complete.

28

29

 C(v) = cost of view v
 S = set of selected views
 B(v,S) = benefit of view v relative to S, as follows:

1. For each w ≼ v, define quantity Bw by:

(a) Let u be the view of least cost in S such that w ≼ u.
(b) If C(v) < C(u), then Bw = C(u) – C(v). Otherwise, Bw = 0.

• Define B(v,s) = ∑w ≼ b Bw.

 Compute B(v, S) where v = b and S = {a}
 First compute Bw where w = b
 u = a
 Is C(v) < C(u) ⇔50 < 100 ?
 Yes, so

Bw = C(u) – C(v) = 100 – 50 = 50
 Repeat for views d, e, g, and h
 B(v,S) = 50 x 5 = 250

30

1. For each w ≼ v, define quantity Bw by:

(a) Let u be the view of least cost in S such that w ≼ u.
(b) If C(v) < C(u), then Bw = C(u) – C(v). Otherwise, Bw = 0.

• Define B(v,s) = ∑w ≼ b Bw.

 Purpose: Select a set of k views to materialize
in addition to the top view

31

S = {top view};
for i=1 to k do begin

select view v ∉ S such that B(v,S) is maximized;
S = S ∪ {v};

end;
resulting S is the greedy selection;

Choice 1 (b) Choice 2 (f) Choice 3 (d)
a
b 50 x 5 = 250
c 25 x 5 = 125 25 x 2 = 50 25 x 1 = 25
d 80 x 2 = 160 30 x 2 = 60 30 x 2 = 60
e 70 x 3 = 210 20 x 3 = 60 2 x 20 + 10 = 50
f 60 x 2 = 120 60 + 10 = 70
g 99 x 1 = 99 49 x 1 = 49 49 x 1 = 49
h 90 x 1 = 90 40 x 1 = 40 30 x 1 = 30

32

k = 3

Result: S = { a, b, d, f }

Views Selection Benefit
(million rows)

Total time
(million
rows)

Total space
(million rows)

1 cp infinite 72 6
2 ns 24 48 6
3 nt 12 36 6
4 c 5.9 30.1 6.1
5 p 5.8 24.3 6.3
6 cs 1 23.3 11.3
7 np 1 22.3 16.3
8 ct 0.01 22.3 22.3
9 t small 22.3 22.3
10 n small 22.3 22.3
11 s small 22.3 22.3
12 none small 22.3 22.3

33

34

It’s clear when to stop picking
views, namely when we have
picked 5 views including the
top view, i.e., when k = 4

 Introduction and Motivating Example
 The Lattice Framework
 Query-Cost Model
 The Greedy Algorithm
 Performance Guarantee
 Conclusion
 Paper Evaluation

35

For no lattice does the greedy algorithm give a
benefit less than 63% of the optimal benefit.

It can be shown that:

where Bgreedy is the benefit of k views chosen by the
greedy algorithm, and Bopt is the benefit of an
optimal set of k views.

As k →∞, approaches 1/e,
so Bgreedy/Bopt ≥ 1-1/e ≅ 0.63

36

k

optgreedy k
kBB

 −−≥ 11/

k

k
k

 − 1

 Chekuri has shown using a result of Feige that
unless P = NP there is no polynomial-time
algorithm that can guarantee a better bound
than the greedy

37

 Introduction and Motivating Example
 The Lattice Framework
 Query-Cost Model
 The Greedy Algorithm
 Performance Guarantee
 Conclusion
 Paper Evaluation

38

 Materialization of views is an essential query
optimization strategy

 The right selection of views to materialize is
critical

 It is important to materialize some but not all
views

 The greedy algorithm performs this selection
 No polynomial-time algorithm can perform

better than the greedy.

39

 Introduction and Motivating Example
 The Lattice Framework
 Query-Cost Model
 The Greedy Algorithm
 Performance Guarantee
 Conclusion
 Paper Evaluation

40

Good things
 Well written
 Well structured
 Refers to a more detailed version of the paper

Things that could be better:
 A figure of an actual cube would have been

nice
 There were some mistakes, including a quite

critical one on page 212

41

42

C(v) – C(u) should be C(u) – C(v)

43

Thank you for your attention

Any questions?

