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Outline

� Motivation of location privacy

� Privacy model

� K-anonymity

� Transformation-based matching

� SpaceTwist
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Why location privacy?

� Queries in location-based services (LBS)

� POI Points-of-interest (e.g., cinema locations)

� Nearest neighbor (NN) query 

� Find the closest POI to user location q

� Client-server architecture

� Client (user) sends the point q to the LBS server

� Server reports the result (i.e., p1) back to client

� Danger: server may not be trusted q
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Baseline solutions

� Baseline I: original query

� Idea: issue the original query to the LBS

� Good: Low (optimal) amount of data received from 
the server

� Problem: the server knows the user location directly

� Baseline II: brute-force data transfer

� Idea: request the LBS to send all data points

� Good: the server has no information of the user’s 
location

� Problem: high communication cost

client server
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Baseline solutions

� Baseline III: sample data transfer

� Idea: request the LBS to send only a sample of data points

� Good: low communication cost, the server has no 
information of the user’s location

� Problem: inaccurate result
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Privacy model

� Someone proposes a location privacy solution 
(say, method X)

� How much privacy does X provide?

� Need a privacy model to answer this question

� Privacy model

� Assumption(s) of what the attacker knows

� E.g., knowledge of user locations

� The “amount” of privacy

� E.g., number of “other” users in a region
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Attacker’s knowledge

� Knowledge of user locations

� A powerful attacker such as Telecom company, government

� K-anonymous region [Mokbel et al. 2006]

� K-sharable region [Kalnis et al. 2007], in case the attacker 
knows the exact anonymization method

� Full domain anonymity [Khoshgozaran et al., 2007], in which 
the user can be anywhere in the domain (e.g., no location 
information)

� No knowledge of user locations, only knows the query 
issued by the user

� A weak attacker such as a hacker exploiting a server

� Analysis of possible query locations constrained by the method 
[Yiu et al. 2008]
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K-anonymity
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Spatial cloaking

� K-anonymous region: a region that contains the query 
user location q at least (K–1) other user locations

� Spatial cloaking

� Typical architecture: trusted anonymizer

� Step 1: Anonymizer computes a K-anonymous region Q’
(cloaked region) of the query point q

� Step 2: Anonymizer sends Q’ to the location server

� Step 3: Server computes a candidate result set that contains 
the result of any possible query location in Q’

� Example: candidate set: {p1, p2, p3, p4, p5, p6}

� Step 4: Anonymizer computes the actual result from the 
candidate result set returned from the location server
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Spatial cloaking

� Most of the solutions in this category focus on Step 1, 
i.e., computing the cloaked region

� [Mokbel et al. 2006] uses a quadtree to index user 
locations at anonymizer

� When a user q issues a query, the anonymizer finds a 
quadtree node (or two adjacent nodes) that contains q 
and at least K-1 users  

� Consider that K=2 in this example

� The user u1 obtains the cloaked region R1,2,3

� Both users u2 and u3 obtains the cloaked region R2,3

� Problem: the attacker knows that u1 is the only one 
using the region R1,2,3
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Spatial cloaking

� K-sharable region: a cloaked region R is shared by at least K users 
� Better privacy protection than K-anonymous region

� [Kalnis et al. 2007] proposes to rearrange user locations at anonymizer in 
ascending order of their Hilbert values H(p)

� 1st – Kth users form a group

� (K+1)st – (2K)th users form a group

� ……

� cloaked region of a user: minimum bounding rectangle of cells in the group

� Consider that K=2 in the example of Fig. a
� Both u1 and u2 share the same cloaked region R1,2

� Both u3 and u4 share the same cloaked region R3,4
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Spatial cloaking

� Advantage
� Provides strong privacy guarantee even if the 
attacker knows all user locations in the space

� Disadvantages
� Drawbacks of using a trusted anonymizer

� Single point of failure, performance bottleneck 

� How do we know that the anonymizer can be trusted?

� Location update
� Even if users are not issuing queries, they need to report 
their locations constantly to the anonymizer

� Query processing
� High processing and communication cost at the server

� Complex algorithms, not readily implemented in LBS servers
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Transformation-based matching
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Transformation-based matching

� Avoid drawbacks of using a trusted anonymizer (discussed 
before)

� Transformation-based matching

� Typical architecture: client-server model only

� Trusted entities can be used by data owner and query users

� For transformation 2D points into “meaningless” 1D values

� E.g., location (3,5) � value 18 ; location (4,6) � value 13

� Let the server evaluates the query blindly (without seeing any points)

� Challenge: the server needs to compute “distances” between those values 
such that they reflect the distances between their original locations

� Full domain anonymity: if the transformation function is irreversible 
by the attacker, then the attacker cannot distinguish significant 
difference between the mapped values of two different locations
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Transformation-based matching

� Hilbert transformation [Khoshgozaran et al., 2007]

� Hilbert curve: a space filling curve

� H(q): computes the Hilbert value of the location q

� Preprocessing step

� a trusted entity converts each point p (e.g., restaurant) 
to the value H(p), uploads it to server

� p1 � 14, p2 � 10, p3 � 13

� Query time

� client sends H(q) to server, which reports the closest 
Hilbert value to H(q); then client decodes the reported 
value into the result location

� q � 2; the server retrieves the closest value (10)

� The client applies the inverse function H-1 to decode the 
value 10 back to the location p2

� Features: low result size, but no accuracy guarantee 
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Why we need a key?

� Danger: If the same function H(q) is always used, 
then the attacker will eventually find out this

� In practice, the function is used together with a key 
value SK , known only by client and a trusted entity

� This key consists of these parameters: 

� starting point, curve orientation, scale factor, ……

� The authors claim that there is exponential 
combinations of parameters to obtain the exact key

� However, it remains an open question whether the 
attacker can reconstruct an approximate mapping from 
some known data points
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Double Hilbert Curve

� Using a single Hilbert curve (default)

� The returned object p2 is far from the actual result p3

� Using double (orthogonal) Hilbert curves

� Preprocessing step is done for each function

� E.g., p1 is converted to the values 14 and 11

� Query step is performed for each function

� E.g., q is converted to the values 2 and 13

� Get the nearest value (10) of 2, i.e., obtain p2
� Get the nearest value (11) of 13, i.e., obtain p1
� The client choose the closest point (p1) to be the final result

� Better accuracy, but still no guarantee of finding the exact 
result
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Transformation-based matching

� Advantages

� No need to use trusted anonymizer

� The attacker only sees some unreadable 1D 
values, but not any locations

� Disadvantages

� Need a preprocessing step

� No guarantee the return of exact results

� The attacker may be able to deduce an 
approximation of the function if the distribution of 
data points in the dataset is known
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SpaceTwist
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A Realistic Question

� Does the service provider want to 
implement these functionalities?

� High cost on execution 

� Do not want others to upload 
meaningless 1-d values

� Burden on implementation/testing

� We need to find an acceptable 
solution for both users and 
service providers!
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Features of our solution

� Our solution: SpaceTwist [Yiu et al. 2008]

� retrieves POI’s from the server incrementally

� until the client is guaranteed to have accurate results

� Fundamental differences from previous approaches

� No cloaked region (unlike spatial cloaking)

� Query evaluated in the original space (unlike transformation 
approaches)

� Readily applicable on existing systems

� Simple client-server architecture (i.e., NO trusted components)

� Simple server-side query processing: incremental nearest 
neighbor search [Hjaltason et al. 1999]
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SpaceTwist: overview

� Anchor location (fake client location)

� Define an ordering of points in the space

� Client fetches points from server incrementally

� Supply space (color: ♦)

� The space of objects retrieved from the server

� Supply space known by both server and client

� Grows as more objects retrieved

� Demand space (color: ♦)

� The target space guaranteed to cover the actual result

� Demand space known only by client

� Shrinks when a “better” result is found

� Termination: supply space contains the demand space
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Transmission of points

� Communication cost (via the Web)

� Points are sent from server to client through (TCP/IP) 
packets

� Cost: number of packets sent from the server

� Each packet can store up to β points

� Value of the packet capacity β?
� Depends on Maximum Transmission Unit (MTU)

� Our experiments: MTU=576 bytes, and β=67
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SpaceTwist: example

� Input: user location q, anchor location q’

� Client asks server to report points in ascending distance 
from anchor q’ iteratively [Hjaltason et al. 1999]

� Note: server only knows q’ and reported points

� Supply space radius τ, initially 0
� Distance of the current reported point from anchor q’

� Demand space radius γ, initially ∞
� Nearest neighbor distance to user (found so far)

� Update γ to dist(q,p) when a point p closer to q is found

� Stop when dist(q,q’) + γ ≤ τ
� Supply space covers demand space

� Guarantee that exact nearest neighbor of q has been found
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Privacy analysis

� What does the server (malicious attacker) know?

� Anchor location q’

� Reported points (in reported order): p1, p2, …, pmβ

� Our termination condition: dist(q,q’) + γ ≤ τ

� A possible query location qc must satisfy both:

� Client did not stop at the point p(m-1)β

� dist(qc, q’) + min{ dist(qc, pi) : i∈[1,(m-1)β] } > dist(q’, p(m-1)β)

� Client stops at the point pmβ

� dist(qc, q’) + min{ dist(qc, pi) : i∈[1,mβ] } ≤ dist(q’, pmβ) 

� Inferred privacy region Ψ: the set of all possible qc

……

1 2 mm-1

β points 
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Visualization of Ψ

� Quantification of privacy

� Privacy value: Γ(q, Ψ) = average dist. of 
location in Ψ from q 

� Features of Ψ (i.e., possible locations qc)

� A ring with center at q’

� Radius approximately equal to dist(q,q’)

� Trade-off: improve the communication 
cost by reducing the result accuracy

� E.g., the server searches on a sample instead 
of the whole dataset

� Challenge: control the accuracy of the result

Seen points
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ψ

β=4

coarser granularity



28

Granular search requirement

� Accuracy requirement

� User specifies an error bound ε

� A point p∈P is a relaxed NN of q if

dist(q, p) ≤ ε + min { dist(q, p’) : p’∈P }

� Granular search (optional server-side functionality)

� Goal: search POI’s at coarser granularity

� Reduces communication cost and yet guarantees accuracy 
bound of results

� Spatial cloaking incurs high communication cost at the server

� Transformation approach does not offer result accuracy guarantees

Actual NN distance
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Granular search

� Given an error bound ε, impose a grid in the 
space with cell length λ = ε / √2

� Slight modification of the incremental NN search 
[Hjaltason et al. 1999]

� Points are still reported in ascending distance 
order from anchor q’

� But the server discards a data point p if it falls in 
the same cell of any reported point

� Incremental granular searching at anchor q’

� Server reports p1, client updates its NN to p1
� Server discards p2, p3
� Server reports p4, client updates its NN to p4

� Outcome: reduced communication cost, yet 
with guaranteed result accuracy
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Parameter tuning guide

� Determine appropriate parameter values for the user

� Error bound ε
� Set ε= vmax ⋅ tmax based on

� tmax: maximum time delay acceptable by user

� vmax: maximum travel speed (walking, cycling, driving)

� Anchor point q’

� Decide the anchor distance dist(q, q’)

� Based on privacy value, i.e., privacy value at least dist(q, q’)

� Or, based on acceptable value of m (communication cost)

� Set the anchor q’ to a random location at distance dist(q, q’) from q



31

Tradeoff in SpaceTwist

� Error bound: ε

� Anchor distance: dist(q’,q)

� A: low ε, low dist(q’,q)

� B: low ε, high dist(q’,q)

� C: high ε, low dist(q’,q)

� D: high ε, high dist(q’,q)
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Experimental study

� Our solution: Granular SpaceTwist (GST)

� Client-side: SpaceTwist client algorithm

� Server-side: Granular search algorithm

� Performance metrics (workload size=100)

� Communication cost (in number of packets)

� Measured Result error (result NN distance – actual NN distance)

� Privacy value of inferred privacy region Ψ

� Real spatial data: SC (172K points), TG (556K points)

� Default parameter values

� Anchor distance dist(q,q’): 200

� Error bound ε: 200
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GST vs. transformation approach
� Hilbert transformation [Khoshgozaran et al., 2007]

� SHB: single Hilbert curve 

� DHB: two orthogonal Hilbert curves

� GST computes result with low error

� Low error on real data (skewed) distribution

� Communication cost (not shown here)

� DHB transfers 2k Hilbert values (fit in one packet)

� GST needs 1-3 packets for most of the tested cases (see later)

result error, at ε=200

kNN search:
k is the number of 
required results

Domain length 
= 10000
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GST vs. spatial cloaking
� Our problem setting: no trusted third-party middleware/components

� Competitor: client-side spatial cloaking (CLK)

� CLK: enlarge q into a square with side length 2*dist(q,q’), i.e., its 
extent is comparable to inferred privacy region Ψ of GST

� GST produces result at low communication cost

� Low cost even at high privacy

� Result accuracy (not shown here)

� CLK always provides exact results

� Result error of GST bounded by ε, and much lower than ε in practice

varying dist(q,q’) varying data size N

communication cost (# of packets)
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Effect of data size N (million) 
[Synthetic uniform data]

result error

privacy value

communication cost
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SpaceTwist Summary

� Advantages

� Readily applicable on existing systems (e.g., no 
trusted anonymizer, no transformation of points)

� Allow the user to control result error (with 
guarantee) 

� Enable tradeoff among result error, communication 
cost, privacy value

� Disadvantage

� The privacy model is not as strong as K-anonymity



37

Conclusion

� Privacy model

� K-anonymity

� Transformation-based matching

� SpaceTwist
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