Location Privacy in LBS (Part II)

Ken (Man Lung Yiu)

Department of Computer Science
Aalborg University

Outline

- Motivation of location privacy
- Privacy model
- K-anonymity
- Transformation-based matching
- SpaceTwist

Bellevue Tours - flere oplysninger »
Maren Turis Gade 10, 2., 9000 Aalborg

Søg i Google Maps

Why location privacy?

Find the closest POI to user location q

- Client (user) sends the point q to the LBS server
- Server reports the result (i.e., p₁) back to client
- Danger: server may not be trusted

Baseline solutions

- Baseline I: original query
 - Idea: issue the original query to the LBS
 - Good: Low (optimal) amount of data received from the server
 - Problem: the server knows the user location directly
- Baseline II: brute-force data transfer
 - Idea: request the LBS to send all data points
 - Good: the server has no information of the user's location
 - Problem: high communication cost

server

Baseline solutions

- Baseline III: sample data transfer
 - Idea: request the LBS to send only a sample of data points
 - Good: low communication cost, the server has no information of the user's location
 - Problem: inaccurate result

Privacy model

- Someone proposes a location privacy solution (say, method X)
- How much privacy does X provide?
- Need a privacy model to answer this question
- Privacy model
 - Assumption(s) of what the attacker knows
 - E.g., knowledge of user locations
 - The "amount" of privacy
 - E.g., number of "other" users in a region

Attacker's knowledge

- Knowledge of user locations
 - A powerful attacker such as Telecom company, government
 - K-anonymous region [Mokbel et al. 2006]
 - K-sharable region [Kalnis et al. 2007], in case the attacker knows the exact anonymization method
 - Full domain anonymity [Khoshgozaran et al., 2007], in which the user can be anywhere in the domain (e.g., no location information)
- No knowledge of user locations, only knows the query issued by the user
 - A weak attacker such as a hacker exploiting a server
 - Analysis of possible query locations constrained by the method [Yiu et al. 2008]

K-anonymity

- K-anonymous region: a region that contains the query user location q at least (K-1) other user locations
- Spatial cloaking
 - Typical architecture: trusted anonymizer
 - Step 1: Anonymizer computes a K-anonymous region Q' (cloaked region) of the query point q
 - Step 2: Anonymizer sends Q' to the location server
 - Step 3: Server computes a candidate result set that contains the result of <u>any possible</u> query location in Q'
 - Example: candidate set: {p₁, p₂, p₃, p₄, p₅, p₆}
 - Step 4: Anonymizer computes the actual result from the candidate result set returned from the location server

Anonymizer

LBS server

- Most of the solutions in this category focus on Step 1, i.e., computing the cloaked region
- [Mokbel et al. 2006] uses a quadtree to index user locations at anonymizer
- When a user q issues a query, the anonymizer finds a quadtree node (or two adjacent nodes) that contains q and at least K-1 users
- Consider that K=2 in this example
 - The user u₁ obtains the cloaked region R_{1,2,3}
 - Both users u₂ and u₃ obtains the cloaked region R_{2,3}
 - Problem: the attacker knows that u_1 is the only one using the region $R_{1,2,3}$

- K-sharable region: a cloaked region R is shared by at least K users
 - Better privacy protection than K-anonymous region
- [Kalnis et al. 2007] proposes to rearrange user locations at anonymizer in ascending order of their Hilbert values H(p)
 - 1st Kth users form a group
 - $(K+1)^{st} (2K)^{th}$ users form a group
 -
 - cloaked region of a user: minimum bounding rectangle of cells in the group
- Consider that K=2 in the example of Fig. a
 - Both u₁ and u₂ share the same cloaked region R_{1,2}
 - Both u₃ and u₄ share the same cloaked region R_{3,4}

Advantage

 Provides strong privacy guarantee even if the attacker knows all user locations in the space

Disadvantages

- Drawbacks of using a trusted anonymizer
 - Single point of failure, performance bottleneck
 - How do we know that the anonymizer can be trusted?

Location update

- Even if users are not issuing queries, they need to report their locations constantly to the anonymizer
- Query processing
 - High processing and communication cost at the server
 - Complex algorithms, not readily implemented in LBS servers

- Avoid drawbacks of using a trusted anonymizer (discussed before)
- Transformation-based matching
 - Typical architecture: client-server model only
 - Trusted entities can be used by data owner and query users
 - For transformation 2D points into "meaningless" 1D values
 - E.g., location $(3,5) \rightarrow \text{value } 18$; location $(4,6) \rightarrow \text{value } 13$
 - Let the server evaluates the query blindly (without seeing any points)
 - Challenge: the server needs to compute "distances" between those values such that they reflect the distances between their original locations
 - **Full domain anonymity**: if the transformation function is irreversible by the attacker, then the attacker cannot distinguish significant difference between the mapped values of two different locations

- Hilbert transformation [Khoshgozaran et al., 2007]
 - Hilbert curve: a space filling curve
 - H(q): computes the Hilbert value of the location q
- Preprocessing step
 - a trusted entity converts each point p (e.g., restaurant)
 to the value H(p), uploads it to server
 - $p_1 \rightarrow 14, p_2 \rightarrow 10, p_3 \rightarrow 13$
- Query time
 - client sends H(q) to server, which reports the closest Hilbert value to H(q); then client decodes the reported value into the result location
 - $q \rightarrow 2$; the server retrieves the closest value (10)
 - The client applies the inverse function H^{-1} to decode the value 10 back to the location p_2
- Features: low result size, but no accuracy guarantee

5	6	9	10
			p_2°
4	7	8	11
3	2	13	12
	q^{ullet}	p_3°	
0	1	14	15
		p_I°	

Why we need a key?

- Danger: If the same function H(q) is always used, then the attacker will eventually find out this
- In practice, the function is used together with a key value SK, known only by client and a trusted entity
- This key consists of these parameters:
 - starting point, curve orientation, scale factor,
- The authors claim that there is exponential combinations of parameters to obtain the exact key
 - However, it remains an open question whether the attacker can reconstruct an approximate mapping from some known data points

Double Hilbert Curve

- Using a single Hilbert curve (default)
 - The returned object p₂ is far from the actual result p₃
- Using double (orthogonal) Hilbert curves
 - Preprocessing step is done for each function
 - E.g., p₁ is converted to the values 14 and 11
 - Query step is performed for each function
 - E.g., q is converted to the values 2 and 13
 - Get the nearest value (10) of 2, i.e., obtain p₂
 - Get the nearest value (11) of 13, i.e., obtain p₁
 - The client choose the closest point (p₁) to be the final result
 - Better accuracy, but still no guarantee of finding the exact result

5		6		9	10	
	0		3	4	$p_2^{\ }$	5
4		7		8	11	
	1		2	7		6
3		2		13	12	
	14	q	13	p_3^{\odot} 8		9
0		1		14	15	
	15		12	p_I^{\odot} 11		10

Advantages

- No need to use trusted anonymizer
- The attacker only sees some unreadable 1D values, but not any locations

Disadvantages

- Need a preprocessing step
- No guarantee the return of exact results
- The attacker may be able to deduce an approximation of the function if the distribution of data points in the dataset is known

SpaceTwist

A Realistic Question

- Does the service provider want to implement these functionalities?
 - High cost on execution
 - Do not want others to upload meaningless 1-d values
 - Burden on implementation/testing
- We need to find an acceptable solution for both users and service providers!

Transformed query processing

	5		6		9		10	
		0		3	4	4	p_2^{C}	5
	4		7		8		11	
,		1		2	7	7		6
	3		2		13		12	
		14	q	13	p_3°	3		9
	0		1		14		15	
		15		12	p_l° 1	1		10

1

Features of our solution

- Our solution: SpaceTwist [Yiu et al. 2008]
 - retrieves POI's from the server incrementally
 - until the client is guaranteed to have accurate results
- Fundamental differences from previous approaches
 - No cloaked region (unlike spatial cloaking)
 - Query evaluated in the *original space* (unlike transformation approaches)
- Readily applicable on existing systems
 - Simple client-server architecture (i.e., NO trusted components)
 - Simple server-side query processing: incremental nearest neighbor search [Hjaltason et al. 1999]

SpaceTwist: overview

- Anchor location (fake client location)
 - Define an ordering of points in the space
- Client fetches points from server incrementally
- Supply space (color: •)
 - The space of objects retrieved from the server
 - Supply space known by both server and client
 - Grows as more objects retrieved
- Demand space (color: •)
 - The target space guaranteed to cover the actual result
 - Demand space known only by client
 - Shrinks when a "better" result is found
- Termination: supply space contains the demand space

the beginning

the end

Transmission of points

- Communication cost (via the Web)
 - Points are sent from server to client through (TCP/IP) packets
 - Cost: number of packets sent from the server
- Each packet can store up to β points
- Value of the packet capacity β?
 - Depends on Maximum Transmission Unit (MTU)
 - Our experiments: MTU=576 bytes, and β =67

SpaceTwist: example

1st point

- Input: user location q, anchor location q'
- Client asks server to report points in ascending distance from anchor q' iteratively [Hjaltason et al. 1999]
 - Note: server only knows q' and reported points

- Distance of the current reported point from anchor q'
- Demand space radius γ , initially ∞
 - Nearest neighbor distance to user (found so far)
 - Update
 γ to dist(q,p) when a point p closer to q is found
- Stop when dist(q,q') + $\gamma \le \tau$
 - Supply space covers demand space
 - Guarantee that exact nearest neighbor of q has been found

3rd point

Privacy analysis

- What does the server (malicious attacker) know?
 - Anchor location q'
 - Reported points (in reported order): p₁, p₂, ..., p_{mβ}
 - Our termination condition: dist(q,q') + $\gamma \le \tau$
- A possible query location q_c must satisfy both:
 - Client did not stop at the point p_{(m-1)β}
 - $dist(q_c, q') + min\{ dist(q_c, p_i) : i \in [1, (m-1)\beta] \} > dist(q', p_{(m-1)\beta})$
 - Client stops at the point p_{mβ}
 - $dist(q_c, q') + min\{ dist(q_c, p_i) : i \in [1, m\beta] \} \le dist(q', p_{m\beta})$
- Inferred privacy region Ψ : the set of all possible q_c

Visualization of Ψ

- Quantification of privacy
 - Privacy value: $\Gamma(q, \Psi)$ = average dist. of location in Ψ from q
- Features of Ψ (i.e., possible locations q_c)
 - A ring with center at q'
 - Radius approximately equal to dist(q,q')
- Trade-off: improve the communication cost by reducing the result accuracy
 - E.g., the server searches on a sample instead of the whole dataset
 - Challenge: control the accuracy of the result

User a

1

Granular search requirement

- Accuracy requirement
 - User specifies an error bound ε
 - A point p∈ P is a relaxed NN of q if dist(q, p) ≤ ε + min { dist(q, p') : p'∈ P }

Actual NN distance

- Granular search (optional server-side functionality)
 - Goal: search POI's at coarser granularity
 - Reduces communication cost and yet guarantees accuracy bound of results
 - Spatial cloaking incurs high communication cost at the server
 - Transformation approach does not offer result accuracy guarantees

Granular search

- Given an error bound ϵ , impose a grid in the space with cell length $\lambda = \epsilon / \sqrt{2}$
- Slight modification of the incremental NN search [Hjaltason et al. 1999]
 - Points are still reported in ascending distance order from anchor q'
 - But the server discards a data point p if it falls in the same cell of any reported point
- Incremental granular searching at anchor q'
 - Server reports p₁, client updates its NN to p₁
 - Server discards p₂, p₃
 - Server reports p₄, client updates its NN to p₄
- Outcome: reduced communication cost, yet with guaranteed result accuracy

regular grid

4

Parameter tuning guide

- Determine appropriate parameter values for the user
- Error bound ε
 - Set $\varepsilon = v_{max} \cdot t_{max}$ based on
 - t_{max}: maximum time delay acceptable by user
 - v_{max}: maximum travel speed (walking, cycling, driving)
- Anchor point q'
 - Decide the anchor distance dist(q, q')
 - Based on privacy value, i.e., privacy value at least dist(q, q')
 - Or, based on acceptable value of m (communication cost)

$$N_{\epsilon} = \min\{N, 2k \cdot (U/\epsilon)^2\}$$
 $dist(q, q') = \frac{U}{\sqrt{\pi \cdot N_{\epsilon}}} \cdot (\sqrt{m\beta} - \sqrt{k})$

Set the anchor q' to a random location at distance dist(q, q') from q

Tradeoff in SpaceTwist

- Error bound: ε
- Anchor distance: dist(q',q)
- A: low ε , low dist(q',q)
- B: low ε , high dist(q',q)
- C: high ε , low dist(q',q)
- D: high ε, high dist(q',q)

4

Experimental study

- Our solution: Granular SpaceTwist (GST)
 - Client-side: SpaceTwist client algorithm
 - Server-side: Granular search algorithm
- Performance metrics (workload size=100)
 - Communication cost (in number of packets)
 - Measured Result error (result NN distance actual NN distance)
 - Privacy value of *inferred* privacy region Ψ
- Real spatial data: SC (172K points), TG (556K points)
- Default parameter values
 - Anchor distance dist(q,q'): 200
 - Error bound ε: 200

GST vs. transformation approach

- Hilbert transformation [Khoshgozaran et al., 2007]
 - SHB: single Hilbert curve
 - DHB: two orthogonal Hilbert curves
- GST computes result with low error
 - Low error on real data (skewed) distribution
- Communication cost (not shown here)
 - DHB transfers 2k Hilbert values (fit in one packet)
 - GST needs 1-3 packets for most of the tested cases (see later)

kNN search: k is the number of required results

	Error (metre)								
	UI, N=0.5M			SC			TG		
k	SHB	ı		SHB	ı		1	ı	ı
1	7.1	2.2	51.3	1269.3	753.7	2.5	1013.9	405.8	16.1
2	9.3	4.0	49.0	1634.3	736.2	2.6	1154.6	548.7	16.7
4	13.2	6.0	47.6	1878.5	810.9	2.6	1182.3	596.5	17.0
8	19.0	7.3	42.0	2075.6	864.5	2.6	1196.2	599.7	16.3
16	27.0	10.3	36.3	2039.6	985.7	2.6	1199.6	603.2	14.5

Domain length = 10000

GST vs. spatial cloaking

- Our problem setting: no trusted third-party middleware/components
- Competitor: client-side spatial cloaking (CLK)
 - CLK: enlarge q into a square with side length 2*dist(q,q'), i.e., its extent is comparable to inferred privacy region Ψ of GST
- GST produces result at low communication cost
 - Low cost even at high privacy
- Result accuracy (not shown here)
 - CLK always provides exact results
 - Result error of GST bounded by ε , and much lower than ε in practice

varying dist(q,q')

	S	C	TG		
dist(q, q')	CLK	GST	CLK	GST	
50	1.3	1.0	1.9	1.0	
100	2.0	1.0	4.6	1.0	
200	6.2	1.0	15.0	1.0	
500	33.5	1.1	72.8	1.3	
1000	107.0	1.4	282.0	2.6	

N	UI			
(million)	CLK	GST		
0.1	3.0	1.0		
0.2	5.1	1.0		
0.5	12.2	1.0		
1	23.9	1.0		
2	47.5	1.0		

varying data size N

SpaceTwist Summary

Advantages

- Readily applicable on existing systems (e.g., no trusted anonymizer, no transformation of points)
- Allow the user to control result error (with guarantee)
- Enable tradeoff among result error, communication cost, privacy value

Disadvantage

The privacy model is not as strong as K-anonymity

Conclusion

- Privacy model
- K-anonymity
- Transformation-based matching
- SpaceTwist

References

M. F. Mokbel, C.-Y. Chow, and W. G. Aref.

The New Casper: Query Processing for Location Services without Compromising Privacy.

In *VLDB*, 2006.

P. Kalnis, G. Ghinita, K. Mouratidis, D. Papadias, **Preventing Location-Based Identity Inference in Anonymous Spatial Queries.** IEEE TKDE, 19(12), 1719-1733, 2007.

A. Khoshgozaran and C. Shahabi.

Blind Evaluation of Nearest Neighbor Queries Using Space Transformation to Preserve Location Privacy.

In *SSTD*, 2007.

M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu.

SpaceTwist: Managing the Trade-Offs Among Location Privacy, Query Performance, and Query Accuracy in Mobile Services.

In ICDE, 2008.

G. R. Hjaltason and H. Samet.

Distance Browsing in Spatial Databases.

ACM TODS, 24(2):265-318, 1999.