Introduction Related Work Data Warehouse Design Extract-Transform-Load Demo and Conclusion

Dat5 Presentation

Group d521a

Aalborg University

1st December 2008

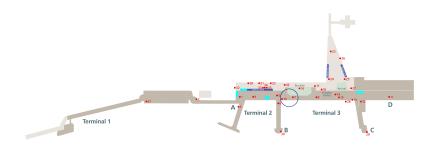
Presentation Outline

- Introduction
- Related Work
- Data Warehouse Design
- Extract-Transform-Load (ETL)
- Demonstration
- Conclusion

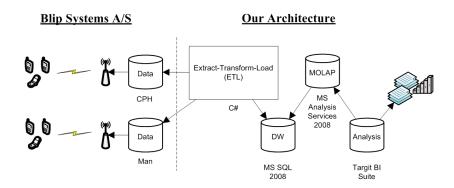
Introduction

Project Introduction

- Project done in collaboration with BLIP Systems A/S.
 - BLIP was founded in 2003 by former Ericsson employees.
 - Area of expertise includes LBS, Bluetooth marketing, Bluetooth networks in general, consultancy etc.
- Project is about tracking people in an airport.
 - Tracking data collected using Bluetooth access points.
 - Only devices with active Bluetooth modules are registered.
 - Enough people with Bluetooth devices to provide useful results.
- Involves modeling a multidimensional data warehouse.
 - Performing analysis on the data using OLAP tools.
 - Representing results in a meaningful and useful manner.

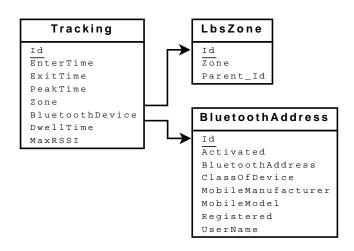

Motivation

- What information can be discovered by tracking people in the airport?
 - What are the queue times for check-in, security and boarding?
 - How many users are there of the airport?
 - How many are local, transit and frequent flyers?
 - How many people follow the forced routes?
- Manual tracking disadvantages.
 - Tracking of up to 200 people per day using video surveillance.
 - Tracking criteria must be very specific due to the size of the area.
 - Must keep eyes on the subject.
- Push relevant information to the phones.



Physical Setup

- 26 access points tracking Bluetooth devices.
- More added in areas needing extra attention.


System Architecture

Data Collection

- Server queries each access point for Bluetooth devices once per second.
- When a device comes into the vicinity of an access point the server creates an open record in a database, containing a timestamp (enter time) as well as zone and device information.
- 3 The server monitors the device, keeping track of the value and timestamp of the strongest signal as well as time last seen.
- When the device enters another zone, or 1 minute has passed since the device was last seen, the server closes the record.
 - Note: A device can only be in 1 zone at any given time!

Data Format

Quantitative Measurements

Copenhagen Dataset

- Up to 6.500 unique passengers per day.
- Up to 500.000 tracking records per day.
- Data collected from 26 access points in the airport.
- 200 people tracked per day, using manual video surveillance.

Related Work

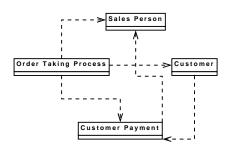
Temporary Mobile Subscriber Identity (TMSI)

- Path Intelligence Ltd. has develop a system tracking mobile phones using TMSI.
- Advantages.
 - Long range.
 - High precision 1-2 meters accuracy.
 - High penetration powered on mobile phones.
- Disadvantages.
 - Infrequent updates minutes.

Radio Frequency Identification (RFID)

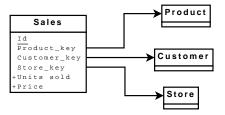
- IT University of Copenhagen and Lyngsoe Systems have developed a system that tracks users using RFID tags.
- Advantages/disadvantages.
 - Penetration dependent on whether the tags are handed out, attached to boarding cards, incorporated into baggage trolleys etc.
 - Limited maneuverability if tags are fixed onto equipment.
 - Complete penetration if tags are attached to boarding cards.
 - Airlines can tell if their passengers can make the flight and act accordingly.

Overview


- Approach
- Modeling
- Dimensional Modeling
- Online Analytical Processing(OLAP)
- Dimension Design

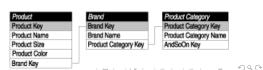
Developing the Data Warehouse Design

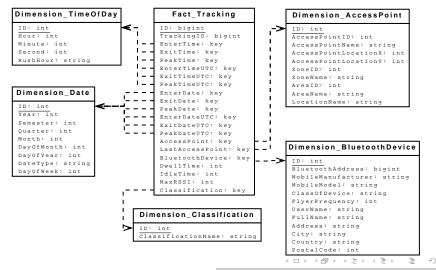
- Limited knowledge.
- Iterative approach(3rd version).
- Simplest design.
- Problems occurred
 - Smart keys
 - Recurrence in zones.


Modeling - ER Modeling

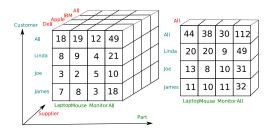
- Relationship based.
- Ultimate goal is to remove redundancy.

Modeling - Dimensional Modeling


- Fact based.
- Facts are numeric and additive.
- Textual information.


Dimensional Modeling - Star scheme vs Snowflake scheme

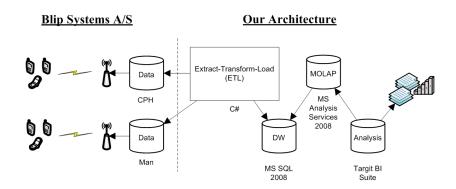
- Star scheme.
 - Simplicity.
 - Redundancy.
 - Single level joins.
- Snow flake
 - Multi level star model.
 - Some degree of normalization.
 - Multi level joins.



Dimensional Modeling - Our Design

Online Analytical Processing(OLAP)

- OLAP cube.
 - Facts, called measures, derived from the records in the fact table.
 - Categorized by dimensions, derived from the dimension tables.


OLAP Taxonomy

- MOLAP
 - High query performance through Aggregations.
 - Introduces data redundancy.
- ROLAP
 - Good at handling non-aggregatable facts.
 - Slower at performing queries.
- HOLAP
 - Hybrid model of MOLAP and ROLAP.

Access Point Hierarchy

System Architecture

Extract-Transform-Load(ETL)
Data Cleansing and Classification
Bouncing BT Devices
Frequent Flyer Calculation

Extract-Transform-Load(ETL)

Extract-Transform-Load(ETL)

- The steps of our ETL
- Data Cleansing and Classification
- Bounce detection
- Frequent flyer

Extract-Transform-Load(ETL)

- Extractor
 - 1 Extract Min and Max timestamp
 - Pre-Populate Time and Date dimension in our DW
 - ② Extract users
 - 3 Extract zones
 - Extract tracking records
 - Data Cleansing and Classification
 - Discarding incomplete records
- Transformer
 - Calculate DwellTime and IdleTime
 - ② Data Cleansing and Classification
 - Frequent Flyer Calculation
- Loader

Data Cleansing and Classification

- Types of source data issues.
 - Incomplete tracking records.
 - Exit timestamp < Enter timestamp.
 - Enter timestamp > Peak timestamp.
 - Peak timestamp > Exit timestamp.
 - No Frequenct flyer attribute.
 - Bouncing problems (introduced later).
- The Loader is loading partitions of the source data.
 - No states.
 - Stream of data.

Bouncing

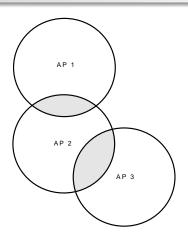


Figure: BT Device traversing AP 1, AP 2, and AP 3.

Bounce Detection

- Identify the timespan in which a BT device bounces.
- Identify which access points it bounces between.
- Split the total bounce time between the access points.
 - Weighted split.
 - Split in the same order as the access points are seen.
 - No collapsing of bouncing slices and earlier tracking records.
 - Amount of bouncing records equal to the amount of access points.

Bouncing Detection

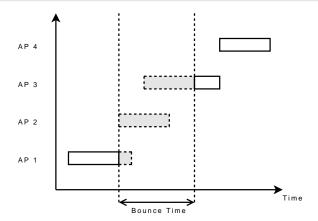
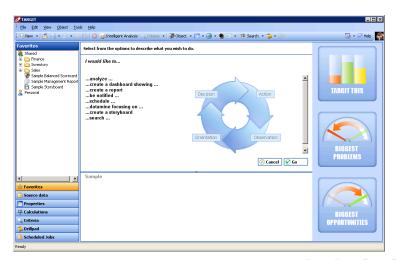


Figure: BT Device bouncing between AP 1, AP 2, and AP 3.

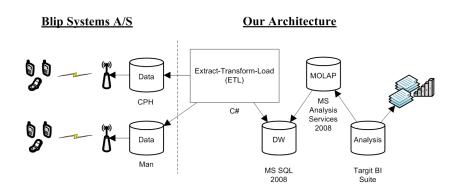
Bounce Detection Improvements

- Bounce Threshold set to 20 seconds.
- Source data consist of approximately 22 mil records.
- Bounce detection eliminated approximately 6 mil records.
- Bounce detection classify approximately 8 mil records as "Bounced".
- Analyze on all records of a given BT device.
 - Better bounce detection.
 - Possibility to collapse bounces with earlier and later tracking records.
 - Better classification.

Frequent Flyer Calculation


- ullet Frequent Flyer o Flyer frequency count
- Updated when loading the date from source to DW.
- FrequentFlyerThreshold set to 43200sec (12Hours).

```
Frequent Flyer
```


 $BTDevice_{EnterTime} - BTDevice_{LastSeen} > FrequentFlyerThreshold$ (1)

(1)

And now for something completely different...

System Architecture

Demonstration Questions

- 4 Historical analysis of the number of passengers.
- ② How many passengers are frequent flyers?
- 4 How much time do passengers spend on average in the different zones?
- 4 How much time do passengers spend on average before entering different zones?
- 6 How is the distribution of time spent per passenger in a given zone?
- Which day of week are the zones used the most?
- When is there a risk of bottlenecks in specific zones?

Conclusion

- Status of the project.
- Main project contributions.
 - Data warehouse design and ETL.
 - Bounce detection.
- Future work
 - Flow analysis of passengers movement and trends.
 - Real-time monitoring of passengers in the airport.
 - Develop a mobile application that can deliver LBS to the passengers.

New unsolved problem

- Blip would like a graph that shows the percentage of new devices grouped by time.
- We should be able to show this with our current data.

Questions to the audience

- How can we solve the problem with the graph showing new passengers in percentage over time?
- Ideas on how to perform flow analysis?
- Ideas on how to improve bounce detection?
- If implemented, how can we utilize sessions?