Introduction to the Course Reactive Systems Formal Models for Reactive Systems Verification of Systems	Introduction to the Course Reactive Systems Formal Models for Reactive Systems Verification of Systems Course Tonics	Introduction to the Course Reactive Systems Aims of the Course Formal Models for Reactive Systems Literature Verification of Systems Course Tomics
	Overview of the Course	Aims of the Course
Introduction to Infinite-State Systems Jiri Srba, BRICS Aalborg	 Mathematical models for the formal description and analysis of programs with unbounded state spaces. Decidability and complexity issues. 	 Present a general theory of reactive systems with infinite-state spaces and their applications. What does "equivalent" mean for reactive systems? Description of infinite-state systems. Selected techniques and results.
30.11 – 1.12 2005 PhD Course at FIRST Graduate School, IT University	• Applicability of the results.	 Give the participants an overview of the area. Show in detail a few key techniques with wider applicability. Motivate the participants to have a closer look at topics of interest. (participation = 1.5 ECTS; participation+essay = 3.5 ECTS)
Jiri Srba, BRICS Aslborg Introduction to Infinite-State Systems Overview Formal Models for Reactive Systems Verification of Systems Literature Literature	Jiri Srba, BRICS Aalborg Introduction to the Course Reactive Systems Formal Models for Reactive Systems Verification of Systems Overview of the Course Topics	Jiri Srba, BRICS Aalborg Introduction to the Course Reactive Systems Formal Models for Reactive Systems Verification of Systems Classical View on Computations
 On-line literature at http://www.cs.aau.dk/~srba/courses/PhD-05/first.html Take your notes and participate actively. 	 reactive systems, LTS, bisimilarity, games process rewrite systems — hierarchy of infinite-state systems decidability of ~ for BPP — tableau technique complexity of ~ for BPP — defender's choice technique reachability for PDA in P — automata-theoretical approach applicability to control-flow analysis undecidability of ~ for PN — Minsky machine and reductions well quasi ordering — a universal decidability theorem visibly pushdown automata — a class with nice closure properties 	 Characterization of a Classical Program Program transforms an input into an output. Denotational semantics: a meaning of a program is a partial function states → states Nontermination is bad! In case of termination, the result is unique. Is this all we need?
Jiri Srba, BRICS Aalborg Introduction to Infinite-State Systems	Jiri Srba, BRICS Aalborg Introduction to Infinite-State Systems	Jiri Srba, BRICS Aalborg Introduction to Infinite-State Systems

Jiri Srba, BRICS Aalborg Introduction to the Course Reactive Systems Formal Models or Reactive Systems Verification of Systems	Jiri Srba, BRICS Aalborg Introduction to the Course Reactive Systems Formal Models for Reactive Systems Verification of Systems Verification of Systems	Jiri Srba, BRICS Aalborg Introduction to Infinite-State Systems Introduction to the Course Reactive Systems Formal Models for Reactive Systems Verification of Systems Descriptive Power of LTS
How to Model Reactive Systems	Labelled Transition System	Sequencing, Nondeterminism and Parallelism
Question What is the most abstract view of a reactive system (process)? Answer A process performs an action and becomes another process.	DefinitionA labelled transition system (LTS) is a triple $(Proc, Act, \{\stackrel{a}{\longrightarrow} a \in Act\})$ where• Proc is a set of states (or processes),• Act is a set of labels (or actions), and• for every $a \in Act, \stackrel{a}{\longrightarrow} \subseteq Proc \times Proc$ is a binary relation on states called the transition relation.We will use the infix notation $s \stackrel{a}{\longrightarrow} s'$ meaning that $(s, s') \in \stackrel{a}{\longrightarrow}$.Sometimes we distinguish the initial (or start) state.	 LTS explicitly focuses on interaction. LTS can also describe: sequencing (a; b) choice (nondeterminism) (a + b) limited notion of parallelism (by using interleaving) (a b) Our focus: LTS with infinitely (even uncountably) many states.

Introduction to the Course Equivalence Checking vs. Model Checking Reactive Systems Strong Bisimilarity Formal Models for Reactive Systems Bisimulation Games Verification of Systems Process Algebra	Introduction to the Course Reactive Systems Formal Models for Reactive Systems Verification of Systems Process Algebra	Introduction to the Course Reactive Systems Formal Models for Reactive Systems Verification of Systems Process Algebra
Verifying Correctness of Reactive Systems	Strong Bisimilarity	Strong Bisimulation Game
Let <i>Impl</i> be an implementation of a system (given as an LTS). Equivalence Checking Approach $Impl \equiv Spec$ • \equiv is an abstract equivalence, e.g. strong bisimilarity • <i>Spec</i> is also an LTS • <i>Spec</i> provides the full specification of the intended behaviour Model Checking Approach $Impl \models Property$ • \models is the satisfaction relation • <i>Dremath</i> is a particular feature often expressed via a logic	Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} a \in Act\})$ be an LTS. Strong Bisimulation A binary relation $R \subseteq Proc \times Proc$ is a strong bisimulation iff whenever $(s, t) \in R$ then for each $a \in Act$: • if $s \stackrel{a}{\longrightarrow} s'$ then $t \stackrel{a}{\longrightarrow} t'$ for some t' such that $(s', t') \in R$ • if $t \stackrel{a}{\longrightarrow} t'$ then $s \stackrel{a}{\longrightarrow} s'$ for some s' such that $(s', t') \in R$. Strong Bisimilarity Two processes $p_1, p_2 \in Proc$ are strongly bisimilar $(p_1 \sim p_2)$ if and only if there exists a strong bisimulation R such that $(p_1, p_2) \in R$.	 Let (Proc, Act, {→ a ∈ Act}) be an LTS and s, t ∈ Proc. We define a two-player game of an 'attacker' and a 'defender' starting from s and t. The game is played in rounds and configurations of the game are pairs of states from Proc × Proc. In every round exactly one configuration is called current. Initially the configuration (s, t) is the current one. Intuition The defender wants the show that s and t are strongly bisimilar
 Property is a particular feature, often expressed via a logic Property is a partial specification of the intended behaviour Jiri Srba, BRICS Allorg Introduction to the Course Reactive Systems Formal Models for Reactive Systems Verification of Systems Verification of Systems Rules of the Bisimulation Games 	$\sim = \cup \{R \mid R \text{ is a strong bisimulation} \}$ Jiri Srba, BRICS Aalborg Introduction to the Course Formal Models for Reactive Systems Verification of Systems Game Characterization of Strong Bisimilarity	while the attacker aims to prove the opposite. Jiri Srba, BRICS Aalborg Introduction to the Course Formal Models for Reactive Systems Verification of Systems Process Algebra – a Way to Describe Infinite-State Systems
 Game Rules In each round the players change the current configuration as follows: the attacker chooses one of the processes in the current configuration and makes an ^a→-move for some a ∈ Act, and the defender must respond by making an ^a→-move in the other process under the same action a. The newly reached pair of processes becomes the current configuration. The game then continues by another round. Result of the Game If one player cannot move, the other player wins. If the game is infinite, the defender wins. 	 States s and t are strongly bisimilar if and only if the defender has a universal winning strategy starting from the configuration (s, t). States s and t are not strongly bisimilar if and only if the attacker has a universal winning strategy starting from the configuration (s, t). Remark Bisimulation game can be used to prove both bisimilarity and nonbisimilarity of two processes. It very often provides elegant arguments for the negative case. 	 Basic Principle Define a few atomic processes (modelling the simplest process behaviour). Define compositionally new operations (building more complex process behaviour from simple ones).