Semantics and V	Varification 2006	Focus of the Course	Overview of the Course
Lecturer (1-8): Jiri Srba Lecturer (9-15): Kim G. Larsen Assistants: Bjørn Haagensen Jacob I. Rasmusser	B2-203, srba@cs.aau.dk B1-209, kg1@cs.aau.dk B2-205, bh@cs.aau.dk	 Study of mathematical models for the formal description and analysis of programs. Particular focus on parallel and reactive systems. Verification tools and implementation techniques underlying them. 	 Transition systems and CCS. Strong and weak bisimilarity, bisimulation games. Hennessy-Milner logic and bisimulation. Tarski's fixed-point theorem. Hennessy-Milner logic with recursively defined formulae. Timed automata and their semantics. Binary decision diagrams and their use in verification. Two mini projects.
Lecture 1 () Semantics and Ve Mini Projects	Ferification 2006 1 / 28	Lecture 1 () Semantics and Verification 2006 2 / 28 Lectures	Lecture 1 () Semantics and Verification 2006 3 / 28 Tutorials
 Verification of a communication p Verification of a real-time algorith Pensum dispensation. 	•	 Ask questions. Take your own notes. Read the recommended literature as soon as possible after the lecture. 	 Regularly before each lecture. Supervised peer learning. Work in groups of 2 or 3 people; sitting scheme. Print out the exercise list, bring literature and your notes. Feedback from teaching assistant on your request. Star exercises (*) (part of the exam).

Semantics and Verification 2006

5 / 28

Lecture 1 ()

Semantics and Verification 2006

6 / 28

Lecture 1 ()

Semantics and Verification 2006

4 / 28

Lecture 1 ()

Exam	Literature	Hints
 Individual and oral. Preparation time (star exercises). Pensum dispensation. 	 On-line literature. Compendiums 2006 (195 kr). Help us to proof-read the book, please! Reactive Systems: Modelling, Specification and Verification" 	 Check regularly the course web-page. Anonymous feedback form on the course web-page. Attend and actively participate during tutorials. Take your own notes.
Lecture 1 () Semantics and Verification 2006 7 / 28 Aims of the Course	Lecture 1 () Semantics and Verification 2006 8 / 2 Classical View Characterization of a Classical Program	28 Lecture 1 () Semantics and Verification 2006 9 / 28 Reactive systems
Present a general theory of reactive systems and its applications. Design. Specification. Verification (possibly automatic and compositional).	Program transforms an input into an output. • Denotational semantics: a meaning of a program is a partial function	What about: Operating systems? Communication protocols? Control programs?
 Give the students practice in modelling parallel systems in a formal framework. Give the students skills in analyzing behaviours of reactive systems. Introduce algorithms and tools based on the modelling formalisms. 	 states → states Nontermination is bad! In case of termination, the result is unique. 	Mobile phones?Vending machines?
Lecture ${f 1}$ () Semantics and Verification 2006 ${f 10}$ / 28	Lecture 1 () Semantics and Verification 2006 11 / 2	28 Lecture 1 () Semantics and Verification 2006 12 / 28

Reactive systems

Characterization of a Reactive System

Reactive System is a system that computes by reacting to stimuli from its environment.

Key Issues:

- communication and interaction
- parallelism

Nontermination is good!

The result (if any) does not have to be unique.

Classical vs. Reactive Computing

	Classical	Reactive/Parallel
interaction	no	yes
nontermination	undesirable	often desirable
unique result	yes	no
semantics	$states \hookrightarrow states$?

Analysis of Reactive Systems

Questions

- How can we develop (design) a system that "works"?
- How do we analyze (verify) such a system?

Fact of Life

Even short parallel programs may be hard to analyze.

Lecture 1 () Semantics and Verification 2006

How to Model Reactive Systems

Question

13 / 28

What is the most abstract view of a reactive system (process)?

Answer

A process performs an action and becomes another process.

The Need for a Theory

Conclusion

We need formal/systematic methods (tools), otherwise ...

- Intel's Pentium-II bug in floating-point division unit
- Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer

15 / 28

- Mars Pathfinder
- o ...

Labelled Transition System

Definition

A **labelled transition system** (LTS) is a triple $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ where

- Proc is a set of states (or processes),
- Act is a set of labels (or actions), and
- for every $a \in Act$, $\stackrel{a}{\longrightarrow} \subseteq Proc \times Proc$ is a binary relation on states called the **transition relation**.

We will use the infix notation $s \stackrel{a}{\longrightarrow} s'$ meaning that $(s,s') \in \stackrel{a}{\longrightarrow}$.

Sometimes we distinguish the **initial** (or **start**) state.

Lecture 1 () Semantics and Verification 2006 16 / 28 Lecture 1 () Semantics and Verification 2006 17 / 28 Lecture 1 () Semantics and Verification 2006 18 / 28

Sequencing, Nondeterminism and Parallelism

LTS explicitly focuses on interaction.

LTS can also describe:

- sequencing (a; b)
- choice (nondeterminism) (a + b)
- limited notion of parallelism (by using interleaving) (a||b)

antics and Verification 2006

19 / 28

antics and Verification 2006

Closures

Let R, R' and R'' be binary relations on a set A.

Symmetric Closure

R' is the **symmetric closure** of R if and only if

- \blacksquare $R \subseteq R'$,
- \bigcirc R' is symmetric, and
- 3 R' is the *smallest* relation that satisfies the two conditions above, i.e., for any relation R'':

if $R \subseteq R''$ and R'' is symmetric, then $R' \subseteq R''$.

Binary Relations

Definition

A binary relation R on a set A is a subset of $A \times A$.

$$R \subseteq A \times A$$

Sometimes we write x R y instead of $(x, y) \in R$.

Properties

- R is **reflexive** if $(x,x) \in R$ for all $x \in A$
- R is symmetric if $(x, y) \in R$ implies that $(y, x) \in R$ for all $x, y \in A$
- R is **transitive** if $(x, y) \in R$ and $(y, z) \in R$ implies that $(x, z) \in R$ for all $x, y, z \in A$

Reflexive Closure

(2) R' is reflexive, and

for any relation R'':

 \blacksquare $R \subseteq R'$,

Closures

3 R' is the *smallest* relation that satisfies the two conditions above, i.e.,

21 / 28

Closures

Let R, R' and R'' be binary relations on a set A.

Transitive Closure

R' is the **transitive closure** of R if and only if

- \blacksquare $R \subseteq R'$,
- \bigcirc R' is transitive, and
- 3 R' is the *smallest* relation that satisfies the two conditions above, i.e., for any relation R'':

if $R \subseteq R''$ and R'' is transitive, then $R' \subseteq R''$.

Labelled Transition Systems - Notation

Let R, R' and R'' be binary relations on a set A.

R' is the **reflexive closure** of R if and only if

if $R \subseteq R''$ and R'' is reflexive, then $R' \subseteq R''$.

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

- we extend $\stackrel{a}{\longrightarrow}$ to the elements of Act^*
- $\bullet \longrightarrow = \bigcup_{a \in Act} \stackrel{a}{\longrightarrow}$
- ullet is the reflexive and transitive closure of \longrightarrow
- $s \stackrel{a}{\longrightarrow} \text{ and } s \stackrel{a}{\longrightarrow}$
- reachable states

Lecture 1 ()

Semantics and Verification 2006

22 / 28

Lecture 1 ()

Semantics and Verification 2006

Lecture 1 ()

How to Describe LTS?

Calculus of Communicating Systems

CCS

Process algebra called "Calculus of Communicating Systems".

Insight of Robin Milner (1989)

Concurrent (parallel) processes have an algebraic structure.

 $otag P_1 ext{ op }
otag P_2 ext{ } \Rightarrow
otag P_1 ext{ op }
otag P_2$

Semantics and Verification 2006

25 / 28

Semantics and Verification 2006

26 / 28

Semantics and Verification 2006

Process Algebra

Basic Principle

- ① Define a few atomic processes (modelling the simplest process behaviour).
- ② Define compositionally new operations (building more complex process behaviour from simple ones).

Example

- ① atomic instruction: assignment (e.g. x:=2 and x:=x+2)
- 2 new operators:

sequential composition $(P_1; P_2)$ parallel composition $(P_1 \parallel P_2)$

Now e.g. (x:=1 \parallel x:=2); x:=x+2; (x:=x-1 \parallel x:=x+5) is a process.

CCS Basics (Sequential Fragment)

- Nil (or 0) process (the only atomic process)
- action prefixing (a.P)
- ullet names and recursive definitions ($\stackrel{\mathrm{def}}{=}$)
- nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be (up to isomorphism) described by using the operations above.

Lecture 1 ()

s and Verification 2000

27 / 28

Lecture 1 ()

Semantics and Verification 2006

28 / 28