Organization of the Course Introduction Formal Models for Reactive Systems		Organization of the Course Introduction Formal Models for Reactive Systems Introduction to CCS	Organization of the Course Introduction Formal Models for Reactive Systems Introduction to CCS
Introduction to CCS		Focus of the Course	Overview of the Course
Semantics and Verification 2006			
Lecture 1		 Study of mathematical models for the formal description and analysis of programs. 	 Transition systems and CCS. Strong and weak bisimilarity, bisimulation games. Hennessy-Milner logic and bisimulation.
Lecturer (1-8): Jiri Srba Lecturer (9-15): Kim G. Larsen	B2-203, srba@cs.aau.dk B1-209, kgl@cs.aau.dk	 Particular focus on parallel and reactive systems. Verification tools and implementation techniques underlying 	 Tarski's fixed-point theorem. Hennessy-Milner logic with recursively defined formulae. Timed automata and their semantics.
Assistants: Bjørn Haagensen Jacob I. Rasmussen	B2-205, bh@cs.aau.dk B1-205, illum@cs.aau.dk	them.	 Binary decision diagrams and their use in verification. Two mini projects.

Lecture 1 Semantics and Verification 2006 Organization of the Course Introduction Formal Models for Reactive Systems Introduction to CCS Overview Lectures and Tutorials Exam and Literature	Lecture 1 Organization of the Course Introduction Formal Models for Reactive Systems Introduction to CCS	Semantics and Verification 2006 Overview Lectures and Tutorials Exam and Literature	Organization of the Course	Semantics and Verification 2006 Overview Lectures and Tutorials Exam and Literature
Mini Projects	Lectures		Tutorials	

- Verification of a communication protocol in CWB.
- Verification of a real-time algorithm in UPPAAL.
- Pensum dispensation.

- Ask questions.
- Take your own notes.
- Read the recommended literature as soon as possible after the lecture.
- Regularly before each lecture.
- Supervised peer learning.
- Work in groups of 2 or 3 people; sitting scheme.
- Print out the exercise list, bring literature and your notes.
- Feedback from teaching assistant on your request.
- Star exercises (*) (part of the exam).

Organization of the Course Introduction Formal Models for Reactive Systems Introduction to CCS	Organization of the Course Introduction Formal Models for Reactive Systems Introduction to CCS	Organization of the Course Introduction Introduction Formal Models for Reactive Systems Introduction to CCS
Exam	Literature	Hints
 Individual and oral. Preparation time (star exercises). Pensum dispensation. 	 On-line literature. Compendiums 2006 (195 kr). Help us to proof-read the book, please! 	 Check regularly the course web-page. Anonymous feedback form on the course web-page. Attend and actively participate during tutorials.
• rensum dispensation.	"Reactive Systems: Modelling, Specification and Verification"	 Take your own notes.

Lecture 1 Semantics and Verification 2006 Organization of the Course Aims of the Course Introduction Formal Models for Reactive Systems Why Do We Need a Theory?	Lecture 1 Organization of the Course Introduction Formal Models for Reactive Systems	Semantics and Verification 2006 Aims of the Course Reactive Systems Why Do We Need a Theory?	Lecture 1 Organization of the Course Introduction Formal Models for Reactive Systems	Semantics and Verification 2006 Aims of the Course Reactive Systems Why Do We Need a Theory?
Aims of the Course	Classical View		Reactive systems	
Present a general theory of reactive systems and its applications.	Characterization of a Classical Program		What about:	
Design.Specification.	Program transforms an input into an output.			
• Verification (possibly automatic and compositional).	 Denotational semantics: a meaning of a program is a partial function b Communication protocols? c Control programs? c Control programs? Mobile phones? Vending machines? 		Communication protocols?	
 Give the students practice in modelling parallel systems in a formal framework. 				
Give the students skills in analyzing behaviours of reactive systems.	• In case of termination, the result is unique.			
Introduce algorithms and tools based on the modelling formalisms.	Is this all we need?			
Lecture 1 Semantics and Verification 2006	Lecture 1	Semantics and Verification 2006	Lecture 1	Semantics and Verification 2006

Organization of the Course Introduction Formal Models for Reactive Systems Introduction to CCS Aims of the Course Reactive Systems Why Do We Need a Theory?	Organization of the Course Introduction Formal Models for Reactive Systems Introduction to CCS A reactive of Department of Course Why Do We Need a Theory?	Organization of the Course Introduction Formal Models for Reactive Systems Introduction to CCS The Naced Forma Formation Content of Content
Reactive systems	Analysis of Reactive Systems	The Need for a Theory
Characterization of a Reactive System Reactive System is a system that computes by reacting to stimuli from its environment. Key Issues: • communication and interaction	 Questions How can we develop (design) a system that "works"? How do we analyze (verify) such a system? 	Conclusion We need formal/systematic methods (tools), otherwise Intel's Pentium-II bug in floating-point division unit
 parallelism Nontermination is good! 	Fact of Life Even short parallel programs may be hard to analyze.	 Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer Mars Pathfinder

The result (if any) does not have to be unique.

	Semantics and Verification 2006	Lecture 1	Semantics and Verification 2006	Lecture 1	Semantics and Verification 2006
Organization of the Course Introduction Formal Models for Reactive Systems Introduction to CCS	Aims of the Course Reactive Systems Why Do We Need a Theory?	Organization of the Course Introduction Formal Models for Reactive Systems Introduction to CCS	Labelled Transition System Binary Relations	Organization of the Course Introduction Formal Models for Reactive Systems Introduction to CCS	Labelled Transition System Binary Relations
Classical vs. Reactive Compu	iting	How to Model Reactive Syste	ems	Labelled Transition System	

	Classical	Reactive/Parallel
interaction	no	yes
nontermination	undesirable	often desirable
unique result	yes	no
semantics	$states \hookrightarrow states$?

Question

What is the most abstract view of a reactive system (process)?

Answer

A process performs an action and becomes another process.

Definition

A labelled transition system (LTS) is a triple (*Proc*, *Act*, $\{\stackrel{a}{\rightarrow}|a \in Act\}$) where

- Proc is a set of states (or processes),
- Act is a set of labels (or actions), and
- for every a ∈ Act, → ⊆ Proc × Proc is a binary relation on states called the transition relation.

We will use the infix notation $s \xrightarrow{a} s'$ meaning that $(s, s') \in \xrightarrow{a}$.

Sometimes we distinguish the initial (or start) state.

Organization of the Course Introduction Formal Models for Ractive System Binary Relations Introduction to CCS Notation	Organization of the Course Introduction Formal Models for Reactive System Introduction to CCS Notation	Organization of the Course Introduction Formal Models for Reactive Systems Introduction to CCS Notation
Sequencing, Nondeterminism and Parallelism	Binary Relations	Closures
LTS explicitly focuses on interaction. LTS can also describe:	DefinitionA binary relation R on a set A is a subset of $A \times A$. $R \subseteq A \times A$ Sometimes we write $x R y$ instead of $(x, y) \in R$.	Let R , R' and R'' be binary relations on a set A . Reflexive Closure R' is the reflexive closure of R if and only if $\mathbf{P} \subset R'$,
 sequencing (a; b) choice (nondeterminism) (a + b) limited notion of parallelism (by using interleaving) (a b) 	Properties • R is reflexive if $(x, x) \in R$ for all $x \in A$ • R is symmetric if $(x, y) \in R$ implies that $(y, x) \in R$ for all $x, y \in A$ • R is transitive if $(x, y) \in R$ and $(y, z) \in R$ implies that $(x, z) \in R$ for all $x, y, z \in A$	 <i>R'</i> is reflexive, and <i>R'</i> is the <i>smallest</i> relation that satisfies the two conditions above, i.e., for any relation <i>R''</i>: if <i>R</i> ⊆ <i>R''</i> and <i>R''</i> is reflexive, then <i>R'</i> ⊆ <i>R''</i>.
Lecture 1 Semantics and Verification 2006 Organization of the Course Motivation	Lecture 1 Semantics and Verification 2006 Organization of the Course Motivation	Lecture 1 Semantics and Verification 2006 Organization of the Course Motivation

Lecture 1	Semantics and Vernication 2000	Lecture 1	Semantics and Vernication 2000		Semantics and Vernication 2000
Organization of the Course		Organization of the Course		Organization of the Course	
Introduction	Labelled Transition System	Introduction	Labelled Transition System	Introduction	Labelled Transition System
Formal Models for Reactive Systems	Binary Relations	Formal Models for Reactive Systems	Binary Relations	Formal Models for Reactive Systems	
Introduction to CCS	Notation	Introduction to CCS		Introduction to CCS	Notation
Closures		Closures		Labelled Transition Systems	– Notation

Let R, R' and R'' be binary relations on a set A.

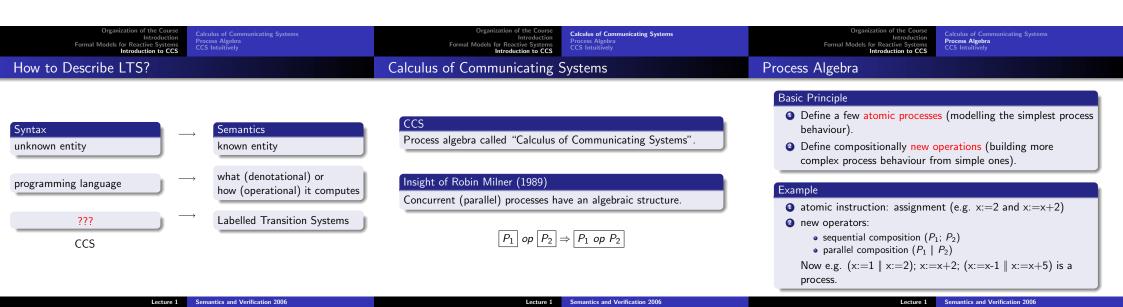
Symmetric Closure

R' is the symmetric closure of R if and only if

- $I R \subseteq R',$
- \bigcirc R' is symmetric, and
- R' is the *smallest* relation that satisfies the two conditions above, i.e., for any relation R'':
 if R ⊆ R'' and R'' is symmetric, then R' ⊆ R''.

Let R, R' and R'' be binary relations on a set A.

Transitive Closure


R' is the transitive closure of R if and only if

- $\ \, \mathbf{R}\subseteq R',$
- $\textcircled{2} \ R' \ \text{is transitive, and} \\$
- *R'* is the *smallest* relation that satisfies the two conditions above, i.e., for any relation *R''*:
 if *R* ⊆ *R''* and *R''* is transitive, then *R'* ⊆ *R''*.

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

- we extend \xrightarrow{a} to the elements of Act^*
- $\longrightarrow = \bigcup_{a \in Act} \xrightarrow{a}$
- $\bullet \ \longrightarrow^*$ is the reflexive and transitive closure of \longrightarrow
- $s \xrightarrow{a}$ and $s \xrightarrow{a}$
- reachable states

Lecture 1 Semantics and Verification 2006

CCS Intuitively Introduction to CCS CCS Basics (Sequential Fragment)

of the Course

- Nil (or 0) process (the only atomic process)
- action prefixing (a.P)

Formal Models for Rea

- names and recursive definitions $\begin{pmatrix} def \\ = \end{pmatrix}$
- nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be (up to isomorphism) described by using the operations above.