## Semantics and Verification 2006

Lecture 15

- round-up of the course
- information about the exam
- selection of star exercises

$$
\text { Lecture } 150 \quad \text { Semantics and Verification } 2006
$$

Calculus of Communicating Systems

CCS
Process algebra called "Calculus of Communicating Systems"

Insight of Robin Milner (1989)
Concurrent (parallel) processes have an algebraic structure.

$$
P_{1} \text { op } P_{2} \Rightarrow P_{1} \text { op } P_{2}
$$

$1 / 27$

Characterization of a Reactive System
Reactive System is a system that computes by reacting to stimuli from

## its environment

Key Issues

- parallelism
- communication and interaction


## Nontermination is good!

The result (if any) does not have to be unique.

Lecture 15 ()
Semantics and Verification 2006

## Process Algebras

Basic Principle
(1) Define a few atomic processes (modelling the simplest process behaviour).
(2) Define compositionally new operations (building more complex process behaviour from simple ones).

## Example

(1) atomic instruction: assignment (e.g. $x:=2$ and $x:=x+2$ )
(2) new operators:

$$
\begin{aligned}
& \text { sequential composition }\left(P_{1} ; P_{2}\right) \\
& \text { parallel composition }\left(P_{1} \mid P_{2}\right)
\end{aligned}
$$

Usually given by abstract syntax:

$$
P, P_{1}, P_{2}::=x:=e\left|P_{1} ; P_{2}\right| P_{1} \mid P_{2}
$$

where $x$ ranges over variables and $e$ over arithmetical expressions.

|  | Classical | Reactive/Parallel |
| ---: | :---: | :---: |
| interaction | no | yes |
| nontermination | undesirable | often desirable |
| unique result | yes | no |
| semantics | states $\hookrightarrow$ states | LTS |

Syntax of CCS

## Process expressions:

$$
\begin{aligned}
& \text { process constants }(K \in \mathcal{K}) \\
& \text { prefixing ( } \alpha \in \text { Act) } \\
& \text { summation ( } I \text { is an arbitrary index set) } \\
& \text { parallel composition } \\
& \text { restriction }(L \subseteq \mathcal{A}) \\
& \text { relabelling ( } f: A c t \rightarrow A c t \text { ) such that } \\
& \text { - } f(\tau)=\tau \\
& \text { - } f(\bar{a})=\overline{f(a)} \\
& P_{1}+P_{2}=\sum_{i \in\{1,2\}} P_{i} \\
& \text { Nil }=0=\sum_{i \in \emptyset} P_{i}
\end{aligned}
$$

CCS program
A collection of defining equations of the form $K \stackrel{\text { def }}{=} P$ where $K \in \mathcal{K}$ is a process constant and $P$ is a process expression.

Semantics of CCS $-\operatorname{SOS}$ rules $(\alpha \in A c t, a \in \mathcal{L})$

$$
\begin{gathered}
\text { RES } \frac{P \xrightarrow{\alpha} P^{\prime}}{P \backslash L \xrightarrow{\alpha} P^{\prime} \backslash L} \alpha, \bar{\alpha} \notin L \quad \operatorname{REL} \frac{P \stackrel{\alpha}{\longrightarrow} P^{\prime}}{P[f] \stackrel{f(\alpha)}{\longrightarrow} P^{\prime}[f]} \\
\operatorname{CON} \frac{P \xrightarrow{\alpha} P^{\prime}}{K \xrightarrow{\alpha} P^{\prime}} K \stackrel{\text { def }}{=} P
\end{gathered}
$$

$$
\text { Lecture } 150
$$

$$
\text { Semantics and Verification } 2006
$$

## Introducing Time Features

In many applications, we would like to explicitly model real-time in our models.

Timed (labelled) transition system
Timed LTS is an ordinary LTS where actions are of the form Act $=L \cup \mathbb{R}^{\geq 0}$.

- $s \xrightarrow{a} s^{\prime}$ for $a \in L$ are discrete transitions
$\circ s \xrightarrow{d} s^{\prime}$ for $d \in \mathbb{R}^{\geq 0}$ are time-elapsing (delay) transitions

$$
\begin{aligned}
& \text { ACT } \frac{\operatorname{SUM}_{j}}{\alpha . P \xrightarrow{\alpha} P} \frac{P_{j} \xrightarrow{\alpha} P_{j}^{\prime}}{\sum_{i \in I} P_{i} \xrightarrow{\alpha} P_{j}^{\prime}} j \in I \\
& \text { COM1 } \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \\
& \text { COM2 } \frac{Q \stackrel{\alpha}{\longrightarrow} Q^{\prime}}{P|Q \xrightarrow{\alpha} P| Q^{\prime}} \\
& \text { COM3 } \xrightarrow[{P\left|Q \xrightarrow{P} P^{\prime}\right| Q^{\prime}}]{P} P^{\prime} Q \stackrel{\bar{a}}{ } Q^{\prime}
\end{aligned}
$$

- Equivalence checking and model checking are complementary approaches.
- They are strongly connected, however.

Theorem (Hennessy-Milner)
Let us consider an image-finite LTS. Then

$$
\begin{aligned}
& \quad p \sim q \\
& \text { if and only if }
\end{aligned}
$$

for every HM formula $F$ (even with recursion): $(p \models F \quad \Longleftrightarrow q \models F)$.

- Property is a partial specification of the intended behaviour - Example: $s \models\langle a\rangle([b] f f \wedge\langle a\rangle t t)$


## Lecture 15 ()

Semantics and Verification 200
8 / 27
Timed and Untimed Bisimilarity
Let $s$ and $t$ be two states in timed LTS.
Timed Bisimilarity (= Strong Bisimilarity)
We say that $s$ and $t$ are timed bisimilar iff $s \sim t$.
Remark: all transitions are considered as visible transitions.

## Untimed Bisimilarity

We say that $s$ and $t$ are untimed bisimilar iff $s \sim t$ in a modified
transition system where every transition of the form $\xrightarrow{d}$ for $d \in \mathbb{R}^{\geq 0}$ is replaced by a transition $\xrightarrow{\epsilon}$ for a new (single) action $\epsilon$.

## Remark:

- $\xrightarrow{a}$ for $a \in L$ are treated as visible transitions, while
- $\xrightarrow{d}$ for $d \in \mathbb{R}^{\geq 0}$ all look the same (action $\epsilon$ ).

Equivalence Checking Approach
Impl $\equiv$ Spec

- Spec is a full specification of the intended behaviour
- Example: $s \sim t$ or $s \approx t$


## Model Checking Approach

Impl $\models$ Property
-

$$
\text { Lecture } 15 \text { () }
$$

## Semantics and Verification 2006

Timed CCS — a Way to Define Timed LTS

Syntax of CCS with Time Delays
All CCS operators +
if $P$ is a process then $\epsilon(d) \cdot P$ is also a process for any nonnegative real number $d$

## Semantics of CCS with Time Delays

By means of SOS rules

- standard CCS rules
- SOS rules for time delays (maximal progress assumption)
we describe for a given TCCS expression what is the corresponding timed transition system.

Relationship between Equivalence and Model Checking

Let $I m p /$ be an implementation of a system (e.g. in CCS syntax).

Timed Automata - a Way to Define Timed LTS

- Nondeterministic finite-state automata with additional time features (clocks).
- Clocks can be tested against constants or compared to each other (pairwise).
- Executing a transition can reset selected clocks.


$$
\text { Lecture } 150
$$

The End

The course is over now!

Region Graph — a Verification Technique for TA

We introduce an equivalence on clock valuations $\left(v \equiv v^{\prime}\right)$ with finitely many equivalence classes.

$$
\text { state }(\ell, v) \quad \rightsquigarrow \quad \text { symbolic state }(\ell,[v])
$$

Region Graph Preserves Untimed Bisimilarity
For every location $\ell$ and any two valuations $v$ and $v^{\prime}$ from the same symbolic state $\left(v \equiv v^{\prime}\right)$ it holds that $(\ell, v)$ and $\left(\ell, v^{\prime}\right)$ are untimed bisimilar.

Reduction of Timed Automata Reachability to Region Graphs

$$
\left(\ell_{0}, v_{0}\right) \longrightarrow^{*}(\ell, v) \text { in a timed automaton if and only if }
$$ $\left(\ell_{0},\left[v_{0}\right]\right) \Longrightarrow{ }^{*}(\ell,[v])$ in its (finite) region graph.

Thank you for proof-reading the book!

Compact Representation of State-Spaces in the Memory Boolean Functions (where $\mathbb{B}=\{0,1\}$ )
$f: \mathbb{B}^{n} \rightarrow \mathbb{B}$

## Boolean Expressions

$t, t_{1}, t_{2}::=0|1| x|\neg t| t_{1} \wedge t_{2}\left|t_{1} \vee t_{2}\right| t_{1} \Rightarrow t_{2} \mid t_{1} \Leftrightarrow t_{2}$

## Boolean expression

$$
\neg x_{1} \wedge\left(x_{2} \Rightarrow\left(x_{1} \vee x_{3}\right)\right)
$$



Reduced and Ordered Binary Decision Diagram (ROBDD)

Logical operations on ROBDDs can be done efficiently!

$$
\text { Lecture } 15 \text { () }
$$

## Semantics and Verification 2006

- Oral exam with preparation time, passed/failed.
- Preparation time ( 20 minutes) for solving a randomly selected star exercise.
- Examination time (20 minutes):
- presentation of the star exercise (necessary condition for passing)
- presentation of your randomly selected exam question
- answering questions
- evaluation
- 9 exam questions (with possible pensum dispensation).
- For a detailed summary of the reading material check the lectures plan.


## Exam Questions

(1) Transition systems and CCS.
(2) Strong and weak bisimilarity, bisimulation games.
(3) Hennessy-Milner logic and bisimulation.
(4) Tarski's fixed-point theorem and Hennessy-Milner logic with one recursive formulae.
(5) Alternating bit protocol and its modelling and verification using CWB. (Possible pensum dispensation.)
(6) Timed CCS and bisimilarity.
(7) Timed automata.
(8) Gossiping girls problem and its modelling and verification using UPPAAL. (Possible pensum dispensation.)
(9) Binary decision diagrams and their applications.

Further details are on the web-page. Check whether you are on the list of students with pensum dispensation!

$$
\text { Lecture } 15 \text { () }
$$

$$
\text { Semantics and Verficication } 2006
$$

## Examples of Star Exercises - CCS

- By using SOS rules for CCS prove the existence of the following transition (assume that $A \stackrel{\text { def }}{=} a . A$ ):

$$
((A \mid \bar{a} . N i l)+A) \backslash\{a\} \xrightarrow{\tau}(A \mid N i l) \backslash\{a\}
$$

- Draw the LTS generated by the following CCS expression:
(̄a.Nil|a.Nil) + b.Nil

How to Prepare for the Exam?

- Read the recommended material.
- Try to understand all topics equally well (remember you pick up two random topics out of 7).
- Go through all tutorial exercises and try to solve them. (Make sure that you can solve all star exercises fast!)
- Go through the slides to see whether you didn't miss anything.
- Make a summary for each question on a few A4 papers (you can take them at exam).
- Prepare a strategy how to present each question.
$\qquad$ 20 / 27
Examples of Star Exercises - Bisimilarity

Determine whether the following two CCS expressions

$$
\text { a.(b.Nil + c.Nil) and } \quad \text { a.(b.Nil + т.c.Nil) }
$$

are:

- strongly bisimilar?
- weakly bisimilar?
- It does not matter if you make a small error in a star exercise (as long as you understand what you are doing).
- Present a solution to the star exercise quickly (max 5 minutes)
- Start your presentation by writing a road-map (max 4 items).
- Plan your presentation to take about 10 minutes:
- give a good overview
- do not start with technical details
- use the blackboard
- use examples (be creative)
- say only things that you know are correct
- be ready to answer supplementary questions
- tell a story (covering a sufficient part of the exam question)

Lecture 15 ()
Semantics and Verification 2006

Examples of Star Exercises - HML


Determine whether

$$
\begin{aligned}
& o t=[a](\langle b\rangle t t \vee[a][b] f) \\
& o t=X \text { where } \\
& \quad X \stackrel{\max }{=}\langle a\rangle t t \wedge[A c t] X
\end{aligned}
$$

Find a distinguishing formulae for the CCS expressions:

$$
\text { a.a.Nil + a.b.Nil and } \quad \text { a.(a.Nil + b.Nil). }
$$

Using the SOS rules for TCCS prove that
$\epsilon(5) \cdot(\epsilon(3) \cdot$ Nil + b.Nil $) \xrightarrow{7} \epsilon(1) \cdot$ Nil + b.Nil

$$
\text { such that } x_{1}<x_{2}<x_{3} \text {. }
$$

such that $x_{1}<x_{2}<x_{3}$.

$$
x_{1} \wedge\left(\neg x_{2} \vee x_{1} \vee x_{2}\right) \wedge x_{3}
$$

