Semantics and Verification 2006

Lecture 15

- round-up of the course
- information about the exam
- selection of star exercises

Reactive systems

Characterization of a Reactive System

Reactive System is a system that computes by reacting to stimuli from its environment.

Key Issues:

- parallelism
- communication and interaction

Nontermination is good!

The result (if any) does not have to be unique.

Classical vs. Reactive Computing

	Classical	Reactive/Parallel
interaction	no	yes
nontermination	undesirable	often desirable
unique result	yes	no
semantics	$states \hookrightarrow states$	LTS

Calculus of Communicating Systems

CCS

Process algebra called "Calculus of Communicating Systems".

Insight of Robin Milner (1989)

Concurrent (parallel) processes have an algebraic structure.

$$P_1$$
 op P_2 \Rightarrow P_1 op P_2

Process Algebras

Basic Principle

- Define a few atomic processes (modelling the simplest process behaviour).
- ② Define compositionally new operations (building more complex process behaviour from simple ones).

Example

- **1** atomic instruction: assignment (e.g. x = 2 and x = x + 2)
- 2 new operators:
 - sequential composition $(P_1; P_2)$
 - parallel composition $(P_1 \mid P_2)$

Usually given by abstract syntax:

$$P, P_1, P_2 ::= x := e \mid P_1; P_2 \mid P_1 \mid P_2$$

where x ranges over variables and e over arithmetical expressions.

Syntax of CCS

Process expressions:

$$P := K$$

$$\alpha.P$$

$$\sum_{i \in I} P_i \mid P_i \mid P_1 \mid P_2 \mid P_i \mid P_i$$

$$P_1 + P_2 = \sum_{i \in \{1,2\}} P_i$$

process constants
$$(K \in \mathcal{K})$$
 prefixing $(\alpha \in Act)$ summation $(I \text{ is an arbitrary index set})$ parallel composition restriction $(L \subseteq \mathcal{A})$ relabelling $(f : Act \to Act)$ such that $\bullet \ f(\tau) = \tau$ $\bullet \ f(\overline{a}) = \overline{f(a)}$ $Nil = 0 = \sum_{i \in \emptyset} P_i$

CCS program

A collection of defining equations of the form $K \stackrel{\text{def}}{=} P$ where $K \in \mathcal{K}$ is a process constant and P is a process expression.

Semantics of CCS — SOS rules ($\alpha \in Act$, $a \in \mathcal{L}$)

ACT
$$\frac{\alpha}{\alpha.P \xrightarrow{\alpha} P}$$
 SUM_j $\frac{P_j \xrightarrow{\alpha} P'_j}{\sum_{i \in I} P_i \xrightarrow{\alpha} P'_j}$ $j \in I$

COM1 $\frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q}$ COM2 $\frac{Q \xrightarrow{\alpha} Q'}{P|Q \xrightarrow{\alpha} P|Q'}$

COM3 $\frac{P \xrightarrow{a} P'}{P|Q \xrightarrow{\tau} P'|Q'}$

$$\mathsf{RES} \ \ \frac{P \overset{\alpha}{\longrightarrow} P'}{P \smallsetminus L \overset{\alpha}{\longrightarrow} P' \smallsetminus L} \ \ \alpha, \overline{\alpha} \not\in L \qquad \qquad \mathsf{REL} \ \ \frac{P \overset{\alpha}{\longrightarrow} P'}{P[f] \overset{f(\alpha)}{\longrightarrow} P'[f]}$$

$$\mathsf{CON} \ \frac{P \xrightarrow{\alpha} P'}{K \xrightarrow{\alpha} P'} \ K \stackrel{\mathrm{def}}{=} P$$

Verification Approaches

Let Impl be an implementation of a system (e.g. in CCS syntax).

Equivalence Checking Approach

$$Impl \equiv Spec$$

- Spec is a full specification of the intended behaviour
- Example: $s \sim t$ or $s \approx t$

Model Checking Approach

$$Impl \models Property$$

- Property is a partial specification of the intended behaviour
- Example: $s \models \langle a \rangle ([b]ff \land \langle a \rangle tt)$

Relationship between Equivalence and Model Checking

- Equivalence checking and model checking are complementary approaches.
- They are strongly connected, however.

Theorem (Hennessy-Milner)

Let us consider an image-finite LTS. Then

$$p \sim q$$

if and only if

for every HM formula F (even with recursion):

$$(p \models F \iff q \models F).$$

Introducing Time Features

In many applications, we would like to explicitly model real-time in our models.

Timed (labelled) transition system

Timed LTS is an ordinary LTS where actions are of the form $Act = L \cup \mathbb{R}^{\geq 0}$.

- $s \xrightarrow{a} s'$ for $a \in L$ are discrete transitions
- $ullet s \stackrel{d}{\longrightarrow} s'$ for $d \in \mathbb{R}^{\geq 0}$ are time-elapsing (delay) transitions

Timed and Untimed Bisimilarity

Let s and t be two states in timed LTS.

$\overline{\mathsf{Timed}}\;\mathsf{Bisimilarity}\;(=\mathsf{Strong}\;\mathsf{Bisimilarity})$

We say that s and t are timed bisimilar iff $s \sim t$.

Remark: all transitions are considered as visible transitions.

Untimed Bisimilarity

We say that s and t are untimed bisimilar iff $s \sim t$ in a modified transition system where every transition of the form $\stackrel{d}{\longrightarrow}$ for $d \in \mathbb{R}^{\geq 0}$ is replaced by a transition $\stackrel{\epsilon}{\longrightarrow}$ for a new (single) action ϵ .

Remark:

- $\stackrel{a}{\longrightarrow}$ for $a \in L$ are treated as visible transitions, while
- $\stackrel{d}{\longrightarrow}$ for $d \in \mathbb{R}^{\geq 0}$ all look the same (action ϵ).

Timed CCS — a Way to Define Timed LTS

Syntax of CCS with Time Delays

All CCS operators +

if P is a process then $\epsilon(d).P$ is also a process for any nonnegative real number d

Semantics of CCS with Time Delays

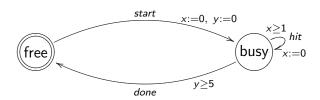
By means of SOS rules

- standard CCS rules
- SOS rules for time delays (maximal progress assumption)

we describe for a given TCCS expression what is the corresponding timed transition system.

Timed Automata — a Way to Define Timed LTS

- Nondeterministic finite-state automata with additional time features (clocks).
- Clocks can be tested against constants or compared to each other (pairwise).
- Executing a transition can reset selected clocks.



Region Graph — a Verification Technique for TA

We introduce an equivalence on clock valuations ($v \equiv v'$) with finitely many equivalence classes.

state
$$(\ell, v) \longrightarrow \text{symbolic state } (\ell, [v])$$

Region Graph Preserves Untimed Bisimilarity

For every location ℓ and any two valuations v and v' from the same symbolic state $(v \equiv v')$ it holds that (ℓ, v) and (ℓ, v') are untimed bisimilar.

Reduction of Timed Automata Reachability to Region Graphs

 $(\ell_0, \nu_0) \longrightarrow^* (\ell, \nu)$ in a timed automaton if and only if $(\ell_0, [\nu_0]) \Longrightarrow^* (\ell, [\nu])$ in its (finite) region graph.

Compact Representation of State-Spaces in the Memory

Boolean Functions (where $\mathbb{B}=\{0,1\}$)

$$f: \mathbb{B}^n \to \mathbb{B}$$

Boolean Expressions

$$t, t_1, t_2 ::= 0 \mid 1 \mid x \mid \neg t \mid t_1 \land t_2 \mid t_1 \lor t_2 \mid t_1 \Rightarrow t_2 \mid t_1 \Leftrightarrow t_2$$

Boolean expression:

$$\neg x_1 \wedge (x_2 \Rightarrow (x_1 \vee x_3))$$

Reduced and Ordered Binary Decision Diagram (ROBDD)

Logical operations on ROBDDs can be done efficiently!

The End

The course is over now!

Thanks

Thank you for proof-reading the book!

Information about the Exam

- Oral exam with preparation time, passed/failed.
- Preparation time (20 minutes) for solving a randomly selected star exercise.
- Examination time (20 minutes):
 - presentation of the star exercise (necessary condition for passing)
 - presentation of your randomly selected exam question
 - answering questions
 - evaluation
- 9 exam questions (with possible pensum dispensation).
- For a detailed summary of the reading material check the lectures plan.

Exam Questions

- Transition systems and CCS.
- Strong and weak bisimilarity, bisimulation games.
- Hennessy-Milner logic and bisimulation.
- Tarski's fixed-point theorem and Hennessy-Milner logic with one recursive formulae.
- Alternating bit protocol and its modelling and verification using CWB. (Possible pensum dispensation.)
- Timed CCS and bisimilarity.
- Timed automata.
- Gossiping girls problem and its modelling and verification using UPPAAL. (Possible pensum dispensation.)
- Binary decision diagrams and their applications.

Further details are on the web-page. Check whether you are on the list of students with pensum dispensation!

How to Prepare for the Exam?

- Read the recommended material.
- Try to understand all topics equally well (remember you pick up two random topics out of 7).
- Go through all tutorial exercises and try to solve them. (Make sure that you can solve all star exercises fast!)
- Go through the slides to see whether you didn't miss anything.
- Make a summary for each question on a few A4 papers (you can take them at exam).
- Prepare a strategy how to present each question.

Further Tips

- It does not matter if you make a small error in a star exercise (as long as you understand what you are doing).
- Present a solution to the star exercise quickly (max 5 minutes).
- Start your presentation by writing a road-map (max 4 items).
- Plan your presentation to take about 10 minutes:
 - give a good overview
 - do not start with technical details
 - use the blackboard
 - use examples (be creative)
 - say only things that you know are correct
 - be ready to answer supplementary questions
 - tell a story (covering a sufficient part of the exam question)

Examples of Star Exercises — CCS

• By using SOS rules for CCS prove the existence of the following transition (assume that $A \stackrel{\text{def}}{=} a.A$):

$$((A \mid \overline{a}.Nil) + A) \setminus \{a\} \xrightarrow{\tau} (A \mid Nil) \setminus \{a\}$$

Draw the LTS generated by the following CCS expression:

$$(\overline{a}.Nil \mid a.Nil) + b.Nil$$

Examples of Star Exercises — Bisimilarity

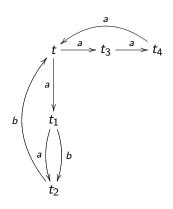
Determine whether the following two CCS expressions

$$a.(b.Nil + c.Nil)$$
 and $a.(b.Nil + \tau.c.Nil)$

are:

- strongly bisimilar?
- weakly bisimilar?

Examples of Star Exercises — HML



Determine whether

•
$$t \models [a](\langle b \rangle tt \vee [a][b]ff)$$

•
$$t \models X$$
 where $X \stackrel{\text{max}}{=} \langle a \rangle tt \wedge [Act] X$

Find a distinguishing formulae for the CCS expressions:

$$a.a.Nil + a.b.Nil$$
 and $a.(a.Nil + b.Nil)$.

Examples of Star Exercises — TCCS

Using the SOS rules for TCCS prove that

$$\epsilon(5).(\epsilon(3).Nil + b.Nil) \xrightarrow{7} \epsilon(1).Nil + b.Nil$$

Examples of Star Exercises — TA

Draw a region graph of the following timed automaton:

$$\underbrace{\ell_0}^{1 < x \le 2} \underset{x := 0}{\overset{a}{\underset{x = 0}{\underbrace{}}}}$$

Examples of Star Exercises — ROBDD

Construct ROBDD for the following boolean expression:

$$x_1 \wedge (\neg x_2 \vee x_1 \vee x_2) \wedge x_3$$

such that $x_1 < x_2 < x_3$.