
Semantics and Verification 2006

Lecture 2

informal introduction to CCS

syntax of CCS

semantics of CCS

Lecture 2 () Semantics and Verification 2006 1 / 12

CCS Basics (Sequential Fragment)

Nil (or 0) process (the only atomic process)

action prefixing (a.P)

names and recursive definitions (
def
=)

nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be (up to isomorphism) described by using the
operations above.

Lecture 2 () Semantics and Verification 2006 2 / 12

CCS Basics (Parallelism and Renaming)

parallel composition (|)
(synchronous communication between two components = handshake
synchronization)

restriction (P r L)

relabelling (P[f])

Lecture 2 () Semantics and Verification 2006 3 / 12

Definition of CCS (channels, actions, process names)

Let

A be a set of channel names (e.g. tea, coffee are channel names)

L = A ∪A be a set of labels where
I A = {a | a ∈ A}

(A are called names and A are called co-names)
I by convention a = a

Act = L ∪ {τ} is the set of actions where
I τ is the internal or silent action

(e.g. τ , tea, coffee are actions)

K is a set of process names (constants) (e.g. CM).

Lecture 2 () Semantics and Verification 2006 4 / 12

Definition of CCS (expressions)

P := K | process constants (K ∈ K)
α.P | prefixing (α ∈ Act)∑

i∈I Pi | summation (I is an arbitrary index set)
P1|P2 | parallel composition
P r L | restriction (L ⊆ A)
P[f] | relabelling (f : Act → Act) such that

f (τ) = τ

f (a) = f (a)

The set of all terms generated by the abstract syntax is called
CCS process expressions (and denoted by P).

Notation

P1 + P2 =
∑

i∈{1,2} Pi Nil = 0 =
∑

i∈∅ Pi

Lecture 2 () Semantics and Verification 2006 5 / 12

Precedence

Precedence
1 restriction and relabelling (tightest binding)

2 action prefixing

3 parallel composition

4 summation

Example: R + a.P|b.Q r L means R +
(
(a.P)|(b.(Q r L))

)
.

Lecture 2 () Semantics and Verification 2006 6 / 12

Definition of CCS (defining equations)

CCS program

A collection of defining equations of the form

K
def
= P

where K ∈ K is a process constant and P ∈ P is a CCS process
expression.

Only one defining equation per process constant.

Recursion is allowed: e.g. A
def
= a.A | A.

Lecture 2 () Semantics and Verification 2006 7 / 12

Semantics of CCS

Syntax

CCS
(collection of defining equations)

−→
Semantics

LTS
(labelled transition systems)

HOW?

Lecture 2 () Semantics and Verification 2006 8 / 12

Structural Operational Semantics for CCS

Structural Operational Semantics (SOS) – G. Plotkin 1981

Small-step operational semantics where the behaviour of a system is
inferred using syntax driven rules.

Given a collection of CCS defining equations, we define the following LTS
(Proc ,Act, { a−→| a ∈ Act}):

Proc = P (the set of all CCS process expressions)

Act = L ∪ {τ} (the set of all CCS actions including τ)

transition relation is given by SOS rules of the form:

RULE
premises

conclusion
conditions

Lecture 2 () Semantics and Verification 2006 9 / 12

SOS rules for CCS (α ∈ Act, a ∈ L)

ACT
α.P

α−→ P
SUMj

Pj
α−→ P ′

j∑
i∈I Pi

α−→ P ′
j

j ∈ I

COM1 P
α−→ P ′

P|Q α−→ P ′|Q
COM2 Q

α−→ Q ′

P|Q α−→ P|Q ′

COM3 P
a−→ P ′ Q

a−→ Q ′

P|Q τ−→ P ′|Q ′

RES P
α−→ P ′

P r L
α−→ P ′ r L

α, α 6∈ L REL P
α−→ P ′

P[f]
f (α)−→ P ′[f]

CON P
α−→ P ′

K
α−→ P ′ K

def
= P

Lecture 2 () Semantics and Verification 2006 10 / 12

Deriving Transitions in CCS

Let A
def
= a.A. Then(

(A | a.Nil) | b.Nil
)
[c/a]

c−→
(
(A | a.Nil) | b.Nil

)
[c/a].

REL

COM1

COM1

CON

ACT
a.A

a−→ A

A
a−→ A

A
def
= a.A

A | a.Nil
a−→ A | a.Nil

(A | a.Nil) | b.Nil
a−→ (A | a.Nil) | b.Nil(

(A | a.Nil) | b.Nil
)
[c/a]

c−→
(
(A | a.Nil) | b.Nil

)
[c/a]

Lecture 2 () Semantics and Verification 2006 11 / 12

LTS of the Process a.Nil | a.Nil

a.Nil | a.Nil

a

zzuuuuuuuuuuuuuu

a

$$IIIIIIIIIIIIII

τ

��

Nil | a.Nil

a

$$IIIIIIIIIIIIII
a.Nil |Nil

a

zzuuuuuuuuuuuuuu

Nil |Nil

Lecture 2 () Semantics and Verification 2006 12 / 12

