Semantics and Verification 2006

Lecture 2

- informal introduction to CCS
- syntax of CCS
- semantics of CCS

CCS Basics (Sequential Fragment)

- Nil (or 0) process (the only atomic process)
- action prefixing (a.P)
- names and recursive definitions ($\stackrel{\text { def }}{=}$)
- nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be (up to isomorphism) described by using the operations above.

CCS Basics (Parallelism and Renaming)

- parallel composition (|)
(synchronous communication between two components $=$ handshake synchronization)
- restriction $(P \backslash L)$
- relabelling ($P[f]$)

Definition of CCS (channels, actions, process names)

Let

- \mathcal{A} be a set of channel names (e.g. tea, coffee are channel names)
- $\mathcal{L}=\mathcal{A} \cup \overline{\mathcal{A}}$ be a set of labels where
- $\overline{\mathcal{A}}=\{\bar{a} \mid a \in \mathcal{A}\}$
(\mathcal{A} are called names and $\overline{\mathcal{A}}$ are called co-names)
- by convention $\overline{\bar{a}}=a$
- Act $=\mathcal{L} \cup\{\tau\}$ is the set of actions where
- τ is the internal or silent action
(e.g. τ, tea, $\overline{\text { coffee }}$ are actions)
- \mathcal{K} is a set of process names (constants) (e.g. CM).

Definition of CCS (expressions)

$$
\begin{aligned}
P:= & K \\
& \alpha . P \\
& \sum_{i \in 1} P_{i} \\
& P_{1} \mid P_{2} \\
& P \backslash L \\
& P[f]
\end{aligned}
$$

process constants $(K \in \mathcal{K})$
prefixing ($\alpha \in$ Act)
summation (I is an arbitrary index set) parallel composition
restriction $(L \subseteq \mathcal{A})$
relabelling ($f:$ Act \rightarrow Act) such that

- $f(\tau)=\tau$
- $f(\bar{a})=\overline{f(a)}$

The set of all terms generated by the abstract syntax is called CCS process expressions (and denoted by \mathcal{P}).

Notation

$$
P_{1}+P_{2}=\sum_{i \in\{1,2\}} P_{i}
$$

$$
\text { Nil }=0=\sum_{i \in \emptyset} P_{i}
$$

Precedence

Precedence

(1) restriction and relabelling (tightest binding)
(2) action prefixing
(3) parallel composition
(4) summation

Example: $R+a \cdot P \mid b \cdot Q \backslash L$ means $R+((a . P) \mid(b \cdot(Q \backslash L)))$.

Definition of CCS (defining equations)

CCS program

A collection of defining equations of the form

$$
K \stackrel{\text { def }}{=} P
$$

where $K \in \mathcal{K}$ is a process constant and $P \in \mathcal{P}$ is a CCS process expression.

- Only one defining equation per process constant.
- Recursion is allowed: e.g. $A \stackrel{\text { def }}{=} \bar{a} . A \mid A$.

Semantics of CCS

Syntax	
CCS (collection of defining equations)	\longrightarrowSemantics LTS (labelled transition systems)

HOW?

Structural Operational Semantics for CCS

Structural Operational Semantics (SOS) - G. Plotkin 1981

Small-step operational semantics where the behaviour of a system is inferred using syntax driven rules.

Given a collection of CCS defining equations, we define the following LTS (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$):

- $\operatorname{Proc}=\mathcal{P} \quad$ (the set of all CCS process expressions)
- Act $=\mathcal{L} \cup\{\tau\} \quad$ (the set of all CCS actions including τ)
- transition relation is given by SOS rules of the form:

$$
\text { RULE } \frac{\text { premises }}{\text { conclusion }} \text { conditions }
$$

SOS rules for CCS $(\alpha \in \operatorname{Act}, a \in \mathcal{L})$

$$
\begin{aligned}
& \text { ACT } \overline{\alpha . P \xrightarrow{\alpha} P} \\
& \operatorname{SUM}_{j} \frac{P_{j} \xrightarrow{\alpha} P_{j}^{\prime}}{\sum_{i \in I} P_{i} \xrightarrow{\alpha} P_{j}^{\prime}} j \in I \\
& \operatorname{COM} 1 \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \quad \operatorname{COM} 2 \frac{Q \xrightarrow{\alpha} Q^{\prime}}{P|Q \xrightarrow{\alpha} P| Q^{\prime}} \\
& \text { Сом3 } \xrightarrow[{P\left|Q \xrightarrow{P} P^{\prime}\right| Q^{\prime}}]{P \stackrel{\bar{a}}{\longrightarrow}} Q^{\prime} \\
& \text { RES } \frac{P \xrightarrow{\alpha} P^{\prime}}{P \backslash L \xrightarrow{\alpha} P^{\prime} \backslash L} \alpha, \bar{\alpha} \notin L \quad \text { REL } \frac{P \xrightarrow{\alpha} P^{\prime}}{P[f] \xrightarrow{f(\alpha)} P^{\prime}[f]}
\end{aligned}
$$

Deriving Transitions in CCS

Let $A \stackrel{\text { def }}{=} a . A$. Then

$$
((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \overline{\text { a }} . \text { Nil }) \mid b . N i l)[c / a] .
$$

$$
\begin{aligned}
& \operatorname{CON} \frac{\overline{a \cdot A \xrightarrow{a}} A}{A \xrightarrow{a} A} A \stackrel{\text { def }}{=} a . A \\
& \text { COM1 } \xrightarrow[{A|\bar{a} . N i l \xrightarrow{a} A| \bar{a} . N i} l]{A} \\
& \text { REL }
\end{aligned}
$$

LTS of the Process a.Nil|̄̄.Nil

