Semantics and Verification 2006

Lecture 4
properties of strong bisimilarity

- weak bisimilarity and weak bisimulation games
- properties of weak bisimilarity
- example: a communication protocol and its modelling in CCS
- concurrency workbench (CWB)

$$
\text { Lecture } 4 \text { () }
$$

Semantics and Verification 2006

Example - Buffer

Theorem
For all natural numbers $n: \quad B_{0}^{n} \sim \underbrace{B_{0}^{1}\left|B_{0}^{1}\right| \cdots \mid B_{0}^{1}}$
n times
Proof.
Construct the following binary relation where $i_{1}, i_{2}, \ldots, i_{n} \in\{0,1\}$.

$$
R=\left\{\left(B_{i}^{n}, B_{i_{1}}^{1}\left|B_{i_{2}}^{1}\right| \cdots \mid B_{i_{n}}^{1}\right) \mid \sum_{j=1}^{n} i_{j}=i\right\}
$$

- $\left(B_{0}^{n}, B_{0}^{1}\left|B_{0}^{1}\right| \cdots \mid B_{0}^{1}\right) \in R$
- R is strong bisimulation

Example - Buffer

Strong Bisimilarity is a Congruence for All CCS Operators Let P and Q be CCS processes such that $P \sim Q$. Then

- $\alpha . P \sim \alpha . Q$ for each action $\alpha \in A c t$
- $P+R \sim Q+R$ and $R+P \sim R+Q$ for each CCS process R
- $P|R \sim Q| R$ and $R|P \sim R| Q$ for each CCS process R
- $P[f] \sim Q[f]$ for each relabelling function f
- $P \backslash L \sim Q \backslash L$ for each set of labels L.

Following Properties Hold for any CCS Processes P, Q and R

- $P+Q \sim Q+P$
- $P \mid$ Nil $\sim P$
- $P|Q \sim Q| P$
- $(P+Q)+R \sim P+(Q+R)$
- $P+$ Nil $\sim P$
- $(P \mid Q)|R \sim P|(Q \mid R)$
$1 / 15$
Lecture 4 ()
Semantics and Verification 2006
$2 / 15$
Strong Bisimilarity - Summary

Properties of \sim

- an equivalence relation
- the largest strong bisimulation
- a congruence
- enough to prove some natural rules like

$$
P|Q \sim Q| P
$$

$P \mid$ Nil $\sim P$
$(P \mid Q)|R \sim Q|(P \mid R)$

Question

Should we look any further???
Example: $B_{0}^{2} \sim B_{0}^{1} \mid B_{0}^{1}$

Buffer of Capacity 1 Buffer of Capacity n
$B_{0}^{1} \stackrel{\text { def }}{=}$ in. B_{1}^{1}
$B_{0}^{n} \stackrel{\text { def }}{=}$ in. B_{1}^{n}
$B_{1}^{1} \stackrel{\text { def }}{=} \overline{o u t} . B_{0}^{1}$
$B_{i}^{n} \stackrel{\text { def }}{=}$ in. $B_{i+1}^{n}+\overline{o u t} . B_{i-1}^{n} \quad$ for $0<i<n$ $B_{n}^{n} \stackrel{\text { def }}{=} \overline{o u t} . B_{n-1}^{n}$

Lecture 4 ()
Semantics and Verification 2006

Problems with Internal Actions

Question
Does a. T.Nil \sim a.Nil hold? NO!

Problem

Strong bisimilarity does not abstract away from τ actions.
Example: SmUni \nsim Spec

Weak Transition Relation

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS such that $\tau \in A c t$.
Definition of Weak Transition Relation

$$
\stackrel{a}{\Rightarrow}=\left\{\begin{array}{cc}
(\xrightarrow{\tau})^{*} \circ \stackrel{a}{\xrightarrow{a}} 0(\xrightarrow{\tau})^{*} & \text { if } a \neq \tau \\
(\xrightarrow{\tau})^{*} & \text { if } a=\tau
\end{array}\right.
$$

What does $s \stackrel{a}{\Longrightarrow} t$ informally mean?

- If $a \neq \tau$ then $s \stackrel{a}{\Longrightarrow} t$ means that
from s we can get to t by doing zero or more τ actions, followed by the action a, followed by zero or more τ actions.
- If $a=\tau$ then $s \xlongequal{\tau} t$ means that
from s we can get to t by doing zero or more τ actions.

$$
\text { Lecture } 4 \text { () }
$$

Properties of \approx

- an equivalence relation
the largest weak bisimulation
- validates lots of natural laws, e.g.

$$
\begin{aligned}
& \text { a. } \tau . P \approx a \cdot P \\
& P+\tau . P \approx \tau \cdot P \\
& \text { a. }(P+\tau \cdot Q) \approx a .(P+\tau \cdot Q)+a \cdot Q \\
& P+Q \approx Q+P \quad P|Q \approx Q| P \quad P+\text { Nil } \approx P
\end{aligned}
$$

- strong bisimilarity is included in weak bisimilarity $(\sim \subseteq \approx)$
- abstracts from τ loops

Weak Bisimilarity

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS such that $\tau \in A c t$.

Weak Bisimulation

A binary relation $R \subseteq$ Proc \times Proc is a weak bisimulation iff whenever $(s, t) \in R$ then for each $a \in$ Act (including τ):

- if $s \xrightarrow{a} s^{\prime}$ then $t \stackrel{a}{\longrightarrow} t^{\prime}$ for some t^{\prime} such that $\left(s^{\prime}, t^{\prime}\right) \in R$
- if $t \xrightarrow{a} t^{\prime}$ then $s \xrightarrow{a} s^{\prime}$ for some s^{\prime} such that $\left(s^{\prime}, t^{\prime}\right) \in R$.

Weak Bisimilarity

Two processes $p_{1}, p_{2} \in \operatorname{Proc}$ are weakly bisimilar $\left(p_{1} \approx p_{2}\right)$ if and only if there exists a weak bisimulation R such that $\left(p_{1}, p_{2}\right) \in R$.

$$
\approx=\cup\{R \mid R \text { is a weak bisimulation }\}
$$

$$
\begin{array}{lll}
\text { Lecture } 4 \text { () Semantics and Verification } 2006 & 8 / 15
\end{array}
$$

Is Weak Bisimilarity a Congruence for CCS?

Theorem

Let P and Q be CCS processes such that $P \approx Q$. Then

- $\alpha . P \approx \alpha . Q$ for each action $\alpha \in$ Act
- $P|R \approx Q| R$ and $R|P \approx R| Q$ for each CCS process R
- $P[f] \approx Q[f]$ for each relabelling function f
- $P \backslash L \approx Q \backslash L$ for each set of labels L.

What about choice?
$\tau . a . N i l \approx$ a.Nil but $\tau . a . N i l+b . N i l \not \approx a . N i l+b . N i l$
Conclusion
Weak bisimilarity is not a congruence for CCS

Weak Bisimulation Game

Definition

All the same except that

- defender can now answer using \xlongequal{a} moves.

The attacker is still using only \xrightarrow{a} moves.

Theorem

- States s and t are weakly bisimilar if and only if the defender has a universal winning strategy starting from the configuration (s, t)
- States s and t are not weakly bisimilar if and only if the attacker has a universal winning strategy starting from the configuration (s, t).

Lecture 4 ()
Semantics and Verification 2006
Case Study: Communication Protocol

Send	$\stackrel{\text { def }}{=}$ acc.Sending	Rec $\stackrel{\text { def }}{=}$ trans.Del
Sending	$\stackrel{\text { def }}{=} \overline{\text { send.Wait }}$	Del $\stackrel{\text { def }}{=} \overline{\text { del.Ack }}$
Wait	$\stackrel{\text { def }}{=}$ ack.Send + error.Sending	Ack $\stackrel{\text { def }}{=}$ ack.Rec

$$
\begin{aligned}
& \text { Med } \stackrel{\text { def }}{=} \text { send.Med } \\
& \text { Med }^{\prime} \stackrel{\text { def }}{=} \tau . \text { Err }+\overline{\text { trans. Med }} \\
& \text { Err } \stackrel{\text { def }}{=} \\
& \text { error.Med }
\end{aligned}
$$

Verification Question

Impl $\xlongequal{\text { def }}($ Send \mid Med \mid Rec $) \backslash\{$ send, trans, ack, error $\}$

Spec $\stackrel{\text { def }}{=}$ acc. del.Spec	
Question	
	Impl $\stackrel{?}{\approx}$ Spec

(1) Draw the LTS of Impl and Spec and prove (by hand) the equivalence. (2) Use Concurrency WorkBench (CWB).

CCS Expressions in CWB

$$
\begin{aligned}
& \text { CCS Definitions CWB Program (protocol.cwb) } \\
& \text { Med } \stackrel{\text { def }}{=} \text { send.Med }{ }^{\prime} \quad \text { agent Med }=\text { send.Med'; } \\
& \text { Med' } \xlongequal{\text { def }} \tau \text {.Err + trans. Med } \\
& \text { Err } \stackrel{\text { def }}{=} \text { error.Med } \\
& \text { impl } \stackrel{\text { def }}{=}(\text { Send } \mid \text { Med } \mid \text { Rec }) ~ \ \\
& \text { \{send, trans, ack, error\} } \\
& \begin{array}{l}
\text { agent Med }=\text { send.Med'; } \\
\text { agent Med' }=(\text { tau.Err }+
\end{array} \\
& \text { agent Err = 'error.Med; } \\
& \text { set } \mathrm{L}=\{\text { send, trans, ack, error }\} \text {; } \\
& \text { agent Impl }=(\text { Send } \mid \text { Med } \mid \operatorname{Rec}) \backslash \mathrm{L} \text {; }
\end{aligned}
$$

Spec $\stackrel{\text { def }}{=}$ acc. $\overline{\text { del }} . S$ pec

CWB Session

borg \$ /pack/FS/CWB/cwb
> help;
> input "protocol.cwb";
> vs(5,Impl);
$>\operatorname{sim}($ Spec $)$;
> eq(Spec, Impl); ** weak bisimilarity **
> strongeq(Spec, Impl);

