Strong Bisimilarity Weak Bisimilarity Case Study: Communication Protocol	Strong Bisimilarity Properties Weak Bisimilarity Buffer Example Case Study: Communication Protocol Summary	Strong Bisimilarity Properties Weak Bisimilarity Buffer Example Case Study: Communication Protocol
	Strong Bisimilarity – Properties	Example – Buffer
Semantics and Verification 2006 Lecture 4	Strong Bisimilarity is a Congruence for All CCS Operators Let P and Q be CCS processes such that $P \sim Q$. Then • $\alpha . P \sim \alpha . Q$ for each action $\alpha \in Act$ • $P + R \sim Q + R$ and $R + P \sim R + Q$ for each CCS process R • $P \mid R \sim Q \mid R$ and $R \mid P \sim R \mid Q$ for each CCS process R • $P[f] \sim Q[f]$ for each relabelling function f	Buffer of Capacity 1Buffer of Capacity n $B_0^1 \stackrel{\text{def}}{=} in.B_1^1$ $B_0^n \stackrel{\text{def}}{=} in.B_1^n$ $B_1^1 \stackrel{\text{def}}{=} \overline{out}.B_0^1$ $B_i^n \stackrel{\text{def}}{=} in.B_{i+1}^n + \overline{out}.B_{i-1}^n$ for $0 < i < n$ $B_n^n \stackrel{\text{def}}{=} \overline{out}.B_{n-1}^n$ $B_n^n \stackrel{\text{def}}{=} \overline{out}.B_{n-1}^n$ Example: $B_0^2 \sim B_0^1 B_0^1$
 properties of strong bisimilarity weak bisimilarity and weak bisimulation games properties of weak bisimilarity example: a communication protocol and its modelling in CCS concurrency workbench (CWB) 	• $P \setminus L \sim Q \setminus L$ for each set of labels <i>L</i> . Following Properties Hold for any CCS Processes <i>P</i> , <i>Q</i> and <i>R</i> • $P + Q \sim Q + P$ • $P Nil \sim P$ • $P Q \sim Q P$ • $(P+Q) + R \sim P + (Q+R)$ • $P + Nil \sim P$ • $(P Q) R \sim P (Q R)$	$B_0^2 \qquad \qquad$
Lecture 4 Semantics and Verification 2006 Strong Bisimilarity Properties Weak Bisimilarity Buffer Example Case Study: Communication Protocol Summary	Lecture 4 Semantics and Verification 2006 Strong Bisimilarity Properties Weak Bisimilarity Buffer Example Case Study: Communication Protocol Summary	Lecture 4 Semantics and Verification 2006 Strong Bisimilarity Definitions Weak Bisimilarity Veak Bisimilarity Case Study: Communication Protocol Properties of Weak Bisimilarity
Example – Buffer	Strong Bisimilarity – Summary	Problems with Internal Actions
Theorem For all natural numbers n: $B_0^n \sim \underbrace{B_0^1 B_0^1 \cdots B_0^1}{n \text{ times}}$ Proof. Construct the following binary relation where $i_1, i_2, \ldots, i_n \in \{0, 1\}$. $R = \{(B_i^n, B_{i_1}^1 B_{i_2}^1 \cdots B_{i_n}^1) \mid \sum_{j=1}^n i_j = i\}$ • $(B_0^n, B_0^1 B_0^1 \cdots B_0^1) \in R$ • R is strong bisimulation	Properties of ~ • an equivalence relation • the largest strong bisimulation • a congruence • enough to prove some natural rules like • $P Q \sim Q P$ • $P Nil \sim P$ • $(P Q) R \sim Q (P R)$ • Question Should we look any further???	QuestionDoes $a.\tau.Nil ~ a.Nil$ hold?NO!ProblemStrong bisimilarity does not abstract away from τ actions.Example: SmUni \checkmark Spec $\bigvee pub$ $(CM CS_1) < \{coin, coffee\}$ $\downarrow \tau$ $(CM CS_2) < \{coin, coffee\}$ $\downarrow \tau$ $(CM CS) < \{coin, coffee\}$

Strong Bisimilarity Definition of the Protocol Weak Bisimilarity Concurrency Workbench Case Study: Communication Protocol Example Sessions in CWB	Strong Bisimilarity Definition of the Protocol Weak Bisimilarity Concurrency Workbench Case Study: Communication Protocol Example Sessions in CWB	Strong Bisimilarity Definition of the Protocol Weak Bisimilarity Concurrency Workbench Case Study: Communication Protocol Example Sessions in CWB
Verification Question	CCS Expressions in CWB	CWB Session
$\operatorname{Impl} \stackrel{\mathrm{def}}{=} (\operatorname{Send} \operatorname{Med} \operatorname{Rec}) \setminus \{\operatorname{Send} \operatorname{trans.ack.error}\}$		borg\$ /pack/FS/CWB/cwb
Space def are del Space	CCS DefinitionsCWB Program (protocol.cwb) $Med \stackrel{def}{=} send Med'$ $agent Med = send.Med';$	> help;
Spec – acc.uei.spec	$\begin{array}{ll} Med' \stackrel{\mathrm{def}}{=} \tau.Err + \overline{trans}.Med \\ Err \stackrel{\mathrm{def}}{=} \overline{error}.Med \end{array} \qquad \qquad agent \ Med' = (tau.Err + 'trans.Med); \\ agent \ Err = 'error.Med; \end{array}$	<pre>> input "protocol.cwb";</pre>
Question		> vs(5,Impl);
$Impl \stackrel{?}{\approx} Spec$	$ Impl \cong (Send Med Rec) \setminus \\ {send, trans, ack, error} \\ send, trans, ack, error \\ agent Impl = (Send Med Rec) \setminus L; $	<pre>> sim(Spec);</pre>
Draw the LTS of Impl and Spec and prove (by hand) the equivalence.	Spec $\stackrel{\text{def}}{=}$ acc. $\overline{\text{del}}$.Spec agent Spec = acc.'del.Spec;	<pre>> eq(Spec,Impl); ** weak bisimilarity **</pre>
Use Concurrency WorkBench (CWB).		<pre>> strongeq(Spec,Impl); ** strong bisimilarity **</pre>

Lecture 4 Semantics and Verification 2006 Lecture 4 Semantics and Verification 2006 Lecture 4 Semantics and Verification 2006