Semantics and Verification 2006

Lecture 5

- Hennessy-Milner logic
- syntax and semantics
- correspondence with strong bisimilarity
- examples in CWB

Lecture 5 ()
Semantics and Verification 2006

Logical Properties of Reactive Systems

Modal Properties - what can happen now (possibility, necessity)

- drink a coffee (can drink a coffee now)
- does not drink tea
- drinks both tea and coffee
- drinks tea after coffee

Temporal Properties - behaviour in time

- never drinks any alcohol
(safety property: nothing bad can happen)
- eventually will have a glass of wine
(liveness property: something good will happen)
Can these properties be expressed using equivalence checking?
$1 / 12$

Verifying Correctness of Reactive Systems

Let Impl be an implementation of a system (e.g. in CCS syntax).
Equivalence Checking Approach

$$
|m p| \equiv S p e c
$$

- \equiv is an abstract equivalence, e.g. \sim or \approx
- Spec is often expressed in the same language as $/ \mathrm{mp} /$ - Spec provides the full specification of the intended behaviour

Model Checking Approach

$$
\text { ImpI } \models \text { Property }
$$

- \models is the satisfaction relation
- Property is a particular feature, often expressed via a logic
- Property is a partial specification of the intended behaviour

$$
\text { Lecture } 50
$$

Semantics and Verification 2006
2/12
Hennessy-Milner Logic - Syntax

Syntax of the Formulae $(a \in A c t)$

$$
F, G::=t t|f f| F \wedge G|F \vee G|\langle a\rangle F \mid[a] F
$$

Intuition:

tt all processes satisfy this property
ff no process satisfies this property
\wedge, \vee usual logical AND and OR
$\langle a\rangle F$ there is at least one a-successor that satisfies F
$[a] F$ all a-successors have to satisfy F

Remark

Temporal properties like always/never in the future or eventually are not included.

Model Checking of Reactive Systems

Our Aim
Develop a logic in which we can express interesting properties of reactive systems.

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS.
Validity of the logical triple $p=F(p \in \operatorname{Proc}, F$ a HM formula $)$

$$
\begin{aligned}
& p \models t \text { for each } p \in \text { Proc } \\
&p \models \text { ff for no } p \text { (we also write } p \not \models \mathrm{f}) \\
& p \models F \wedge G \text { iff } p \models F \text { and } p \models G \\
& p \models F \vee G \text { iff } p \models F \text { or } p \models G \\
& p \models\langle a\rangle F \text { iff } p \xrightarrow{a} p^{\prime} \text { for some } p^{\prime} \in \operatorname{Proc} \text { such that } p^{\prime} \models F \\
& p \models[a] F \text { iff } p^{\prime} \models F, \text { for all } p^{\prime} \in \operatorname{Proc} \text { such that } p \xrightarrow{a} p^{\prime}
\end{aligned}
$$

We write $p \not \vDash F$ whenever p does not satisfy F.

What about Negation?

For every formula F we define the formula F^{c} as follows:

- tt $=$ f
- $f^{c}=t$
- $(F \wedge G)^{c}=F^{c} \vee G^{c}$
$\circ(F \vee G)^{c}=F^{c} \wedge G^{c}$
- $\left(()| F)^{c}=[a] F^{c}\right.$
$\circ([\text { [}] F)^{c}=\langle\mathrm{a}) F^{c}$
Theorem (F^{c} is equivalent to the negation of F)
For any $p \in$ Proc and any HM formula F
(1) $p \models F \Longrightarrow p \neq F^{c}$
(2) $p \not \vDash F \Longrightarrow p \vDash F^{c}$

Lecture 5 ()

$$
\text { Semantics and Verification } 2006
$$

Image-Finite System

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS. We call it image-finite iff for every $p \in$ Proc and every $a \in$ Act the set

$$
\left\{p^{\prime} \in \operatorname{Proc} \mid p \xrightarrow{a} p^{\prime}\right\}
$$

s finite

Hennessy-Milner Logic - Denotational Semantics
For a formula F let $\llbracket F \rrbracket \subseteq$ Proc contain all states that satisfy F
Denotational Semantics: 【-】: Formulae $\rightarrow 2^{\text {Proc }}$

- $\llbracket t t \rrbracket=\operatorname{Proc}$
- $\llbracket f \rrbracket=\emptyset$
- $\llbracket F \vee G \rrbracket=\llbracket F \rrbracket \cup \llbracket G \rrbracket$
- $\llbracket F \wedge G \rrbracket=\llbracket F \rrbracket \cap \llbracket G \rrbracket$
$-\llbracket\langle a\rangle F \rrbracket=\langle\cdot a \cdot\rangle \llbracket F \rrbracket$
- $\llbracket[a] F \rrbracket=[\cdot a \cdot] \llbracket F \rrbracket$
where $\langle\cdot a \cdot\rangle,[\cdot a \cdot]: 2^{(\text {Proc })} \rightarrow 2^{(\text {Proc })}$ are defined by

$$
\langle\cdot a \cdot\rangle S=\left\{p \in \operatorname{Proc} \mid \exists p^{\prime} \cdot p \xrightarrow{a} p^{\prime} \text { and } p^{\prime} \in S\right\}
$$

$$
[\cdot a \cdot] S=\left\{p \in \operatorname{Proc} \mid \forall p^{\prime} . p \xrightarrow{a} p^{\prime} \Longrightarrow p^{\prime} \in S\right\} .
$$

$$
\text { Lecture } 50
$$

$$
\text { Semantics and Verification } 2006
$$

8/12
Relationship between HM Logic and Strong Bisimilarity

Theorem (Hennessy-Milner)

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an image-finite LTS and $p, q \in S t$. Then

$$
\begin{aligned}
& \qquad p \sim q \\
& \text { if and only if } \\
& \text { for every HM formula } F:(p \models F \Longleftrightarrow q \models F)
\end{aligned}
$$

The Correspondence Theorem

Theorem

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS, $p \in$ Proc and F a formula of Hennessy-Milner logic. Then

$$
p \models F \quad \text { if and only if } \quad p \in \llbracket F \rrbracket .
$$

Proof: by structural induction on the structure of the formula F.

$$
\text { Lecture } 50
$$

Semantics and Verification 2006
CWB Session

borg\$ /pack/FS/CWB/cwb

> input "hm.cwb";
hm.cwb
print;
agent $S=a . S 1$;
agent $\mathrm{S} 1=\mathrm{b} .0+\mathrm{c} .0$;
agent $\mathrm{T}=\mathrm{a} . \mathrm{T} 1+\mathrm{a} . \mathrm{T} 2 ;$ agent $\mathrm{T} 1=\mathrm{b} .0$; agent T 2 = c.0;
help logic;
checkprop(S, <a>(T \& <c>T)); true
$\operatorname{checkprop}(T,\langle a\rangle(\langle b\rangle T \&<c>T))$ false help dfstrong;
dfstrong (S,T)
[a]T
> exit;

