Tarski's Fixed Point Theorem – Summary

Let (D, \sqsubseteq) be a complete lattice and let $f : D \to D$ be a monotonic function.

Tarski's Fixed Point Theorem

Then *f* has a unique **largest fixed point** z_{max} and a unique **least fixed point** z_{min} given by:

$$z_{max} \stackrel{\text{def}}{=} \sqcup \{ x \in D \mid x \sqsubseteq f(x) \}$$
$$z_{min} \stackrel{\text{def}}{=} \sqcap \{ x \in D \mid f(x) \sqsubseteq x \}$$

Computing Fixed Points in Finite Lattices If D is a finite set then there exist integers M, m > 0 such that • $z_{max} = f^M(\top)$ • $z_{min} = f^m(\bot)$

1 / 12	HML with One Recursively Defined Variable
	Syntax of Formulae Formulae are given by the following abstract syntax
	$F ::= X \mid tt \mid ff \mid F_1 \wedge F_2 \mid F_1 \vee F_2 \mid \langle a \rangle F \mid [a]F$
	where $a \in Act$ and X is a distinguished variable with a definition • $X \stackrel{\min}{=} F_X$, or $X \stackrel{\max}{=} F_X$
	such that F_X is a formula of the logic (can contain X).
	How to Define Semantics?
	For every formula F we define a function $O_F: 2^{Proc} \rightarrow 2^{Proc}$ s.t.

if S is the set of processes that satisfy X then
 O_F(S) is the set of processes that satisfy F.

Definition of Strong Bisimulation

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

Strong Bisimulation A binary relation $R \subseteq Proc \times Proc$ is a **strong bisimulation** iff whenever $(s, t) \in R$ then for each $a \in Act$: • if $s \xrightarrow{a} s'$ then $t \xrightarrow{a} t'$ for some t' such that $(s', t') \in R$ • if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in R$.

Two processes $p, q \in Proc$ are **strongly bisimilar** $(p \sim q)$ iff there exists a strong bisimulation R such that $(p, q) \in R$.

$$\sim = \bigcup \{ R \mid R \text{ is a strong bisimulation} \}$$

Semantics and Verification 2006

2 / 12 Lecture 7 ()

3 / 12

Definition of $O_F : 2^{Proc} \rightarrow 2^{Proc}$ (let $S \subseteq Proc$)

 $\begin{array}{rcl} O_X(S) &=& S\\ O_{tt}(S) &=& Proc\\ O_{ft}(S) &=& \emptyset\\ O_{F_1 \wedge F_2}(S) &=& O_{F_1}(S) \cap O_{F_2}(S)\\ O_{F_1 \vee F_2}(S) &=& O_{F_1}(S) \cup O_{F_2}(S)\\ O_{\langle a \rangle F}(S) &=& \langle \cdot a \cdot \rangle O_F(S)\\ O_{[a]F}(S) &=& [\cdot a \cdot] O_F(S) \end{array}$

 O_F is monotonic for every formula F

Lecture 7 ()

 $S_1 \subseteq S_2 \Rightarrow O_F(S_1) \subseteq O_F(S_2)$

Proof: easy (structural induction on the structure of F).

Semantics and Verification 2006

Lecture 7

- bisimulation as a fixed point
- Hennessy-Milner logic with recursively defined variables
- game semantics and temporal properties of reactive systems

• characteristic property

 Lecture 7 ()
 Semantics and Verification 2006
 1 / 12

 Strong Bisimulation as a Greatest Fixed Point
 Function $\mathcal{F} : 2^{(Proc \times Proc)} \rightarrow 2^{(Proc \times Proc)}$ Let $S \subseteq Proc \times Proc$. Then we define $\mathcal{F}(S)$ as follows:

 $(s, t) \in \mathcal{F}(S)$ if and only if for each $a \in Act$:
 • if $s \xrightarrow{a} s'$ then $t \xrightarrow{a} t'$ for some t' such that $(s', t') \in S$

 • if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in S$.

 Observations
 • $(2^{(Proc \times Proc)}, \subseteq)$ is a complete lattice and \mathcal{F} is monotonic

 • S is a strong bisimulation if and only if $S \subseteq \mathcal{F}(S)$

 Strong Bisimilarity is the Greatest Fixed Point of \mathcal{F}

$$\sim = \bigcup \{ S \in 2^{(Proc \times Proc)} \mid S \subseteq \mathcal{F}(S) \}$$

Lecture 7 ()

Semantics and Verification 2006

4 / 12

Lecture 7 ()

Semantics and Verification 2006

5 / 12

6 / 12

Semantics

Observation

We know that $(2^{Proc}, \subseteq)$ is a **complete lattice** and O_F is **monotonic**, so O_F has a unique greatest and least fixed point.

Semantics of the Variable X

• If $X \stackrel{\text{max}}{=} F_X$ then

 $\llbracket X \rrbracket = \bigcup \{ S \subseteq Proc \mid S \subseteq O_{F_X}(S) \}.$

• If $X \stackrel{\min}{=} F_X$ then

 $\llbracket X \rrbracket = \bigcap \{ S \subseteq Proc \mid O_{F_X}(S) \subseteq S \}.$

Semantics and Verification 2006

Lecture 7 ()	Semantics and Verification 2006	7 / 12	Lecture 7 ()	Semant	ics and Verification 2006	
Game Characterization			Selection of Temporal Properties			
			()	$X \stackrel{\max}{=} F \land [Act] X$ $X \stackrel{\min}{=} F \lor \langle Act \rangle X$		
Theorem • $s \models F$ if and only if from (s, F)	the defender has a universal winning strateş	gy	()	$X \stackrel{\max}{=} F \land ([Act X \stackrel{\min}{=} F \lor (\langle Act X \stackrel{\min}{=} F \lor (\langle Act X \stackrel{\max}{=} F \lor (\langle Act X \mathrel (Act X \mathrel (Act$, ,	
• $s \not\models F$ if and only if from (s, F)	the attacker has a universal winning strateg	y		$X \stackrel{\max}{=} G \lor (F \land X \stackrel{\min}{=} G \lor (F \land Y)$	[Act]X) $(Act angle tt \land [Act]X)$	
			Using until we	can express e.g.	Inv(F) and Even(F):	
			lı	$\operatorname{nv}(F)\equiv F\;\mathcal{U}^w\mathrm{f\!f}$	$\mathit{Even}(\mathit{F}) \equiv$	

Lecture 7 ()

Lecture 7 ()

10 / 12

Game Characterization

Intuition: the attacker claims $s \not\models F$, the defender claims $s \models F$.

Configurations of the game are of the form (s, F)

• $(s, F_1 \land F_2)$ has two successors (s, F_1) and (s, F_2)

• $(s, F_1 \lor F_2)$ has two successors (s, F_1) and (s, F_2)

• (s, [a]F) has successors (s', F) for every s' s.t. $s \xrightarrow{a} s'$

• $(s, \langle a \rangle F)$ has successors (s', F) for every s' s.t. $s \xrightarrow{a} s'$

• (s, tt) and (s, ff) have no successors

• (s, X) has one successor (s, F_X)

(selected by the attacker)

(selected by the defender)

(selected by the attacker)

(selected by the defender)

Semantics and Verification 2006

 $Even(F) \equiv tt \mathcal{U}^s F$

11 / 12

Lecture 7 ()

Semantics and Verification 2006

12 / 12

Who is the Winner?

Play is a maximal sequence of configurations formed according to the rules given on the previous slide.

Finite Play

- The attacker is the winner of a finite play if the defender gets stuck or the players reach a configuration (s, ff).
- The defender is the winner of a finite play if the attacker gets stuck or the players reach a configuration (s, tt).

Infinite Play

- The **attacker** is the winner of an infinite play if X is defined as $X \stackrel{\min}{=} F_X.$
- The **defender** is the winner of an infinite play if X is defined as $X \stackrel{\text{max}}{=} F_X.$

Lecture 7 () Semantics and Verification 2006	9 / 12				
Examples of More Advanced Recursive Formulae					
Nested Definitions of Recursive Variables					
$X \stackrel{\min}{=} Y \lor \langle Act \rangle X$ $Y \stackrel{\max}{=} \langle a \rangle tt \land \langle Act \rangle Y$					
Solution: compute first $\llbracket Y \rrbracket$ and then $\llbracket X \rrbracket$.					
Mutually Recursive Definitions					
$X \stackrel{\max}{=} [a] Y \qquad \qquad Y \stackrel{\max}{=} \langle a \rangle X$					
Solution: consider a complete lattice $(2^{Proc} \times 2^{Proc}, \sqsubseteq)$ where $(S_1, S_2) \sqsubseteq (S'_1, S'_2)$ iff $S_1 \subseteq S'_1$ and $S_2 \subseteq S'_2$.					
Theorem (Characteristic Property for Finite-State Processes)					
Let <i>s</i> be a process with finitely many reachable states. There exists a property X_s s.t. for all processes $t: s \sim t$ if and only if $t \in [\![X_s]\!]$.					