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bisimulation as a fixed point

Hennessy-Milner logic with recursively defined variables
game semantics and temporal properties of reactive systems
characteristic property
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Strong Bisimulation as a Greatest Fixed Point

Function F : 2(Proc><Proc) _ 2(Proc><Proc)
Let S C Proc x Proc. Then we define F(S) as follows:
(s,t) € F(S) if and only if for each a € Act:
o if s 2+ &' then t -2 t' for some t’ such that (s/,t') € S

o if t =% t' then s == &' for some s such that (s/,t') € S.
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Observations
o (2(ProcxProc) €Y is a complete lattice and F is monotonic
o S is a strong bisimulation if and only if S C F(S)

Strong Bisimilarity is the Greatest Fixed Point of F
~— U{S c 2(Proc><Proc) ‘ ScC ]—'(5)}
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Tarski's Fixed Point Theorem — Summary

Let (D,C) be a complete lattice and let f : D — D be a monotonic
function.

Tarski's Fixed Point Theorem

Then f has a unique largest fixed point z,,,, and a unique least fixed
point z,,i, given by:

Zmax L U{x € D | x C f(x)}

Zmin & N{x € D | f(x) C x}

Computing Fixed Points in Finite Lattices

If D is a finite set then there exist integers M, m > 0 such that
0 Zmax = FM(T)
0 Zmin = f™M(L)
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HML with One Recursively Defined Variable
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Syntax of Formulae
Formulae are given by the following abstract syntax

Fo=X |t | f| AAFR | RVF | (aF | [aF

where a € Act and X is a distinguished variable with a definition
o X ™ Fy, or X & Fy

such that Fx is a formula of the logic (can contain X).

How to Define Semantics?
For every formula F we define a function Of : 2P70¢ — 2Proc s ¢,

o if S is the set of processes that satisfy X then

o Of(S) is the set of processes that satisfy F.
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Definition of Strong Bisimulation

Let (Proc, Act,{—2-| a € Act}) be an LTS.

Strong Bisimulation

A binary relation R C Proc x Proc is a strong bisimulation iff whenever
(s,t) € R then for each a € Act:

o if s 2+ &' then t -2 t’ for some t’ such that (s, t') € R

o if t =% t/ then s = ' for some s’ such that (s',t') € R.

Two processes p, g € Proc are strongly bisimilar (p ~ q) iff there exists a
strong bisimulation R such that (p, q) € R.

~ = U{R | R is a strong bisimulation}
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Definition of Of : 2P°¢ — 2Pr¢ (let S C Proc)
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Ox(s) = S
0#(S) = Proc
Of(S) = 0
OFl/\Fz(S) = OFI(S) n OFZ(S)
OFlVFQ(S) = OFI(S) U OFQ(S)
O@r(S) = (-a)Or(9)
Or(S) = [2]0&(S)

OFf is monotonic for every formula F

51 C S = Or(51) C Op(S2)

Proof: easy (structural induction on the structure of F).
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Semantics

Observation

We know that (2P°¢, C) is a complete lattice and OF is monotonic, so
OFf has a unique greatest and least fixed point.

Semantics of the Variable X
o If X "=° Fx then

X1 = J{S C Proc | S C OF,(5)}.

o If X ™ £y then

[X1=("[{S C Proc | O, (S) C S}
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Game Characterization

Theorem

o s |= F if and only if the defender has a universal winning strategy
from (s, F)

o s b~ F if and only if the attacker has a universal winning strategy
from (s, F)
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Game Characterization

Intuition: the attacker claims s [£ F, the defender claims s = F.

Configurations of the game are of the form (s, F)

o (s, tt) and (s, ff) have no successors

o (s,X) has one successor (s, Fx)

o (s, F1 A F2) has two successors (s, F1) and (s, F»)
(selected by the attacker)

o (s, F1 V F2) has two successors (s, F1) and (s, F»)
(selected by the defender)

o (s, [a]F) has successors (s', F) for every s’ s.t. s —— s
(selected by the attacker)

o (s, (a)F) has successors (s', F) for every s’ s.t. s — s’
(selected by the defender)
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Selection of Temporal Properties

o Inv(F): X "£ FA[Act]X
o Pos(F): X ™ Fv (Act)X

X "E°F A ([Act]ff v (Act)X)

X = FV ({Act)tt A [Act]X)

©

Safe(F):
Even(F):

©

o FU“G: X" GV (FAJAct]X)
FusG: X™ GV (FA(Act)tt A[Act]X)

©

Using until we can express e.g. Inv(F) and Even(F):

Inv(F)=FU"“ Even(F)=t U*F
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Who is the Winner?

Play is a maximal sequence of configurations formed according to the
rules given on the previous slide.
Finite Play
o The attacker is the winner of a finite play if the defender gets stuck
or the players reach a configuration (s, ff).
o The defender is the winner of a finite play if the attacker gets stuck
or the players reach a configuration (s, tt).

Infinite Play
o The attacker is the winner of an infinite play if X is defined as

X ™M g

o The defender is the winner of an infinite play if X is defined as
X " Fy
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Examples of More Advanced Recursive Formulae

Nested Definitions of Recursive Variables
X "™y v (Act) X Y " (a)it A (Act) Y
Solution: compute first [Y] and then [X].

Mutually Recursive Definitions
X "= [a]Y Y "= (a)X

Solution: consider a complete lattice (27°¢ x 2Pr¢ C) where
(51,52) C (Si, Sé) iff 1 C Si and S, C Sé

Theorem (Characteristic Property for Finite-State Processes)

Let s be a process with finitely many reachable states. There exists a
property X s.t. for all processes t: s ~ t if and only if t € [X;].
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