Tutorial 5

Exercise 1*

Consider the following labelled transition system.

1. Decide whether the state s satisfies the following formulae of Hennessy-Milner logic:

- $s \stackrel{?}{=}\langle a\rangle \#$
- $s \stackrel{?}{=}\langle b\rangle$ t
- $s \stackrel{?}{\models}[a]$ ff
- $s \stackrel{?}{\models}[b] f f$
- $s \stackrel{?}{\models}[a]\langle b\rangle \psi$
- $s \stackrel{?}{=}\langle a\rangle\langle b\rangle \#$
- $s \stackrel{?}{=}[a]\langle a\rangle[a][b]$ ff
- $s \stackrel{?}{\models}\langle a\rangle(\langle a\rangle \# \wedge\langle b\rangle t)$
- $s \stackrel{?}{\models}[a](\langle a\rangle t \vee\langle b\rangle t)$
- $s \stackrel{?}{\models}\langle a\rangle([b][a] f f \wedge\langle b\rangle t)$
- $s \stackrel{?}{\models}\langle a\rangle([a](\langle a\rangle t \in[b] f f) \wedge\langle b\rangle f f)$

2. Compute the following sets according to the denotational semantics for Hennessy-Milner logic.

- $\llbracket[a][b] f f \rrbracket=$?
- $\llbracket\langle a\rangle(\langle a\rangle \# \wedge\langle b\rangle t) \rrbracket=$?
- $\llbracket[a][a][b] f f \rrbracket=$?
- $\llbracket[a](\langle a\rangle t \vee\langle b\rangle t) \rrbracket=$?

Exercise 2

Find (one) labelled transition system with an initial state s such that it satisfies (at the same time) the following properties:

- $s \models\langle a\rangle(\langle b\rangle\langle c\rangle \# \wedge\langle c\rangle \pi)$
- $s \vDash\langle a\rangle\langle b\rangle([a] f f \wedge[b] f f \wedge[c] f f)$
- $s \models[a]\langle b\rangle([c] f f \wedge\langle a\rangle t t)$

Exercise 3*

Consider the following labelled transition system.

It it true that $s \nsim t, s \nsim v$ and $t \nsim v$. Find a distinguishing formula of Hennessy-Milner logic for the pairs

- s and t
- s and v
- t and v.

Exercise 4*

For each of the following CCS expressions decide whether they are strongly bisimilar and if no, find a distinguishing formula in Hennessy-Milner logic.

- b.a.Nil + b.Nil and b.(a.Nil +b.Nil)
- a.(b.c.Nil + b.d.Nil) and a.b.c.Nil + a.b.d.Nil
- a.Nil|b.Nil and a.b.Nil + b.a.Nil
- (a.Nil|b.Nil) +c.a.Nil and a.Nil|(b.Nil+c.Nil)

Home exercise: verify your claims in CWB (use the strongeq and checkprop commands) and check whether you found the shortest distinguishing formula (use the dfstrong command).

Exercise 5 (optional)

Prove that for every Hennessy-Milner formula F and every state $p \in$ Proc:

$$
p \models F \quad \text { if and only if } p \in \llbracket F \rrbracket .
$$

Hint: use structural induction on the structure of the formula F.

Exercise 6 (optional, for those of you that find Exercise 5 too easy)

Solve exercise 4.0.7 from Reactive Systems: Modelling, Specificaton and Verification, page 82.

