Tutorial 6

Exercise 1*

Draw a graphical representation of the complete lattice $(2^{\{a,b,c\}},\subseteq)$ and compute supremum and infimum of the following sets:

- $\sqcap \{\{a\}, \{b\}\} = ?$
- $\sqcup \{\{a\}, \{b\}\} = ?$
- $\sqcap\{\{a\},\{a,b\},\{a,c\}\}=?$
- $\sqcup \{\{a\}, \{a,b\}, \{a,c\}\} = ?$
- $\sqcap\{\{a\},\{b\},\{c\}\}=?$
- $\sqcup \{\{a\}, \{b\}, \{c\}\} = ?$
- $\sqcap\{\{a\},\{a,b\},\{b\},\emptyset\}=?$
- $\sqcup \{\{a\}, \{a,b\}, \{b\}, \emptyset\} = ?$

Exercise 2

Prove that for any partially ordered set (D, \sqsubseteq) and any $X \subseteq D$, if supremum of X $(\sqcup X)$ and infimum of X $(\sqcap X)$ exist then they are uniquely defined. (Hint: use the definition of supremum and infimum and antisymmetry of \sqsubseteq .)

Exercise 3

Let (D, \sqsubseteq) be a complete lattice. What are $\sqcup \emptyset$ and $\sqcap \emptyset$ equal to?

Exercise 4*

Consider the complete lattice $(2^{\{a,b,c\}},\subseteq)$. Define a function $f:2^{\{a,b,c\}}\to 2^{\{a,b,c\}}$ such that f is monotonic.

- Compute the greatest fixed point by using directly the Tarski's fixed point theorem.
- Compute the least fixed point by using the Tarski's fixed point theorem for finite lattices (i.e. by starting from \bot and by applying repeatedly the function f until the fixed point is reached).

Exercise 5

Consider the following labelled transition system.

$$s \xrightarrow{b} s_1 \xrightarrow{b} s_2$$

Compute for which sets of states $[X] \subseteq \{s, s_1, s_2\}$ the following formulae are true.

- $X = \langle a \rangle t t \vee [b] X$
- $X = \langle a \rangle t t \vee ([b]X \wedge \langle b \rangle t)$

Exercise 6 (optional)

Exercise A.2.2, part 2. on page 228 in Reactive Systems: Modelling, Specification and Verification.