
TAPAAL: Editor, Simulator and Verifier of
Timed-Arc Petri Nets

Joakim Byg, Kenneth Yrke Jørgensen, and Jǐŕı Srba?

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg Øst, Denmark

Abstract. TAPAAL is a new platform independent tool for modelling,
simulation and verification of timed-arc Petri nets. TAPAAL provides a
stand-alone editor and simulator, while the verification module translates
timed-arc Petri net models into networks of timed automata and uses the
UPPAAL engine for the automatic analysis.
We report on the status of the first release of TAPAAL (available at
www.tapaal.net), on its new modelling features and we demonstrate the
efficiency and modelling capabilities of the tool on a few examples.

1 Introduction

Petri net is a popular mathematical model of discrete distributed systems in-
troduced in 1962 by Carl Adam Petri in his PhD thesis. Since then numerous
extensions of the basic place/transition model were studied and supported by
a number of academic as well as industrial tools [8]. Many recent works con-
sider various extensions of the Petri net model with time features that can be
associated to places, transitions, arcs or tokens. A recent overview aiming at a
comparison of the different time dependent models (including timed automata)
is given in [15].

In the TAPAAL tool we consider Timed-Arc Petri Nets (TAPN) [4, 7] where
an age (a real number) is associated with each token in a net and time intervals
are placed on arcs in order to restrict the ages of tokens that can be used for
firing a transition. The advantages of this model are an intuitive semantics and
the decidability of a number of problems like coverability and boundedness (for
references see [15]). On the other hand, the impossibility to describe urgent
behaviour limited its modelling power and wider applicability. TAPAAL extends
the TAPN model with new features of invariants and transport arcs in order to
model urgent behaviour and transportation of tokens without resetting their age.

TAPAAL has an intuitive modelling environment for editing and simulation
of TAPN. It also provides a verification module with automatic checking of
bounded TAPN models against safety and liveness requirements via a translation
to networks of timed automata and then using the UPPAAL [16] engine as a
back-end for verification.
? Author was partially supported by Ministry of Education of the Czech Republic,

project No. MSM 0021622419.



The connection between bounded TAPN and timed automata was studied
in [13, 14, 5] and while theoretically satisfactory, the translations described in
these papers are not suitable for a tool implementation as they either cause
an exponential blow-up in the size or create a new parallel component with a
fresh local clock for each place in the net. As UPPAAL performance becomes
significantly slower with the growing number of parallel processes and clocks,
the verification of larger nets with little or no concurrent behaviour (few tokens
in the net) becomes intractable.

In TAPAAL we suggest a novel translation technique where a fresh parallel
component (with a local clock) is created only for each token in the net. The
proposed translation also transforms safety and liveness properties (EF, AG,
EG, AF) into equivalent UPPAAL queries. One of the main advantages of this
translation approach is the possibility to use active clock reduction and symmetry
reduction techniques recently implemented in UPPAAL. As a result the verifiable
size of models increases by orders of magnitude.

To the best of our knowledge, TAPAAL is the first publicly available tool
which offers modelling, simulation and verification of timed-arc Petri nets with
continuous time. There is only one related tool prototype mentioned in [1] where
the authors discuss a coverability algorithm for general (unbounded) nets, though
without any urgent behaviour. Time features (time stamps) connected to tokens
can be modelled also in Coloured Petri Nets using CPN Tools [10], however,
time passing is represented here using a global clock rather than the local ones
as in TAPN, only discrete time semantics is implemented in CPN Tools and
the analysis can be nondeterministic as the time stamps are in some situations
ignored during the state-space construction.

2 TAPAAL Framework

TAPAAL offers an editor, a simulator and a verifier for TAPN. It is written in
Java 6.0 using Java Swing for the GUI components and it is so available for the
majority of existing platforms.

TAPAAL’s graphical editor features all necessary elements for a creation of
TAPN models, including invariants on places and transport arcs. The user inter-
face supports, among others, a select/move feature for moving a selected subnet
of the model as well as an undo/redo buttons allowing the user to move back-
ward and forward in the history during a creation of larger models. Constructed
nets and queries are saved in an interchangeable XML format using the Petri
Net Markup Language (PNML) [12] further extended with TAPAAL specific
timing features. An important aspect of the graphical editor is that it disallows
to enter syntactically incorrect nets and hence no syntax checks are necessary
before calling further TAPAAL modules.

The simulator part of TAPAAL allows one to inspect the behaviour of a
TAPN by graphically simulating the effects of time delays and transition firings.
When firing a transition the user can either manually select the concrete tokens
that will be used for the firing or simply allow the simulator to automatically



select the tokens based on some predefined strategy: youngest, oldest or random.
The simulator also allows the user to step back and forth in the simulated trace,
which makes it easier to investigate alternative net behaviours.

TAPAAL’s verification module enables us to check safety and liveness queries
in the constructed net. Queries are created using a graphical query dialog, com-
pletely eliminating the possibility of introducing syntactical errors and offering
an intuitive and easy to use query formulation mechanism. The TAPAAL query
language is a subset of the CTL logic comprising EF, AG, EG and AF temporal
operators1, however, several TCTL properties can be verified by encoding them
into the net. The actual verification is done via translating TAPN models into
networks of timed automata and by using the model checker UPPAAL. The veri-
fication calls to UPPAAL are seamlessly integrated inside the TAPAAL environ-
ment and the returned error traces (if any) are displayed in TAPAAL’s simulator.
For safety questions concrete traces are displayed whenever the command-line
UPPAAL engine can output them, otherwise the user is offered an untimed
trace and can in the simulation mode experiment with suitable time delays in
order to realize the displayed trace in the net. A number of verification/trace
options found in UPPAAL are also available in TAPAAL, including a symmetry
reduction option which often provides orders of magnitude improvement with
respect to verification time, though at the expense of disallowing trace options
(a current limitation of UPPAAL). Finally, it is possible to check whether the
constructed net is k-bounded or not, for any given k. The tool provides a suitable
under-approximation of the net behaviour in case the net is unbounded.

The TAPAAL code consists of two parts: the editor and simulator, extending
the Platform Independent Petri net Editor project PIPE version 2.5 [9], which is
licensed under the Open Software License 3.0, and a framework for translating
TAPN models into UPPAAL, licensed under the BSD License.

3 Experiments

We shall now report on a few experiments investigating the modelling capabilities
and verification efficiency of TAPAAL. All examples are included in the TAPAAL
distribution and can be directly downloaded also from www.tapaal.net.

3.1 Workflow Processes with Deadlines

Workflow processes provide a classical case study suitable for modelling in dif-
ferent variants of Petri nets. A recent focus is, among others, on the addition of
timing aspects into the automated analysis process. Gonzalez del Foyo and Silva
consider in [6] workflow diagrams extended with task durations and the latest
execution deadline of each task. They provide a translation into Time Petri Nets
(TPN), where clocks are associated with each transition in the net, and use the
tool TINA [3] to analyze schedulability questions. An example of a workflow
process (taken from [6]) is illustrated in Fig. 1. The translation described in [6]
1 At the moment the EG and AF queries are supported only for nets with transitions

that do not contain more than two input and two output places.



Task Duration Deadline

A0 5 5

A1 4 9

A2 4 15

A3 2 9

A4 2 8

A5 3 13

A6 3 18

A7 2 25

A0

A1 A2

A3

A4

A5 A6

A7

Sync

Sync

Fig. 1. A simple workflow diagram and its timed-arc Petri net model.

relies on preprocessing of the workflow so that the individual (relative) deadlines
for each task must be computed before a TPN model can be constructed.

In our model of extended timed-arc Petri nets a more direct translation
without any preprocessing can be given. See Fig. 1 for a TAPAAL Petri net
model resulting from the translation of the workflow example. Every transition
with the naming schema Ai done corresponds to the finalisation of the execution
of the task Ai. The duration constraints are encoded directly into the net and the
global deadlines are handled by adding a fresh place called Deadlines, containing
one token (initially of age 0). The latest execution deadline Xi of a task Ai

(where 0 ≤ i ≤ 7) is then ensured by adding (for each i) a pair of transport
arcs constrained with the time interval [0, Xi] between the place Deadlines and
the corresponding transition Ai done. A schematic illustration is given in Fig. 1.
Notice that transport arcs have different arrow tips than the standard arcs and
are annotated with the label 1 to denote which arcs are paired into a route for
the age-preserving token transportation (the annotations are relevant only in
the presence of multiple transport arcs connected to a single transition). As the
age of the token in the place Deadlines is never reset, it is guaranteed that the
latest execution deadlines of all tasks are met.

The workflow example was verified in TAPAAL against the query EF
(Work Done = 1) and by selecting the fastest trace option the tool returned in
0.1s the following scheduling of task executions together with the necessary time



delays: 5, A0 Done, 2, A3 Done, A4 Done, Sync1 Done, 2, A1 Done, 1, A5 Done, 3,
A2 Done, A6 Done, Sync2 Done, 2, A7 Done.

3.2 Fischer’s Protocol and Alternating Bit Protocol

Fischer’s protocol [11] for mutual exclusion and alternating bit protocol [2] for
network communication via lossy communication medium are well-known and
scalable examples used for a tool performance testing. In our experiments we
managed to verify Fischer’s protocol (with a TAPN model taken from [1]) for
200 processes (each with its own clock) within 29 minutes, while an equivalent
timed automaton model of the protocol provided in the UPPAAL distribution
verified 200 processes in 2 hours and 22 minutes. The experiment showed a
speed-up of 205% for 100 processes, 293% for 150 processes and 393% for 200
processes. The explanation to this seemingly surprising phenomenon is that the
translated timed automata model of the protocol contains on one hand more
discrete states than the native UPPAAL model (about twice as many), but on
the other hand the zones that are tested for inclusion are smaller. As a result, the
verification times for the TAPAAL produced automata are significantly faster.

Correctness of the alternating bit protocol was verified for up to 50 messages
(each message has its own time-stamp) currently present in the protocol in less
than two hours, while a native UPPAAL model verification took more than a
day without any result. The speed-up was even more significant than in the case
of Fischer’s protocol: for 15 messages UPPAAL used 136 seconds and TAPAAL
7.3 seconds, for 17 messages UPPAAL needed 32 minutes and TAPAAL 13.7
seconds. There was also a difference in the tool performance depending on what
kind of verification options were used, demonstrating a similar pattern of be-
haviour as in the case of Fischer’s protocol (models with more discrete states
and smaller zones verify faster).

4 Conclusion

TAPAAL offers a graphical environment for editing, simulation and verification
of timed-arc Petri nets and the introduction of novel elements like invariants
on places and transport arcs provides useful features particularly suitable for
modelling of workflow processes, time sensitive communication protocols and
other systems. The tool shows a promising performance in verification of safety
and liveness properties.

The future development will focus on incorporating C-like functions and data
structures into tokens in the net, on extending the firing policies with urgency
and priorities, and on generalizing the query language. The aim is also to provide
concrete error traces for liveness properties, rather than only the abstract or
untimed ones (a current limitation of UPPAAL). We also plan to extend the
model with cost, probability and game semantics and then use the corresponding
UPPAAL branches (CORA, PROB and TIGA) for verification.



Acknowledgments. We would like to thank the UPPAAL team at Aalborg Uni-
versity and in particular Alexandre David for numerous discussions on the topic.

References

[1] P.A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In Proceedings
of the 22nd International Conference on Application and Theory of Petri Nets
(ICATPN’01), volume 2075 of LNCS, pages 53–70. Springer-Verlag, 2001.

[2] K.A. Bartlett, R.A. Scantlebury, and P.T. Wilkinson. A note on reliable full-
duplex transmission over half-duplex links. Commun. ACM, 12(5):260–261, 1969.

[3] B. Berthomieu, P-O. Ribet, and F. Vernadat. The tool TINA — construction of
abstract state spaces for Petri nets and time Petri nets. International Journal of
Production Research, 42(14):2741–2756, 2004.

[4] T. Bolognesi, F. Lucidi, and S. Trigila. From timed Petri nets to timed LOTOS.
In Proceedings of the IFIP WG 6.1 Tenth International Symposium on Protocol
Specification, Testing and Verification (Ottawa 1990), pages 1–14, 1990.

[5] P. Bouyer, S. Haddad, and P.-A. Reynier. Timed Petri nets and timed automata:
On the discriminating power of Zeno sequences. Information and Computation,
206(1):73–107, 2008.

[6] Pedro M. Gonzalez del Foyo and José Reinaldo Silva. Using time Petri nets
for modelling and verification of timed constrained workflow systems. In ABCM
Symposium Series in Mechatronics, volume 3 of ABCM, pages 471–478. ABCM -
Brazilian Society of Mechanical Sciences and Engineering, 2008.

[7] H.M. Hanisch. Analysis of place/transition nets with timed-arcs and its applica-
tion to batch process control. In Proceedings of the 14th International Conference
on Application and Theory of Petri Nets (ICATPN’93), volume 691 of LNCS,
pages 282–299, 1993.

[8] F. Heitmann, D. Moldt, K.H. Mortensen, and H. Rölke. Petri nets
tools database quick overview. http://www.informatik.uni-hamburg.de/

TGI/PetriNets/tools/quick.html.
[9] Platform Independent Petri net Editor 2.5. http://pipe2.sourceforge.net.

[10] Kurt Jensen, Lars Kristensen, and Lisa Wells. Coloured Petri nets and CPN
tools for modelling and validation of concurrent systems. International Journal
on Software Tools for Technology Transfer (STTT), 9(3):213–254, 2007.

[11] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems, 5(1):1–11, 1987.

[12] Petri Net Markup Language. http://www2.informatik.hu-berlin.de/top/pnml.
[13] J. Sifakis and S. Yovine. Compositional specification of timed systems. In Proceed-

ings of the 13th Annual Symposim on Theoretical Aspects of Computer Science
(STACS’96), volume 1046 of LNCS, pages 347–359. Springer-Verlag, 1996.

[14] J. Srba. Timed-arc Petri nets vs. networks of timed automata. In Proceedings
of the 26th International Conference on Application and Theory of Petri Nets
(ICATPN 2005), volume 3536 of LNCS, pages 385–402. Springer-Verlag, 2005.

[15] J. Srba. Comparing the expressiveness of timed automata and timed extensions of
Petri nets. In 6th Int. Conf. on Formal Modelling and Analysis of Timed Systems
(FORMATS’08), volume 5215 of LNCS, pages 15–32. Springer, 2008.

[16] UPPAAL. www.uppaal.com.


