
A Framework for Relating Timed Transition
Systems and Preserving TCTL Model Checking

Lasse Jacobsen, Morten Jacobsen, Mikael H. Møller, and Jǐŕı Srba

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, DK-9220 Aalborg East, Denmark

Abstract. Many formal translations between time dependent models
have been proposed over the years. While some of them produce timed
bisimilar models, others preserve only reachability or (weak) trace equiv-
alence. We suggest a general framework for arguing when a translation
preserves Timed Computation Tree Logic (TCTL) or its safety fragment.
The framework works at the level of timed transition systems, making it
independent of the modeling formalisms and applicable to many of the
translations published in the literature. Finally, we present a novel trans-
lation from extended Timed-Arc Petri Nets to Networks of Timed Au-
tomata and using the framework argue that it preserves the full TCTL.
The translation has been implemented in the verification tool TAPAAL.

1 Introduction

Time dependent formal models like Timed Automata (TA) [1], Time Petri Nets
(TPN) [15] and Timed-Arc Petri Nets (TAPN) [6] have received a significant at-
tention in the theory of embedded systems. While originally developed by differ-
ent communities of researchers, there has recently been devoted considerable ef-
fort towards establishing formal relationships among the different models. To this
end, several translations have been developed (see e.g. [5, 6, 8, 9, 10, 11, 14, 17] or
[16, 19] for a more complete overview) and some of them have been implemented
in verification tools like Romeo [12], TAPAAL [9] or the TIOA Toolkit [2].

Many of these translations utilize similar tricks that allow for the simulation
of one system by another. Typically, a single step in one formalism is simulated
by a sequence of steps in the other. We identify a general class of translations that
preserve Timed Computation Tree Logic (TCTL) (see e.g. [16]), a logic suitable
for practical specification of many useful temporal properties. Our main goal is
to provide a framework directly applicable to e.g. tool developers. The theory
was motivated by the translations presented in [9] and [10]. Unlike much work on
TCTL where only infinite alternating runs are considered [16] or the details are
simply not discussed [7, 10], we consider also finite maximal runs that appear
in the presence of stuck computations or time invariants (strict or nonstrict)
and treat the semantics in its full generality as used in some state-of-the-art
verification tools like UPPAAL [3]. This is particularly important for liveness
properties. While some translations in the literature preserve some variant of

timed bisimilarity [8, 10, 11, 14], other translations preserve only reachability
or trace equivalence [4, 9]. Our framework allows us to argue that several such
translations preserve the full TCTL or at least its safety fragment. In this paper
we focus only on the interleaving semantics.

To illustrate the applicability of the framework, we propose a novel, full
TCTL-preserving translation from extended timed-arc Petri nets to UPPAAL
networks of timed automata. Earlier translations either caused exponential blow-
up in the size [8, 17, 18], preserved only safety properties [9], or where not suitable
for implementation in tools due to an inefficient use of clocks and communica-
tion primitives [18]. The translation from TAPN to UPPAAL timed automata
presented in this paper is the first to run in polynomial time while preserving
the full TCTL. We implemented the translation in the tool TAPAAL [9] and the
initial experiments confirm its efficiency also in practice.

Full version of this paper with complete proofs can be found in [13].

2 Preliminaries

We let N, N0, R and R≥0 denote the sets of natural numbers, non-negative inte-
gers, real numbers and non-negative real numbers, respectively. A timed transi-
tion system (TTS) is a quadruple T = (S,−→,AP, µ) where S is a set of states
(or processes), −→⊆ S × S ∪ S × R≥0 × S is a transition relation, AP is a set
of atomic propositions, and µ : S −→ 2AP is a function assigning sets of true
atomic propositions to states.

We write s −→ s′ whenever (s, s′) ∈−→ and call them discrete transitions,
and s d−→ s′ whenever (s, d, s′) ∈−→ and call them delay transitions. We implic-
itly assume the standard axioms of time additivity, time continuity, zero delay
and time determinism (see e.g [5] or [13]). By s[d] we denote the state s′ (if it
exists) such that s d−→ s′ (time determinism ensures the uniqueness of s[d]). We
write s −→ if s −→ s′ for some s′ ∈ S and s 6−→ otherwise. Similarly for d−→.
A run ρ = s0

d0−→ s0[d0] −→ s1
d1−→ s1[d1] −→ s2

d2−→ . . . is a (finite or infinite)
alternating sequence of time delays and discrete actions.

The set of time intervals I is defined by the abstract syntax

I ::= [a, a] | [a, b] | [a, b) | (a, b] | (a, b) | [a,∞) | (a,∞)

where a ∈ N0, b ∈ N and a < b.
We shall now introduce the syntax and semantics of Timed Computation

Tree Logic (TCTL). The presentation is inspired by [16]. Let AP be a set of
atomic propositions. The set of TCTL formulae Φ(AP) over AP is given by

ϕ ::= ℘ | ¬ϕ | ϕ1 ∧ ϕ2 | E(ϕ1 UI ϕ2) | A(ϕ1 UI ϕ2) | E(ϕ1RI ϕ2) | A(ϕ1RI ϕ2)

where ℘ ∈ AP and I ∈ I. Formulae without any occurrence of the operators
A(ϕ1 UI ϕ2) and E(ϕ1RI ϕ2) form the safety fragment of TCTL.

The intuition of the until and release TCTL operators (formalized later on)
is as follows: E(ϕ1 UI ϕ2) is true if there exists a maximal run such that ϕ2

eventually holds within the interval I, and until it does, ϕ1 continuously holds;
E(ϕ1RI ϕ2) is true if there exists a maximal run such that either ϕ2 always
holds within the interval I or ϕ1 occurred previously. As we aim to apply our
framework to concrete case studies with possible tool support, we need to handle
maximal runs in their full generality. Hence we have to consider all possibilities
in which a run can be “stuck”. In this case, we annotate the last transition
of such a run with one of the three special ending symbols (denoted δ in the
definition below).

A maximal run ρ is either

(i) an infinite alternating sequence of the form ρ = s0
d0−→ s0[d0] −→ s1

d1−→
s1[d1] −→ s2

d2−→ s2[d2] −→ . . ., or
(ii) a finite alternating sequence of the form ρ = s0

d0−→ s0[d0] −→ s1
d1−→

s1[d1] −→ . . . −→ sn
δ−→ where δ ∈ {∞, d≤n , d<n } for some dn ∈ R≥0 s.t.

• if δ =∞ then sn
d−→ sn[d] for all d ∈ R≥0,

• if δ = d≤n then sn 6
d−→ for all d > dn and sn

dn−→ sn[dn] s.t. sn[dn] 6−→,
and

• if δ = d<n then sn 6
d−→ for all d ≥ dn, and there exists ds, 0 ≤ ds < dn,

such that for all d, ds ≤ d < dn, we have sn
d−→ sn[d] and sn[d] 6−→.

By MaxRuns(T, s) we denote the set of maximal runs in a TTS T starting at s.
Intuitively, the three conditions in case (ii) describe all possible ways in which

a finite run can terminate. First, a run can end in a state where the time di-
verges. The other two cases define a run which ends in a state from which no
discrete transition is allowed after some time delay, but time cannot diverge ei-
ther (typically caused by the presence of invariants in the model). These cases
differ in whether the bound on the maximal time delay can be reached or not.

Let us now introduce some notation for a given maximal run
ρ = s0

d0−→ s0[d0] −→ s1
d1−→ s1[d1] −→ s2

d2−→ First, r(i, d) denotes
the total time elapsed from the beginning of the run up to some delay d ∈ R≥0

after the i’th discrete transition. Formally, r(i, d) =
(∑i−1

j=0 dj

)
+ d. Second, we

define a predicate validρ : N × R≥0 × I → {true, false} such that validρ(i, d, I)
checks whether the total time for reaching the state si[d] in ρ belongs to the
time interval I , formally

validρ(i, d, I) =


d ≤ di ∧ r(i, d) ∈ I if di ∈ R≥0

r(i, d) ∈ I if di =∞
d ≤ dn ∧ r(i, d) ∈ I if di = d≤n
d < dn ∧ r(i, d) ∈ I if di = d<n .

Third, we define a function historyρ : N × R≥0 → 2N×R≥0 s.t. historyρ(i, d)
returns the set of pairs (j, d′) that constitute all states sj [d′] in ρ preceding si[d],
formally historyρ(i, d) = {(j, d′) | 0 ≤ j < i ∧ 0 ≤ d′ ≤ dj}∪{(i, d′) | 0 ≤ d′ < d}.

Now we can define the satisfaction relation s |= ϕ for a state s ∈ S in a TTS
T = (S,−→,AP, µ) and a TCTL formula ϕ.

s |= ℘ iff ℘ ∈ µ(s)
s |= ¬ϕ iff s 6|= ϕ

s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

s |= E(ϕ1 UI ϕ2) iff ∃ρ ∈ MaxRuns(T, s) .
∃i ≥ 0 .∃d ∈ R≥0 . [validρ(i, d, I) ∧ si[d] |= ϕ2 ∧
∀(j, d′) ∈ historyρ(i, d) . sj [d′] |= ϕ1

]
s |= E(ϕ1RI ϕ2) iff ∃ρ ∈ MaxRuns(T, s) .

∀i ≥ 0 .∀d ∈ R≥0 . validρ(i, d, I)⇒[
si[d] |= ϕ2 ∨ ∃(j, d′) ∈ historyρ(i, d) . sj [d′] |= ϕ1

]
The operators A(ϕ1 UI ϕ2) and A(ϕ1RI ϕ2) are defined analogously by replacing
the quantification ∃ρ ∈ MaxRuns(T, s) with ∀ρ ∈ MaxRuns(T, s).

As expected, the until and release operators are dual [13].

Lemma 1. Let T = (S,−→,AP, µ) be a TTS and s ∈ S. Then s |= A(ϕ1RI ϕ2)
iff s |= ¬E(¬ϕ1 UI ¬ϕ2), and s |= A(ϕ1 UI ϕ2) iff s |= ¬E(¬ϕ1RI ¬ϕ2).

3 Framework Description

In this section, we shall present a general framework for arguing when a simula-
tion of one time dependent system by another preserves satisfiability of TCTL
formulae. We define the notion of one-by-many correspondence, a relation be-
tween two TTSs A and B. If A is in one-by-many correspondence with B then
every transition in A can be simulated by a sequence of transitions in B. Further,
every TCTL formula ϕ can be algorithmically translated into a formulate tr(ϕ)
s.t. A |= ϕ iff B |= tr(ϕ). In the rest of this section, we shall use A and B to
refer to the original and the translated system, respectively.

3.1 One-By-Many Correspondence

As the systemB is simulating a single transition of A by a sequence of transitions,
the systems A and B are comparable only in the states before and after this
sequence was performed. We say that B is stable in such states and introduce a
fresh atomic proposition called stable to explicitly identify this situation. States
that do not satisfy the proposition stable are called intermediate states. We now
define three conditions that B should possess in order to apply to our framework.
The third condition is optional and necessary only for the preservation of liveness
TCTL properties. A TTS (S,→,AP, µ) s.t. stable ∈ AP is

– delay-implies-stable if for any s ∈ S, it holds that s d−→ for some d > 0
implies s |= stable,

– delay-preserves-stable if for any s ∈ S such that s |= stable, if s d−→ s[d] then
s[d] |= stable for all d ∈ R≥0, and

– eventually-stable if for any s0 ∈ S such that s0 |= stable and for any infinite
sequence of discrete transitions ρ = s0 −→ s1 −→ s2 −→ s3 −→ s4 −→ . . .
or any finite nonempty sequence of discrete transitions ρ = s0 −→ s1 −→
· · · −→ sn 6−→ there exists an index i ≥ 1 such that si |= stable. We call such
a sequence a maximal discrete sequence.

We write s s′ if there is an alternating sequence s = s0 −→ s1
0−→ s1 −→

s2
0−→ s2 −→ · · ·

0−→ sn−1 −→ sn = s′ such that s |= stable, s′ |= stable, and
sj 6|= stable for 1 ≤ j ≤ n− 1.

Remark 1. For technical convenience, we introduced zero delays in the definition
of in order to preserve the alternating nature of the sequence. Note that this
is not restrictive as for any s ∈ S we always have s 0−→ s.

Definition 1. Let A = (S,→A,APA, µA) and B = (T,→B ,APB , µB) be two
TTSs s.t. stable ∈ APB and B is delay-implies-stable and delay-preserves-stable
TTS. A relation R ⊆ S × T is a one-by-many correspondence if there exists a
function trp : APA −→ APB such that whenever sR t then

1. t |= stable,
2. s |= ℘ iff t |= trp(℘) for all ℘ ∈ APA,
3. if s −→ s′ then t t′ and s′R t′,
4. if s d−→ s[d] then t

d−→ t[d] and s[d]R t[d] for all d ∈ R≥0,
5. if t t′ then s −→ s′ and s′R t′ and
6. if t d−→ t[d] then s

d−→ s[d] and s[d]R t[d] for all d ∈ R≥0.

If B is moreover an eventually-stable TTS, then we say that R is a complete
one-by-many correspondence. We write s �= t (resp. s �=c t) if there exists a
relation R which is a one-by-many correspondence (resp. a complete one-by-
many correspondence) such that sR t.

Example 1. Consider the TTSs A, B and C in Figure 1 where the sets of propo-
sitions for A, B and C are APA = {p, q} and APB = APC = {p, q, stable}. Then
{(s0[d], t0[d]) | 0 ≤ d ≤ 4.4}∪{(s1, t1), (s2, t4), (s3, t6), (s2, t7)} is a complete one-
by-many correspondence which implies that s0 �=c t0 and {(s0[d], u0[d]) | 0 ≤
d ≤ 4.4} ∪ {(s1, u1), (s2, u4), (s3, u7)} is a one-by-many correspondence which
implies that s0 �= u0. Notice that the system C is not eventually-stable since the
two maximal discrete sequences u1 −→ u5 −→ u6 −→ u6 −→ u6 −→ u6 −→ · · ·
and u1 −→ u2 −→ u3 do not contain any stable states.

Consider now the maximal run ρ = s0
4.4−→ s1 −→ s2

0≤−→ in the system A.
This run witnesses that s0 |= E(¬q R[3,5] q). Similarly, the maximal run ρ′ =

t0
4.4−→ t1 t4

0≤−→ witnesses that t0 |= E((¬q ∧ stable)R[3,5] (q ∨ ¬stable)). ut

A: s0
{p, q}

s1

{p, q}

s2

{q}

s3

{p, q}
4.4

B: t0

{stable, p, q}
t1

{stable, p, q}

t7

{stable, q}

t2

{p}

t3

∅

t5

∅

t4

{stable, q}

t6

{stable, p, q}
4.4

C: u0

{stable, p, q}

u1

{stable, p, q}

u2

∅

u3

∅

u4
{stable, q}

u5

∅
u6 ∅ u7

{stable, p, q}
4.4

Fig. 1. Three TTSs such that s0 �=c t0 and s0 �= u0.

Now we translate TCTL formulae. Let APA and APB be sets of atomic
propositions such that stable ∈ APB and let trp : APA −→ APB be a function
translating atomic propositions. We define tr : Φ(APA)→ Φ(APB) as follows:

tr(℘) = trp(℘)
tr(¬ϕ1) = ¬tr(ϕ1)

tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2)
tr(E(ϕ1 UI ϕ2)) = E((tr(ϕ1) ∨ ¬stable)UI (tr(ϕ2) ∧ stable))
tr(A(ϕ1 UI ϕ2)) = A((tr(ϕ1) ∨ ¬stable)UI (tr(ϕ2) ∧ stable))
tr(E(ϕ1RI ϕ2)) = E((tr(ϕ1) ∧ stable)RI (tr(ϕ2) ∨ ¬stable))
tr(A(ϕ1RI ϕ2)) = A((tr(ϕ1) ∧ stable)RI (tr(ϕ2) ∨ ¬stable))

We are now ready to state the main result of this section.

Theorem 1. Let A = (S,→A,APA, µA) and B = (T,→B ,APB , µB) be two
TTSs such that stable ∈ APB and let s0 ∈ S and t0 ∈ T . If s0 �=c t0 then for
any TCTL formula ϕ, s0 |= ϕ if and only if t0 |= tr(ϕ). If s0 �= t0 then the claim
holds only for any formula ϕ from the safety fragment of TCTL.

Proof (Sketch). The proof is by structural induction on ϕ and relies on the fact
that for every maximal run in A there is a maximal run in B s.t. they are related
by �= in all stable states of B. In the opposite direction, every maximal run in B
has a corresponding maximal run in A, provided that the correspondence relation
is complete. The main technical complication is that we handle the maximal runs
in their full generality (see [13] for details). ut

3.2 Overall Methodology

We finish this section by recalling the steps needed in order to apply the frame-
work to a particular translation between two time-dependent systems. Assume
that we designed an algorithm that for a given system A constructs a system B
together with the notion of stable states in the system B.

1. Show that B is a delay-implies-stable and delay-preserves-stable TTS (and
optionally an eventually-stable TTS).

2. Define a proposition translation function trp : APA −→ APB .
3. Define a relation R and show that it fulfills conditions 1–6 of Definition 1.

Theorem 1 now allows us to conclude that the translation preserves the full
TCTL (or its safety fragment if R is only a one-by-many correspondence).

4 Translation from Bounded TAPN to NTA

This section describes a translation from extended timed-arc Petri nets to net-
works of timed automata (NTA). We start with the definitions of the models.

4.1 Extended Timed-Arc Petri Nets

We shall now define timed-arc Petri nets with invariants, inhibitor arcs and
transport arcs. Recall the set of time intervals I defined in Section 2. The pred-
icates r ∈ I for I ∈ I and r ∈ R≥0 are defined in the expected way. By IInv we
denote a subset of I of intervals containing 0 and call them invariant intervals.

Definition 2. A timed-arc Petri net with invariants, inhibitor arcs and trans-
port arcs (TAPN) is a tuple N = (P, T, F, c, Ftarc , ctarc , Finhib , cinhib , ι) where

– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– F ⊆ (P × T) ∪ (T × P) is a set of normal arcs,
– c : F |P×T −→ I assigns time intervals to arcs from places to transitions,
– Ftarc ⊆ (P × T × P) is a set of transport arcs that satisfy for all (p, t, p′) ∈
Ftarc and all r ∈ P : (p, t, r) ∈ Ftarc ⇒ p′ = r, (r, t, p′) ∈ Ftarc ⇒ p = r,
(p, t) /∈ F , and (t, p′) /∈ F ,

– ctarc : Ftarc −→ I is a function assigning time intervals to transport arcs,
– Finhib ⊆ P × T is a set of inhibitor arcs satisfying for all (p, t) ∈ Finhib and

all p′ ∈ P : (p, t) /∈ F and (p, t, p′) /∈ Ftarc,
– cinhib : Finhib −→ I assigns time intervals to inhibitor arcs, and
– ι : P −→ Iinv is a function assigning invariants to places.

The preset of t ∈ T is defined as •t = {p ∈ P | (p, t) ∈ F ∨∃p′ ∈ P . (p, t, p′) ∈
Ftarc} and the postset of t is t• = {p ∈ P | (t, p) ∈ F ∨∃p′ ∈ P . (p′, t, p) ∈ Ftarc}.

A marking on a TAPN N is a function M : P −→ B(R≥0), where B(R≥0) is
the set of finite multisets of non-negative real numbers s.t. for every place p ∈ P
and every token x ∈ M(p) it holds that x ∈ ι(p). The set of all markings on N
is denoted byM(N). Note that in TAPN each token has its own age. A marked
TAPN is a pair (N,M0) where N is a TAPN and M0 is an initial marking on
N with all tokens of age 0. A transition t ∈ T is enabled in marking M if
– for all p ∈ •t s.t. (p, t) ∈ F there is a token x of an age in the time interval

on the arc from p to t: ∀p ∈ •t s.t. (p, t) ∈ F . ∃x ∈M(p) . x ∈ c(p, t),

– for all p ∈ •t s.t. (p, t, p′) ∈ Ftarc the age of the token x in p satisfies the
invariant at p′: ∀p ∈ •t s.t. (p, t, p′) ∈ Ftarc . ∃x ∈M(p) . x ∈ ctarc(p, t, p′) ∧
x ∈ ι(p′),

– for all p ∈ P s.t. (p, t) ∈ Finhib there is no token with age in the interval on
the inhibitor arc: ∀p ∈ P s.t. (p, t) ∈ Finhib . ¬∃x ∈M(p) . x ∈ cinhib(p, t).

Definition 3 (Firing Rule). If t is enabled in a marking M then it can be
fired producing a marking M ′ defined as M ′(p) =

(
M(p) \ C−t (p)

)
∪ C+

t (p) for
all p ∈ P where

– for every p ∈ P such that (p, t) ∈ F
C−t (p) = {x} where x ∈M(p) and x ∈ c(p, t),

– for every p ∈ P such that (t, p) ∈ F
C+
t (p) = {0}, and

– for every p, p′ ∈ P such that (p, t, p′) ∈ Ftarc

C−t (p) = {x} = C+
t (p′) where x ∈M(p), x ∈ ctarc(p, t, p′) and x ∈ ι(p′), and

– in all other cases we set the above sets to ∅.

Note that there may be multiple choices for C−t (p) and C+
t (p) and the minus and

union operators are interpreted over multisets.

Definition 4 (Time Delay). A time delay d ∈ R≥0 is allowed in a marking
M if (x+ d) ∈ ι(p) for all p ∈ P and all x ∈M(p), i.e. by delaying d time units
no tokens violate the invariants on places. By delaying d time units we reach a
marking M ′ defined as M ′(p) = {x+ d | x ∈M(p)} for all p ∈ P .

A TAPNN = (P, T, F, c, Ftarc , ctarc , Finhib , cinhib , ι) generates a TTS T (N) =
(M(N),−→,AP, µ) where states are markings on N , M −→ M ′ if by firing
some transition t in marking M we reach the marking M ′, and M d−→M ′ if by
delaying d time units in marking M we get to marking M ′. The set of atomic
propositions AP and the labeling function µ are defined as AP def

= {(p ./ n) |
p ∈ P, n ∈ N0 and ./ ∈ {<,≤,=,≥, >}} and µ(M)

def
= {(p ./ n) | |M(p)| ./

n and ./ ∈ {<,≤,=,≥, >}}. The idea here is that the proposition (p ./ n) is
true in a marking M if and only if the number of tokens in the place p satisfies
the constraint with respect to n.

4.2 Networks of Timed Automata

We shall now introduce networks of timed automata in the UPPAAL style [3].
UPPAAL timed automata can perform handshake and broadcast communica-
tion and manipulate finite data structures. We define only those features that are
needed for our translation, namely broadcast communication and integer vari-
ables (used only for counting). These features are only a syntactic sugar and the
expressive power is identical to the timed automata model by Alur and Dill [1].

Let C = {c1, c2, . . .} be a finite set of real-valued clocks. A clock constraint (or
guard) is a boolean expression defined by the abstract syntax: g1, g2 ::= true |

c ./ n | g1 ∧ g2 where c ∈ C, n ∈ N0 and ./ ∈ {≤, <,==, >,≥}. For invariant
clock constraints, we require ./ ∈ {≤, <}. The set of all clock constraints and
invariant clock constraints over C are denoted by G(C) and Ginv(C), respectively.

A (clock) valuation is a function v : C → R≥0 that for every clock c ∈ C
returns the value of c. Let d ∈ R≥0. We define the valuation (v+d) after delaying
d time units by (v + d)(c) = v(c) + d for every c ∈ C. Let r ⊆ C. We define
the valuation v[r] after the clocks in r are reset by v[r](c) = 0 if c ∈ r and
v[r](c) = v(c) if c ∈ C r r. The satisfaction relation v |= g (i.e. when a valuation
satisfies a guard g) is defined in the natural way.

We will now define the concept of integer variables. Let X be a finite set of
integer variables. The set VE(X) of arithmetic expressions over X is given by
the abstract syntax expr ::= m | x + + | x − − where m ∈ Z and x ∈ X.
The set VG(X) of variable guards is a boolean combination of the predicates
expr ./ expr where expr ∈ VE (X) and ./ ∈ {<,≤,==,≥, >}.

Variable assignments are expressions of the form x := expr where x ∈ X and
expr ∈ VE(X). The set of all variables assignments over X is denoted by VA(X).
A set A ⊆ VA(X) of variable assignments is called non-conflicting if for every
x ∈ X whenever (x := expr1) ∈ A and (x := expr2) ∈ A then expr1 = expr2.

Finally, we will define a variable valuation as a total mapping z : X −→ Z
that for a variable x ∈ X returns its current value. This mapping is naturally
extended to all variable expressions in VE(X). The satisfaction relation z |= φ is
true if the variable guard φ ∈ VG(X) evaluates to true under the valuation z. Let
A be a finite non-conflicting set of variable assignments and let z be a variable
valuation. We define z[A] as a variable valuation updated with the assignments
from A by z[A](x) = z(expr) if (x := expr) ∈ A and z[A](x) = z(x) otherwise.

We can now define the notion of a timed automaton.

Definition 5 (Timed Automaton). A timed automaton is a tuple (L, `0, Act,
C,X,−→, IC , IX) where L is a finite set of locations and `0 ∈ L is the initial
location, Act is a finite set of actions, C is a finite set of clocks, X is a finite
set of integer variables, −→⊆ L × G(C) × VG(X) × Act × 2C × 2VA(X) × L is
a finite set of edges s.t. whenever (`, g, φ, a, r,A, `′) ∈−→ then A is finite and
non-conflicting set of variables assignments, IC : L → Ginv(C) is a function
assigning clock invariants to locations, and IX : L → VG(X) is a function
assigning variable invariants to locations.

We write `
g,φ,a,r,A−−−−−−→ `′ instead of (`, g, φ, a, r,A, `′) ∈−→, where ` is a source

location, g is a clock guard, φ is a variable guard, a is an action, r is a set of
clocks to be reset, A is a finite non-conflicting set of variable assignments and
`′ is a target location.

We can now define a network (parallel composition) of timed automata com-
municating via broadcast. Let Broad be a finite set of broadcast channel names
and let τ denote the internal action τ performed by a single component. The set
of actions is Act = {a

!

, a
?
| a ∈ Broad} ∪ {τ}. The intuition is that a

!

indicates
initiation of broadcasting on a channel a and all automata where the action a

?

is enabled must participate in the broadcast communication.

Definition 6 (Network of Timed Automata). Let A1, A2, . . . , An for some
n ∈ N be timed automata over a fixed set of actions Act, clocks C and integer
variables X such that Ai = (Li, Act, C,X,−→i, I

i
C , I

i
X , `

i
0) for all 1 ≤ i ≤ n. A

network of timed automata (NTA) is a parallel composition A1 ‖ A2 ‖ . . . ‖ An.

A configuration of an NTA is a tuple (`1, `2, . . . , `n, z, v) where `i ∈ Li for
all 1 ≤ i ≤ n, z is a variable valuation over X and v is a clock valuation over C
such that for every i, 1 ≤ i ≤ n, it holds that z |= IiX(`i) and v |= IiC(`i). The
set of all configurations of a given NTA A is denoted by Conf (A).

We can now define the precise semantics of networks of timed automata as
TTSs. Let A = A1 ‖ A2 ‖ . . . ‖ An, where Ai = (Li, Act, C,X,−→i, I

i
C , I

i
X , `

i
0)

be an NTA. The TTS generated by A is T (A) = (Conf (A),−→,AP, µ) such
that the transition relation consists of

– Ordinary transitions: (`1, . . . , `i, . . . , `n, z, v) −→ (`1, . . . , `′i, . . . , `n, z
′, v′) if

there is an edge `i
g,φ,τ,r,A−−−−−−→i `

′
i in the i’th automaton such that v |= g, z |= φ,

v′ = v[r], z′ = z[A], v′ |= IiC(`′i)∧
∧
j 6=i I

j
C(`j) and z′ |= IiX(`′i)∧

∧
j 6=i I

j
X(`j),

– Broadcast synchronization transitions: (`1, . . . , `n, z, v) −→ (`′1, . . . , `
′
n, z
′, v′)

if there is a ∈ Broad and

• there exists an i, 1 ≤ i ≤ n, s.t. `i
gi,φi,a

!

,ri,Ai−−−−−−−−−→i `
′
i is an edge in the i’th

automaton where v |= gi and z |= φi,

• let J be the set of all j, 1 ≤ j 6= i ≤ n, s.t. `j
gj ,φj ,a

?
,rj ,Aj−−−−−−−−−→j `

′
j in the

j’th automaton where v |= gj and z |= φj ,

• for all j ∈ J we set `′j , Aj and rj according to the edge `j
gj ,φj ,a

?
,rj ,Aj−−−−−−−−−→j

`′j (note that there may be multiple edges to choose from),
• for all j 6∈ J , 1 ≤ j 6= i ≤ n, we let `′j = `j , Aj = ∅ and rj = ∅,
• z′ = (. . . ((. . . (((z[Ai])[A1])[A2]) . . . [Ai−1])[Ai+1]) . . . [An−1])[An] such

that z′ |=
∧n
k=1 I

k
X(`′k),

• v′ = v[R] where R =
⋃n
k=1 rk such that v′ |=

∧n
k=1 I

k
C(`′k), and

– Delay transitions: (`1, . . . , `n, z, v) d−→ (`1, . . . , `n, z, v + d) if d ∈ R≥0 s.t.
v + d |=

∧n
i=1 Ii(`i).

We let AP def= {(#` ./ m) | ` ∈ ∪ni=1Li,m ∈ N0 and ./ ∈ {<,≤,=,≥, >}},
and µ : Conf (A) −→ 2AP is defined such that a proposition (#` ./ m) is true in
a given configuration if and only if the number of parallel components that are
currently in the location ` satisfies the constraint with respect to m.

The initial configuration is (`10, `
2
0, . . . , `

n
0 , z0, v0) where v0(c) = 0 for all c ∈ C.

We require that z0 satisfies the variable invariants of all initial locations.

Remark 2. Note that during a broadcast, the assignments on the edge of the
sender are evaluated first, followed by the assignments of the receivers that are
evaluated in the order from A1 to An.

Clocks:

c = 0.0

c1 = 1.2

c2 = 2.5

c3 = 3.3

c4 = 5.5

p0

#4

{1.2, 2.5, 3.3, 5.5}

p1t
[0, 4]

`stable `(t)
inv:
c == 0 ∧
count1 ≥ 1

ttest

!

c := 0

count1 == 1
tfire

!

count1 := 0

Token automata template repeated four times for 1 ≤ i ≤ 4:

p0

`(tp0
p1)

p1

0 ≤ ci ≤ 4 count1++

ttest
?

τ

count1−− count1 > 1

tfire
?
ci := 0

Fig. 2. A simple TAPN and the translated NTA.

4.3 The Translation

We will now present the translation from k-bounded TAPN (where the maxi-
mum number of tokens in every reachable marking is at most k) to NTA. For
each token in the net, we create a parallel component in the network of timed
automata. Since we cannot dynamically instantiate new timed automata, we
need to have a constant number of tokens in the net at all times. As we assume
that the net is k-bounded, it is enough to construct k automata to simulate each
token. In each of these automaton there is a location corresponding to each place
in the net. Whenever a TA is in one of these locations, it simulates a token in
the corresponding place. Moreover, each automaton has a local clock which rep-
resents the age of the token. All automata simulating the tokens have the same
structure, the only difference being their initial location, which corresponds to
the tokens’ initial position in the net. Because there may not always be exactly
k tokens present during the execution of the net, we add a new location `capacity

where the automata representing currently unused tokens are waiting.
In addition to these “token” automata we create a single control automaton.

The purpose is to simulate the firing of transitions and to move tokens around via
broadcasts initiated by the control automaton. This automaton has a location
`stable which acts as a mutex in the sense that the control automaton moves out
of this location once the simulation of a transition begins and returns back once
the simulation of the transition ends. Moreover, each time the automaton is in
`stable , the token automata in the composed NTA correspond to a marking in
the TAPN. We will first show how the translation works on two examples.

Example 2. Figure 2 shows a simple TAPN with a single transition and four to-
kens of different ages. The translated NTA consists of five automata, one control

automaton (topmost automaton) and four token automata, one for each token.
Notice that in this example we have refrained from drawing the `capacity location
as it is not used.

The translated NTA works as follows. First, the control automaton broad-
casts on the channel ttest . Any token automaton with its clock in the interval
[0, 4] is forced to participate in the broadcast; in our case three token automata
will participate. We use integer variables to count the number of token automata
that took part in the broadcast. Because the preset of t has size one, we only
need one counter variable count1. Once the token automata synchronized in the
broadcast, they move to the intermediate locations `(tp0p1) and during the update
each increments count1 by one; in our case the value of count1 will become three.
This means that the invariant on `(t) in the control automaton is satisfied. In
other words, we know that there are enough tokens with appropriate ages in the
input places for t to fire. Notice that if there were not enough tokens in some of
the input places, then the invariant on `(t) was not satisfied and the broadcast
could not take place at all. This is one of the crucial aspects to realize in order
to see why this translation preserves liveness properties.

Now the value of count1 is three and the control automaton may not broad-
cast on the tfire channel yet since the guard ensures that this is only possible
when exactly one token automaton remains in its intermediate place. Therefore,
we are forced to move two of the token automata back to p0 via the τ -transitions.
This is possible only as long as count1 is strictly greater than one. Hence exactly
one token automaton has to remain in its intermediate place before the control
automaton can broadcast on the tfire channel and finalize the simulation of firing
t. Note that due to the invariant c == 0 in the control automaton, no time delay
is possible during the simulation of the transition. ut

After demonstrating the basic idea of the broadcast translation, let us discuss a
slightly more elaborate example using all of the features of the TAPN model.

Example 3. Consider the TAPN model in Figure 3 that uses transport arcs (the
pair of arcs with filled tips from p1 to p4) for moving tokens while preserving
their ages, an inhibitor arc (the arc with the circle tip) and an invariant in place
p4. The NTA created by our algorithm is below the net. As before, the template
is repeated three times, once for each token, the only difference being the initial
location (p1, p2 and p3, respectively) and the name of the clock (c1, c2 and c3,
respectively).

We see that the control automaton has a test-fire loop for every transition in
the TAPN model. There are some special constructions worth mentioning. First
of all, consider the inhibitor arc from p3 to t. This arc is encoded using a self-loop
participating in the ttest broadcast transition. We use a counter variable to count
the number of automata that take this edge. We simply encode the requirement
that there is no token in the interval [0, 2] by adding the invariant count3 == 0
on the location `(t).

A second observation is the guard on the edge from p1 to `(tp1p4). It is evident
that this does not match the interval [1, 5] located on the arc from p1 to t in the
TAPN model. The guard 1 ≤ ci ≤ 3 is in fact the intersection of the interval

p3p1

p2

t

t′

p4

inv: ≤ 3

[0, 4][1, 5]

[0, 2]

[0,∞)

3.02.8 1.4

`stable `(t)
inv:
c == 0 ∧
count1 ≥ 1 ∧
count2 ≥ 1 ∧
count3 == 0

`(t ′)
inv:
c == 0 ∧
count1 ≥ 1

t′test

!

c := 0

count1 == 1
t′fire

!

count1 := 0

ttest

!

c := 0

count1 == 1 ∧
count2 == 1 ∧
count3 == 0

tfire

!

count1 := 0,
count2 := 0,
count3 := 0

Token automata template repeated three times for 1 ≤ i ≤ 3:

p3

0 ≤ ci ≤ 2
ttest

?

count3++

p1

`(tp1
p4)

p4

ci ≤ 3

1 ≤
ci
≤ 3

tte
st

?

co
unt 1

++
count1−−

τ

count1 > 1

tfire
?

p2

`(tp2
`capacity

)

`capacity

0 ≤
ci
≤ 4

tte
st

?

co
unt 2

++

count2−−
τ

count2 >
1

tfire
?

ci := 0

`(t′
p3
p4)

t′test
?

count1++

count1−−
τ

count1 >
1

t′fire
?

ci := 0

Fig. 3. A TAPN and the translated NTA.

[1, 5] and the invariant ≤ 3 on the place p4. This is because the age of the token
consumed in p1 will be preserved once moved to p4 and by intersecting the
intervals we avoid possible deadlocks. One may think that it is enough to add
the invariant ≤ 3 on the intermediate place, however, this may result in incorrect
behavior. If there were two tokens in p1 with ages 4 and 2, the broadcast on ttest

would be blocked. This is because invariants block the entire broadcast transition
even if only a single automaton with a satisfied guard cannot participate due to
the violation of the invariant in its target location.

For our specific example, we need at least one token of age [1, 3] in p1, at least
one token of age [0, 4] in p2 and zero tokens of age [0, 2] in p3 in order for t to be
enabled, which is precisely encoded in the invariant on `(t). The reader may also
notice that different transitions share counter variables. The variable count1 is
used in the simulation of both t and t′ but they are used in a non-conflicting
way, in the sense that we are never simulating t and t′ at the same time. We also
see that during the simulation of t′ we do not take the invariant of the target
location into account since the arc from t′ to p4 is a normal arc and produces a
token of age zero which always satisfies any invariant. ut

Algorithm 1: Translation from k-bounded TAPN to NTA.

Input: A k-bounded TAPN N = (P, T, F, c, Ftarc , ctarc , Finhib , cinhib , ι) with a marking M0
Output: NTA PTA = A||A1||A2|| . . . ||Ak s.t. A = (L,Act, C,X,−→, IC , IX , `0) and

Ai = (Li,Act, C,X,−→i, I
i
C , I

i
X , `

i
0)

begin
for i := 1 to k do Li := P ∪ {`capacity}
L := {`stable}; Act := {ttest

!

, ttest
?
, tfire

!

, tfire
?
| t ∈ T} ∪ {τ}

C := {c, c1, c2, . . . , ck}; X := {counti | 1 ≤ i ≤ NumVars(N)}
forall t ∈ T do

j := 0; varInvt := true; varGuardt := true
while |Pairing(t)| > 0 do

j := j + 1; Remove some (p, I, p′, type) from Pairing(t)
for i := 1 to k do

Li := Li ∪ {`(tpp′)}

Add p
g,true, ttest

?
, ∅, countj++

−−−−−−−−−−−−−−−−−→i `(t
p

p′) s.t. g := c ∈ I if type = normal else

g := c ∈ I ∩ ι(p′)

Add `(tp
p′)

true, true, tfire

?
, R, ∅

−−−−−−−−−−−−−−→i p
′ s.t. R = {ci} if type = normal else

R = ∅

Add `(tp
p′)

true, countj>1, τ, ∅, countj−−−−−−−−−−−−−−−−−−−−−−→i p

varInvt := varInvt ∧ countj ≥ 1; varGuardt := varGuardt ∧ countj == 1

forall p ∈ P where (p, t) ∈ Finhib do

j := j + 1; for i := 1 to k do Add p
ci∈cinhib(p,t), true, ttest

?
, ∅, countj++

−−−−−−−−−−−−−−−−−−−−−−−−−−→i p
varInvt := varInvt ∧ countj == 0; varGuardt := varGuardt ∧ countj == 0

L := L ∪ {`(t)}; Add `stable
true, true, ttest

!

, {c}, ∅
−−−−−−−−−−−−−−−→ `(t) and

`(t)
true, varGuardt, tfire

!

, ∅, {counti:=0|1≤i≤j}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ `stable

for i := 1 to k do

IiC(p) :=

8><>:
ci ≤ a if p ∈ P and ι(p) = [0, a]

ci < b if p ∈ P and ι(p) = [0, b)

true if p ∈ Li \ P
IiX(p) := true for p ∈ Li

IC(p) :=

(
true if p = `stable

c ≤ 0 if p ∈ L \ {`stable}
IX(p) :=

(
varInvt if p = `(t) for t ∈ T
true if L \ {`(t) | t ∈ T}

i := 0; forall p ∈ P do forall Token ∈M0(p) do `i0 := p; i := i+ 1

for i := |M0|+ 1 to k do `i0 := `capacity

`0 := `stable

end

We shall now proceed to present the translation algorithm. For every transi-
tion t we assume an a priori fixed set Pairing(t), motivated by [9], where

Pairing(t) = {(p, I, p′, tarc) | (p, t, p′) ∈ Ftarc ∧ I = ctarc(p, t, p′)} ∪
{(p1, I1, p

′
1, normal), . . . , (pm, Im, p

′
m, normal) |

{p1, . . . , p`} = {p | (p, t) ∈ F}, {p′1, . . . , p′`′} = {p | (t, p) ∈ F},
m = max(`, `′), Ii = c(pi, t) if 1 ≤ i ≤ ` else Ii = [0,∞),
pi = `capacity if ` < i ≤ m, p′i = `capacity if `′ < i ≤ m}.

The set Pairing(t) simply pairs input and output places of t in order to fix
the paths on which tokens will travel when firing t. It also records the time
interval on the input arc and the type of the arc (normal for normal arcs and

tarc for transport arcs). As an example, a possible pairing for the transition
t in Figure 3 is Pairing(t) = {(p1, [1, 5], p4, tarc), (p2, [0, 4], `capacity ,normal)}.
We also let NumVars(N) def= maxt∈T (|Pairing(t)| + |{(p, t) | (p, t) ∈ Finhib}|)
denote the maximum number of integer variables needed in the translation. The
translation is given in Algorithm 1. Note that it works in polynomial time.

Let (N,M0) be a marked k-bounded TAPN and let PTA be the NTA con-
structed by Algorithm 1 with initial configuration s0. We can now apply our
general framework to argue that they are in complete one-by-many correspon-
dence. First, we define the stable proposition as (#`stable = 1), which is true
iff the control automaton is in its location `stable . From the construction it is
clear that T (PTA) is a delay-implies-stable, delay-preserves-stable and eventually-
stable TTS. Next, a TAPN proposition (p ./ n) is translated into (#p ./ n).

Let M = {(p1, r1), (p2, r2), . . . , (pn, rn)} be a marking of N such that n ≤ k,
where (pi, ri) is a token located in the place pi with age ri ∈ R≥0. Further, let
s = (`, `1, `2, . . . , `k, z, v) be a configuration of PTA. We define a relation R such
that (M, s) ∈ R iff there exists an injection h : {1, 2, . . . , n} −→ {1, 2, . . . , k} such
that ` = `stable , `h(i) = pi and v(ch(i)) = ri for all i where 1 ≤ i ≤ n, `j = `capacity

for all j ∈ {1, 2, . . . , k} \ range(h) and count i = 0 for all 1 ≤ i ≤ NumVars(N).
Intuitively, if (M, s) ∈ R then for every token in M there is a TA where its
location and clock valuation matches the token data and vice versa. The relation
R is a complete one-by-many correspondence (see [13] for details). By applying
Theorem 1 we can now conclude the following.

Theorem 2. Let N be a k-bounded TAPN and let PTA be the NTA constructed
by Algorithm 1. Then N |= ϕ iff PTA |= tr(ϕ) for any TCTL formula ϕ.

5 Conclusion

We have introduced a general framework for arguing when a translation between
two timed transition systems preserves TCTL model checking. The framework
generalizes earlier translations like [9] and [10] that dealt with concrete models.
Apart from [9, 10], the framework is applicable also to other translations like [8,
11, 14, 18]. We have further described a novel reduction from bounded timed-arc
Petri nets with transport/inhibitor arcs and invariants on places to networks of
timed automata in the UPPAAL style to which the framework is applicable.
Compared to earlier translations, we considered a more general class of nets and
showed that also liveness TCTL properties are preserved. The translation works
in polynomial time and was implemented in the verification tool TAPAAL [9].

Acknowledgements. We would like to thank to Alexandre David and Kenneth
Y. Jørgensen for their comments and help with the implementation issues.

References

[1] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[2] M. Archer, L. HongPing, N. Lynch, S. Mitra, and S. Umeno. Specifying and
proving properties of timed I/O automata in the TIOA toolkit. In Proc. of
MEMOCODE’06, pages 129 –138, 2006.

[3] G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In Proc.
of SFM-RT’04, volume 3185 of LNCS, pages 200–236. Springer, 2004.

[4] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O.H. Roux. Comparison
of the expressiveness of timed automata and time Petri nets. In Proc. of
FORMATS’05, volume 3829 of LNCS, pages 211–225. Springer, 2005.

[5] B. Berthomieu, F. Peres, and F. Vernadat. Bridging the gap between timed
automata and bounded time Petri nets. In Proc. of FORMATS’06, volume
4202 of LNCS, pages 82–97. Springer, 2006.

[6] T. Bolognesi, F. Lucidi, and S. Trigila. From timed Petri nets to timed
LOTOS. In Proc. of PSTV’90, pages 395–408, 1990.

[7] H. Boucheneb, G. Gardey, and O.H. Roux. TCTL model checking of time
Petri nets. Journal of Logic and Computation, 19(6):1509–1540, 2009.

[8] P. Bouyer, S. Haddad, and P.A. Reynier. Timed Petri nets and timed
automata: On the discriminating power of Zeno sequences. Information
and Computation, 206(1):73–107, 2008.

[9] J. Byg, K.Y. Joergensen, and J. Srba. An efficient translation of timed-arc
Petri nets to networks of timed automata. In Proc. of ICFEM’09, volume
5885 of LNCS, pages 698–716. Springer, 2009.

[10] F. Cassez and O.H. Roux. Structural translation from time Petri nets to
timed automata. ENTCS, 128(6):145 – 160, 2005. Proc. of AVoCS’04.

[11] J.S. Dong, P. Hao, S. Qin, J. Sun, and W. Yi. Timed Automata Patterns.
IEEE Transactions on Software Engingeering, 34(6):844–859, 2008.

[12] G. Gardey, D. Lime, M. Magnin, and O.H. Roux. Romeo: A tool for an-
alyzing time Petri nets. In Proc. of CAV05, volume 3576 of LNCS, pages
418–423. Springer, 2005.

[13] L. Jacobsen, M. Jacobsen, M.H. Möller, and J. Srba. A framework for relat-
ing timed transition systems and preserving TCTL model checking. Techni-
cal Report FIMU-RS-2010-09, Faculty of Informatics, Masaryk Univ., 2010.

[14] A. Janowska, P. Janowski, and D. Wróblewski. Translation of Intermediate
Language to Timed Automata with Discrete Data. Fundamenta Informat-
icae, 85(1-4):235–248, 2008.

[15] P. M. Merlin. A Study of the Recoverability of Computing Systems. PhD
thesis, University of California, Irvine, 1974.

[16] W. Penczek and A. Pólrola. Advances in Verification of Time Petri Nets
and Timed Automata: A Temporal Logic Approach, volume 20 of Studies in
Computational Intelligence. Springer, 2006.

[17] J. Sifakis and S. Yovine. Compositional specification of timed systems. In
Proc. of STACS’96, volume 1046 of LNCS, pages 347–359. Springer, 1996.

[18] J. Srba. Timed-arc Petri nets vs. networks of timed automata. In Proc. of
ICATPN’05, volume 3536 of LNCS, pages 385–402. Springer, 2005.

[19] J. Srba. Comparing the expressiveness of timed automata and timed exten-
sions of Petri nets. In Proc. of FORMATS’08, volume 5215 of LNCS, pages
15–32. Springer, 2008.

