Verification of Timed-Arc Petri Nets

Lasse Jacobsen, Morten Jacobsen, Mikael H. Mgller, and Jifi Srba*

Department of Computer Science, Aalborg University,
Selma Lagerlofs Vej 300, DK-9220 Aalborg East, Denmark

Abstract. Timed-Arc Petri Nets (TAPN) are an extension of the clas-
sical P/T nets with continuous time. Tokens in TAPN carry an age
and arcs between places and transitions are labelled with time intervals
restricting the age of tokens available for transition firing. The TAPN
model posses a number of interesting theoretical properties distinguish-
ing them from other time extensions of Petri nets. We shall give an
overview of the recent theory developed in the verification of TAPN ex-
tended with features like read/transport arcs, timed inhibitor arcs and
age invariants. We will examine in detail the boundaries of automatic
verification and the connections between TAPN and the model of timed
automata. Finally, we will mention the tool TAPAAL that supports mod-
elling, simulation and verification of TAPN and discuss a small case study
of alternating bit protocol.

1 Introduction

Formal verification of embedded and hybrid systems is an active research area.
Recently, a lot of attention has been devoted to the analysis of systems with
quantitative attributes like timing, cost and probability. In particular, several
different time-dependent models were developed over the two last decades or
so. These models are often introduced as a time extension of some well-studied
untimed formalism and include, among others, (networks of) timed automata |7,
8] and different time extensions of the Petri net model [45]. These formalisms
are nowadays supported by a number of tools [1, 2, 12, 19, 20, 26, 29, 36] and
exploited in model-driven system design methodologies.

We shall focus on the Petri net model extended with continuous time. The
timing aspects are associated with different parts of the model in the various
time-extended Petri net formalisms. For example, timed transitions Petri nets
where transitions are annotated with their durations were proposed in [46]. A
model in which time parameters are associated with places is called timed places
Petri nets and it was introduced in [51]. Time Petri nets of Merlin and Faber [38,
39] were introduced in 1976 and associate time intervals to each transition. The
intervals define the earliest and latest firing time of the transition since it became
enabled. Yet another model of timed-arc Petri nets was first studied around
1990 by Bolognesi, Lucidi, Trigila and Hanisch [15, 28]. Here time information is

* Partially supported by Ministry of Education of the Czech Republic, project No.
MSM 0021622419.

attached to the tokens in the net representing their relative age while arcs from
places to transition contain time intervals that restrict the enableness of the
transitions. For an overview of the different extensions see e.g. [18, 44, 54, 55].

In this paper we will survey the results and techniques connected with
timed-arc Petri nets (TAPN). This model is particularly suitable for mod-
elling of manufacturing systems, work-flow management and similar applica-
tions [4, 5, 42, 43, 49, 50] and a recently developed tool TAPAAL [22] enables
automatic verification of bounded TAPNs extended with transport/inhibitor
arcs and age invariants.

The outline of the paper is as follows. In Section 2 we give an informal in-
troduction to the TAPN model and in Section 3 we describe its formal syntax
and semantics. Section 4 illustrates the modeling of alternating bit protocol as a
TAPN and Section 5 explains the main decidability and complexity results. Sec-
tions 6 and 7 define the TCTL logic and explain a translation from TAPN with
transport arcs, inhibitor arcs and age invariants to UPPAAL timed automata.
The translation preserves TCTL model checking including liveness properties.
Finally, Section 8 gives a short conclusion.

2 Informal Introduction to Timed-Arc Petri Nets

We shall first informally introduce the TAPN model extended with transport
arcs, age invariants and inhibitor arcs. A basic timed-arc Petri net is presented
in Figure la. It consists of two transitions ¢; and ¢ drawn as rectangels and five
places pi,...,ps drawn as circles. There is one token of age 0.0 in each of the
places p1, p2 and ps. Initially, only the transition ¢; is enabled because its input
place p; contains a token of an age that fits into the interval [0, co] present on
the arc from p; to ¢;. The transition t5 requires a token of any age in py but
also a token of an age in the interval [4,5] in p3. This is why t5 is not enabled
at the moment. Because t; is enabled, it can fire, whereby it removes the token
from p; and produces a new fresh token of age 0.0 in each of the output places
ps and ps. Instead, it is also possible that the net performs a time delay of, say,
4.5 time units. By this step all tokens in the net grow 4.5 time units older. As
all tokens are now of age 4.5, both t; and t; are enabled and can fire. Notice
that the tokens that are produced even after the time delay are of age 0.0.

Let us now introduce transport arcs into our example net. Specifically, we
will replace the normal arcs from p; to t; and from ¢; to ps; with a pair of
transport arcs with solid arrow tips as illustrated in Figure 1b. Transport arcs
come always in pairs like this. Note that the symbol ‘:1’ on the transport arcs is
there to denote the pairing of the arcs (as it is in general possible to have more
than one pair of transport arcs connected to a transition).

For the sake of illustration, assume that we have initially made a time delay
of 2.5 time units such that all tokens are now of age 2.5. Transition ¢; is still
the only enabled one in the net at this point, however, there is a difference when
we fire t1. Firing ¢; will remove a token of age 2.5 from p; and produce a token
of age 0.0 in the place p; as before. However, due to the transport arcs, it will

p1 t1 P4

®——k—0O
0.0

@ .,
\A”E’\ Q

b3

(a) Basic TAPN (b) TAPN with transport arcs

P1 t pa

1 P1
[0, 00):1 [0, 00):1
P2
@ ’OO) @ b, %) ¢, Ps

t1 Pa

O

s
&
O
I O

@)
p3 inv: < 5 p3 inv: <5
inv: <5 inv: <5
(¢) TAPN with age invariants (d) TAPN with inhibitor arc

Fig. 1: Examples of timed-arc Petri nets

produce a token at ps; of the same age as the token it removed from pq, i.e. of
the age 2.5 in this case. Hence transport arcs allow us to preserve the ages of
tokens as they are transported through the net. This is a feature particularly
suitable for modelling of e.g. product lines where we need to track the age of a
product from its start until its final production stage.

The next modelling feature is called age invariant. It simply restricts the
maximum age of tokens that can appear in certain places. In our running exam-
ple, we can add age invariants to the places ps and ps as illustrated in Figure 1c.
These invariants will disallow tokens older than 5 time units in these two places.

Assume a situation after a time delay such that all tokens are of age 5.0 as
in the figure. At this point no further time delays are possible as they would
violate the invariant at ps. We are thus forced to fire either ¢; or ts, both of
which are enabled. Invariants hence facilitate the modelling of urgency. One
of the particularities of the combination of invariants and transport arcs is that
transitions are disabled should their transport arcs move a token to a place where

the age of the token violates the age invariant. In our example t; is enabled but
should the invariant at ps; allow tokens only of age at most 4, then it would be
disabled.

Finally, we introduce inhibitor arcs that disable the firing of a transition
based on the presence of tokens in certain places. In our example we will replace
the arc from p3 to to with an inhibitor arc with circle arrow tip as illustrated in
Figure 1d. Transition ¢ is then blocked whenever there is a token in place pj3
with age in the interval [4,5]. As this is not the case in the depicted situation,
both t; and t; are enabled and can be fired. Firing of ¢t5 has no effect on the
tokens in the place ps. If instead a time delay of 4 time units was performed, to
would be blocked and only ¢; could fire. This concludes the informal introduction
to timed-arc Petri nets.

3 Formal Definition of Timed-Arc Petri Nets

We start with the preliminaries and the definition of timed transition system.
We let Ny and R denote the sets of nonnegative integers and nonnegative
real numbers, respectively.
A timed transition system (TTS) is a pair T = (S, —) where S is a set of
states (or processes) and — C S x SUS x R>p x S is a transition relation.
We write s — s’ whenever (s,s’) €— and call them discrete transitions,

and s -5 s’ whenever (s,d,s") €— and call them delay transitions. We re-
quire that all TTS we consider satisfy the following standard axioms for delay
transitions (see e.g. [13]). For all d,d’ € R>¢ and s,s’,s" € S:

. e e d d d+d’
. Time Additivity: if s — s’ and s’ — s” then s — 5",
. o e e dtd d d’
. Time Continuity: if s = §” then s — s’ — §” for some &',
0
. Zero Delay: s — s for each state s, and

> W N =

. . . . d d
. Time Determinism: if s — s’ and s — s” then s’ = s”.

By s[d] we denote the state s’ (if it exists) such that s %, &', Time deter-

. . . . d
minism ensures the uniqueness of s[d]. We write s = ¢’ if s — s’ or — ¢’ for
some d. The notation =" denotes the reflexive and transitive closure of =—>.

3.1 Syntax

We shall now define the timed-arc Petri net model. First, we define the set of
well-formed time intervals by the abstract syntax where a,b € Ny and a < b:

Ii=(aa) | o8] | [a.b) | (@8] | (a,8) | [a,50) | (a,o)

We denote the set of all well-formed time intervals by Z. Further, the set of all
well-formed time intervals for invariants is denoted by Z?*¥ and defined according
to the following abstract syntax:

Ity == 1[0,0] | [0,8] | [0,0) | [0,00)
The predicate r € I is defined for » € R>(in the expected way.

Definition 1. A TAPN is a 7-tuple (P, T, IA, OA, Transport, Inhib, Inv), where

— P is a finite set of places,
— T is a finite set of transitions s.t. PNT =,
— JAC P xZXxT is a finite set of input arcs s.t.

(p,I,t) EIAN(p,I',t) € IA) =T =T

— OA CT x P is a finite set of output arcs,

— Transport : IA x OA — {true, false} is a function defining transport arcs
which are pairs of input and output arcs connected to some transition, for-
mally we require that for all (p,I,t) € IA and (t',p’) € OA whenever
Transport((p, I,t),(t',p")) then t = t' and moreover for all o € IA and all
B € 0OA

(Transport(a, (t',p')) = a = (p,I,t)) A

(Transport((p,1,t), 3) = B = (t'.p'))

— Inhib : IA — {true, false} is a function defining inhibitor arcs which do not
collide with transport arcs, i.e. whenever Transport(a,[3) for some a € IA
and € OA then —Inhib(a), and

— Inv : P — I™ is a function assigning age invariants to places.

A TAPN is called basic if the functions Transport and Inhib return false for all
arcs.

The preset of a transition ¢t € T is defined as *t = {p € P | (p,I,t) € IA}.
Similarly, the postset of ¢ is defined as t* = {p € P | (¢,p) € OA}. For technical
convenience we do not allow multiple arcs.

3.2 Semantics

We will now define the semantics of the TAPN. First we define a marking, which
is a function assigning to each place a finite multiset of nonnegative real numbers
(all such finite multisets are denoted by B(R>¢)). The real numbers represent
the age of tokens that are currently at a given place; the age of every token must
moreover respect the age invariant of the place where the token is located.

Definition 2 (Marking). Let N = (P, T, IA, OA, Transport, Inkib, Inv) be a
TAPN. A marking M on N is a function M : P — B(Rx>o) where for every
place p € P and every token x € M(p) we have x € Inv(p). The set of all
markings over N is denoted by M(N).

We shall sometimes use the notation (p,x) to refer to a token in
the place p of age * € Ry(. Likewise, we shall sometimes write M =
{(p1, 1), (p2,x2),. .., (Pn,xn)} for a multiset representing a marking M with
n tokens located in the places p; and with age z; for 1 <i < n.

A marked TAPN is a pair (N, My) where N is a TAPN and M) is an initial
marking on N where all tokens have the age 0.

Definition 3 (Enabledness). Let N = (P, T, IA, OA, Transport, Inhib, Inv) be
a TAPN. We say that a transition t € T is enabled in a marking M by tokens
In={(p,zp) |pe°t} C M and Out = {(p/,zp) | p' € t°} if

— for all input arcs except the inhibitor arcs there is a token in the input place
with an age satisfying the age guard of the arc, i.e.

V(p,I,t) € IA . =Inhib((p,I,t)) =z, € I

— for all inhibitor arcs there is no token in the input place of the arc with an
age satisfying the age guard of the arcs respectively, i.e.

Y(p,I,t) € IA . Inhib((p,1,t)) = Tz € M(p) .z €1

— for all input arcs and output arcs which constitute a transport arc the age of
the input token must be equal to the age of the output token and satisfy the
invariant of the output place, i.e.

V(p,I,t) € IA . Y(t,p') € OA . Transport((p,I,t),(t,p")) =
(wp =) A (xp € Inv(p'))

— for all output arcs that are not part of a transport arc the age of the output
token is 0, i.e.

V(t,p') € OA .(—|(E|a € IA. Transport(a, (t,p))) = xp = 0))

Definition 4 (Firing Rule). Let N = (P, T, IA, OA, Transport, Inhib, Inv) be
a TAPN, M a marking on N and t € T a transition . If t is enabled in the
marking M by tokens In and Out then it can fire and produce a marking M’
defined as

M' = (M \ In)U Out

where \ and U are operations on multisets.

Definition 5 (Time Delay). Let N = (P, T, IA, OA, Transport, Inhib, Inv) be
a TAPN and M a marking on N. A time delay d € Rx>g is allowed in M if
(x +d) € Inv(p) for all p € P and all x € M(p), i.e. by delaying d time units
no token violates any of the age invariants. By delaying d time units in M we
reach a marking M’ defined as

M'(p)={z+d|ze Mp)}
forallp e P.

A given TAPN N now defines a timed transition system (M(N), —) where
states are markings of N and for two markings M and M’ we have M — M’ if
by firing some transition in M we can reach the marking M’ and M M if
by delaying d time units in M we reach the marking M’. We say that a marking
M’ is reachable from marking M if M =" M’.

—)@ Sender0A

[0, c0) Medium0A
[0,1]:1
SendO I m Receive0
5, 6]
senderOB <>/—\ ReSend0 . ReceiveOld0 ReceiverOB
inv: <6 LossOA inv: <2
[0, 00) Medium0B (0:00) | 11,21
AckRecO I AckSend0
[0, 3] 1
[O’ Oo)
SenderlA () |) ReceiverlA
LossOB
[0, o0) Medium1A [0, 00)
[0,1]:1
Send1 IR /\ <Ol Receivel
:1
5, 6]
SenderlB CD/_\ ReSend1 - ReceiveOld1 ReceiverlB
inv: <6 Loss1A inv: < 2
[0, 00) Medium1B &[O’) |2
AckRecl I I AckSendl
[0,3] 1
[O’ OO)
|| ReceiverOA (0.0
Loss1B [0, 00)

Fig.2: A TAPN model of the alternating bit protocol

4 A Small Case Study: Alternating Bit Protocol

In this section we shall discuss a small case study of the well-known Alternating
Bit Protocol (ABP) [9] and show its modelling by timed-arc Petri nets. The
purpose of the protocol is to ensure a safe communication between a sender
and a receiver over an unreliable medium. To achieve this, messages are labelled
with a control bit in order to compensate (via message retransmission) for the
possibility of losing messages in transfer. In order to avoid a confusion between
new and old messages, each message is moreover time-stamped and after its
expiration it is ignored.

Figure 2 shows a TAPN model of the protocol. The model contains four
places associated to the sender (on the left side) and four places associated to

the receiver (on the right side). The sender and receiver can communicate over
a lossy medium represented by the four places in the middle.

Initially, the only enabled transition is Send0 which moves the sender from
the place SenderOA to SenderOB and at the same time places a message (token)
with the appended bit 0 into the place MediumOA. At any time the message can
be lost by firing the transition LossOA. Now the receiver can read the message
and move it to the place ReceiverOB by firing the transition Receive0, followed by
firing AckSend0 and placing a token (acknowledgment) in the place MediumOB.
There is at least a one time unit delay before the acknowledgment is sent. The
acknowledgment can now be read by the sender using the transition AckRecO.
Notice that the path of the token from place Medium0A to Medium0B consists of
transport arcs and hence the time-stamp of the message is preserved. The sender
accepts only acknowledgments that are no older than three time units since the
message was sent. As the medium is lossy, the communication may fail and it
may be necessary to retransmit the message by firing the transition ReSend0,
which must happen any time between five to six time units since the last time
the message was sent. Similarly, the receiver may retransmit the acknowledgment
by firing the transitions ReceiveOld0 and AckSendO. If the first phase with the
appended bit 0 succeeded, the protocol continues in a symmetric way with the
next message that gets appended the bit 1.

Having the formal model of alternating bit protocol in place, we can now
start analysing its behaviour. One possible analysis technique is the simulation
of transition firings that can reveal possible flaws in the design, however, it
cannot be used to argue about the correctness of the protocol. We will postpone
the actual definition of the correctness requirement of the protocol to Section 6
once an appropriate logic for the formulation of this property is defined. In the
meantime we can observe that the net can exhibit a behaviour in which the
places representing the medium become unbounded (there is no a priori given
constant that bounds the number of tokens in these places). This can be seen by
the fact that e.g. the transition ReSend0 can be repeatedly fired and, as the net
is not forced to ever perform the transition LossOA, more and more tokens will
accumulate in the place Medium0QA. In the section to follow, we will show that
automatic verification of unbounded nets with invariants is not possible, as the
model has the full Turing power.

A possible solution to this problem (which is though specific to our con-
crete model) is to introduce age invariants to all places representing the medium
which will disallow tokens older than two time units. This will enforce urgency
on the transitions that lose messages and it can be proved (or automatically ver-
ified) that the net becomes bounded after such an addition, while the interesting
behaviour of the protocol does not change.

Another approach that works in general is to consider an under-
approximation of the net behaviour where we give a limit on the maximum
number of new tokens that the net can produce and explore the behaviour of
the net only up to that many tokens. An experiment using this approach is
described in Section 7.

A similarly looking model of the alternating bit protocol was given also for
time Petri nets (see e.g. [11]) where clocks are associated to each transition of
the net. Unlike our TAPN model, TPN do not allow time-stamps on tokens
and messages are instead automatically discarded after one time unit. Hence the
behaviour of the TPN is less general and does not allow us to model (at least
not in a straightforward way) all the features available in TAPN.

5 Overview of (Un)Decidability and Complexity Results

In this section we shall discuss results about (un)decidability and complexity
questions of the classical Petri net problems like reachability, coverability and
boundedness in the TAPN context.

We start with the problem of reachability: given a marked net (N, My) and
a marking M, is M reachable from Mj,? In spite of the fact that reachability
is decidable for untimed Petri nets [37], it is undecidable for timed-arc Petri
nets [47], even for nets without any transport/inhibitor arcs and age invariants.
The result can be further extended to the case where tokens in different places
are not required to age synchronously [41].

We shall now recall the idea of the undecidability result by Ruiz et al. [47]
as it is easy to explain and illustrates the power of tokens with age. For showing
the undecidability of many Petri net problems the halting problem for Minsky
two counter machine is often exploited. The proof from [47] is no exception.

A Minsky machine with two nonnegative counters ¢; and cs is a sequence of
labelled instructions

1:insty; 2:insty; ...,n:inst,
where inst, = HALT and each inst;, 1 <17 < n, is of one of the following forms

— (Inc) i: cj++; goto k
— (Dec) i: if ¢;=0 then goto k else (¢j——; goto £)

forje{l,2} and 1 <k, £ <n.

Instructions of type (Inc) are called increment instructions and of type (Dec)
are called test and decrement instructions. A configuration is a triple (i, v1,v2)
where 7 is the current instruction and v; and vy are the values of the counters ¢;
and co, respectively. A computation step between configurations is defined in the
natural way. If starting from the initial configuration (1, 0,0) the machine reaches
the instruction HALT then we say it halts, otherwise it loops. It is well known
that the problem whether a given Minsky machine halts is undecidable [40]. This
is the case even for the question whether it halts with both counters empty (as
they can be easily emptied before the halting instruction is reached).

The main idea of simulating a Minsky machine by a Petri net is to create two
places called p., and p., such that the number of tokens in these places represents
the value of the counters ¢; and co, respectively. Also, for every instruction label
i, 1 < i < n, we create a new place called p; in the net. During the behaviour

P (L]

t'(‘csct
[0,0]
Peq Pes [0,0]
®
p t Pr
[0, 0]
O O "
(a) i: ci++; goto k (b) i: if ¢1=0 then goto k else (ci——; goto £)

Fig. 3: Simulation of (Inc) and (Dec) instructions by basic TAPN

of the net the sum of the tokens in pi,...,p, will be invariantly equal to one.
The presence of a token at p; represents the fact that the next instruction to be
executed is the one with label i.

Given a Minsky machine with two counters, we shall now construct a basic
TAPN such that, given an initial marking with just one token in p;, the final
marking where there is exactly one token of age 0 in place p,, is reachable if and
only if the given Minsky machine halts.

The instruction of type (Inc) is easy to simulate as depicted in Figure 3a
for the increment of ¢1; a symmetric construction is used for the increment of
co. The interval [0, 0] disallows any time delay before the transition ¢; is fired.
After the firing, the control is given to the instruction k& and the counter c¢; is
incremented by one. Note that there is no invariant in p; so we are also allowed
to delay here but in this case the whole net will get stuck and it will thus not
be possible to place a token at the place p,.

For any instruction of type (Dec) we add the places and transitions as de-
picted in Figure 3b (again the test on counter cg is completely symmetric). The
modelling of the decrement branch via the transition tfec is straightforward.
The difficult part is the simulation of the jump to label k when the counter ¢;
is empty. As Petri nets, unless equipped with inhibitor arcs, do not allow to test
for zero number of tokens in a place, we need to introduce a few more transitions
that will detect a cheating, i.e. when the transition ¢7°° is taken while there are
some tokens in p., . Notice that the transition ¢7°"° can be fired only after a delay
of one time unit, hence all tokens in both p., and p., will also grow older by one
time unit. Now the transition ¢/°*¢* will allow to reset the ages of all tokens in
De, t0 0, however, any potential tokens in place p., will remain of age 1 (if we

cheated). The simulation then continues by firing the transition t¢"¢ which gives
the control to the instruction k.

Clearly, if the given Minsky machine halts with both counters empty, we can
faithfully simulate its computation in the Petri net such that the place p, will
be eventually marked and all other places will be empty.

On the other hand, if the Minsky machine loops then we can either faithfully
simulate it in the net but then the final marking with one token in p,, will never
be reached, or we can cheat but as a result the net will contain tokens which are
too old (also called dead tokens) in either p., or p., that cannot be removed,
and hence the final marking will not be reachable either.

Theorem 1 ([47]). Reachability is undecidable for the basic timed-arc Petri net
model (with only ordinary arcs and no age invariants).

On the other hand, coverability, boundedness and other problems remain
decidable for the basic TAPN [4, 6, 48] model, which is also known to offer
‘weak’ expressiveness, in the sense that basic TAPN cannot simulate Turing
machines [14].

The coverability problem asks, given an initial marking M, and a final mark-
ing M, is there a marking M’ reachable from My such that M (p) C M'(p) for
all places p?

The boundedness problem asks, given an initial marking My, is there a con-
stant k such that the total number of tokens in any reachable marking from M,
is less than or equal to k7 If this is the case, the net is called k-bounded.

It is known that coverability remains decidable for the basic TAPN extended
with read arcs [17] where a read arc is a special case of a pair of two transport arcs
that return the consumed token to the same place (and hence do not change its
age). These results hold due to the monotonicity property (adding more tokens
to the net does not restrict the possible executions) and the application of well-
quasi-ordering (for a general introduction see [25]) resp. better-quasi-ordering [3]
techniques.

One of the major weaknesses of the basic TAPN is the lack of the possibility
to model urgent behaviour. On the other hand, when allowing age invariants,
both coverability and boundedness become undecidable as shown in [30] and
demonstrated in what follows.

The basic idea is similar as in the previous reduction and illustrations are
depicted in Figure 4. We have two places p., and p., representing the counters
plus we add one more place called pcyyn: Which records the number of already
executed instructions and will be used for the undecidability of boundedness.
The counters are each equipped with a place called pgjset such that a presence
of a token in this place will allow us to reset the age of all tokens of age 1 in p,;.

The simulation of the increment instruction in Figure 4c starts by delaying
one time unit. Now all tokens in the counters become of age 1 but can subse-
quently be reset to 0 due to the presence of the tokens in p[**** and p[®*°*. By
performing tf‘)to the simulating finishes, increases the number of tokens in peyuns
by one, gives the control to the instruction k& and adds 1 to the counter c;.

pcuunt

Pn b Q
es reset [1’ 1]
Pes greset P

nv: < 1 [1,1] [0,0] DPhatt

(a) Simulation of the counter c¢; (b) Simulation of instruction halt

Q puount

reset
c2

Pk

O
(r

reset
c1

(c) i: ci++; goto k

reset
i tfero pcz t:nd

O 0.0] Q Dk
. o

o (O () o

Pes

O—w O

(d) i: if ¢;=0 then goto k else (c1--; goto).

Dbe

tiiec

Fig. 4: Simulation of a Minsky machine by a TAPN with invariants

The decrement instruction, depicted in Figure 4d, can fire the transition
t,flec, provided that there is a token of age 0 in p.,, increase the number of
counted steps and give the control to the instruction ¢. It can also delay one
time unit and perform the transition ¢7°"° which will allow us to reset the ages
of tokens in p., and after firing tf”d add one token to peoun: and continue with
the simulation of the instruction k. The point is that if we were cheating in the
simulation and fired the transition ¢7°"° with a nonempty counter c;, tokens of
age 1 will necessarily appear in the place p., . Notice that the simulation of most
instructions (in particular of the halt instruction) must start with a time delay,

Reachability|Coverability| Boundedness
basic TAPN X [47] v [4] v [6]
basic TAPN plus transport arcs X [47] V! Ve
basic TAPN plus age invariants X [47] X [30] X [30]
basic TAPN plus inhibitor arcs X [27] X [27] X [27]

Table 1: Overview of (un)decidability results for TAPN

however, if in some of the counters there were tokens of age 1, no time delay is
possible due to the age invariants < 1 in p., and p.,. Hence the place ppqix can
be marked if and only if the net did not cheat and this gives the undecidability
of coverability.

The same construction also serves as a reduction showing undecidability of
boundedness. Assume that the given Minsky machine halts in k steps. This
means that if the net faithfully simulates its behaviour, it will terminate with a
token in ppe and at most k tokens in any of the two counter places and pcoynt-
If the net cheated at some point, most of the instructions will be disabled as
discussed above, except for the firing of t@*, which can however only decrease
the number of tokens in the places. The net is hence bounded. On the other
hand, if the Minsky machine loops, the net can faithfully simulate this infinite
behaviour and the place peount Will be unbounded. Hence the undecidability of
boundedness for basic TAPN with invariants is established too.

Theorem 2 ([30]). Coverability and boundedness are undecidable for basic
TAPN with invariants.

A summary of the results is provided in Table 1. The decidability of cover-
ability and boundedness for TAPN with transport arcs is marked with a question
mark as it is only a claim, though the proofs from [17] for read arcs seem easy
to extend to TAPN with transport arcs too.

In applications, the fact that coverability is decidable for the basic TAPN
model can be useful as demonstrated in [4] where the authors verified a param-
eterized version of Fischer’s protocol [35] using their prototype implementation
of the coverability algorithm.

Most often though, we may like to use the additional features like age invari-
ants and inhibitor arcs to facilitate the modelling process. While all interesting
problems become quickly undecidable for such models, we may still verify a
number of interesting properties by restricting ourselves to bounded nets where
the maximum number of tokens in the net is given as a constant. Recent work
shows that bounded TAPN and 1-safe (at most one token in any place) nets
offer a similar expressive power as networks of timed automata, even though
the models are rather different. Sifakis and Yovine [52] provided a translation of
1-safe timed-arc Petri nets into timed automata which preserves strong timed
bisimilarity but their translation causes an exponential blow up in the size. Srba

established in [53] a strong relationship (up to isomorphism of timed transition
systems) between networks of timed automata and a superclass of 1-safe TAPN
extended with read arcs. For reachability questions the reductions in [53] work in
polynomial time. Recently Bouyer et al. [17] presented a reduction from bounded
TAPN (with read-arcs) to 1-safe TAPN (with read-arcs), which preserves timed
language equivalence. Hence PSPACE-completeness of reachability on 1-safe and
bounded TAPN was established [17, 53].

Nevertheless the translations described in these papers are inefficient from
the practical point of view as they either cause an exponential blow-up in the
size or create a new parallel component with a fresh local clock for each place
in the net. In connection with the development of the tool TAPAAL [1] for
modelling, simulation and verification of extended timed-arc Petri nets, more
efficient translations were investigated [21, 22].

Recently, in [32] we identified a general class of translations that preserve
Timed Computation Tree Logic (TCTL), a logic suitable for practical specifica-
tion of many useful temporal properties (see e.g. [44]). In the next two sections
we shall present the framework and give an example of an efficient translation
from TAPN to UPPAAL networks of timed automata [2].

6 Timed Computation Tree Logic

In this section we introduce the Timed Computation Tree Logic (TCTL). Unlike
much work on TCTL where only infinite alternating runs are considered [44] or
the details are simply not discussed [16, 23], we consider also finite maximal runs
that appear in the presence of stuck computations or time invariants (strict or
nonstrict) and treat the semantics in its full generality as used in most of the ver-
ification tools nowadays. This fact is particularly important for the verification
of liveness properties.

Before we define the syntax and semantics of TCTL, we extend the notion
of timed transition systems (TTS) as defined in Section 3 with propositions.
A timed transition system with propositions is a quadruple T' = (S, —, AP, u)
where (S, —) is a TTS, AP is a set of atomic propositions, and u : S — 247
is a function assigning sets of true atomic propositions to states.

For a TAPN N = (P,T,IA, OA, Transport, Inhib, Inv) the set of atomic
propositions AP and the labeling function p can be defined as

AP Y {(pran) [pe PneNyand m€ {<,<, = >, >}}

and for a marking M we have

d
p(M) < {(poan) [M(p) pan and b€ {<,<,=>,>}} .
The intuition is that a proposition (p > n) is true in a marking M iff the number
of tokens in the place p satisfies the given relation with respect to n.
A run p = sg o, Soldo] — s1 4, s1[d1] — s2 L, inaTTSisa (finite
or infinite) alternating sequence of time delays and discrete actions.

We shall now introduce the syntax and semantics of TCTL. The presentation
is inspired by [44]. Let AP be a set of atomic propositions. The set of TCTL
formulae ¢(AP) over AP is given by

=201 N2 | E(o1Urgs) | Alp1 Urpa) | E(p1 Rrp2) | A(p1 Rr ¢2)

where p € AP ranges over atomic propositions and I € Z ranges over time
intervals. Formulae without any occurrence of the operators A(pq Ur o) and
E(p1 Ry p2) form the safety fragment of TCTL.

The intuition of the until and release TCTL operators (formalized later on)
is as follows:

— A(p1 Ur p2) is true if on all maximal runs ¢y eventually holds within the
interval I, and until it does, ¢1 continuously holds;

— E(¢1 Ur p2) is true if there exists a maximal run such that o eventually
holds within the interval I, and until it does, ¢; continuously holds;

— A(p1 Ry p2) is true if on all maximal runs either ¢o always holds within the
interval I or ¢; occurred previously;

— E(¢1 Ry ¢2) is true if there exists a maximal run such that either ¢o always
holds within the interval I or ¢; occurred previously.

In the semantics, we handle maximal runs in their full generality. Hence we
have to consider all possibilities in which a run can be “stuck”. In this case, we
annotate the last transition of such a run with one of the three special ending
symbols (denoted ¢ in the definition below).

A maximal run p is either

(i) an infinite alternating sequence of the form p = s o, so[do] — $1 SN
31[d1] — S92 i SQ[dQ] — ..., Or
(ii) a finite alternating sequence of the form p = s o, Soldo] — s1 A,

sildi] — ... — s, 2, where § € {o0,d5,ds} for some d,, € R>q s.t.

» 'y 'n

e if § = oo then s, 4, sp[d] for all d € R,

e if § = d5 then s, —,d’—> for all d > d,, and s, n, Spldn] s.t. spldn] —,
and
e if § = dS then s, —/d’—> for all d > d,,, and there exists d,, 0 < d, < d,,,

such that for all d, ds < d < d,,, we have s, 4, sp[d] and s, [d] —~.

By MazRuns(T, s) we denote the set of maximal runs in a TTS T starting at s.

Intuitively, the three conditions in case (ii) describe all possible ways in which
a finite run can terminate. First, a run can end in a state where time diverges.
The other two cases define a run which ends in a state from which no discrete
transition is allowed after some time delay, but time cannot diverge either (typ-
ically caused by the presence of invariants in the model). These cases differ in
whether the bound on the maximal time delay can be reached or not.

2.5

Figure 5 illustrates a part of a maximal run p = sg 1, so[l] — s1 —

51[2.5) — s2 2, $2[2] — s3 13, s3[1.3] — s4 — Note that actions take

s1 2.5 31[2.5] s3 83[1.3]

1.3

50 so[1] 52 2 s2[2] 54

time
Fig. 5: Illustration of a concrete run
51 d, stldi] s3 ds Sslds]
>
S1 [d]
d[) d2
— e x s2[d”] l—r
so so[do] 52 s2[d'] sa[do] 54
L 1 1
F T T K
time
N~
~
I

Fig. 6: Hlustration of a run

zero time units and that, although not shown in this example, time delays can
be zero so it is possible to do multiple actions in succession without any time
progression in between. Further, there is no special meaning as to whether the
arrow for an action goes up or down, this is simply to keep the figure small.
Let us now introduce some notation for a given maximal run
p = So o, soldo] — s1 4, sildi] — s LN First, r(i,d) denotes
the total time elapsed from the beginning of the run up to some delay d € R>¢
after the 7’th discrete transition. Formally, r(i,d) = (Z;}) dj) + d. Second, we
define a predicate valid, : Ng x R>q x T — {true, false} such that valid,(i,d, I)
checks whether the total time for reaching the state s;[d] in p belongs to the
time interval I, formally
d<dinr(i,d)el ifd;eRxg
r(i,d) el ifd; =00
d<d,Ar(i,d) el ifd;=ds
d<d,Ar(,d)yel ifd;,=d5.

valid,(i,d,I) =

Let us now give some example of the application of the valid, (%, d, I') function.
Figure 6 illustrates a run p = s o, so[do] — s1 N sild1] — s B,
so[de]) — ... and three points (marked with x). We see that valid,(1,d,I) is
false because s;[d] lies outside the interval I. Similarly, valid,(2,d",T) is false
because sz[d”’] is not a part of the run (since d” > dy). Finally, valid,(2,d’,) is
true because s3[d’] is a part of the run and within 7.

so F E(p1Ure2)

~—>
\ s S2. 1 sh S4
R il >
I £1 P2
I
f f f ;
N s time
~~
1

Fig. 7: Hlustration of a run satisfying an until formula.

Next, we define a function history, : No x Rxo — 2Y0*B20 st history (i, d)
returns the set of pairs (j,d’) that constitute all states s;[d’] in p preceding s;[d],
formally history,,(i,d) = {(j,d') |0 < j <iA0 <d <d;}u{(i,d') |0 < d' < d}.

Now we can define the satisfaction relation s = ¢ for a state s € S in a TTS
with propositions T' = (S, —, AP, u) and a TCTL formula ¢.

skEp iff p € u(s)
sk iff s [~ ¢
s E @1 A ps iff s =1 and s = @9

s E(e1Urg2) iff 3p € MazRuns(T, s).
30 >0.3d € Rx>g. [valid,(i,d, I) A s;[d] = @2 A
V(j,d') € history (i, d) . s;[d'] = ¢1]
sE E(p1 Rrps) iff 3p € MazRuns(T,s).
Vi > 0.¥d € Rsq . valid, (i, d, I) =
[s:d] |= @2 V 3(j, d') € history (i, d) . s;[d'] = ¢1]

The operators A(p1 Ur p2) and A(p1 Ry p2) are defined analogously by replacing
the quantification 3p € MazRuns(T, s) with Vp € MazRuns(T, s).

Figure 7 illustrates the satisfaction of the until formula and Figure 8 illus-
trates the release formula. In particular, notice that there are four possible ways
for a release formula to be satisfied. First, ¢o; may have occurred in the past
(outside the interval), which releases o, effectively ensuring that s need not
hold in the interval I at all. Second, ¢ may not be released, which means that
it must hold continuously within the entire interval I. Third, ¢s can hold con-
tinuously in the interval I, until some point in the interval where p; A @2 holds,
thereby releasing 5. Finally, ¢2 can hold continuously in the interval I until
the run deadlocks.

As expected, the until and release operators are dual.

Lemma 1 ([32]). We have s |= A1 Rry2) iff s = —~E(—o1Ur—p2), and
s = Alp1Urga) iff s 1= —E(=¢1 R ~¢2).

so F E(p1Rrp2) |
|
S0 | *—>
|
I s ! 52 A S4
: ¥1
|
|
|
|
| S1 il S3 53
so = E(p1Rrp2) 0——>§ .—);_)I
|
50 Q—)I
| ’ S2 ’ S4
| 50 e Lo C $2
| P2
|
|
|
! ’ ’
I s1 81 S3 53
so = E(p1Rre2) : 0——>I | CEEEE——
S0 0—>i .—y—»I *—>
! ’ So | ’ Sq
I So e = o S2
|
I 2 ®1 A p2
|
|
: ’
\ S1 il
so = E(p1Rrg2) '——>§_f’2
S0 +—>i]
’ S
| % I
1 P2
|
1 | |
} } } -
N _ time
~~
I

Fig. 8: Illustration of runs satisfying a release formula.

Example 1. Consider again the TAPN model of alternating bit protocol from
Section 4. We can express the correctness of the protocol as the property that
the sender and receiver never get out of synchrony. This property is violated if
the sender is about to send a message with the bit 0 but the receiver is either in
the state ReceiverOB or ReceiverlA, in other words when the receiver is sending or
resending an acknowledgment for the bit 0. Such situation should not happen,
and symmetrically for the second part of the protocol where a message with
the bit 1 is about to be sent. We can express the violation of synchrony by
the following TCTL formula: E(true Ulg ins) (Sender0OA = 1 A (Receiver0B =1V
ReceiverlA = 1))V (SenderlA = 1A (ReceiverlB = 1V ReceiverOA = 1))). The time
interval in the until operator is set to [0,inf) as the correct protocol behaviour
should not be violated at any point of its execution. In Section 7 we discuss
automatic tool-supported verification of this property.

Another example of a property can require that during the first 20 time
units of the protocol execution there are never more than 5 acknowledg-
ment messages in transfer. This can be expressed by the TCTL formula

A(false Ry 20) (Medium0B < 5 A Medium1B < 5)) and it is satisfied in the initial
marking of the alternating bit protocol.

Finally, we may also ask whether the sender and the receiver eventually finish
the transmission of the message with bit 0 and proceed to a message with bit
1. However, the TCTL formula A(true Ujg o) (SenderlA = 1 A ReceiverlA = 1))
expressing this property is false due to several reasons. First of all, in the initial
marking the sender is not forced to initiate the sending of the first message and
time can elapse for ever. This can be fixed by adding age invariants at all sender
and receiver places in order to enforce urgency. However, as the medium is lossy,
there is another maximal run where the retransmitted message gets repeatedly
lost and such run also violates our formula.

7 'Translations Preserving TCTL Model Checking

In this section, we shall present a general framework for arguing when a simula-
tion of one time dependent system by another preserves satisfiability of TCTL
formulae. We define the notion of one-by-many correspondence, a relation be-
tween two TTSs A and B, such that if A is in one-by-many correspondence with
B then every transition in A can be simulated by a sequence of transitions in
B. Further, every TCTL formula ¢ can be algorithmically translated into a for-
mulate tr(p) s.t. A = ¢ iff B = tr(¢). In the rest of this section, we shall use A
and B to refer to the original and the translated system, respectively. The text
of the next subsection is to a large extend based on [32] where the reader can
find a more detailed exposition and proofs.

7.1 One-By-Many Correspondence

As the system B is simulating a single transition of A by a sequence of transitions,
the systems A and B are comparable only in the states before and after this
sequence was performed. We say that B is stable in such states and introduce a
fresh atomic proposition called stable to explicitly identify this situation. We now
define three conditions that B should possess in order to apply to our framework.
A TTS (S, —, AP, u) s.t. stable € AP is

— delay-implies-stable if for any s € S, it holds that s %, for some d > 0
implies s |= stable,

— delay-preserves-stable if for any s € S such that s |= stable, if s <, s[d] then
s[d] k= stable for all d € R>g, and

— eventually-stable if for any sg € S such that sg |= stable and for any infinite
sequence of discrete transitions p = sg — 1 — S9 —> S3 — S4 — ...
or any finite nonempty sequence of discrete transitions p = sg — §7 —

- — 8, —~ there exists an index ¢ > 1 such that s; = stable.

We write s ~» s’ if there is a sequence s = sg — §1 — 8§89 —> -+ —> 8§, = §
s.t. s = stable, s’ |= stable, and s; [~ stable for 1 < j <n—1.

Definition 6. Let A = (S,— 4, APa,pua) and B = (T,—p, APp, up) be two
TTSs s.t. stable € APp and B is a delay-implies-stable and delay-preserves-
stable TTS. A relation R C S x T is a one-by-many correspondence if there
exists a function tr, : AP4 — APp such that whenever s Rt then

t = stable,
sEpiftEtry(p) for allp e APa,

if s — s’ thent ~t' and s' R,

if s —5 s[d] then t -5 t[d] and s[d) R t[d] for all d € Rsg,
if t ~t' then s — s’ and s’ Rt', and

if t —% t[d) then s -5 s[d] and s[d) R t[d] for all d € Rsg.

S Grds o~

If B is moreover an eventually-stable TTS, then we say that R is a complete
one-by-many correspondence. We write s 2 t (resp. s 2. t) if there exists a
relation R which is a one-by-many correspondence (resp. a complete one-by-
many correspondence) such that s Rt.

Now we translate TCTL formulae. Let AP, and APp be sets of atomic
propositions such that stable € APp and let tr, : AP4 — APp be a function
translating atomic propositions. We define tr : (AP 4) — P(APg) as follows.

tr(p) = tryp(p)
tr(=e1) = —tr(e1)
tr(p1 A) = (<p) Atr(p2)
tr(E(p1 Ur v2)) = E((tr(e1) V —stable) U (tr(p2) A stable))
tr(A(e1 Urg2)) = A((tr(p1) V —stable) Ur (tr(p2) A stable))
tr(E(v1 Ry v2)) = E((tr(v1) A stable) Ry (tr(p2) V —stable))
tr(A(v1 Ry p2)) = A((tr(v1) A stable) Ry (tr(p2) V —stable))

We are now ready to state the main result (see [33] for its full proof).

Theorem 3. Let A = (S,— 4, APa,ua) and B = (T,—p, APp, up) be two
TTSs such that stable € APpg and let sg € S and tg € T. If sg 2. to then for
any TCTL formula ¢ we have so = ¢ if and only if to = tr(p). If so 2 to then
the claim holds only for any formula ¢ from the safety fragment of TCTL.

We finish this subsection by recalling the steps needed in order to apply
the framework to a particular translation between two time-dependent systems.
Assume that we designed an algorithm that for a given system A constructs a
system B together with the notion of stable states in the system B.

1. Show that B is a delay-implies-stable and delay-preserves-stable TTS (and
optionally an eventually-stable TTS).

2. Define a proposition translation function tr, : AP4 — APp.

3. Define a relation R and show that it fulfills conditions 1-6 of Definition 6.

Theorem 3 now allows us to conclude that the translation preserves the full
TCTL (or its safety fragment if R is only a one-by-many correspondence).

There are several reductions from TAPN to networks of timed automata
that fit into the general framework [21, 32, 53] and the theory is applicable
also to reductions between other time-dependent models including Time Petri
nets [17, 23, 24, 34]. For more discussion we refer the reader to [32].

7.2 Translation from TAPN to Networks of Timed Automata

We will now present a translation from k-bounded TAPN (where the maximum
number of tokens in every reachable marking is at most k) to networks of timed
automata [7, 8] in the UPPAAL style (see e.g. [10] for an introduction to the
formalism) in order to demonstrate the applicability of the framework described
in the previous subsection.

For each token in the net, we create a parallel component in the network of
timed automata. As the net is k-bounded, we will need at most k such compo-
nents. In each of these parallel automata there is a location corresponding to
each place in the net. Whenever a TA is in one of these locations, it simulates
a token in the corresponding place. Moreover, each automaton has a local clock
x which represents the age of the token. All automata simulating the tokens
have the same structure, the only difference being their initial locations that
correspond to the initial placement of tokens in the net. Because there may not
always be exactly k tokens present during the execution of the net, we add a
new location P_capacity to represent currently unused tokens.

In addition to these ‘token’ automata we create a single control automaton.
The purpose is to simulate the firing of transitions and to move tokens around
via handshake synchronization initiated by the control automaton. This automa-
ton has a location P_stable which acts as a mutex in the sense that the control
automaton moves out of this location once the simulation of a transition begins
and returns back once the simulation of the transition ends. Hence the propo-
sition stable is defined as (P_stable = 1). Moreover, each time the automaton is
in P_stable, the token automata in the composed UPPAAL network correspond
to a marking in the TAPN. This directly implies that the generated TTS is
delay-preserves-stable as time delay steps do not change the placement of to-
kens. We shall now demonstrate how the translation works on an example; the
full algorithm is described in [31].

Consider the 5-bounded TAPN in Figure 9a. The translated network of UP-
PAAL timed automata is given below it. It consists of the control automaton in
Figure 9b and five token automata like the one in Figure 9c. The token automata
differ only in their initial locations, otherwise they are identical. Hence, in our
example, we have two token automata whose initial locations are PO, and the
remaining three have initial locations P1, P2 and P _capacity, respectively.

The communication in the network of timed automata begins when the con-
troller broadcasts on the channel t_broadcast. All token automata that can ac-
cept the broadcast (i.e. their guards evaluate to true) will participate and set the

{1.0,5.2}
P

b3 P4 ps
(a) A simple TAPN net

okO==true && ok0:=false,
ok1==true && ok1:=false,
ok2==true && ok2:=false, Pt1in Pt2in
ok3==false ok3:=false =\ BN
S t_1_in! \9 t_2_in! S
P_t test - T
t_broadcast!
t_3!
@)
O t_1_out! \9 t_2_out! <
P_stable P_t_1_out P_t 2 out
(b) Timed automaton controlling the firing of the transition ¢
x>=0 && x <=3 x>=1 && x <=5 X >2 && x <7
t_broadcast? t_broadcast? t_broadcast? t_broadcast?
okO= true ok1=true ok3=true ok2= true
PO P1 P2 P_capacity
x >=0 && x <=3 x>=1 && x <=5
t 1_in? t 2_in?
x:=0
P_hp_t_1 C) P_hp_t 2 C) t 37
x:=0
x >=0 && x <=3 t_2_out?
t_1_out? x:=0
rs O raQ rsQ)
X <=3

(c) Timed automata templates for each token in the net with local clock x

Fig.9: Translation from TAPN to UPPAAL network of timed automata

corresponding global boolean variables ok0, ..., ok3 to true. The UPPAAL im-
plementation of broadcast allows the controller to move to the location P_t_test
only if the associated invariant where ok0, ..., ok2 are all true and ok3 is false
is satisfied, otherwise the broadcast cannot be executed. It is now clear that
performing the broadcast is possible only if there is at least one token of an

appropriate age in all input places of ¢, including P_capacity as a new token will
be produced, and at the same time there is no token of age in the interval (2,7)
in the place ps. This is very important for the preservation of liveness TCTL
properties, as once the transition firing is initiated, it should be always possibile
to successfully finish it. Otherwise the generated transition system would not be
eventually-stable. For this reason, the reader can notice that while the interval
on the arc from py to t is [0, 00), the corresponding guard in the token automaton
on the edge from PO to P_hp_t_1 requires the age of the token to be also less or
equal to 3. The reason for this is that the token will be transported to the place
p3 and its age will be preserved. Any age value larger than 3 would violate the
invariant in place ps; hence as before the eventually-stable property might fail.

After the broadcast transition was successfully executed, then the effect of
firing the transition ¢ is simulated by a series of handshake synchronizations on
channels t_1_in, t_2_in, t_3, t_2_out, t_1_out initiated by the controller and we have
a guarantee that such a sequence will always bring the controller to the stable
location P_stable, hence ensuring that the generated TTS is eventually-stable.
Moreover, all locations of the controller are committed (do not allow any time
delay steps), which means that the generated TTS is also delay-implies-stable.

The reason why the tokens are not moved directly to their destinations but
are temporarily stored at the locations P_hp_t_1 and and P_hp_t_2 is to avoid the
situation where a newly produced token is immediately consumed by firing of
the same transition (as it may happen if the transition shared some input and
output places).

In case the net contains more transitions, the controller automaton contains
a similar loop for all such transitions. This concludes our example. It is relatively
easy to argue (see [31] for details) that the original and the translated systems
are in one-by-many equivalence. This gives us a polynomial time reduction from
the full TCTL model checking problem of timed-arc Petri nets to TCTL model
checking problem on networks of timed automata.

We have implemented the reduction described in this section in the open
source verification tool TAPAAL [1]. The tool provides a graphical user inter-
face for modelling, simulation and verification of timed-arc Petri nets. Further,
we have modelled our example of alternating bit protocol described in Section 4
in TAPAAL and verified the correctness of its behaviour by asking about the
violation of synchronization property described in Example 1. As the protocol
model is unbounded and contains invariants, automatic verification is not pos-
sible. Instead, we considered an under-approximation of the protocol behaviour
by limiting the maximum number of messages in transit so that the net becomes
bounded. The protocol does not violate the correctness property for any number
of messages in transit that we were able to verify. The verification times are
measured on an Intel@ CPU @ 2.67GHz based computer with 4 GB of memory.
The results for a different maximum number of messages in transit are compared
in Table 2 with a manually created UPPAAL model of the protocol.

It is clear that both the UPPAAL and TAPAAL models experience the state-
space explosion problem so that even relatively small instances take a long ver-

Messages | UPPAAL | TAPAAL Messages | UPPAAL | TAPAAL
1 < 1s < 1s 9 2.5s 1.1s
2 <1s < 1s 10 3.6s 1.9s
3 <1s 1.4s 11 10.9s 2.9s
4 <1s 16.3s 12 24.7s 4.2s
5 2.2s 165.3s 13 89.0s 6.1s
6 14.4s - 14 239.3s 8.8s
7 141.9s - 15 - 12.8s

(a) ABP without symmetry reduction (b) ABP with symmetry reduction

Table 2: Verification of ABP; dashes indicate more than 5 minutes running time

ification time. Here the native UPPAAL model is verified faster than the one
automatically translated to UPPAAL automata from the TAPN model. On the
other hand, the models contain lots of symmetric behaviour, so we also veri-
fied both models with symmetry reduction activated. Here, on the other hand,
TAPAAL translation provides significantly faster verification compared to the
native UPPAAL model. A similar story is true also for a few other experiments
we ran and it seems to be connected to the fact that even though the translated
models are larger than the manually created UPPAAL models, TAPAAL better
exploits the benefits of symmetry reduction. A more detailed investigation of
this phenomenon is a part of the future research.

8 Conclusion

In this article we provided an overview of decidability and complexity results
related to verification of timed-arc Petri nets extended with transport arcs, age
invariants and inhibitor arcs. We described a general framework for arguing
when a translation between two time-dependent models preserves TCTL model
checking and provided an example of such a translation from timed-arc Petri nets
to networks of timed automata. The initial experimental data look promising and
in the future we shall consider larger case studies and invest a significant effort
into further development of the tool TAPAAL, including its own verification
engine.

Among the different extensions of Petri nets with time aspects, we believe
that timed-arc Petri nets constitute a convenient modeling formalism and with
the recent development of its tool support, TAPN will become an attractive
alternative to other modeling approaches.

References

[1] TAPAAL. http://www.tapaal.net.
[2] UPPAAL. http://www.uppaal.com.

[3]

[12]

[13]

P.A. Abdulla and A. Nylén. Better is better than well: On efficient verifica-
tion of infinite-state systems. Proceedings of 15th Annual IEEE Symposium
on Logic in Computer Science (LICS’00), pages 132—-140, 2000.

P.A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In Proceedings of
the 22nd International Conference on Application and Theory of Petri Nets
(ICATPN’01), volume 2075 of LNCS, pages 53-70. Springer-Verlag, 2001.

P.A. Abdulla, J. Deneux, P. Mahata, and A. Nylén. Forward reachability
analysis of timed Petri nets. In Joint International Conferences on For-
mal Modelling and Analysis of Timed Systems (FORMATS’04) and Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’04), vol-
ume 3253 of LNCS, pages 343-362. Springer-Verlag, 2004.

P.A. Abdulla, P. Mahata, and R. Mayr. Dense-timed Petri nets: Checking
zenoness, token liveness and boundedness. Logical Methods in Computer
Science, 3(1):1-61, 2007.

R. Alur and D. Dill. Automata for modelling real-time systems. In Proceed-
ings of the 17th International Colloquium on Algorithms, Languages and
Programming (ICALP’90), volume 443 of LNCS, pages 322-335. Springer-
Verlag, 1990.

R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-235, 1994.

K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on re-
liable full-duplex transmission over half-duplex links. Communications of
the ACM, 12(5):260-261, 1969.

G. Behrmann, A. David, and K.G. Larsen. A tutorial on UPPAAL. In Marco
Bernardo and Flavio Corradini, editors, Formal Methods for the Design
of Real-Time Systems: 4th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems (SFM-RT’04),
number 3185 in LNCS, pages 200-236. Springer-Verlag, 2004.

B. Berthomieu and M. Diaz. Modeling and verification of time dependent
systems using time Petri nets. IEEE Trans. Software Eng., 17(3):259-273,
1991.

B. Berthomieu, P-O. Ribet, and F. Vernadat. The tool TINA — construc-
tion of abstract state spaces for Petri nets and time Petri nets. International
Journal of Production Research, 42(14):2741-2756, 2004.

B. Berthomieu, F. Peres, and F. Vernadat. Bridging the gap between timed
automata and bounded time Petri nets. In Proc. of FORMATS 06, volume
4202 of LNCS, pages 82-97. Springer, 2006.

T. Bolognesi and P. Cremonese. The weakness of some timed models for
concurrent systems. Technical Report CNUCE (C89-29, CNUCE-C.N.R.,
1989.

T. Bolognesi, F. Lucidi, and S. Trigila. From timed Petri nets to timed
LOTOS. In Proceedings of the IFIP WG 6.1 Tenth International Symposium
on Protocol Specification, Testing and Verification (Ottawa 1990), pages 1—
14. North-Holland, Amsterdam, 1990.

H. Boucheneb, G. Gardey, and O.H. Roux. TCTL model checking of time
Petri nets. Journal of Logic and Computation, 19(6):1509-1540, 2009.

[17]

(18]

[19]

P. Bouyer, S. Haddad, and P.-A. Reynier. Timed Petri nets and timed
automata: On the discriminating power of zeno sequences. Information and
Computation, 206(1):73-107, 2008.

F.D.J. Bowden. Modelling time in Petri nets. In Proceedings of the Second
Australia-Japan Workshop on Stochastic Models, 1996.

M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kro-
nos: A model-checking tool for real-time systems. In Proceedings of the
10th International Conference on Computer-Aided Verification (CAV’98),
volume 1427 of LNCS, pages 546-550. Springer-Verlag, 1998.

M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF toolset. In For-
mal Methods for the Design of Real-Time Systems, International School on
Formal Methods for the Design of Computer, Communication and Software
Systems (SFM-RT’04), volume 3185 of LNCS, pages 237-267. Springer-
Verlag, 2004.

J. Byg, K.Y. Jgrgensen, and J. Srba. An efficient translation of timed-arc
Petri nets to networks of timed automata. In Proc. of ICFEM’09, volume
5885 of LNCS, pages 698-716. Springer, 2009.

J. Byg, K.Y. Jgrgensen, and J. Srba. TAPAAL: Editor, simulator and
verifier of timed-arc Petri nets. In Proc. of ATVA’09, volume 5799 of LNCS,
pages 84-89. Springer, 2009.

F. Cassez and O.H. Roux. Structural translation from time Petri nets to
timed automata. ENTCS, 128(6):145 — 160, 2005. Proc. of AVoCS’04.

J.S. Dong, P. Hao, S. Qin, J. Sun, and W. Yi. Timed Automata Patterns.
IEEFE Transactions on Software Engingeering, 34(6):844-859, 2008.

A. Finkel and Ph. Schnoebelen. Well-structured transition systems every-
where! Theoretical Computer Science, 256(1-2):63-92, 2001.

G. Gardey, D. Lime, M. Magnin, and O.H. Roux. Romeo: A tool for ana-
lyzing time Petri nets. In Proc. of CAV’05, volume 3576 of LNCS, pages
418-423. Springer, 2005.

M. Hack. Petri Net Language. Technical Report MIT-LCS-TR-159, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 1976.

H.M. Hanisch. Analysis of place/transition nets with timed-arcs and its
application to batch process control. In Proceedings of the 14th International
Conference on Application and Theory of Petri Nets (ICATPN’93), volume
691 of LNCS, pages 282-299, 1993.

F. Heitmann, D. Moldt, K.H. Mortensen, and H. Rolke. Petri nets
tools database quick overview. http://www.informatik.uni-hamburg.de/
TGI/PetriNets/tools/quick.html, Accessed: 28.10.2010.

L. Jacobsen, M. Jacobsen, and M. H. Mgller. Undecidability of coverabil-
ity and boundedness for timed-arc Petri nets with invariants. In Proc.
of MEMICS’09. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2009.
ISBN 978-3-939897-15-6.

L. Jacobsen, M. Jacobsen, and M.H. Mgller. Modelling and verification of
timed-arc Petri nets. Master’s thesis, Department of Computer Science,
Aalborg University, Denmark, 2010. Available at http://tapaal.net.

[32]

37]

L. Jacobsen, M. Jacobsen, M.H. Mgller, and J. Srba. A framework for
relating timed transition systems and preserving TCTL model checking.
In Proceedings of the Tth European Performance Engineering Workshop
(EPEW’10), volume 6342 of LNCS, pages 83-98. Springer-Verlag, 2010.

L. Jacobsen, M. Jacobsen, M.H. Mgller, and J. Srba. A framework for relat-
ing timed transition systems and preserving TCTL model checking. Techni-
cal Report FIMU-RS-2010-09, Faculty of Informatics, Masaryk Univ., 2010.
A. Janowska, P. Janowski, and D. Wréblewski. Translation of Intermediate
Language to Timed Automata with Discrete Data. Fundamenta Informat-
icae, 85(1-4):235-248, 2008.

L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on
Computer Systems, 5(1):1-11, 1987.

F. Laroussinie and K.G. Larsen. CMC: A tool for compositional model-
checking of real-time systems. In Proceedings of the FIP TC6 WG6.1 Joint
International Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols (FORTE XI) and Protocol Speci-
fication, Testing and Verification (PSTV XVIII), pages 439-456. Kluwer,
B.V., 1998.

E.W. Mayr. An algorithm for the general Petri net reachability problem
(preliminary version). In Proceedings of the 15th Ann. ACM Symposium
on Theory of Computing, pages 238-246. Assoc. for Computing Machinery,
1981.

Ph. M. Merlin. A Study of the Recoverability of Computing Systems. PhD
thesis, University of California, Irvine, CA, USA, 1974.

P.M. Merlin and D.J. Faber. Recoverability of communication protocols:
Implications of a theoretical study. IEEE Transactions on Communications,
24(9):1036-1043, 1976.

M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,
1967.

M. Nielsen, V. Sassone, and J. Srba. Properties of distributed timed-
arc Petri nets. In Proceedings of the 21st International Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’01), volume 2245 of LNCS, pages 280-291. Springer-Verlag, 2001.
F.L. Pelayo, F. Cuartero, V. Valero, H. Macia, and M.L. Pelayo. Applying
timed-arc Petri nets to improve the performance of the MPEG-2 encoding
algorithm. In Proceedings of the 10th International Multimedia Modelling
Conference (MMM’04), pages 49-56. IEEE Computer Society, 2004.

F.L. Pelayo, F. Cuartero, V. Valero, M.L. Pelayo, and M.G. Merayo. How
does the memory work? by timed-arc Petri nets. In Proceedings of the 4th
IEEEFE International Conference on Cognitive Informatics (ICCI’05), pages
128-135, 2005.

W. Penczek and A. Pélrola. Advances in Verification of Time Petri Nets
and Timed Automata: A Temporal Logic Approach. Springer-Verlag, 2006.
C.A. Petri. Kommunikation mit Automaten. PhD thesis, Darmstadt, 1962.
C. Ramchandani. Performance FEvaluation of Asynchronous Concurrent
Systems by Timed Petri Nets. PhD thesis, Massachusetts Institute of Tech-
nology, Cambridge, 1973.

[47]

[48]

[49]

V.V. Ruiz, F. Cuartero Gomez, and D. de Frutos Escrig. On non-
decidability of reachability for timed-arc Petri nets. In Proceedings of the Sth
International Workshop on Petri Net and Performance Models (PNPM’99),
pages 188-196, 1999.

V.V. Ruiz, D. de Frutos Escrig, and O. Marroquin Alonso. Decidability of
properties of timed-arc Petri nets. In Proceedings of the 21st International
Conference on Application and Theory of Petri Nets (ICATPN’00), volume
1825 of LNCS, pages 187-206. Springer-Verlag, 2000.

V.V. Ruiz, J.J. Pardo, and F. Cuartero. Translating TPAL specifications
into timed-arc Petri nets. In Proceedings of the 23rd International Confer-
ence on Applications and Theory of Petri Nets (ICATPN’02), volume 2360
of LNCS, pages 414-433. Springer-Verlag, 2002.

V.V. Ruiz, F.L. Pelayo, F. Cuartero, and D. Cazorla. Specification and
analysis of the MPEG-2 video encoder with timed-arc Petri nets. Electronic
Notes Theoretial Computer Science, 66(2), 2002.

J. Sifakis. Use of Petri nets for performance evaluation. In Proceedings of the
Third International Symposium IFIP W.G. 7.5., Measuring, Modelling and
Evaluating Computer Systems (Bonn-Bad Godesberg, 1977), pages 75-93.
Elsevier Science Publishers, Amsterdam, 1977.

J. Sifakis and S. Yovine. Compositional specification of timed systems. In
Proceedings of the 13th Annual Symposim on Theoretical Aspects of Com-
puter Science (STACS’96), volume 1046 of LNCS, pages 347-359. Springer-
Verlag, 1996.

J. Srba. Timed-arc Petri nets vs. networks of timed automata. In Pro-
ceedings of the 26th International Conference on Application and Theory of
Petri Nets (ICATPN 2005), volume 3536 of LNCS, pages 385-402. Springer-
Verlag, 2005.

J. Srba. Comparing the expressiveness of timed automata and timed exten-
sions of Petri nets. In Proc. of FORMATS 08, volume 5215 of LNCS, pages
15-32. Springer, 2008.

J. Wang. Timed Petri Nets, Theory and Application. Kluwer Academic
Publishers, 1998. ISBN ISBN 0-7923-8270-6.

