
Kaki: Efficient Concurrent Update Synthesis for SDN
NICKLAS S. JOHANSEN, LASSE B. KÆR, ANDREAS L. MADSEN, KRISTIAN Ø. NIELSEN,
JIŘÍ SRBA, and RASMUS G. TOLLUND, Department of Computer Science, Aalborg University,

Denmark

Modern computer networks based on the software-defined networking (SDN) paradigm are becoming increas-

ingly complex and often require frequent configuration changes in order to react to traffic fluctuations. It is

essential that forwarding policies are preserved not only before and after the configuration update but also at

any moment during the inherently distributed execution of such an update. We present Kaki, a Petri game

based tool for automatic synthesis of switch batches which can be updated in parallel without violating a given

(regular) forwarding policy like waypointing or service chaining. Kaki guarantees to find the minimum number

of concurrent batches and supports both splittable and nonsplittable flow forwarding. In order to achieve

optimal performance, we introduce two novel optimisation techniques based on static analysis: decomposition

into independent subproblems and identification of switches that can be collectively updated in the same batch.

These techniques considerably improve the performance of our tool Kaki, relying on TAPAAL’s verification

engine for Petri games as its backend. Experiments on a large benchmark of real networks from the Internet

Topology Zoo database demonstrate that Kaki outperforms the state-of-the-art tools Netstack and FLIP. Kaki

computes concurrent update synthesis significantly faster than Netstack and compared to FLIP, it provides

shorter (and provably optimal) concurrent update sequences at similar runtimes.

CCS Concepts: • Computer systems organization→ Embedded systems; Redundancy; Robotics; • Net-
works → Network reliability.

Additional Key Words and Phrases: computer networks, software defined networking, concurrent update

synthesis, security policies

ACM Reference Format:
Nicklas S. Johansen, Lasse B. Kær, Andreas L. Madsen, Kristian Ø. Nielsen, Jiří Srba, and Rasmus G. Tollund.

2023. Kaki: Efficient Concurrent Update Synthesis for SDN. 1, 1 (August 2023), 21 pages. https://doi.org/

XXXXXXX.XXXXXXX

1 INTRODUCTION
Software defined networking (SDN) [7] delegates the control of a network’s routing to the control

plane, allowing for programmable control of the network and creating a higher degree of flexibility

and efficiency. If a group of switches fail, a new routing of the network flows must be established

in order to avoid sending packets to the failed switches, resulting ultimately in packet drops. While

updating the routing in an SDN network, the network must preserve a number of policies like

waypointing that requires that a given firewall (waypoint) must be visited before a packet in the

network is delivered to its destination. The update synthesis problem [7] is to find an update

sequence (ordering of switch updates) that preserves a given policy.

Authors’ address: Nicklas S. Johansen, nslorup@gmail.com; Lasse B. Kær, lasse.b.kaer@gmail.com; Andreas L. Madsen,

andreasmadsen327@gmail.com; Kristian Ø. Nielsen, kristianodum@gmail.com; Jiří Srba, srba@cs.aau.dk; Rasmus G. Tollund,

rasmusgtollund@gmail.com, Department of Computer Science, Aalborg University, Selma Lagerlofs Vej 300, Aalborg,

Denmark, 9220.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

XXXX-XXXX/2023/8-ART $15.00

https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: August 2023.

HTTPS://ORCID.ORG/0009-0004-5879-9780
HTTPS://ORCID.ORG/0009-0009-1121-6847
HTTPS://ORCID.ORG/0009-0007-5073-1660
HTTPS://ORCID.ORG/0009-0003-4112-558X
HTTPS://ORCID.ORG/0000-0001-5551-6547
HTTPS://ORCID.ORG/0009-0001-9829-366X
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0009-0004-5879-9780
https://orcid.org/0009-0009-1121-6847
https://orcid.org/0009-0007-5073-1660
https://orcid.org/0009-0003-4112-558X
https://orcid.org/0000-0001-5551-6547
https://orcid.org/0009-0001-9829-366X
https://doi.org/XXXXXXX.XXXXXXX

2 Johansen et al.

In order to reduce the time of the update process, it is of interest to update switches in par-

allel. However, due to the asynchronous nature of networks, attempting to update all switches

concurrently may lead to transient (i.e. during the update) policy violations before the update is

completed. This raises the problem of finding a concurrent update strategy (sequence of batches of

switches that can be updated concurrently) while preserving a given forwarding policy during the

update. We study this concurrent update synthesis problem and provide an efficient translation of

the problem of finding an optimal (shortest) concurrent update sequence into Petri net games. Our

translation, implemented in the tool Kaki, guarantees that we preserve a given forwarding policy,

expressed as a regular language over the switches describing the sequences of all acceptable hops.

Popular routing schemes like Equal-Cost-MultiPath (ECMP) [8] allow for switches to have

multiple next hops that split a flow along several paths to its destination in order to account

for traffic engineering like load balancing, using e.g. hash-based schemes [1]. In our translation

approach, we support concurrent update synthesis that takes into account such multiple forwarding

(splittable flows) modelled using nondeterminism.

To solve the concurrent update synthesis problem, our framework, called Kaki, translates a given

network and its forwarding policy into a Petri game and synthesises a winning strategy for the

controller using TAPAAL’s Petri game engine [9, 10]. Kaki guarantees to find a concurrent update

sequence that is minimal in the number of batches. We provide two novel optimisation techniques

based on static analysis of the network that reduce the complexity of solving a concurrent update

synthesis problem, which is known to be NP-hard even if restricted only to the basic loop-freedom

and waypointing properties [16]. The first optimisation, topological decomposition, effectively splits

the network with its initial and final routing into two subproblems that can be solved independently

and even in parallel. The second optimisation identifies collective update classes (sets of switches)

that can always be updated in the same batch.

Finally, we conduct a thorough comparison of our tool against the state-of-the-art update

synthesis tools Netstack [23] and FLIP [26], and another Petri game tool [4] (though only allowing

for sequential updates). We benchmark on the set of 8759 problem instances of realistic network

topologies with various policies required by network operators. Kaki manages to solve a similar

number of problems as FLIP, however, in 9% of cases it synthesises a solution with a smaller

number of batches than FLIP. The tool Netstack synthesises also provably optimal concurrent

update solutions, however, at almost an order of magnitude slower running time. When Kaki

is specialised to produce only singleton batches and policies containing only reachability and

single waypointing, it performs similarly as the Petri game approach from [4] that is also using

TAPAAL verification engine as its backend but solves a simpler problem. This demonstrates that

our more elaborate translation that supports concurrent updates does not create any considerable

performance overhead when applied to the simpler setting.

Related Work
The update synthesis problem recently attracted lots of attention (see e.g. the recent overview [7]).

State-of-the-art solutions/tools include NetSynth [19], FLIP [26], Snowcap [24], AllSynth [14],

Netstack [23] and a Petri game based approach [4].

The tools NetSynth [19] and AllSynth [14] use the generic LTL logic for policy specification but

support the synthesis of only sequential updates. NetSynth is using incremental model checking

approach and the authors in [4] argue that their tool outperforms NetSynth. AllSynth is based on

the BDD technology in order to compactly represent all sequential solutions, however, it does not

support concurrent updates either.

The update synthesis tool FLIP [26] supports general policies and moreover it allows to syn-

thesise concurrent update sequences. Similarly to Kaki, it handles every flow independently but

, Vol. 1, No. 1, Article . Publication date: August 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 3

Kaki provides more advanced structural decomposition (that can be possibly applied also as a

preprocessing step for FLIP). FLIP provides a faster synthesis compared to NetSynth (see [26]) but

the tool’s performance is negatively affected by more complicated forwarding policies. FLIP syn-

thesises policy-preserving update sequences by constructing constraints that enforce precedence

of switch updates, implying a partial order of updates and hence allowing FLIP to update switches

concurrently. FLIP, contrary to our tool Kaki, does not guarantee to find the minimal number of

batches and it sometimes reverts to an undesirable two-phase commit approach [22] via packet

tagging. This is suboptimal as it doubles the required (expensive) ternary content-addressable

memory (TCAM) [15].

The tool Netstack [23] is a very recent addition to the family of update synthesis tools that support

concurrent updates. Netstack reduces the concurrent update synthesis problem to Stackelberg

games [25] but the update policies are restricted to basic reachability and waypointing. Our

approach instead reduces the concurrent update problem to Petri games and moreover it allows for

the specification of generic (regular) network policies. The performance of our tool Kaki is almost

an order of magnitude faster than Netstack. To the best of our knowledge, FLIP and Netstack are the

only tools supporting concurrent updates and we provide an extensive performance comparison of

FLIP and Netstack against Kaki on a large benchmark of concurrent update problems.

The update synthesis problem via Petri games was recently studied in [4]. Our work generalises

this work in several dimensions. The translation in [4] considers only sequential updates and

reduces the problem to a simplistic type of game with only two rounds and only one environmental

transition. Our translation uses the full potential of Petri games with multiple rounds where the

controller and environment switch turns—this allows us to encode the concurrent update synthesis

problem. Like many others [17, 18], the work in [4] fails to provide general forwarding policies and

defines only a small set of predefined policies. Our tool, Kaki, solves the limitation by providing

a regular language for the specification of forwarding policies and it is also the first tool that

considers splittable flows with multiple (nondeterministic) forwarding.

A recent work introduces Snowcap [24], a generic update synthesis tool allowing for both

soft and hard specifications. A hard specification specifies a forwarding policy, whereas the soft

specification is a secondary objective that should be minimised. Snowcap uses LTL logic for the

hard specification but it supports only sequential updates and, as documented in [23] on the same

benchmark as used in this paper, it is significantly slower than the approach from [4] that we

compare against in our experiments.

Other recent works relying on the Petri net formalism include timing analysis for network

updates [2] and verification of concurrent network updates against Flow-LTL specifications [6],

however, both approaches focus solely on the analysis/verification part for a given update sequence

and do not discuss how to synthesise such sequences.

This paper is an extended version of the conference paper [12] with full proofs of all theorems and

lemmas, additional examples in Figures 3 and 4 and their descriptions, and extended experiments that

compare Kaki performance with a recently released tool Netstack [23] (Figure 9) and a comparison

plot of deterministic and nondeterministic forwarding (Figure 10).

2 CONCURRENT UPDATE SYNTHESIS
We shall now formally define a network, routing of a flow in a network, flow policy as well as the

concurrent update synthesis problem.

A network is a directed graph𝐺 = (𝑉 , 𝐸) where𝑉 is a finite set of switches (nodes) and 𝐸 ⊆ 𝑉 ×𝑉
is a set of links (edges) such that (𝑠, 𝑠) ∉ 𝐸 for all 𝑠 ∈ 𝑉 . A flow in a network is a pair F = (𝑆𝐼 , 𝑆𝐹) of
one or more initial (ingress) switches and one or more final (egress) switches where ∅ ≠ 𝑆𝐼 , 𝑆𝐹 ⊆ 𝑉 .

A flow aims to forward packets such that a packet arriving to any of the ingress switches eventually

, Vol. 1, No. 1, Article . Publication date: August 2023.

4 Johansen et al.

𝑠1 𝑠2

𝑠3 𝑠4

𝑠5ingress

egress

egress

Fig. 1: Network and a routing function (dotted lines are links present in the network but not used

in the routing) for the flow F = ({𝑠1}, {𝑠4, 𝑠5}) where 𝑅(𝑠1) = {𝑠3}, 𝑅(𝑠2) = {𝑠3, 𝑠4, 𝑠5}, 𝑅(𝑠3) = {𝑠2}
and 𝑅(𝑠4) = 𝑅(𝑠5) = ∅.

reaches one of the egress switches. Packet forwarding is defined by network routing, specifying

which links are used for forwarding of packets. Given a network𝐺 = (𝑉 , 𝐸) and a flow F = (𝑆𝐼 , 𝑆𝐹),
a routing is a function 𝑅 : 𝑉 → 2

𝑉
such that 𝑠′ ∈ 𝑅(𝑠) implies that (𝑠, 𝑠′) ∈ 𝐸 for all 𝑠 ∈ 𝑉 , and

𝑅(𝑠𝑓) = ∅ for all 𝑠𝑓 ∈ 𝑆𝐹 . We write 𝑠 → 𝑠′ if 𝑠′ ∈ 𝑅(𝑠), as an alternative notation to denote the

edges in the network that are used for packet forwarding in the given flow.

Figure 1 shows a network example together with its routing. Note that we allow nondeterministic

forwarding as there may be defined multiple next-hops—this enables splitting of the traffic through

several paths for load balancing purposes.

We now define a trace in a network as a maximal sequence of switches that can be observed

when forwarding a packet under a given routing function. A trace 𝑡 for a routing 𝑅 and a flow

F = (𝑆𝐼 , 𝑆𝐹) is a finite or infinite sequence of switches starting in some ingress switch 𝑠0 ∈ 𝑆𝐼
where for the infinite case we have 𝑡 = 𝑠0𝑠1 . . . 𝑠𝑖 . . . where 𝑠𝑖 ∈ 𝑅(𝑠𝑖−1) for 𝑖 ≥ 1, and for the finite

case 𝑡 = 𝑠0𝑠1 . . . 𝑠𝑖 . . . 𝑠𝑛 where 𝑠𝑖 ∈ 𝑅(𝑠𝑖−1) for 1 ≤ 𝑖 ≤ 𝑛 and 𝑅(𝑠𝑛) = ∅ for the final switch in the

sequence 𝑠𝑛 . For a given routing 𝑅 and a flow F , we denote by 𝑇 (𝑅, F) the set of all traces.
In our example from Figure 1, the set 𝑇 (𝑅, ({𝑠1}, {𝑠4, 𝑠5})) contains e.g. the traces 𝑠1𝑠3𝑠2𝑠4,

𝑠1𝑠3𝑠2𝑠3𝑠2𝑠4 as well as the infinite trace 𝑠1 (𝑠3𝑠2)𝜔 that exhibits (undesirable) looping behaviour

as the packets are never delivered to any of the two egress switches.

2.1 Routing Policy
A routing policy specifies all allowed traces on which packets (in a given flow) can travel. Given

a network 𝐺 = (𝑉 , 𝐸), a policy 𝑃 is a regular expression over 𝑉 describing a language 𝐿(𝑃) ⊆ 𝑉 *.

Given a routing 𝑅 for a flow F = (𝑆𝐼 , 𝑆𝐹), a policy 𝑃 is satisfied by 𝑅 if 𝑇 (𝑅, F) ⊆ 𝐿(𝑃). Hence all
possible traces allowed by the routing must be in the language 𝐿(𝑃). As 𝐿(𝑃) contains only finite

traces, if the set 𝑇 (𝑅, F) contains an infinite trace then it never satisfies the policy 𝑃 .

Our policy language can define a number of standard routing policies for a flow F = (𝑆𝐼 , 𝑆𝐹) in
a network 𝐺 = (𝑉 , 𝐸).

• Reachability is expressed by the policy (𝑉 \ 𝑆𝐹)*𝑆𝐹 . It ensures loop and black hole freedom

as it requires that an egress switch must always be reached.

• Waypoint enforcement requires that packets must visit a given waypoint switch 𝑠𝑤 ∈ 𝑉 before

they are delivered to an egress switch (where, by our assumption, the trace ends) and it is

given by the policy 𝑉 *𝑠𝑤𝑉 *.

• Alternative waypointing specifies two waypoints 𝑠 and 𝑠′ such that at least one of them must

be visited and it is given by the union of the waypoint enforcement regular languages for 𝑠

and 𝑠′, or alternatively by 𝑉 *(𝑠 + 𝑠′)𝑉 *.

• Service chaining requires that a given sequence of switches 𝑠1, 𝑠2, . . . , 𝑠𝑛 must be visited in the

given order and it is described by the policy (𝑉 \ {𝑠1, · · · , 𝑠𝑛})*𝑠1 (𝑉 \ {𝑠2, · · · , 𝑠𝑛})*𝑠2 · · · (𝑉 \
{𝑠𝑛})*𝑠𝑛𝑉 *.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 5

• Conditional enforcement is given by a pair of switches 𝑠, 𝑠′ ∈ 𝑉 such that if 𝑠 is visited then 𝑠′

must also be visited and it is given by the policy (𝑉 \ {𝑠})* +𝑉 *𝑠′𝑉 *.

Regular languages are closed under union and intersection, hence the standard policies can be

combined using Boolean operations. As reachability is an essential property that we always want

to satisfy, we shall assume that the reachability property is always assumed in any other routing

policy.

In our translation, we represent a policy by an equivalent nondeterministic finite automaton

(NFA) 𝐴 = (𝑄,𝑉 , 𝛿, 𝑞0, 𝐹) where 𝑄 is a finite set of states, 𝑉 is the alphabet equal to set of switches,

𝛿 : 𝑄 × 𝑉 → 2
𝑄
is the transition function, 𝑞0 is the initial state and 𝐹 is the set of final states.

We extend the 𝛿 function to sequences of switches by 𝛿 (𝑞, 𝑠0𝑠1 . . . 𝑠𝑛) =
⋃

𝑞′∈𝛿 (𝑞,𝑠0) 𝛿 (𝑞′, 𝑠1 . . . 𝑠𝑛)
in order to obtain all possible states after executing 𝑠0𝑠1 . . . 𝑠𝑛 . We define the language of 𝐴 by

𝐿(𝐴) = {𝑤 ∈ 𝑉 ∗ | 𝛿 (𝑞0,𝑤) ∩ 𝐹 ≠ ∅}. An NFA where |𝛿 (𝑞, 𝑠) | = 1 for all 𝑞 ∈ 𝑄 and 𝑠 ∈ 𝑉 is called a

deterministic finite automaton (DFA). It is a standard result that NFA, DFA and regular expressions

have the same expressive power (w.r.t. the generated languages).

2.2 Concurrent Update Synthesis Problem
Let 𝑅𝑖 and 𝑅𝑓 be the initial and final routing, respectively. We aim to update the switches in the

network so that the packet forwarding is changed from the initial to the final routing. The goal of

the concurrent update synthesis problem is to construct a sequence of nonempty sets of switches,

called batches. We want to guarantee that when we update the switches from their initial to the

final routing in every batch concurrently (while waiting so that all updates in the batch are finished

before we update the next batch), a given routing policy is transiently preserved. Our aim is to

synthesise an update sequence that is optimal, i.e. minimises the number of batches.

During the update, only switches that actually change their forwarding function need to be

updated. Given a network 𝐺 = (𝑉 , 𝐸), an initial routing 𝑅𝑖 and a final routing 𝑅𝑓 , the set of update
switches is defined by𝑈 = {𝑠 ∈ 𝑉 | 𝑅𝑖 (𝑠) ≠ 𝑅𝑓 (𝑠)}. An update of a switch 𝑠 ∈ 𝑈 changes its routing

from 𝑅𝑖 (𝑠) to 𝑅𝑓 (𝑠).

Definition 1. Let 𝐺 = (𝑉 , 𝐸) be a network, let 𝑅 and 𝑅𝑓 be the current and final routing, respec-

tively, and let 𝑈 the set of update switches. An update of a switch 𝑠 ∈ 𝑈 results in the updated

routing 𝑅𝑠 given by

𝑅𝑠 (𝑠′) =
{
𝑅(𝑠′) if 𝑠 ≠ 𝑠′

𝑅𝑓 (𝑠) if 𝑠 = 𝑠′ .

A concurrent update sequence 𝜔 = 𝑋1 . . . 𝑋𝑛 ∈ (2𝑈 \ ∅)* is a sequence of nonempty batches of

switches such that each update switch appears in exactly one batch of 𝜔 . As a network is a highly

distributed system with asynchronous communication, the switch updates can be executed in any

permutation of the batch, even if all switches in the batch are commanded to start the update

at the same time. An execution 𝜋 = 𝑝1𝑝2 · · · 𝑝𝑛 ∈ 𝑈 ∗
respecting a concurrent update sequence

𝜔 = 𝑋1 . . . 𝑋𝑛 is the concatenation of a permutation of each batch in 𝜔 such that 𝑝𝑖 ∈ perm(𝑋𝑖) for
all 𝑖 , 1 ≤ 𝑖 ≤ 𝑛, where perm(𝑋𝑖) denotes the set of all permutations of the switches in 𝑋𝑖 .

Given a routing 𝑅 and an execution 𝜋 = 𝑠1𝑠2 · · · 𝑠𝑛 where 𝑠𝑖 ∈ 𝑈 for all 𝑖 , 1 ≤ 𝑖 ≤ 𝑛, we inductively

define the updated routing 𝑅𝜋
by (i) 𝑅𝜖 = 𝑅 and (ii) 𝑅𝑠𝜋 = (𝑅𝑠)𝜋 where 𝑠 ∈ 𝑈 and 𝜖 is the empty

execution. An intermediate routing is any routing 𝑅𝜋 ′
where 𝜋 ′

is a prefix of 𝜋 . We notice that

for any given routing 𝑅 and any two executions 𝜋, 𝜋 ′
that respect a concurrent update sequence

𝜔 = 𝑋1 . . . 𝑋𝑚 , we have 𝑅
𝜋 = 𝑅𝜋 ′

, whereas the sets of intermediate routings can be different.

, Vol. 1, No. 1, Article . Publication date: August 2023.

6 Johansen et al.

𝑠1 𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

egress

ingress

(a) Initial routing (solid lines) and a final routing
(dashed lines).

𝑠1 𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

egress

ingress

(b) Intermediate routing after updating 𝑠3 and 𝑠4
in the first batch.

Fig. 2: Network with an optimal concurrent update sequence {𝑠3, 𝑠4}{𝑠2, 𝑠5}

Given an initial routing 𝑅𝑖 and a final routing 𝑅𝑓 for a flow (𝑆𝐼 , 𝑆𝐹), a concurrent update sequence
𝜔 where 𝑅𝜔

𝑖
= 𝑅𝑓 satisfies a policy 𝑃 if 𝑅′

satisfies 𝑃 for all intermediate routings 𝑅′
generated by

any execution respecting 𝜔 .

Definition 2. The concurrent update synthesis problem (CUSP) is a 5-tupleU = (𝐺, F , 𝑅𝑖 , 𝑅𝑓 , 𝑃)
where 𝐺 = (𝑉 , 𝐸) is a network, F = (𝑆𝐼 , 𝑆𝐹) is a flow, 𝑅𝑖 is an initial routing, 𝑅𝑓 is a final routing,

and 𝑃 is a routing policy that includes reachability i.e. 𝐿(𝑃) ⊆ 𝐿((𝑉 \ 𝑆𝐹)*𝑆𝐹). A solution to a

CUSP is a concurrent update sequence 𝜔 such that 𝑅𝜔
𝑖
= 𝑅𝑓 where 𝜔 satisfies the policy 𝑃 and the

sequence is optimal, meaning that the number of batches, |𝜔 |, is minimal.

Consider an example in Figure 2a where the initial routing is depicted in solid lines and the final

one in dashed ones. We want to preserve the reachability policy between the ingress and egress

switch. The set of update switches is {𝑠2, 𝑠3, 𝑠4, 𝑠5}. Clearly, all update switches cannot be placed
into one batch because the execution starting with the update of 𝑠2 creates a possible black hole

at the switch 𝑠4. Hence we need at least two batches and indeed the concurrent update sequence

𝜔 = {𝑠3, 𝑠4}{𝑠2, 𝑠5} satisfies the reachability policy. Any execution of the first batch preserves the

reachability of the switch 𝑠6 and brings us to the intermediate routing depicted in Figure 2b. Any

execution order of the second batch also preserves the reachability policy, implying that 𝜔 is an

optimal concurrent update sequence.

3 OPTIMISATION TECHNIQUES
Before we present the translation of CUSP problem to Petri games, we introduce two preprocessing

techniques that allow us to reduce the size of the problem.

3.1 Topological Decomposition
The intuition of topological decomposition is to reduce the complexity of solving CUSP U =

(𝐺, F , 𝑅𝑖 , 𝑅𝑓 , 𝑃) where 𝐺 = (𝑉 , 𝐸) by decomposing it into two smaller subproblems. In the rest of

this section, we use the aggregated routing 𝑅𝑐 (𝑠) = 𝑅𝑖 (𝑠) ∪ 𝑅𝑓 (𝑠) for all 𝑠 ∈ 𝑉 (also denoted by the

relation→) in order to consider only the relevant part of the network.

We can decompose our problem at a switch 𝑠𝐷 ∈ 𝑉 if 𝑠𝐷 splits the network into two independent

networks and there is at most one possible NFA state that can be reached by following any path

from any of the ingress switches to 𝑠𝐷 , and the path has a continuation to some of the egress

switches while reaching an accepting NFA state. By Q(𝑠) we denote the set of all such possible

NFA states for a switch 𝑠 . Algorithm 1 computes the set Q(𝑠) by iteratively relaxing edges, i.e.

by forward propagating the potential NFA states and storing them in the function Q𝑓 and in a

backward manner it also computes NFA states that can reach a final state and stores them in Q𝑏 .

An edge 𝑠 → 𝑠′ can be relaxed if it changes the value of Q𝑓 (𝑠′) or Q𝑏 (𝑠) and the algorithm halts

when no more edges can be relaxed.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 7

Algorithm 1: Potential NFA state set

input :A CUSPU = (𝐺, F , 𝑅𝑖 , 𝑅𝑓 , 𝑃) and NFA 𝐴 = (𝑄,𝑉 , 𝛿, 𝑞0, 𝐹).
output :Function Q : 𝑉 → 2

𝑄
of potential NFA states at a given switch.

1 Q𝑓 (𝑠) := ∅ and Q𝑏 (𝑠) := ∅ for all 𝑠 ∈ 𝑉

2 Q𝑓 (𝑠𝑖) := 𝛿 (𝑞0, 𝑠𝑖) for all 𝑠𝑖 ∈ 𝑆𝐼

3 Q𝑏 (𝑠𝑓) := 𝐹 for all 𝑠𝑓 ∈ 𝑆𝐹

// 𝑠 → 𝑠′ can be relaxed if it changes Q𝑓 (𝑠′) or Q𝑏 (𝑠)
4 while there exists 𝑠 → 𝑠′ ∈ 𝑅𝑐 that can be relaxed do
5 Q𝑓 (𝑠′) := Q𝑓 (𝑠′) ∪

⋃
𝑞∈Q𝑓 (𝑠) 𝛿 (𝑞, 𝑠′)

6 Q𝑏 (𝑠) := Q𝑏 (𝑠) ∪ {𝑞 ∈ 𝑄 | 𝛿 (𝑞, 𝑠′) ∩ Q𝑏 (𝑠′) ≠ ∅}
7 return Q(𝑠) := Q𝑓 (𝑠) ∩ Q𝑏 (𝑠) for all 𝑠 ∈ 𝑉

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑠7

{𝑎}

{𝑏}

{𝑎, 𝑏}

{̸𝑎, 𝑏}

{̸𝑎, 𝑏, ̸𝑐, 𝑑}

{̸𝑐, 𝑑}

{̸𝑎, ̸𝑏, ̸𝑐, 𝑒}

(a) Network. Blue solid arrow is initial routing and red dashed
arrow is final routing. Each state is marked with the potential
NFA states, where crossed out states are those removed
doing the backwards pass in Algorithm 1.

𝑎

𝑏𝑐

𝑑

𝑒

𝑠2𝑠6

𝑠6𝑠2

𝑠7

(b) Policy NFA for reachability of 𝑠7 and way-
pointing on both 𝑠2 and 𝑠6. Self-loops are
not drawn (each state has self-loops for all
switches that are not an outgoing edge from
the state).

𝑠1

𝑠2

𝑠3

𝑠4

𝑎

𝑏

𝑓

𝑠2

𝑠4

(c) First subproblem, dealing only with the
switches 𝑠1, 𝑠2, 𝑠3, 𝑠4 and the part of the policy
NFA until state 𝑏 but with the added condition
that it must reach 𝑠4.

𝑠4

𝑠5

𝑠6

𝑠7

𝑏

𝑑

𝑒

𝑠6

𝑠7

(d) Second subproblem, dealing only with the
switches 𝑠4, 𝑠5, 𝑠6, 𝑠7 and the part of the policy
NFA from state 𝑏 and onward.

Fig. 3: Example of network depicted in (a) and a simplified NFA for the policy seen on (b). The

decomposition is shown in (c) and (d).

Figure 3 shows a network and a policy NFA. Here, the switches are annotated with the potential

NFA states from the forward propagation, and those crossed out are the ones that are pruned by

the backward propagation. For instance, at switch 𝑠4 it is possible to be in either NFA state 𝑎 or 𝑏,

, Vol. 1, No. 1, Article . Publication date: August 2023.

8 Johansen et al.

however only the state 𝑏 can reach a final state, since from state 𝑎 the switch 𝑠2 must be visited,

which is impossible.

Lemma 1. Let U = (𝐺, F , 𝑅𝑖 , 𝑅𝑓 , 𝑃) be a CUSP where F = (𝑆𝐼 , 𝑆𝐹) is a flow and let (𝑄,𝑉 , 𝛿, 𝑞0, 𝐹)
be an NFA describing its routing policy 𝑃 . Algorithm 1 terminates and the resulting function Q has
the property that 𝑞 ∈ Q(𝑠𝑖) iff there exists a trace 𝑠0 . . . 𝑠𝑖 . . . 𝑠𝑛 ∈ 𝑇 (𝑅𝑐 , F) such that 𝑠0 ∈ 𝑆𝐼 , 𝑠𝑛 ∈ 𝑆𝐹 ,
𝑞 ∈ 𝛿 (𝑞0, 𝑠0 . . . 𝑠𝑖) and 𝛿 (𝑞, 𝑠𝑖+1 . . . 𝑠𝑛) ∩ 𝐹 ≠ ∅.

Proof. The algorithm terminates because in each iteration of the while loop, an NFA state is

added either to 𝑄 𝑓 or 𝑄𝑏 . Since there are only finitely many states, it must terminate.

We now prove that at line 7 the set Q𝑓 (𝑠) contains the NFA states can be reached from an initial

switch to 𝑠 , and afterwards, we prove that Q𝑏 (𝑠) contains the NFA states that can reach a final state

from 𝑠 . We prove by induction on the number of hops from an initial switch, with the induction

hypothesis 𝐻𝑓 (𝑛) = “𝑞 ∈ Q𝑓 (𝑠) iff from the initial state, 𝑞 can be reached by a path of length at most
𝑛 from an initial switch to 𝑠”.
Base case (0 hops): This is trivially true, because the only switches reachable with no hops is the

initial switches, and Q𝑓 is are initialised to the NFA states reached from 𝑞0.

Induction step: Assume 𝐻𝑓 (𝑛), we now show 𝐻𝑓 (𝑛 + 1). (⇒) After the while loop has terminated,

there are no more edges that can be relaxed forwards. Therefore, for switches 𝑠′ where 𝑠′ → 𝑠 , if an

NFA state 𝑞 can be reached in 𝑠′ with 𝑛 hops, then relaxing 𝑠′ → 𝑠 will ensure that 𝛿 (𝑞, 𝑠) ⊆ Q𝑓 (𝑠).
(⇐) A state is only added when a relaxation adds NFA states that can reached from the initial state

(follows from the induction hypothesis), therefore no superfluous states are in Q𝑓 (𝑠).
We now prove by induction on the number of hops to a final switch that 𝐻𝑏 (𝑛) = “𝑞 ∈ Q𝑏 (𝑠) iff

from 𝑞 a final state can be reached by a path of at most 𝑛 switches from 𝑠 to a final switch”.
Base case (0 hops): This is trivially true, because the only switches that can reach a final switch

with no hops are final switches, and Q𝑓 is are initialised to the final NFA states.

Induction step: Assume 𝐻𝑏 (𝑛), we now show 𝐻𝑏 (𝑛 + 1). (⇒) After the while loop, for switches 𝑠′

where 𝑠 → 𝑠′, if an NFA state 𝑞 can reach a final state from 𝑠′ with 𝑛 hops, then relaxing 𝑠 → 𝑠′

will ensure that {𝑞′ ∈ 𝑄 | 𝑞 ∈ 𝛿 (𝑞′, 𝑠′)} ⊆ Q𝑏 (𝑠). (⇐) A state is only added when a relaxation adds

NFA states that can reach a final state, so from the induction hypothesis no superfluous states are

added to Q𝑏 (𝑠).
Finally, the intersection of Q𝑓 and Q𝑏 will contain only those states that can be reached from

the initial switch and that can reach a final state. This proves both directions. □

Definition 3. Let U = (𝐺, F , 𝑅𝑖 , 𝑅𝑓 , 𝑃) be a CUSP where 𝐺 = (𝑉 , 𝐸), F = (𝑆𝐼 , 𝑆𝐹) and where 𝑃 is

expressed by an equivalent NFA 𝐴 = (𝑄,𝑉 , 𝛿, 𝑞0, 𝐹). A switch 𝑠𝐷 ∈ 𝑉 is a topological decomposition
point if |Q(𝑠𝐷) | = 1 and for all 𝑠 ∈ 𝑉 \ {𝑠𝐷 } either (i) 𝑠 →* 𝑠𝐷 and 𝑠𝐷 ̸→* 𝑠 or (ii) 𝑠 ̸→* 𝑠𝐷 and

𝑠𝐷 →* 𝑠 .

We can notice that in the network from Figure 3a the switch 𝑠4 is a topological decomposition

point as it satisfies all conditions of Definition 3.

Let 𝑠𝐷 be a decomposition point. We construct two CUSP subproblems U′
and U′′

, the first one

containing the switches 𝑉 ′ = {𝑠 ∈ 𝑉 | 𝑠 →* 𝑠𝐷 } and the latter one the switches 𝑉 ′′ = {𝑠 ∈ 𝑉 |
𝑠𝐷 →* 𝑠}. Let 𝐺 [𝑉] be the induced subgraph of 𝐺 restricted to the set of switches 𝑉 ⊆ 𝑉 .

The first subproblem is given by U′ = (𝐺 [𝑉 ′], F ′, 𝑅′
𝑖 , 𝑅

′
𝑓
, 𝑃 ′) where (i) F ′ = (𝑆𝐼 , {𝑠𝐷 }), (ii)

𝑅′
𝑖 (𝑠) = 𝑅𝑖 (𝑠) and 𝑅′

𝑓
(𝑠) = 𝑅𝑓 (𝑠) for all 𝑠 ∈ 𝑉 ′ \ {𝑠𝐷 } and 𝑅′

𝑖 (𝑠𝐷) = 𝑅′
𝑓
(𝑠𝐷) = ∅, and (iii) 𝐿(𝑃 ′) =

𝐿(𝐴′) ∩𝐿((𝑉 ′ \ {𝑠𝐷 })*𝑠𝐷) where𝐴′ = (𝑄,𝑉 , 𝛿, 𝑞0, 𝐹 ′) with 𝐹 ′ = Q(𝑠𝐷). In other words, the network

and routing are projected to only include the switches from𝑉 ′
and the policy ensures that we must

reach 𝑠𝐷 as well as the potential NFA state of 𝑠𝐷 .

, Vol. 1, No. 1, Article . Publication date: August 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 9

The second subproblem is given byU′′ = (𝐺 [𝑉 ′′], F ′′, 𝑅′′
𝑖 , 𝑅

′′
𝑓
, 𝑃 ′′) where (i) F ′′ = ({𝑠𝐷 }, 𝑆𝐹), (ii)

𝑅′′
𝑖 (𝑠) = 𝑅𝑖 (𝑠) and 𝑅′′

𝑓
(𝑠) = 𝑅𝑓 (𝑠) for all 𝑠 ∈ 𝑉 ′′

, and (iii) 𝐿(𝑃 ′′) = 𝐿(𝐴′′) where𝐴′′ = (𝑄,𝑉 , 𝛿, 𝑞′
0
, 𝐹)

and {𝑞′
0
} = Q(𝑠𝐷). The policy of the second subproblem ensures that starting from the potential

NFA state 𝑞′
0
for the switch 𝑠𝐷 , a final state of the original policy can be reached.

Figure 3 shows an example of topological decomposition. By analysing the network 3a, we

find that 𝑠4 is a topological decomposition point because Q(𝑠4) only contains one viable NFA

state, namely 𝑏. We then construct in Figures 3c and 3d two subproblems concerned with the

switches 𝑠1, 𝑠2, 𝑠3, 𝑠4 and 𝑠4, 𝑠5, 𝑠6, 𝑠7, respectively. The concurrent update sequences solving the two

subproblems are {𝑠2}{𝑠3}{𝑠1} and {𝑠4}{𝑠5}{𝑠6}. Merging the solutions for the two subproblems

yields the concurrent update sequence {𝑠2, 𝑠4}{𝑠3, 𝑠5}{𝑠1, 𝑠6} for the original problem. We shall now

argue that such merging always produces an (optimal) concurrent update sequence.

First, we prove that from the optimal solutions of the subproblems, we can synthesise an optimal

solution for the original problem.

Theorem 4. Let 𝜔 ′ = 𝑋 ′
1
𝑋 ′
2
. . . 𝑋 ′

𝑗 and 𝜔
′′ = 𝑋 ′′

1
𝑋 ′′
2
. . . 𝑋 ′′

𝑘
be optimal solutions for U′ and U′′,

respectively. Then 𝜔 = (𝑋 ′
1
∪ 𝑋 ′′

1
) (𝑋 ′

2
∪ 𝑋 ′′

2
) . . . (𝑋 ′

𝑚 ∪ 𝑋 ′′
𝑚) where 𝑚 = max{ 𝑗, 𝑘} and where by

conventions 𝑋 ′
𝑖 = ∅ for 𝑖 > 𝑗 and 𝑋 ′′

𝑖 = ∅ for 𝑖 > 𝑘 , is an optimal solution toU.

Proof. We first prove that𝜔 is a solution. Trivially, 𝑅𝜔
𝑖
= 𝑅𝑓 because𝑉

′∪𝑉 ′′ = 𝑉 , so all switches

are updated. We show that for any prefix 𝜋 = 𝑠𝑖𝑠𝑖+1 . . . 𝑠𝑛 of any execution of 𝜔 the routing 𝑅𝜋
𝑖

satisfies the given policy 𝑃 , and therefore that 𝑡 ∈ 𝐿(𝑃) for all traces 𝑡 = 𝑠0𝑠1 . . . 𝑠𝑛 ∈ 𝑇 (𝑅𝜋
𝑖
, F). Let

𝜋 ′
be the subsequence of 𝜋 consisting of updates for switches from U′

, and 𝜋 ′′
be those from U′′

.

We then examine the behaviour of the subproblems after the partial update. From the definition of

U′
we know that an injected packet must reach the decomposition point 𝑠𝐷 . From the definition of

U′′
we know that an injected package in 𝑠𝐷 must reach a final switch. Therefore, the trace must be

of the form 𝑡 = 𝑠0𝑠1 . . . 𝑠𝐷 . . . 𝑠𝑛 where 𝑠0 ∈ 𝑆𝐼 and 𝑠𝑛 ∈ 𝑆𝐹 . By the assumption that 𝜔 ′
is correct, the

trace 𝑡 ′ = 𝑠0𝑠1 . . . 𝑠𝐷 must end in the final state 𝑞𝑓 of the NFA for U′
. By the assumption that 𝜔 ′′

is

correct, the trace 𝑡 ′′ = 𝑠𝐷 . . . 𝑠𝑓 starting from the state 𝑞𝑓 must end in a final state of U. Therefore,

𝑡 must also satisfy 𝑃 .

We now prove by contradiction that 𝜔 is optimal. Assume that there exists an 𝜔 = 𝑋1 . . . 𝑋𝑘

solution s.t. |𝜔 | < |𝜔 |. We then pick the subproblem with the longest optimal solution, w.l.o.g let it

be𝜔 ′
. Notice that |𝜔 | < |𝜔 ′ |. We can then construct a new (and shorter) solution for this subproblem

by extracting the update switches from the subproblem from 𝜔 , i.e. 𝜔 ′
= (𝑋1 ∩𝑉 ′) . . . (𝑋𝑘 ∩𝑉 ′).

This contradicts 𝜔 ′
being an optimal solution. □

Second, we realise that a solution toU implies the existence of solutions to both U′
andU′′

.

Theorem 5. If 𝜔 = 𝑋1 . . . 𝑋𝑛 is a solution to U then 𝜔 ′ = (𝑋1 ∩ 𝑉 ′) . . . (𝑋𝑛 ∩ 𝑉 ′) and 𝜔 ′′ =

(𝑋1 ∩𝑉 ′′) . . . (𝑋𝑛 ∩𝑉 ′′), where empty batches are omitted, are solutions to U′ and U′′, respectively.

Proof. The argument is similar to Theorem 4. Since the routings of the two subproblems do not

affect the part of the policy they each are concerned with, delineated by the single potential NFA

state of the decomposition point, the subproblems’ updates are independent. Therefore, solutions

to U′
andU′′

can directly be extracted from 𝜔 . □

Hence, if the original problem has a solution and can be decomposed into two subproblems,

then these subproblems also have solutions and from the optimal solutions of the subproblems, we

can construct an optimal solution for the original problem. Importantly, since the subproblems are

themselves also CUSPs, they may be subject to further decompositions.

, Vol. 1, No. 1, Article . Publication date: August 2023.

10 Johansen et al.

𝑠0

𝑠1 𝑠2

𝑠3 𝑠4

𝑠5

𝑠6 𝑠7

𝑠8 𝑠9

𝑠10

Fig. 4: Network with initial and final routing. ℵ𝑖 = {𝑠3, 𝑠4, 𝑠8, 𝑠9} and ℵ𝑓 = {𝑠1, 𝑠2, 𝑠6, 𝑠7}.

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7

Fig. 5: Chain structure with initial (solid) and final (dashed) routings.

3.2 Collective Update Classes
We now present the notion of a collective update class, or simply collective updates, which is a set of

switches that can be always updated in the same batch in an optimal concurrent update sequence.

The switches in a collective update class can then be viewed only as a single switch, thus reducing

the complexity of the synthesis by reducing the number of update switches.

The first class of collective updates is inspired by [4] where the authors realize that in case

of sequential updates, update switches that are undefined in the initial routing can be always

updated in the beginning of the update sequence and similarly update switches that should become

undefined in the final routing can always be moved to the end of the update sequence. Consider e.g.

Figure 4 where we can w.l.o.g. assume that the routers 𝑠3, 𝑠4, 𝑠8 and 𝑠9 can be all updated (initialised)

in the first batch and the update (removal of forwarding rules) of the routers 𝑠1, 𝑠2, 𝑠6 and 𝑠7 can be

scheduled in the last batch. This observation is generalised (for concurrent update sequences) in

the following theorem.

Theorem 6. LetU = (𝐺, F , 𝑅𝑖 , 𝑅𝑓 , 𝑃) be a CUSP. Let ℵ𝑖 = {𝑠 ∈ 𝑉 | 𝑅𝑖 (𝑠) = ∅ ∧ 𝑅𝑓 (𝑠) ≠ ∅} and
ℵ𝑓 = {𝑠 ∈ 𝑉 | 𝑅𝑓 (𝑠) = ∅ ∧ 𝑅𝑖 (𝑠) ≠ ∅}. If U is solvable then it has an optimal solution of the form
𝑋1 . . . 𝑋𝑛 where ℵ𝑖 ⊆ 𝑋1 and ℵ𝑓 ⊆ 𝑋𝑛 .

Proof. Let 𝜔 = 𝑋1 . . . 𝑋𝑛 be an optimal concurrent update sequence. Recall that 𝑃 must contain

reachability. The switches in ℵ𝑖 and ℵ𝑓 can only be updated when they are not reachable, because

otherwise they create a black hole. Additionally, updating an unreachable switch does not violate

the policy as it does not affect the traces of the current routing. The switches in ℵ𝑖 have no

initial next-hop, and therefore they are not in the initial routing; otherwise, it violates reachability.

Therefore, ℵ𝑖 is not reachable in the first batch and can therefore be in the first batch. There are no

other switches in the first batch whose update can make any switch in ℵ𝑖 reachable, because if a

switch 𝑠 makes some switch in ℵ𝑖 reachable, then the intermediate routing after updating 𝑠 creates

a black hole, and therefore 𝜔 is not a solution. Similarly, ℵ𝑓 cannot be reachable in the last batch,

and those switches can therefore be updated in the last batch. □

In Figure 5 we show another class of collective updates with a chain-like structure where

the initial and final routings forward packets in opposite directions. We claim that the switches

, Vol. 1, No. 1, Article . Publication date: August 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 11

ℵ𝑐 = {𝑠3, 𝑠4, 𝑠5} can be always updated in the same batch. As long as the intermediate routing is

passing through the switches, updating any switch in ℵ𝑐 introduces a looping behaviour, and hence

they cannot be updated at this moment. Once the switches in ℵ𝑐 are not a part of the intermediate

routing, we can update all of them in the same batch without causing any forwarding issues. The

notion of chain-reducible collective updates is formalised as follows.

Definition 7. Let𝐶 ⊆ 𝑉 be a strongly connected component w.r.t.→ such that |𝐶 | ≥ 4. The triple

(𝑠𝑒 , 𝑠𝑒′ , 𝐶), where 𝑠𝑒 , 𝑠𝑒′ ∈ 𝐶 , is chain-reducible if it satisfies:
(i) if 𝑠 ∈ 𝐶 \ {𝑠𝑒 , 𝑠𝑒′ } and 𝑠′ → 𝑠 then 𝑠′ ∈ 𝐶 ,

(ii) if 𝑠 ∈ 𝐶 \ {𝑠𝑒 , 𝑠𝑒′ } and 𝑠 → 𝑠′ then 𝑠′ ∈ 𝐶 , and

(iii) for every 𝑠 ∈ 𝐶 \ {𝑠𝑒 , 𝑠𝑒′ } if there exists a switch 𝑠′ ∈ 𝑅𝑓 (𝑠) then 𝑠′ →* 𝑠 using only the initial

routing or 𝑅𝑖 (𝑠′) = ∅.
The restriction |𝐶 | ≥ 4 is included so that reduction in size can be achieved. Cases (𝑖) and (𝑖𝑖)

ensure that the switches in 𝐶 \ {𝑠𝑒 , 𝑠𝑒′ } do not influence or are influenced by any of the switches

not in 𝐶 and can be part of a collective update. Case (𝑖𝑖𝑖) guarantees that updating a reachable

switch 𝑠 ∈ 𝐶 \ {𝑠𝑒 , 𝑠𝑒′ } induces either a loop or a black hole.

Theorem 8. Let U = (𝐺, F , 𝑅𝑖 , 𝑅𝑓 , 𝑃) be a CUSP and let (𝑠𝑒 , 𝑠𝑒′ ,𝐶) be chain-reducible and let
ℵ𝑐 = 𝐶 \ {𝑠𝑒 , 𝑠𝑒′ }. IfU has an optimal solution𝜔 = 𝑋1 . . . 𝑋𝑛 then there exists another optimal solution
𝜔 ′ = 𝑋1 \ ℵ𝑐 . . . 𝑋𝑘 ∪ ℵ𝑐 . . . 𝑋𝑛 \ ℵ𝑐 for some 𝑘 , 1 ≤ 𝑘 ≤ 𝑛.

Proof. Let 𝑋𝑘 be the first batch of the optimal concurrent update sequence 𝜔 = 𝑋1 . . . 𝑋𝑘 . . . 𝑋𝑛

that contains a switch 𝑠 ∈ ℵ𝑐 , where 𝑠 is routed to in both the initial and final routing. We construct

another concurrent update sequence 𝜔 ′ = 𝑋1 \ ℵ𝑐 . . . 𝑋𝑘 ∪ ℵ𝑐 . . . 𝑋𝑛 \ ℵ𝑐 and prove that it is an

optimal solution to U.

Let 𝑠𝑘 ∈ ℵ𝑐 ∩ 𝑋𝑘 be one of the switches first updated in ℵ𝑐 . Notice that 𝑃 always contains

reachability and by (iii) that updating any switch 𝑠 ∈ ℵ𝑐 introduces a loop or black hole if ℵ𝑐 is

reachable, therefore, 𝑠 ∈ ℵ𝑐 can only be updated when ℵ𝑐 is unreachable. The collective update

class ℵ𝑐 can only again become reachable when it is completely updated as it transiently contains

loops. By (i) and (ii) only 𝑠𝑒 and 𝑠𝑒′ have incoming or outgoing routings of 𝐶 , therefore, all other

switches 𝑠 ∈ ℵ𝑐 have no influence on any intermediate routing of 𝜔 . Therefore, all switches of ℵ𝑐

can be updated in 𝑋𝑘 since their updates cannot change the traces of any intermediate routing,

i.e. 𝑇 (𝑅𝜋𝑖 , F) = 𝑇 (𝑅𝜋 ′
𝑖 , F), for all prefixes 𝜋𝑖 of 𝜋 , where 𝜋 respects 𝜔 and for all prefixes 𝜋 ′

𝑖 of 𝜋
′
,

where 𝜋 ′
respects 𝜔 ′

. □

4 TRANSLATION TO PETRI GAMES
We shall first present the formalism of Petri games and then reduce the concurrent update synthesis

problem to this model.

4.1 Petri Games
A Petri net is a mathematical model for distributed systems focusing on concurrency and asyn-

chronicity (see [20]). A Petri game [4, 10] is a 2-player game extension of Petri nets, splitting

the transitions into controllable and environmental ones. We shall reduce the concurrent update

synthesis problem to finding a winning strategy for the controller in a Petri game with a reachability

objective.

A Petri net is a 4-tuple (𝑃,𝑇 ,𝑊 ,𝑀) where 𝑃 is a finite set of places, 𝑇 is a finite set of transitions

such that 𝑃 ∩𝑇 = ∅,𝑊 : (𝑃 ×𝑇) ∪ (𝑇 × 𝑃) → N0
is a weight function and𝑀 : 𝑃 → N0

is an initial

marking that assigns a number of tokens to each place. We depict places as circles, transitions as

rectangles and draw an arc (directed edge) between a transition 𝑡 and place 𝑝 if𝑊 (𝑡, 𝑝) > 0, or

, Vol. 1, No. 1, Article . Publication date: August 2023.

12 Johansen et al.

place 𝑝 and transition 𝑡 if𝑊 (𝑝, 𝑡) > 0. When an arc has no explicit weight annotation, we assume

that it has the weight 1.

The semantics of a Petri net is given by a labeled transition system where states are Petri net

markings and we write𝑀
𝑡−→ 𝑀 ′

if𝑀 (𝑝) ≥𝑊 (𝑝, 𝑡) for all 𝑝 ∈ 𝑃 (the transition 𝑡 is enabled in𝑀)

and𝑀 ′ (𝑝) = 𝑀 (𝑝) −𝑊 (𝑝, 𝑡) +𝑊 (𝑡, 𝑝).
Marking properties are given by a formula 𝜑 which is a Boolean combination of the atomic

predicates of the form 𝑝 ⊲⊳ 𝑛 where 𝑝 ∈ 𝑃 , ⊲⊳ ∈ {<, ≤, >, ≥,=,≠} and 𝑛 ∈ N0
. We write𝑀 |= 𝑝 ⊲⊳ 𝑛

iff 𝑀 (𝑝) ⊲⊳ 𝑛 and extend this naturally to the Boolean combinators. We use the classical CTL

operator 𝐴𝐹 and write𝑀 |= 𝐴𝐹 𝜑 if (i) 𝑀 |= 𝜑 or (ii) 𝑀 ′ |= 𝐴𝐹 𝜑 for all𝑀 ′
such that𝑀

𝑡−→ 𝑀 ′
for

some 𝑡 ∈ 𝑇 , meaning that on any maximal firing sequence from𝑀 , the marking property 𝜑 must

eventually hold.

A Petri game [4, 10] is a two-player game extension of Petri nets where transitions are partitioned

𝑇 = 𝑇𝑐𝑡𝑟𝑙 ⊎ 𝑇𝑒𝑛𝑣 into two distinct sets of controller and environment transitions, respectively.
During a play in the game, the environment has a priority over the controller in the decisions: the

environment can always choose to fire its own fireable transition, or ask the controller to fire one

of the controllable transitions. The goal of the controller is to find a strategy in order to satisfy a

given𝐴𝐹 𝜑 property whereas the environment tries to prevent this. Formally, a (controller) strategy
is a partial function 𝜎 : M𝑁 ⇀ 𝑇 , whereM𝑁 is the set of all markings, that maps a marking to a

fireable controllable transition (or it is undefined if no such transition exists). We write𝑀
𝑡−→𝜎 𝑀 ′

if 𝑀
𝑡−→ 𝑀 ′

and 𝑡 ∈ 𝑇𝑒𝑛𝑣 ∪ {𝜎 (𝑀)}. A Petri game satisfies the reachability objective 𝐴𝐹 𝜑 if there

exists a controller strategy 𝜎 such that the labelled transition system under the transition relation

−→𝜎 satisfies 𝐴𝐹 𝜑 .

4.2 Translation Intuition
We now present the intuition for our translation from CUSP to Petri games. For a given CUSP

instance, we compositionally construct a Petri game where the controller’s goal is to select a

valid concurrent update sequence and the environment aims to show that the controller’s update

sequence is invalid. The game has two phases: generation phase and verification phase.

The generation phase has two modes where the controller and environment switch turns in

each mode. The controller proposes the next update batch (in a mode where only controller’s

transitions are enabled) and when finished, it gives the turn to the environment that sequentialises

the batch by creating an arbitrary permutation of the update switches in the batch (in this mode

only environmental transitions are enabled). At any moment during the batch sequentialisation,

the environment may decide to enter the second phase that is concerned with validation of the

current intermediate routing.

The verification phase begins when the environment injects a packet (token) to the network

and wishes to examine the currently generated intermediate routing. In this phase, a next hop

of the packet is simulated in the network according to the current switch configuration; in case

of nondeterministic forwarding it is the environment that chooses the next switch. A hop in the

network is followed by an update of the current state of a DFA that represents the routing policy.

These two steps alternate, until (i) an egress switch is reached, (ii) the token ends in a black hole

(deadlock) or (iii) the packet forwarding forms a loop, wherefrom the execution is deadlocked by

only allowing to visit each switch once. The controller wins the game only in situation (i), providing

that the currently reached state in the DFA is an accepting state.

The controller now has a winning strategy if and only if the CUSP problem has a solution. By

restricting the number of available batches and using the bisection method (binary search), we can

further identify an optimal concurrent update sequence.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 13

𝑝𝑠 𝑝𝑠′

𝑝𝑢𝑛𝑣𝑠

𝑡 (𝑠,𝑠′)

(a) Topology component for each switch 𝑠

and 𝑠′ ∈ 𝑅𝑖 (𝑠) ∪ 𝑅𝑓 (𝑠).

𝑝𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑔

𝑝𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔𝑝𝑏𝑎𝑡𝑐ℎ𝑒𝑠

𝑝#𝑞𝑢𝑒𝑢𝑒𝑑

#𝑛

𝑝#𝑞𝑢𝑒𝑢𝑒𝑑
𝑡𝑐𝑜𝑛𝑢𝑝

𝑡𝑟𝑒𝑎𝑑𝑦

#𝑛

𝑝#𝑢𝑝𝑑𝑎𝑡𝑒𝑑

𝑛𝑛

(b) Update mode component where 𝑛 = |𝑈 |.

𝑝𝑖𝑛𝑖𝑡𝑠

𝑝
𝑞𝑢𝑒𝑢𝑒𝑑
𝑠

𝑡
𝑢𝑝𝑑𝑎𝑡𝑒
𝑠

𝑝
𝑓 𝑖𝑛𝑎𝑙
𝑠

𝑝𝑙𝑖𝑚𝑖𝑡𝑒𝑟
𝑠

𝑡 (𝑠,𝑠1)

...

{𝑠1, . . . , 𝑠𝑚} = 𝑅𝑖 (𝑠)

𝑡 (𝑠,𝑠𝑚)

𝑡 (𝑠,𝑠′
1
)

...

𝑡 (𝑠,𝑠′
𝑚′)

{𝑠′
1
, . . . , 𝑠′

𝑚′ } = 𝑅𝑓 (𝑠)𝑡
𝑞𝑢𝑒𝑢𝑒
𝑠

𝑝𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑔

𝑝𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔

(c) Switch component for each 𝑠 ∈ 𝑈 . Transi-
tions 𝑡 (𝑠, 𝑠1) . . . 𝑡 (𝑠, 𝑠𝑚) are for the initial routing;
𝑡 (𝑠, 𝑠′

1
) . . . 𝑡 (𝑠, 𝑠′

𝑚′) for the final one.

𝑝#𝑞𝑢𝑒𝑢𝑒𝑑

#𝑛

𝑝#𝑞𝑢𝑒𝑢𝑒𝑑

𝑡
𝑢𝑝𝑑𝑎𝑡𝑒
𝑠

𝑡
𝑞𝑢𝑒𝑢𝑒
𝑠

#𝑛

𝑝#𝑢𝑝𝑑𝑎𝑡𝑒𝑑

(d) Counter component where 𝑛 =

|𝑈 | added for each 𝑠 ∈ 𝑈 .

𝑝𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑡
𝑖𝑛 𝑗𝑒𝑐𝑡
𝑠 𝑝𝑠

(e) Packet injection component for
every 𝑠 ∈ 𝑆𝐼 in flow (𝑆𝐼 , 𝑆𝐹).

Fig. 6: Construction of Petri game components;𝑈 is the set of update switches

4.3 Translation of Network Topology and Routings
Let (𝐺, F , 𝑅𝑖 , 𝑅𝑓 , 𝑃) be a concurrent update synthesis problem where 𝐺 = (𝑉 , 𝐸) is a network

and F = (𝑆𝐼 , 𝑆𝐹) is the considered flow. We construct a Petri game 𝑁 (U) = (𝑃,𝑇 ,𝑊 ,𝑀). This
subsection describes the translation of the network and routings, and the next subsection deals

with the policy translation.

Figure 6 shows the Petri game building blocks for translating the network and the routings.

Environmental transitions are denoted by empty rectangles and controller transitions are depicted

as black/filled. The captions of each subfigure quantify for which switches such components

are created. The final net is then constructed as a composition of all such components and if

a transition/place is surrounded by a dashed line then it has only a single copy in the final net—such

a place/transition is shared across all components that use this transition/place.

Network Topology Component (Figure 6a). This component represents the network and its current

routing. For each 𝑠 ∈ 𝑉 , we create the shared places 𝑝𝑠 and a shared unvisited place 𝑝𝑢𝑛𝑣𝑠 with 1

token. The unvisited place tracks whether the switch has been visited and prevents looping. We

, Vol. 1, No. 1, Article . Publication date: August 2023.

14 Johansen et al.

use uncontrollable transitions so that the environment can decide how to traverse the network in

case of nondeterminism. The switch component ensures that these transitions are only fireable in

accordance with the current intermediate routing.

Update Mode Component (Figures 6b and 6d). These components handle the bookkeeping of turns

between the controller and the environment. A token present in the place 𝑝𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑔 enables the

controller to queue updates into a current batch. Once the token is moved to the place 𝑝𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 , it

enables the environment to schedule (in an arbitrary order) the updates from the batch. The dual

places 𝑝#𝑞𝑢𝑒𝑢𝑒𝑑 and 𝑝#𝑞𝑢𝑒𝑢𝑒𝑑 count how many switches have been queued in this batch and how

many switches have not been queued, respectively. The place 𝑝#𝑢𝑝𝑑𝑎𝑡𝑒𝑑 is decremented for each

update implemented by the environment. Hence the environment is forced to inject a token to the

network, latest once all update switches are updated. Additionally, the number of produced batches

is represented by the number of tokens in the place 𝑝𝑏𝑎𝑡𝑐ℎ𝑒𝑠 .

Switch Component (Figure 6c). This component handles the queueing (by controller) and activation

(by environment) of updates. For every 𝑠 ∈ 𝑉 where 𝑅𝑖 (𝑠) ≠ 𝑅𝑓 (𝑠) we create a switch component.

Let𝑈 be the set of all such update switches. Initially, we put one token in 𝑝𝑖𝑛𝑖𝑡𝑠 (the switch forwards

according to its initial routing) and 𝑝𝑙𝑖𝑚𝑖𝑡𝑒𝑟
𝑠 (making sure that each switch can be queued only once).

Once a switch is queued (by the controller transition 𝑡
𝑞𝑢𝑒𝑢𝑒
𝑠) and updated (by the environment

transition 𝑡
𝑢𝑝𝑑𝑎𝑡𝑒
𝑠), the token from 𝑝𝑖𝑛𝑖𝑡𝑠 is moved into 𝑝

𝑓 𝑖𝑛𝑎𝑙
𝑠 and the switch is now forwarding

according to the final routing function.

Packet Injection Component (Figure 6e). The environment can at any moment during the sequen-

tialisation mode use the transition 𝑡
𝑖𝑛 𝑗𝑒𝑐𝑡
𝑠 to inject a packet into any of the ingress routers and enter

the second verification phase.

4.4 Policy Translation
Given a CUSP (𝐺, F , 𝑅𝑖 , 𝑅𝑓 , 𝑃), we now want to encode the policy 𝑃 into the Petri game representa-

tion. We assume that 𝑃 is given by a DFA 𝐴(𝑃) such that 𝐿(𝑃) = 𝐿(𝐴(𝑃)). We translate 𝐴(𝑃) into a
Petri game so that DFA states/transitions are mapped into corresponding Petri net places/transitions

which are connected to the earlier defined Petri game for the topology and routing.

Figure 7 presents the components for the policy translation.

(1) DFA transition component (Figure 7a). This component creates places/transitions for each

DFA state/transition. Note that if a Petri game transition is of the form 𝑡𝑠 then it corresponds

to a DFA-transition, contrary to transitions of the form 𝑡 (𝑠,𝑠′) that represent network topology
links.

(2) Policy tracking component (Figure 7b). For all 𝑠 ∈ 𝑉 , we create the place 𝑝𝑡𝑟𝑎𝑐𝑘𝑠 in order to

track the current position of a packet in the network.

(3) Turn component (Figure 7c). The intuition here is that whenever the environment fires the

topology transition 𝑡 (𝑠,𝑠′) then the DFA-component must match it by firing a DFA-transition

𝑡𝑠′ . The token in the place 𝑝𝑡𝑢𝑟𝑛 means that it is the environment turn to challenge with a

next hop in the network topology.

(4) DFA injection component (Figure 7d). For all inject transitions 𝑡
𝑖𝑛 𝑗𝑒𝑐𝑡
𝑠 to the switch 𝑠 , we add

an arc to its tracking place 𝑝𝑡𝑟𝑎𝑐𝑘𝑠 . This initiates the second phase of verification of the routing

policy.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 15

𝑝𝑞 𝑡𝑠 𝑝𝑞′

(a) Component for each DFA transition 𝑞
𝑠−→ 𝑞′; if

𝑞 = 𝑞0 then 𝑝𝑞 gets a token.

𝑡 (𝑠′,𝑠) 𝑝𝑡𝑟𝑎𝑐𝑘𝑠 𝑡𝑠

(b) Tracking component for each already added tran-
sition 𝑡 (𝑠′,𝑠) and each switch 𝑠 ∈ 𝑉 ; creates a new
transition 𝑡𝑠 .

𝑝𝑡𝑢𝑟𝑛 𝑝𝑡𝑢𝑟𝑛 𝑝𝑡𝑢𝑟𝑛

𝑡
𝑖𝑛 𝑗𝑒𝑐𝑡
𝑠 𝑡 (𝑠,𝑠′) 𝑡𝑠

(c) Turn component for all created transitions 𝑡𝑖𝑛 𝑗𝑒𝑐𝑡𝑠

and 𝑡 (𝑠,𝑠′) and 𝑡𝑠 .

𝑡
𝑖𝑛 𝑗𝑒𝑐𝑡
𝑠 𝑝𝑡𝑟𝑎𝑐𝑘𝑠

(d) Injection component for each 𝑠 ∈ 𝑆𝐼 in the flow
(𝑆𝐼 , 𝑆𝐹).

Fig. 7: Policy checking components

4.5 Reachability Objective and Translation Correctness
We finish by defining the reachability objective𝐶 (𝑘) for each positive number 𝑘 that gives an upper

bound on the maximum number of allowed batches (recall that 𝐹 is the set of final DFA states):

𝐶 (𝑘) = 𝐴𝐹 𝑝𝑏𝑎𝑡𝑐ℎ𝑒𝑠 ≤ 𝑘 ∧∨
𝑞∈𝐹 𝑝𝑞 = 1.

The query expresses that all runs that follow the controller’s strategy must use less than 𝑘

batches and eventually end in an accepting DFA state. Note that since reachability is assumed as a

part of the policy 𝑃 and that the final switch has no further forwarding, there can be no next-hop

in the network after the DFA gets to its final state.

The query can be iteratively verified (e.g. using the bisection method) while changing the value

of 𝑘 , until we find 𝑘 such that𝐶 (𝑘) is true and𝐶 (𝑘 − 1) is false (which implies that also𝐶 (ℓ) is false
for every ℓ < 𝑘 − 1). Then we know that the synthesised strategy is an optimal solution. If 𝐶 (𝑘)
is false for 𝑘 = |𝑈 | where𝑈 is the set of update switches then there exists no concurrent update

sequence solving the CUSP. The correctness of the translation is summarised in the following

theorem.

Theorem 9. A concurrent update synthesis problemU has a solution with 𝑘 or fewer batches if and
only if there exists a winning strategy for the controller in the Petri game 𝑁 (U) for the query 𝐶 (𝑘).

Let us note that a winning strategy for the controller in the Petri game can be directly translated

to a concurrent update sequence. The firing of controllable transitions of the form 𝑡
𝑞𝑢𝑒𝑢𝑒
𝑠 indicates

that the switch 𝑠 should be scheduled in the current batch and the batches are separated from each

other by the firings of the controllable transitions 𝑡𝑐𝑜𝑛𝑢𝑝 .

4.6 Correctness of Translation
LetU = (𝐺, F , 𝑅𝑖 , 𝑅𝑓 , 𝑃) be a concurrent update synthesis problem, and let 𝑁 (U) = (𝑃,𝑇 ,𝑊 ,𝑀)
be the Petri game resulting from translatingU into a Petri game using the translation process from

Section 4.2. Also, let 𝐶 (𝑘) be the query from Section 4.5.

We first want to prove that the state-space of the constructed Petri game is finite. This is done

by proving that there exists no infinite run in 𝑁 (U).

, Vol. 1, No. 1, Article . Publication date: August 2023.

16 Johansen et al.

Theorem 10. Given the CUSP U = (𝐺, F , 𝑅𝑖 , 𝑅𝑓 , 𝑃), the Petri game 𝑁 (U) = (𝑃,𝑇 ,𝑊 ,𝑀) never
produces an infinite run.

Proof. First, observe that the update switch component transitions 𝑡
𝑞𝑢𝑒𝑢𝑒
𝑠 and 𝑡

𝑢𝑝𝑑𝑎𝑡𝑒
𝑠 can be

fired at most once. The transition 𝑡
𝑞𝑢𝑒𝑢𝑒
𝑠 is restricted by the place 𝑝𝑙𝑖𝑚𝑖𝑡𝑒𝑟

𝑠 , and 𝑡
𝑢𝑝𝑑𝑎𝑡𝑒
𝑠 can only be

fired after 𝑡
𝑞𝑢𝑒𝑢𝑒
𝑠 has been fired. Second, 𝑡

𝑖𝑛 𝑗𝑒𝑐𝑡
𝑠 can be fired exactly once because it removes the

token from 𝑝𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔, and 𝑝𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 can never regain its lost token. Third, any topology transition

𝑡 (𝑠,𝑠′) can be fired at most once. This is ensured by the limiter place 𝑝𝑢𝑛𝑣
𝑠′ as it contains 1 token by

the initial marking, and it never regains tokens.

Notice that the transitions 𝑡𝑐𝑜𝑛𝑢𝑝 can happen at most |𝑈 | times since it requires a token from

𝑝#𝑞𝑢𝑒𝑢𝑒𝑑 , and such a token indicates that a switch update has been queued. Furthermore, 𝑡𝑟𝑒𝑎𝑑𝑦 can

only fire after 𝑡𝑐𝑜𝑛𝑢𝑝 has fired, which can therefore also only fire a finite amount of times. Lastly

regarding the policy-component, the turn switch enforces that any DFA-transition 𝑡𝑠 can only fire

after a topology transition 𝑡 (𝑠′,𝑠) or 𝑡
𝑖𝑛 𝑗𝑒𝑐𝑡
𝑠 has fired, which both only happen a finite amount of

times. □

We now prove the correctness of Theorem 9. The theorem states a bi-implication; therefore, its

proof is divided into two separate lemmas, which are presented below. First, we prove that if 𝜔 is a

solution to a CUSP U then there exists a winning strategy 𝜎 for 𝑁 (U) with the query 𝐶 (𝑘).

Lemma 2. If 𝜔 is a solution to a CUSP U, where |𝜔 | ≤ 𝑘 , then there exists a winning strategy 𝜎 for
the controller player in the Petri game 𝑁 (U) with the query 𝐶 (𝑘).

Proof. Let𝜔 = 𝑋1 . . . 𝑋𝑘 be a concurrent update sequence, s.t.𝑋𝑖 ⊆ 𝑈 . We now define a winning

strategy 𝜎 w.r.t. 𝐶 (𝑘) for the controller, starting with the initial marking𝑀0.

Notice that if 𝑀 (𝑝𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑔) = 1 then only the controller can fire transitions. After 𝑡𝑐𝑜𝑛𝑢𝑝 is

fired, the token of 𝑃𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑔 is moved to 𝑝𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔, and the environment can update switches (or

alternatively inject a packet), and at some point move the token back by firing 𝑡𝑟𝑒𝑎𝑑𝑦 . The strategy

of the controller is to fire all queue transitions that correspond to the batches from 𝜔 , starting with

𝑋1 and followed by 𝑋2, 𝑋3 etc. in the next rounds. The controller queues a batch 𝑋 = {𝑠1, . . . , 𝑠𝑛}
by firing the transitions 𝑡

𝑞𝑢𝑒𝑢𝑒
𝑠1 · · · 𝑡𝑞𝑢𝑒𝑢𝑒𝑠𝑛 𝑡𝑐𝑜𝑛𝑢𝑝—this adds a token to 𝑝𝑏𝑎𝑡𝑐ℎ𝑒𝑠 and gives the turn to

the environment. Notice that the order in which the transitions 𝑡
𝑞𝑢𝑒𝑢𝑒
𝑠 are fired is irrelevant.

During the updating phase, i.e. when𝑀 (𝑝𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔) = 1, the environment is able to fire transitions

corresponding to the switches that were queued by the controller, trying to find their permutation

breaking the given policy. Hence if the controller fired 𝑡
𝑞𝑢𝑒𝑢𝑒
𝑠 in the queuing phase then the transition

𝑡
𝑢𝑝𝑑𝑎𝑡𝑒
𝑠 will be fired by the environment during its following updating phase (where no controllable

transitions are enabled so there is no need to define the controller’s strategy here).

We now prove that𝑀0 |= 𝐶 (𝑘) under the strategy 𝜎 . Recall 𝐶 (𝑘) from Section 4.5, which states

that for all possible runs of 𝑁 (U) the number of batches used is limited to 𝑘 and after 𝑡
𝑖𝑛 𝑗𝑒𝑐𝑡
𝑠 is fired,

any sequence of transition firings (determined purely be the environment) results in an accepting

DFA state.

The predicate 𝐴𝐹 (𝑝𝑏𝑎𝑡𝑐ℎ𝑒𝑠 ≤ 𝑘) is assured because each batch adds a token to 𝑝𝑏𝑎𝑡𝑐ℎ𝑒𝑠 and we

have 𝑘 batches and every batch is queued exactly once. We then argue that 𝑡
inject
𝑠 is guaranteed to

fire eventually, so that we must eventually enter the verification phase. The environment can inject

in the generation phase anytime it is its turn, and it is forced to do so after all switches have been

updated. This enforcement is ensured by the place 𝑝#𝑢𝑝𝑑𝑎𝑡𝑒𝑑 as it loses a token after each update,

and after all updates are executed, the transition 𝑡𝑟𝑒𝑎𝑑𝑦 can no longer be fired, and inject is the only

option left for the environment.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 17

We now prove that any run after firing of 𝑡
𝑖𝑛 𝑗𝑒𝑐𝑡
𝑠 always results in 𝑀 (𝑝𝑞) = 1 for some 𝑞 ∈ 𝐹 ,

assuming that the controller follows the strategy 𝜎 . Once the Petri game enters the verification

phase by the environment firing the transition 𝑡
𝑖𝑛 𝑗𝑒𝑐𝑡
𝑠 , the place 𝑝𝑡𝑟𝑎𝑐𝑘𝑠 gets a token. Now, the

environment chooses the only available transition 𝑡𝑠 , as all other transitions are unfireable because

they lack a token in their respective track place; this removes a token from 𝑝𝑞0 and 𝑝𝑡𝑟𝑎𝑐𝑘𝑠 and

puts a token into 𝑝𝑞′ . After this the environment fires some transition 𝑡 (𝑠,𝑠 𝑗) in the topology and a

token is put into 𝑝𝑡𝑟𝑎𝑐𝑘𝑠 𝑗
. Again, the environment is forced to match this by firing a transition 𝑡𝑠 𝑗 ;

and so on. Effectively, the DFA-component matches the trace that the environment simulates in a

turn-wise manner. Any path the environment can simulate this way is a trace in some intermediate

routing of 𝜔 , and we know all possible intermediate routings of 𝜔 satisfy the policy 𝑃 . Therefore,

any simulation path chosen by the environment results in an accepting DFA-state. □

We now prove the other implication of Theorem 9.

Lemma 3. If 𝜎 is a winning strategy for the controller in the Petri game 𝑁 (U) with the query𝐶 (𝑘)
then there exists a solution 𝜔 to the CUSP U, where |𝜔 | = 𝑘 .

Proof. Let 𝜎 be a winning strategy for the Petri Game 𝑁 (U) with the query 𝐶 (𝑘). Whenever

𝑝𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑔 = 1 then𝜎 must fire one ormore queue transitions and then the 𝑡𝑐𝑜𝑛𝑢𝑝 transition. Therefore,

the strategy must be sequences of 𝑡
𝑞𝑢𝑒𝑢𝑒
𝑠1 . . . 𝑡

𝑞𝑢𝑒𝑢𝑒
𝑠 𝑗 . . . 𝑡

𝑞𝑢𝑒𝑢𝑒
𝑠𝑛 𝑡𝑐𝑜𝑛𝑢𝑝 repeated 𝑖 times, where 1 ≤ 𝑖 ≤ 𝑘 .

This naturally produces a concurrent update sequence 𝜔 = 𝑋1 . . . 𝑋𝑘 . In between the queuing

of batches, the environment updates the queued switches and has the option to fire the inject

transition at any moment. However, because 𝜎 is a winning strategy, no inject can violate the

policy. We now prove by contradiction that the derived concurrent update sequence 𝜔 satisfies

the policy 𝑃 . Assume that 𝜔 does not satisfy 𝑃 , then there must exist an execution of 𝜔 where its

prefix 𝜋 = 𝑠1𝑠2 . . . 𝑠𝑘 yields a routing 𝑅𝜋
𝑖
s.t. 𝑡 ∉ 𝐿(𝑃) for some 𝑡 ∈ 𝑇 (𝑅𝜋

𝑖
, F). However, such a trace

cannot exist: in the Petri game, the environment is able to simulate the intermediate routing 𝑅𝜋
𝑖
by

updating switches in correspondence with 𝜋 . It can then inject a token and enter the verification

phase. If the produced trace 𝑡 is an infinite trace then the network topology will deadlock due to the

𝑝𝑢𝑛𝑣𝑠 places, and 𝜎 is not be a winning strategy; if 𝑡 is finite, then𝑀 (𝑝𝑞) ≠ 1 for all 𝑞 ∈ 𝐹 because

the DFA in the Petri game recognises exactly 𝑃 , but this also contradicts 𝜎 being a winning strategy.

Therefore, 𝜔 satisfies 𝑃 .

Finally, |𝜔 | ≤ 𝑘 because 𝜎 |= 𝐶 (𝑘) which implies that𝑀𝑖 (𝑝𝑏𝑎𝑡𝑐ℎ𝑒𝑠) ≤ 𝑘 for all markings𝑀𝑖 of 𝜎 .

Therefore, there are queued no more than 𝑘 batches. □

5 EXPERIMENTAL EVALUATION
We implemented the translation approach and optimisation techniques in our tool Kaki. The tool

is coded in Kotlin and compiled to JVM. It uses the Petri game engine of TAPAAL [3, 9, 10] as its

backend for solving the Petri games. The source code of Kaki is publicly available on GitHub
1
.

We shall discuss the effect of our novel optimisation techniques and compare the performance

of our tool to FLIP [26], Netstack [23] as well as the tool for sequential update synthesis from [4],

referred to as SEQ. We use the benchmark [5] of update synthesis problems from [4], based

on 229 real-network topologies from the Internet Topology Zoo database [13]. The benchmark

includes four update synthesis problems for reachability and single waypointing for each topology,

totalling 916 problem instances. As Kaki and FLIP support a richer set of policies, we further extend

this benchmark with additional policies for multiple waypointing, alternative waypointing and

conditional enforcement, giving us 8759 instances of the concurrent update synthesis problem.

1
https://github.com/Ragusaen/Kaki

, Vol. 1, No. 1, Article . Publication date: August 2023.

18 Johansen et al.

0 2000 4000 6000 8000

0.1

1

10

100

T
o
t
a
l
t
i
m
e
[
s
]

Kaki (all)

Collective

Decomposition

Baseline

Fig. 8: Kaki optimisation techniques comparison (y-axis is logarithmic) on extended benchmark

0 100 200 300 400 500 600 700 800 900

0.1

1

10

100

T
o
t
a
l
t
i
m
e
[
s
]

Kaki

FLIP

Netstack

Fig. 9: Comparison with FLIP and Netstack (y-axis is logarithmic) on basic benchmark

All experiments (each using a single core) are conducted on a compute-cluster running Ubuntu

version 18.04.5 on an AMD Opteron(tm) Processor 6376 with a 1GB memory limit and 5 minute

timeout. A reproducibility package is available in [11] and it includes executable files to run Kaki,

pre-generated outputs that are used to produce the figures as well as the benchmark and related

scripts.

5.1 Results
To compare the Kaki optimisation techniques introduced in this paper, we include a baseline without

any optimisation techniques, its extension with only topological decomposition technique and

only collective update classes, and also the combination of both of them. Each method decides the

existence of a solution for the concurrent update synthesis problem and in the positive case it also

minimises the number of batches. Figure 8 shows a cactus plot of the results where the problem

, Vol. 1, No. 1, Article . Publication date: August 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 19

r
e
a
c
h
a
b
i
l
i
t
y

1
-
w
p

2
-
w
p

4
-
w
p

8
-
w
p

1
-
a
l
t
-
w
p

2
-
a
l
t
-
w
p

4
-
a
l
t
-
w
p

1
-
c
o
n
d
-
e
n
f

2
-
c
o
n
d
-
e
n
f

a
l
l

p
e
r
c
e
n
t
a
g
e

Total 856 916 916 844 647 916 916 916 916 916 8759 100.0%

Only Kaki 0 0 17 37 63 0 5 8 1 2 133 1.5%

Only FLIP 0 0 0 0 0 17 20 35 40 84 196 2.2%

Suboptimal 0 11 18 14 4 283 198 104 41 114 787 9.0%

Tagging 0 0 47 55 21 4 39 100 1 1 268 3.1%

Table 1: Number of solved problems for Kaki and FLIP (suboptimal and tagging refers to FLIP)

instances on the x-axis are (for each method independently) sorted by the increasing synthesis time

shown on the y-axis. The experiments are run on the extended benchmark and we can observe

that both of the optimisation techniques provide a significant improvement over the baseline and

their combination is clearly beneficial as it solves 97% of the problems in the benchmark within the

5 minute timeout.

In Figure 9 we also show a cactus plot for Kaki, FLIP, and Netstack on the benchmark of concurrent

update synthesis problems that include reachability and waypointing only (because Netstack cannot

handle other network policies). As Kaki has to first generate the Petri game file and then call the

external TAPAAL engine for solving the Petri game, there is an initial overhead that implies that the

single-purpose tool FLIP is faster on the smaller and easy-to-solve instances of the problem that can

be answered below 1 second. For the more difficult instances both Kaki and FLIP obtain a similar

performance and solve the most difficult instance in 8.3 and 5.1 seconds, respectively. The most

recent tool Netstack computes the optimal solutions similarly as Kaki, however, at significantly

slower running times and it times out for the more challenging instances of the problems.

We also notice that FLIP does not always produce the minimal number of batches, which is

critical for practical applications because updating a switch can cause forwarding instability for up

to 0.4 seconds [21]. Hence minimising the number of batches where switches can be updated in

parallel significantly decreases the forwarding vulnerability (some networks in the benchmark have

up to 700 switches). In fact, on the full benchmark of concurrent update synthesis problems, FLIP

synthesises a strictly larger number of batches in 787 instances, compared to the minimum number

of possible batches (that Kaki is guaranteed to find). The distribution of the solved problems for

the different policies is shown in Table 1. Here we can also notice that FLIP uses the less desirable

tag-and-match update strategy in 268 problem instances, even though there exists a concurrent

update sequence as demonstrated by Kaki. In conclusion, Kaki has a slightly larger overhead

on easy-to-solve instances but scales almost as well as FLIP, however, FLIP in more than 12% of

cases does not find the optimal update sequence or reverts to the less desirable two-phase commit

protocol.

Comparison with SEQ from [4] is more difficult as SEQ supports only reachability and single

waypointing and computes only sequential updates (single switch per batch). When we restrict the

benchmark to the subset of these policies and adapt our tool to produce sequential updates, we

observe that Kaki’s performance is in the worst case 0.06 seconds slower than SEQ when measuring

the verification time required by the TAPAAL engine. We remark that SEQ solved all problems in

under 0.55 seconds, except for two instances where it timed out, while Kaki was able to solve both

of them in under 0.1 second.

We further enlarged the extended benchmark with nondeterministic forwarding that models

splittable flows (using the Equal-Cost-MultiPath (ECMP) protocol [8] that divides a flow along all

shortest paths from an ingress to an egress switch). We observe that verifying the routing policies

, Vol. 1, No. 1, Article . Publication date: August 2023.

20 Johansen et al.

0 100 200 300 400 500 600 700 800

1

10

T
o
t
a
l
t
i
m
e
[
s
]

Nondeterministic forwarding

Deterministic forwarding

Fig. 10: Total time taken for Kaki using splittable and nonsplittable forwarding

in this modified benchmark implies only a negligible (3.4% on the median instance) overhead in

running time. The running times are summarised in Figure 10.

6 CONCLUSION
We presented Kaki, a tool for update synthesis that can deal with (i) concurrent updates, (ii)

synthesises solutions with minimum number of batches, (iii) extends the existing approaches

with nondeterministic forwarding and can hence model splittable flows, and (iv) verifies arbitrary

(regular) routing policies. It extends the state-of-the-art approaches with respect to generality but

given its efficient TAPAAL backend engine, it is also fast and provides more optimal solutions

compared to the competing tool FLIP and runs almost an order of magnitude faster than the tool

Netstack.

Kaki’s performance is the result of its efficient translation in combination with optimisations

techniques that allow us to reduce the complexity of the problem while preserving the optimality of

its solutions. Kaki uses less than 1 second to solve 90% of all concurrent update synthesis problems

for real network topologies and hence provides a practical approach to concurrent update synthesis.

Acknowledgments. We thank Peter G. Jensen for his help with executing the experiments and

Anders Mariegaard for his assistance with setting up FLIP. This work was supported by DFF project

QASNET.

REFERENCES
[1] Cao, Z., Wang, Z., Zegura, E.W.: Performance of hashing-based schemes for internet load balancing. In: Proceedings

IEEE INFOCOM 2000, The Conference on Computer Communications, Nineteenth Annual Joint Conference of the

IEEE Computer and Communications Societies, Reaching the Promised Land of Communications, Tel Aviv, Israel,

March 26-30, 2000. pp. 332–341. IEEE Computer Society (2000), https://doi.org/10.1109/INFCOM.2000.832203

[2] Christesen, N., Glavind, M., Schmid, S., Srba, J.: Latte: Improving the latency of transiently consistent network update

schedules. In: IFIP PERFORMANCE’20. Performance Evaluation Review, vol. 48, no. 3, pp. 14–26. ACM (2020)

[3] David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K., Møller, M., Srba, J.: Tapaal 2.0: Integrated development environment

for timed-arc Petri nets. In: Proceedings of the 18th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’12). LNCS, vol. 7214, pp. 492–497. Springer-Verlag (2012)

[4] Didriksen, M., Jensen, P.G., Jønler, J.F., Katona, A.I., Lama, S.D.L., Lottrup, F.B., Shajarat, S., Srba, J.: Automatic synthesis

of transiently correct network updates via Petri games. In: Buchs, D., Carmona, J. (eds.) Application and Theory of

Petri Nets and Concurrency. pp. 118–137. Springer International Publishing, Cham (2021)

[5] Didriksen, M., Jensen, P.G., Jønler, J.F., Katona, A.I., Lama, S.D., Lottrup, F.B., Shajarat, S., Srba, J.: Artefact for: Automatic

Synthesis of Transiently Correct Network Updates via Petri Games (Feb 2021), https://doi.org/10.5281/zenodo.4501982

[6] Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.R.: AdamMC: A model checker for Petri nets with

transits against flow-LTL. In: CAV’20. LNCS, vol. 12225, pp. 64–76. Springer (2020)

[7] Foerster, K., Schmid, S., Vissicchio, S.: Survey of consistent software-defined network updates. IEEE Commun. Surv.

Tutorials 21(2), 1435–1461 (2019)

[8] Hopps, C., et al.: Analysis of an equal-cost multi-path algorithm. Tech. rep., RFC 2992, November (2000)

[9] Jensen, J., Nielsen, T., Oestergaard, L., Srba, J.: Tapaal and reachability analysis of p/t nets. LNCS Transactions on Petri

Nets and Other Models of Concurrency (ToPNoC) 9930, 307–318 (2016)

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://doi.org/10.1109/INFCOM.2000.832203
https://doi.org/10.5281/zenodo.4501982

Kaki: Efficient Concurrent Update Synthesis for SDN 21

[10] Jensen, P., Larsen, K., Srba, J.: Real-time strategy synthesis for timed-arc Petri net games via discretization. In:

Proceedings of the 23rd International SPIN Symposium on Model Checking of Software (SPIN’16). LNCS, vol. 9641, pp.

129–146. Springer-Verlag (2016)

[11] Johansen, N., Kær, L., Madsen, A., Nielsen, K., Srba, J., Tollund, R.: Artefact for Kaki: Concurrent update synthesis for

regular policies via Petri games (Oct 2022), https://doi.org/10.5281/zenodo.6379555

[12] Johansen, N., Kaer, L., Madsen, A., Nielsen, K., Srba, J., Tollund, R.: Kaki: Concurrent update synthesis for regular

policies via petri games. In: Proceedings of the 17th International Conference on Integrated Formal Methods (iFM’22).

LNCS, vol. 13274, pp. 249–267. Springer-Verlag (2022)

[13] Knight, S., Nguyen, H.X., Falkner, N., Bowden, R.A., Roughan, M.: The internet topology zoo. IEEE J. Sel. Areas

Commun. 29(9), 1765–1775 (2011), https://doi.org/10.1109/JSAC.2011.111002

[14] Larsen, K., Mariegaard, A., Schmid, S., Srba, J.: Allsynth: Transiently correct network update synthesis accounting

for operator preferences. In: Proceedings of the 16th International Symposium on Theoretical Aspects of Software

Engineering (TASE’22). LNCS, vol. 13299, pp. 344–362. Springer (2022)

[15] Liu, A.X., Meiners, C.R., Torng, E.: TCAM razor: a systematic approach towards minimizing packet classifiers in tcams.

IEEE/ACM Trans. Netw. 18(2), 490–500 (2010), http://doi.acm.org/10.1145/1816262.1816274

[16] Ludwig, A., Dudycz, S., Rost, M., Schmid, S.: Transiently secure network updates. ACM SIGMETRICS Performance

Evaluation Review 44(1), 273–284 (2016)

[17] Ludwig, A., Marcinkowski, J., Schmid, S.: Scheduling loop-free network updates: It’s good to relax! In: Georgiou, C.,

Spirakis, P.G. (eds.) Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015,

Donostia-San Sebastián, Spain, July 21 - 23, 2015. pp. 13–22. ACM (2015), https://doi.org/10.1145/2767386.2767412

[18] Ludwig, A., Rost, M., Foucard, D., Schmid, S.: Good network updates for bad packets: Waypoint enforcement beyond

destination-based routing policies. In: Katz-Bassett, E., Heidemann, J.S., Godfrey, B., Feldmann, A. (eds.) Proceedings

of the 13th ACM Workshop on Hot Topics in Networks, HotNets-XIII, Los Angeles, CA, USA, October 27-28, 2014. pp.

15:1–15:7. ACM (2014), https://doi.org/10.1145/2670518.2673873

[19] McClurg, J., Hojjat, H., Černý, P., Foster, N.: Efficient synthesis of network updates. SIGPLAN Not. 50(6), 196–207 (jun

2015), https://doi.org/10.1145/2813885.2737980

[20] Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)

[21] Pereíni, P., Kuzniar, M., Canini, M., Kostić, D.: ESPRES: transparent SDN update scheduling. In: Proceedings of the

Third Workshop on Hot Topics in Software Defined Networking. p. 73–78. HotSDN ’14, Association for Computing

Machinery, New York, NY, USA (2014), https://doi.org/10.1145/2620728.2620747

[22] Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstractions for network update. In: Eggert, L., Ott, J.,

Padmanabhan, V.N., Varghese, G. (eds.) ACM SIGCOMM 2012 Conference, Helsinki, Finland. pp. 323–334. ACM (2012)

[23] Schmid, S., Schrenk, B.C., Torralba, Á.: Netstack: A game approach to synthesizing consistent network updates. In:

IFIP Networking Conference, IFIP Networking 2022, Catania, Italy, June 13-16, 2022. pp. 1–9. IEEE (2022)

[24] Schneider, T., Birkner, R., Vanbever, L.: Snowcap: synthesizing network-wide configuration updates. In: Kuipers, F.A.,

Caesar, M.C. (eds.) ACM SIGCOMM 2021 Conference, Virtual Event, USA, August 23-27, 2021. pp. 33–49. ACM (2021),

https://doi.org/10.1145/3452296.3472915

[25] Speicher, P., Steinmetz, M., Backes, M., Hoffmann, J., Künnemann, R.: Stackelberg planning: Towards effective leader-

follower state space search. Proceedings of the AAAI Conference on Artificial Intelligence 32(1) (2018)

[26] Vissicchio, S., Cittadini, L.: FLIP the (flow) table: Fast lightweight policy-preserving SDN updates. In: 35th Annual

IEEE International Conference on Computer Communications, INFOCOM 2016, San Francisco, CA, USA, April 10-14,

2016. pp. 1–9. IEEE (2016)

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://doi.org/10.1109/JSAC.2011.111002
http://doi.acm.org/10.1145/1816262.1816274
https://doi.org/10.1145/2767386.2767412
https://doi.org/10.1145/2670518.2673873
https://doi.org/10.1145/2813885.2737980
https://doi.org/10.1145/2620728.2620747
https://doi.org/10.1145/3452296.3472915

	Abstract
	1 Introduction
	2 Concurrent Update Synthesis
	2.1 Routing Policy
	2.2 Concurrent Update Synthesis Problem

	3 Optimisation Techniques
	3.1 Topological Decomposition
	3.2 Collective Update Classes

	4 Translation to Petri Games
	4.1 Petri Games
	4.2 Translation Intuition
	4.3 Translation of Network Topology and Routings
	4.4 Policy Translation
	4.5 Reachability Objective and Translation Correctness
	4.6 Correctness of Translation

	5 Experimental Evaluation
	5.1 Results

	6 Conclusion
	References

