
AllSynth: A BDD-Based Approach for Network Update Synthesis
Kim G. Larsena, Anders Mariegaarda, Stefan Schmidb and Jiří Srbaa,∗

aDept. of Computer Science, Aalborg University, Denmark
bTU Berlin, Germany and University of Vienna, Austria

A R T I C L E I N F O

Keywords:
computer networks
software defined networking
update synthesis
binary decision diagrams

A B S T R A C T

The increasingly stringent dependability requirements on communication networks as well as
the need to render these networks more adaptive to improve performance, demand for more
automated approaches to operate networks. We present AllSynth, a symbolic synthesis tool
for updating communication networks in a provably correct and efficient manner. AllSynth
automatically synthesizes network update schedules which transiently ensure a wide range of
policy properties expressed using linear temporal logic (LTL). In particular, in contrast to
existing approaches, AllSynth symbolically computes and compactly represents all feasible and
cost-optimal solutions. At its heart, AllSynth relies on a novel parameterized use of binary
decision diagrams (BDDs) which greatly improves performance. Indeed, AllSynth not only
provides formal correctness guarantees and outperforms existing state-of-the-art tools in terms
of generality, but also in terms of runtime as documented by experiments on a benchmark of
real-world network topologies.

1. Introduction
Improving the automated operation of communication networks is considered one of the most important research

problems in networking today, for two main reasons. First, communication networks and their configurations are highly
complex, forcing operators to become “masters of complexity” [25]; many major Internet outages over the past years
were caused by human errors [5, 13, 16]. Today’s manual approach hence stands in stark contrast to the increasingly
stringent dependability requirements on communication networks, which are a critical infrastructure of our digital
society. Second, network traffic is not only constantly increasing but also features much more temporal and spatial
structure [4, 6, 51]; this introduces a significant potential to improve operational efficiency by rendering networks
more adaptive towards the actual traffic patterns they serve.

Motivated by the prospect of an increased level of automation in networks [18], over the past years, great
efforts were made in laying the foundations for automated network verification, and in designing synthesis tools [3,
17, 28, 44, 47]. Furthermore, motivated by the benefits of more adaptive network operations, e.g., to improve
availability and performance [29], automated tools for consistently updating network configurations have been
developed [12, 24, 40, 45, 48] which overcome the limitations of existing hand-crafted algorithms [1, 36, 39]. However,
the computation of provably consistent network update schedules remains challenging, due to the performance and
expressiveness demands. The performance requirements are multidimensional: network update schedules should not
only be quickly computable but also account for operator preferences, like requiring that certain switches or routers
are updated first. However, existing approaches only provide one update sequence that may not satisfy additional
requirements imposed by the network operator.

Our Contributions. We present an automated network update synthesis tool, AllSynth, that computes and represents
in a compact BDD (binary decision diagram) form all correct update sequences that respect various logical properties
expressible in linear temporal logic (LTL) [43] such as reachability, waypointing and service chaining. AllSynth comes
with formal correctness guarantees and in case it provably establishes that there does not exist any simple update
schedule (where each switch is updated at most once), it can make suggestions for alternative solutions employing
general update schedules (where a switch can be updated multiple times).

Despite being more general, AllSynth significantly outperforms state-of-the-art tools with regard to execution
time on all non-trivial real-world networks from the standard Topology Zoo benchmark [30]. The update synthesis
problem solved by AllSynth is NP-hard, even when restricted to preserving the basic loop-freedom and waypointing
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properties [36]. To overcome the complexity of the problem, AllSynth exploits a novel use of binary decision diagrams
(BDDs) [34] to compactly encode not only the network topology and policy invariant, but also the set of all correct
update sequences.

The fact that AllSynth computes all feasible update sequences enables future use cases for the tool, such as finding
an optimal schedule with regard to a particular cost specification, providing multiple alternative solutions and filtering
based on operator requirements (e.g some switches must be updated before the rest or in a certain order). The source
code of AllSynth and all our experimental artefacts are available at [33].

Related Work. Motivated by the benefits of adaptive and software-defined (i.e., programmable) communication
networks [31], as well as the increasingly stringent dependability requirements, the question of how to correctly update
network configurations has received much attention over the last years. A recent survey summarizes over one hundred
approaches [20].

In their seminal work, Reitblatt et al. [45] showed that strong per-packet consistency can be achieved using packet
versioning during reconfigurations. Their approach, which was subsequently studied intensively in the literature [9, 11,
21, 26, 27, 35, 42], has the drawback that it requires packet header modifications and additional memory at the nodes:
switches and routers need to store forwarding rules for each version.

A clever alternative approach, introduced by Mahajan and Wattenhofer [39], schedules batches of updates over
time, where the set of updates within a batch can take effect in any order without harming consistency. This approach
has also been explored extensively already [1, 15, 22, 36, 37, 38, 50], however, it can only be used to provide a subset of
the consistency properties of [45]. This in turn motivated hybrid approaches such as FLIP [48]. Interestingly, similar
to AllSynth, FLIP also supports alternative solutions in case a simple update cannot be found. However, in contrast
to FLIP which relies on a heuristic algorithm, AllSynth only presents alternative solutions in case a simple solution
provably does not exist. Furthermore, while FLIP resorts to a packet tagging alternative (which consumes header space
and switch memory), AllSynth is a light-weight and fully symbolic approach aiming at updating nodes multiple times.

The need for supporting more general or even customizable consistency properties [52] as well as more automated
synthesis approaches [19, 24, 41] has already received attention in the literature as well. However, our approach is the
first one that uses the BDD-based technology for the synthesis and representation of all correct network updates. The
competing tool NetSynth [40] for update synthesis is relying on an incremental enumeration of candidates of update
sequences that are then verified by external model checkers, like NuSMV [14], and the tool terminates as soon as the
first correct update sequence is found.

This article is an extended version (with full proofs, cost-optimal update synthesis and additional experiments) of
TASE’22 conference paper published in [32]. The papers is organized as follows: in Section 2 we formally define the
update synthesis problem, including the simple and generalized variants of the problem; in Section 3.2 we introduce
our BDD-based tool for solving the problem and we construct a BDD representation of all feasible solutions to the
update synthesis problem; in Section 4 we extend the methodology with the construction of a BDD representing all cost-
optimal solutions; in Section 5 we evaluate the performance of our implementation against state-of-the-art approaches;
finally in Section 6 we provide a conclusion and further perspectives of our work. We also include a short appendix
showing how to run AllSynth.

2. A Model for Update Synthesis
Before we formally define our problem, we shall provide an intuitive motivation for the update synthesis problem.

In Figure 1 we see a simple network with four nodes (routers). Packets from the source node 𝑠 are forwarded to the
destination node 𝑑 along the solid edges (links) that represent the initial routing configuration. The network operator
aims to change this routing to an alternative one represented by the dashed edges. The task is to schedule the order of
node updates (changing the forwarding function at the updated node from the solid edge to the dashed one) so that in
every intermediate routing configuration we preserve the reachability between 𝑠 and 𝑑 and at the same time always
visit the waypoint node 𝑣1 (representing for example a firewall).

If the node 𝑠 is updated first, the new routing will follow the path 𝑠, 𝑣2, 𝑑 which preserves the reachability property
but not the waypointing. On the other hand, if we first update the node 𝑣2, we create an undesirable forwarding loop
𝑠, 𝑣2, 𝑣1, 𝑣2, 𝑣1,… which breaks the reachability property. Hence the only option is to update first the node 𝑣1, after
which we have a correct forwarding path 𝑠, 𝑣1, 𝑑 satisfying both reachability and waypointing. After this we can update
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𝑠 𝑣1 𝑣2 𝑑

Figure 1: Update synthesis problem aiming to preserve reachability between 𝑠 and 𝑑 via the waypoint 𝑣1

Notation Description

𝐺 = (𝑉 ,𝐸, 𝗌𝗋𝖼, 𝗍𝗀𝗍) Network topology with nodes 𝑉 and edges 𝐸
𝗌𝗋𝖼(𝑒), 𝗍𝗀𝗍(𝑒) Source and target node of an edge
𝑣, 𝑣𝑖 Nodes
𝑒, 𝑒𝑖 Edges
𝜌 Routing configuration
𝜋 A path (sequence of edges)
𝜋 Sequence of nodes traversed by path 𝜋
𝜋𝜌(𝑣) Path induced by 𝜌 from node 𝑣
𝑢 An update
𝑤 An update sequence
𝜌𝑤 Routing after applying update sequence 𝑤
𝜌𝑖,𝜌𝑓 Initial and final routing configurations
𝜑 Policy specified in LTL logic
𝑃 Update synthesis problem
𝖲𝗈𝗅(𝑃 ) Set of solutions to problem 𝑃

Table 1
Key notation of network model

the node 𝑣2 because this update does not change the forwarding path and lastly, we update the node 𝑠 that completes
the update sequence from the initial to the final routing.

We are now ready to provide the formalization of the update synthesis problem. Table 1 contains a summary of the
key notation. We model the network as a multigraph, allowing us to describe multiple connections between nodes (i.e.,
switches or routers, which are treated as synonyms in the following); these connections can have different quantitative
attributes (e.g. latency). Henceforth, we adopt graph-theory terminology and refer to such connections or links as
edges.

Definition 1 (Network Topology). A network topology is a directed multigraph 𝐺 = (𝑉 ,𝐸, 𝗌𝗋𝖼, 𝗍𝗀𝗍) where 𝑉 is the set
of nodes, 𝐸 is the set of edges and 𝗌𝗋𝖼, 𝗍𝗀𝗍∶ 𝐸 → 𝑉 are respectively the source and target functions.

In order to route traffic from a node 𝑣0 to a node 𝑣′, each node 𝑣 has a forwarding rule that specifies an appropriate
outgoing edge 𝑒 such that 𝗌𝗋𝖼(𝑒) = 𝑣. This rule can be per-flow or apply to multiple flows; in the following, we do not
explicitly distinguish between the two scenarios. Not all nodes need to have defined their forwarding edge (e.g. the
target node 𝑣′ or the nodes that are not involved in packet forwarding from 𝑣0 to 𝑣′). We capture this formally by the
notion of a routing configuration.

Definition 2 (Routing Configuration). A routing configuration, or routing for short, in a network topology 𝐺 =
(𝑉 ,𝐸, 𝗌𝗋𝖼, 𝗍𝗀𝗍) is a partial function 𝜌∶ 𝑉 ⇀ 𝐸 such that 𝗌𝗋𝖼(𝜌(𝑣)) = 𝑣 for all 𝑣 ∈ 𝑉 where 𝜌(𝑣) is defined.

For a given network topology 𝐺 = (𝑉 ,𝐸, 𝗌𝗋𝖼, 𝗍𝗀𝗍) with the source node 𝑣0 ∈ 𝑉 , a routing configuration 𝜌 defines a
unique sequence of edges (a path) that is finite if the routing is loop free; otherwise it is infinite. In the finite case, the
path is given by 𝜋 = 𝑒0𝑒1⋯ 𝑒𝑛 such that 𝜌(𝗍𝗀𝗍(𝑒𝑖−1)) = 𝑒𝑖 for all 𝑖, 1 ≤ 𝑖 ≤ 𝑛, and 𝗌𝗋𝖼(𝑒0) = 𝑣0, and where 𝜌(𝗍𝗀𝗍(𝑒𝑛)) is
undefined. The corresponding sequence of traversed nodes is then 𝜋 = 𝗌𝗋𝖼(𝑒0)𝗌𝗋𝖼(𝑒1)⋯ 𝗌𝗋𝖼(𝑒𝑛)𝗍𝗀𝗍(𝑒𝑛). In the infinite
case, the path is given by 𝜋 = 𝑒0𝑒1⋯ such that 𝜌(𝗍𝗀𝗍(𝑒𝑖−1)) = 𝑒𝑖 for all 𝑖 > 0, and 𝗌𝗋𝖼(𝑒0) = 𝑣0. The sequence of
traversed nodes is given by the infinite sequence 𝜋 = 𝗌𝗋𝖼(𝑒0)𝗌𝗋𝖼(𝑒1)⋯. If 𝜋 = 𝑣0𝑣1… is a (finite or infinite) sequence
of nodes then we refer to its suffix 𝑣𝑖𝑣𝑖+1… by 𝜋𝑖 and to the initial node 𝑣0 by 𝜋[0]. For a node 𝑣0 ∈ 𝑉 and routing
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𝖱𝖾𝖺𝖼𝗁(𝑑) ≡ 𝗍𝗋𝗎𝖾𝑈 𝑑
𝖶𝖺𝗒𝗉𝗈𝗂𝗇𝗍(𝑣, 𝑑) ≡ ¬𝖱𝖾𝖺𝖼𝗁(𝑑) ∨ (¬𝑑 𝑈 𝑣 ∧ 𝖱𝖾𝖺𝖼𝗁(𝑑))

𝖬𝗎𝗅𝗍𝗂𝖶𝖺𝗒𝗉𝗈𝗂𝗇𝗍(𝑊 ,𝑑) ≡
⋁

𝑣∈𝑊
𝖶𝖺𝗒𝗉𝗈𝗂𝗇𝗍(𝑣, 𝑑)

𝖲𝖾𝗋𝗏𝗂𝖼𝖾(𝑣1𝑣2 ⋯ 𝑣𝑛, 𝑑) ≡

{

¬𝖱𝖾𝖺𝖼𝗁(𝑑) ∨
(
⋀𝑛

𝑖=2 ¬𝑣𝑖 ∧ ¬𝑑
)

𝑈
(

𝑣1 ∧ 𝖲𝖾𝗋𝗏𝗂𝖼𝖾(𝑣2 ⋯ 𝑣𝑛, 𝑑)
)

if 𝑛 ≥ 1
𝗍𝗋𝗎𝖾 otherwise

Figure 2: Encoding of standard policies where 𝑣, 𝑑 ∈ 𝑉 , ∅ ≠ 𝑊 ⊆ 𝑉 and 𝑣1𝑣2 ⋯ 𝑣𝑛 ∈ 𝑉 ∗

𝜌, we let 𝜋𝜌(𝑣0) denote the unique (finite or infinite) path induced by 𝜌 from the source node 𝑣0 and let 𝜋𝜌(𝑣0) be the
corresponding sequence of traversed nodes.

2.1. Routing Policies
We shall now define a variant of LTL [43] that allows us to describe specific policies that routings must enforce

(both statically and transiently).

Definition 3 (Policy Syntax). For a network topology 𝐺 = (𝑉 ,𝐸, 𝗌𝗋𝖼, 𝗍𝗀𝗍), a policy 𝜑 is constructed according to the
following LTL-based abstract syntax, where 𝑣 ∈ 𝑉 :

𝜑 ∶∶= 𝗍𝗋𝗎𝖾 ∣ 𝑣 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣ 𝖭𝗈𝖫𝗈𝗈𝗉 ∣ 𝑋 𝜑 ∣ 𝜑𝑈 𝜑 .

In addition to the classical LTL operators, our logic includes a loop-freeness predicate. We now give the formal
semantics of our logic, interpreted both on infinite and finite paths [23].

Definition 4 (Policy Semantics). For a network topology 𝐺 = (𝑉 ,𝐸, 𝗌𝗋𝖼, 𝗍𝗀𝗍), a policy 𝜑 is satisfied by a path
𝜋 ∈ 𝐸∗ ∪ 𝐸𝜔, written 𝜋 ⊧ 𝜑, iff the corresponding sequence of traversed nodes 𝜋 satisfies 𝜋 ⊧ 𝜑, defined inductively
on the structure of 𝜑 as follows:

𝜋 ⊧ 𝗍𝗋𝗎𝖾 always
𝜋 ⊧ 𝑣 iff 𝜋[0] = 𝑣
𝜋 ⊧ ¬𝜑 iff 𝜋 ̸⊧ 𝜑
𝜋 ⊧ 𝜑1 ∧ 𝜑2 iff 𝜋 ⊧ 𝜑1 and 𝜋 ⊧ 𝜑2

𝜋 ⊧ 𝖭𝗈𝖫𝗈𝗈𝗉 iff 𝜋 is finite
𝜋 ⊧ 𝑋 𝜑 iff 𝜋1 ⊧ 𝜑
𝜋 ⊧ 𝜑1 𝑈 𝜑2 iff ∃𝑗∀𝑖 < 𝑗.𝜋𝑗 ⊧ 𝜑2 and 𝜋𝑖 ⊧ 𝜑1.

Examples of standard routing policies are given in Figure 2. The simplest policy, 𝖱𝖾𝖺𝖼𝗁(𝑑), specifies that the
destination node 𝑑 must eventually be reached while 𝖶𝖺𝗒𝗉𝗈𝗂𝗇𝗍(𝑣, 𝑑) asks that any path reaching the destination 𝑑 must
necessarily pass through waypoint node 𝑣. For multiple alternative waypoints, 𝖬𝗎𝗅𝗍𝗂𝖶𝖺𝗒𝗉𝗈𝗂𝗇𝗍(𝑊 ,𝑑) specifies that any
path reaching destination 𝑑 must necessarily pass through either of the waypoints in 𝑊 . Finally, 𝖲𝖾𝗋𝗏𝗂𝖼𝖾(𝑣1𝑣2⋯ 𝑣𝑛, 𝑑)
ensures that the sequence of waypoints in 𝑣1𝑣2⋯ 𝑣𝑛 is visited in this fixed order.

2.2. Update Synthesis
In the following we assume a fixed network topology 𝐺 = (𝑉 ,𝐸, 𝗌𝗋𝖼, 𝗍𝗀𝗍). An update 𝑢 ∈ 𝐸 ∪ 𝑉 on 𝐺 under a

current routing configuration 𝜌 specifies that the source node of edge 𝑢 (if 𝑢 ∈ 𝐸) must now forward its traffic along 𝑢
or that the routing for the node 𝑢 (if 𝑢 ∈ 𝑉 ) is set to undefined. We write 𝜌𝑢 for the new routing configuration, defined
for any 𝑣 ∈ 𝑉 as

𝜌𝑢(𝑣) =

⎧

⎪

⎨

⎪

⎩

𝑢 if 𝑢 ∈ 𝐸 and 𝑣 = 𝗌𝗋𝖼(𝑢)
undefined if 𝑢 = 𝑣
𝜌(𝑣) otherwise.
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𝑠 𝑣1 𝑣2 𝑣3 𝑑

(a) Network topology

𝑠 𝑣1 𝑣2 𝑣3 𝑑

(b) Initial (solid) and final (dashed) routings

Figure 3: Update synthesis problem with only a general solution

We inductively extend this notation to sequences of updates by letting 𝜌𝜀 = 𝜌 and 𝜌𝑤𝑢 = (𝜌𝑤)𝑢 for any 𝑤 ∈ (𝐸 ∪ 𝑉 )∗
and 𝑢 ∈ 𝐸 ∪𝑉 . An update sequence may in general contain an arbitrary number of updates that change multiple times
the routing of the same node, however an important set of update sequences is the class of simple update sequences.
A simple update sequence consits of only simple updates that change, for a given node 𝑣, the initial routing 𝜌𝑖(𝑣) at 𝑣
directly to its final routing 𝜌𝑓 (𝑣). This implies that it does not make sense to update the node 𝑣 (using simple updates)
more than once; after the first simple update of 𝑣, no further simple updates of 𝑣 change anything.

Definition 5 (Simple Updates). Let 𝜌𝑓 be the final routing. An update 𝑢 is simple if 𝜌𝑓 (𝗌𝗋𝖼(𝑢)) = 𝑢 whenever 𝑢 ∈ 𝐸
and 𝜌𝑓 (𝑢) is undefined whenever 𝑢 ∈ 𝑉 . A simple update sequence is then a sequence of simple updates, where each
update appears at most once.

A basic property of simple update sequences is that any reordering results in the same final routing configuration
i.e, if 𝑤 is a simple update sequence and 𝑤′ is any permutation of 𝑤, then 𝜌𝑤 = 𝜌𝑤′ for any routing 𝜌.

Although any reordering of a simple update sequence yields the same final routing configuration, the intermediate
routing configurations induced by each update may not upholad a given policy invariant. This is also the case for
general update sequences. We therefore say that an update sequence is correct with respect to a policy 𝜑 and a node 𝑣,
if the unique path from 𝑣 induced by any intermediate routing configuration satisfies 𝜑.

Definition 6 (Update Correctness). An update sequence 𝑤 ∈ (𝐸 ∪ 𝑉 )∗ on network topology 𝐺 with initial routing
configuration 𝜌 is correct with respect to source node 𝑣0 and a policy 𝜑, if 𝜋𝜌𝑤′ (𝑣0) ⊧ 𝜑 for any prefix 𝑤′ of 𝑤.

The network update synthesis problem is thus the problem of constructing a correct update sequence that updates
an initial routing to a desired final routing.

Definition 7 ((Simple) Update Synthesis Problem). Given a topology 𝐺, an initial routing configuration 𝜌𝑖, a final
routing configuration 𝜌𝑓 , source node 𝑣0 ∈ 𝑉 and a policy 𝜑, the simple update synthesis problem asks to construct
a simple update sequence 𝑤 that is correct with respect to 𝑣0 and 𝜑 such that 𝜌𝑤𝑖 = 𝜌𝑓 . The update synthesis problem
omits the requirement that the constructed update sequence is simple.

In the following, we let 𝑃 = (𝐺, 𝜌𝑖, 𝜌𝑓 , 𝑣0, 𝜑) denote a (simple) update synthesis problem and say that a constructed
update sequence 𝑤 that satisfies the conditions above is a solution. For any simple update synthesis problem 𝑃 , the
set of its solutions, denoted by 𝖲𝗈𝗅(𝑃 ), is always finite. This is not the case for the general problem as there may be
infinitely many (longer and longer) solutions.

While much prior work focused on simple update problems, there are examples which are only solvable with a
general solution (as supported by our approach). Consider for example the network topology in Figure 3a with initial
and final routings visualised respectively as solid and dashed lines in Figure 3b. We fix the source node 𝑠 and the policy
𝜑 = 𝖶𝖺𝗒𝗉𝗈𝗂𝗇𝗍(𝑣2, 𝑑)∧𝖱𝖾𝖺𝖼𝗁(𝑑) requiring that waypoint 𝑣2 must be visited before reaching 𝑑. An update of any node
𝑣 from the initial to the final routing violates 𝜑—either by introducing a loop or it bypasses the waypoint. Hence there
is no correct simple update sequence. However, the update sequence that first updates 𝑠 to route to 𝑣2, followed by the
update of the nodes 𝑣1, 𝑣2 and 𝑣3 and finally updating 𝑠 again to route to 𝑣3 is a correct update sequence.

2.3. Simple Update Sequence Reordering
In case of simple update sequences, we shall now argue that for routing policies that (i) include the preservation of

reachability between the source and a target, and (ii) for which it holds that once a packet is delivered, no further routing
is defined from the target node, we can reorder certain updates in the sequence without invalidating the correctness of
the sequence. More specifically, we shall show that if a node routing is to be changed from undefined to some concrete
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𝑠
𝑣1

𝑣2

𝑑
𝑒1

𝑒2
𝑒3

𝑒4

Figure 4: Counter example for 𝖶𝖺𝗒𝗉𝗈𝗂𝗇𝗍(𝑣2, 𝑑); initial/final routing is in solid/dashed lines

edge, we can safely schedule such updates (in any order) to the very beginning of the update sequence. Similarly, all
nodes that change their current routing into undefined can be scheduled (again in arbitrary order) at the end of the
update sequence.

Lemma 1. Let 𝑤 be a solution to a simple update synthesis problem 𝑃 = (𝐺, 𝜌𝑖, 𝜌𝑓 , 𝑣0, 𝜑) where 𝜑 = 𝖱𝖾𝖺𝖼𝗁(𝑑) ∧ 𝜑′

for any policy 𝜑′ and where 𝜌𝑖(𝑑) and 𝜌𝑓 (𝑑) are undefined.

1. If 𝑤 = 𝑤1𝑢𝑤2 where 𝑢 ∈ 𝐸 is an update s.t. 𝜌𝑖(𝗌𝗋𝖼(𝑢)) is undefined then 𝑢𝑤1𝑤2 is a solution to 𝑃 .

2. If 𝑤 = 𝑤1𝑢𝑤2 where 𝑢 ∈ 𝑉 updates the routing in 𝑢 to undefined then 𝑤1𝑤2𝑢 is a solution to 𝑃 .

Proof. As we assume that 𝑤 is a correct update sequence from the initial node 𝑣0 for the policy 𝜑 that includes the
formula 𝖱𝖾𝖺𝖼𝗁(𝑑), we know that for every prefix 𝑤′ of 𝑤 the path 𝜋𝜌𝑤′

𝑖
(𝑣0) under the routing 𝜌𝑤′

𝑖 necessarily ends in

the node 𝑑. This implies that all nodes 𝑣 on any such path (except for 𝑑) must have defined its routing function 𝜌𝑤′

𝑖 (𝑣).
Now consider case (1) where 𝑤 = 𝑤1𝑢𝑤2 such that 𝑢 ∈ 𝐸 where 𝜌𝑖(𝗌𝗋𝖼(𝑢)) is undefined. As the update sequence

𝑤 is simple, there is only a single occurrence of the node 𝗌𝗋𝖼(𝑢) in 𝑤. This implies that for any prefix 𝑤′ of 𝑤1 the
path 𝜋𝜌𝑤′

𝑖
(𝑣0) cannot contain the node 𝗌𝗋𝖼(𝑢) as it will otherwise create a blackhole [39] (where a packet cannot be

forwarded further) and invalidate the predicate 𝖱𝖾𝖺𝖼𝗁(𝑑). Hence, moving the update 𝑢 to the very beginning of the
update sequence has no impact on the path from 𝑣0, meaning that it does not change the validity of the policy 𝜑′ either.

For case (2) where 𝑤 = 𝑤1𝑢𝑤2 such that 𝑢 ∈ 𝑉 , we notice that after executing the updates in 𝑤1 and 𝑢, the
resulting routing does not define any forwarding for 𝑢, i.e. 𝜌𝑤1𝑢

𝑖 (𝑢) is undefined. As the update sequence 𝑤 is simple,
the routing of 𝑢 remains undefined until the end of the update sequence 𝑤, while the property 𝖱𝖾𝖺𝖼𝗁(𝑑) must still hold.
This implies that after executing the update sequence 𝑤1 the path under any future routing (after executing the updates
𝑤1𝑤′ where 𝑤′ is a prefix of 𝑤2) does not include the node 𝑢. Hence we can safely move the update 𝑢 at the end of
the sequence as it does not influence the validity of the policy 𝜑′.

Lemma 1 can be used to identify all nodes that have an undefined forwarding function in 𝜌𝑖 and schedule them to
the beginning of the update sequence. Symmetrically, all updates that change a node forwarding to an undefined value
(in the routing 𝜌𝑓 ), can be placed at the end of the update sequence. This may simplify the synthesis of the update
sequence by analysing only the nodes that have a defined forwarding function both in the initial and final routing.

The requirement in Lemma 1 that the policy must enforce at least the reachabilty of 𝑑 is essential, as illustrated in
Figure 4 where 𝑒2𝑒3𝑒4 is a correct update sequence preserving 𝖶𝖺𝗒𝗉𝗈𝗂𝗇𝗍(𝑣2, 𝑑). This is because until the last update,
the destination 𝑑 is not reachable and hence the waypointing policy trivially holds. However, even though the routing
of 𝑣1 is undefined in the initial routing, moving the update 𝑒4 to the beginning of the update sequence creates a transient
forwarding following the path 𝑒1𝑒4 and violates 𝖶𝖺𝗒𝗉𝗈𝗂𝗇𝗍(𝑣2, 𝑑).

3. BDD-Based Algorithm for Update Synthesis Problem
We shall now present an overview of our tool AllSynth, including its inputs and outputs, followed by the theoretical

foundations of the BDD-based synthesis algorithm implemented in the tool.

3.1. AllSynth Tool Workflow
The diagram in Figure 5 illustrates the main components of AllSynth. The inputs to AllSynth are the network

topology 𝐺, a policy of interest 𝜑, as well as the initial routing 𝜌𝑖 and final routing 𝜌𝑓 from the node 𝑣0.
From the input network topology 𝐺, a BDD representation of the edges in 𝐺 is combined with the input policy

𝜑 and a source node 𝑣0 to produce a BDD representing all routing configurations 𝜌 where the unique path 𝜋𝜌(𝑣0)
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Inputs OutputsAllSynth

Network
topology

Policy
formula 𝜑 and
initial node 𝑣0

Initial/final routing

BDD 𝑇 (𝐱, 𝐳, 𝐲) of
parameterized transitions

BDD 𝐵∗
𝜑(𝐳) of all

routings satisfying 𝜑

BDD 𝑈 (𝑠)
𝜑 (𝐳, 𝐳𝐳) of all

correct updates

Correct update sequences
𝑆 (𝑠)
𝜑 (𝐳0,… , 𝐳𝑁 )

Size of solution space

Figure 5: AllSynth workflow

Notation Description

𝐱, 𝐲 Variables encoding sets of nodes
𝐳, 𝐳𝐳 Variables encoding routing configurations
𝑇 (𝐱, 𝐳, 𝐲) Transition function
𝐵𝜑(𝐱, 𝐳) Satisfiability of policy 𝜑
𝐵∗

𝜑(𝐳) Routing configurations satisfying 𝜑 for a fixed source node 𝑣0
𝑈𝜑(𝐳, 𝐳𝐳) Possible updates preserving correctness with respect to 𝜑
𝑅𝜑(𝐳, 𝐳𝐳) Updates leading to final configuration with 𝜑 correctness preserved
𝑆𝜑(𝐳0,… , 𝐳𝑁 ) All solutions of length 𝑁 , using 𝑁 copies of 𝐳 variables

𝑈 𝑠
𝜑∕𝑅

𝑠
𝜑∕𝑆

𝑠 Variants of 𝑈𝜑∕𝑅𝜑∕𝑆𝜑 for simple updates

Table 2
Key notation of BDD encoding

satisfies 𝜑. This BDD is then in turn combined with the initial and final routing configurations 𝜌𝑖 and 𝜌𝑓 , to construct
a BDD representation of all correct update sequences.

3.2. The Synthesis Algorithm
We now describe our algorithmic solution to the update synthesis problem, based on a symbolic encoding of

routing configurations using BDDs. This encoding allows for an efficient fixed-point computation of those routing
configurations that satisfy a given routing policy, and subsequently to find a correct update sequence solving the
synthesis problem.

Boolean decision diagrams [34] are data structures for the compact representation of a Boolean function. A BDD
is a rooted directed acyclic graph (DAG), with nonleaf nodes labeled by Boolean variables, and leaf nodes labeled with
0 (false) or 1 (true). Each node that is labelled by a variable has two outgoing edges, a solid one representing the true
assignment to the variable and a dotted one for the false assignment. By following the paths from the root to the leaf
labelled with 1, we obtain all satisfying Boolean assignments. BDDs were introduced by Lee [34] and later Bryant [10]
presented their reduced ordered version (ROBDD), where the ordering between the Boolean variables are fixed along
each path from the root to a leaf, and isomorphic parts are combined. We show how to exploit ROBDDs for solving
the update synthesis problem. We refer to Table 2 for a summary of key notation used in the encoding.

First, let us recall how to encode subsets of a finite set 𝑆 using Boolean expressions—hence ROBDDs. The
encoding is relative to a given enumeration 𝑠0, 𝑠1, 𝑠2,… 𝑠

|𝑆|−1 of 𝑆 and it is based on 𝑛 = ⌈log(|𝑆|)⌉ Boolean variables
𝐱 = 𝑥1, 𝑥2,… , 𝑥𝑛. Now, any truth assignment 𝜇 to 𝐱 may be seen as a binary encoding of a natural number 𝑛(𝜇) ∈ ℕ
and hence an encoding of the 𝑛(𝜇)’th element 𝑠𝑛(𝜇) ∈ 𝑆. We shall use the short notation 𝑠(𝜇) for the element 𝑠𝑛(𝜇)
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𝑣0

𝑣1

𝑣2

𝑣3

(a) Running example with initial (solid
line) and final (dashed line) routings

(¬𝑥1 ∧ ¬𝑥2 ∧ 𝑧0 ∧ ¬𝑦1 ∧ 𝑦2) ∨
(¬𝑥1 ∧ ¬𝑥2 ∧ ¬𝑧0 ∧ 𝑦1 ∧ ¬𝑦2) ∨
(¬𝑥1 ∧ 𝑥2 ∧ 𝑧1 ∧ 𝑦1 ∧ ¬𝑦2) ∨
(¬𝑥1 ∧ 𝑥2 ∧ ¬𝑧1 ∧ 𝑦1 ∧ 𝑦2) ∨
(𝑥1 ∧ ¬𝑥2 ∧ 𝑧2 ∧ 𝑦1 ∧ 𝑦2) ∨
(𝑥1 ∧ ¬𝑥2 ∧ ¬𝑧2 ∧ ¬𝑦1 ∧ 𝑦2)

(b) Expression 𝑇 (here 𝐱 encodes the
source node, 𝐲 is the target node, and
𝑧𝑖 indicates whether the node 𝑣𝑖 follows
the edge in the initial or in the final
routing

𝑥1

𝑥2 𝑥2

𝑧0 𝑧1 𝑧2

𝑦1 𝑦1 𝑦1

𝑦2 𝑦2

1

(c) 𝑇 as ROBDD (here dotted lines
represent low edges (0) and solid lines
stand for high edges (1); the highlighted
path (thick black) encodes the transition
(routing) from 𝑣0 to 𝑣1 under the initial
routing

Figure 6: Running example and encoding of the transition function

as well as the notation 𝐱(𝑠) to denote a Boolean expression over 𝐱 encoding the singleton-set {𝑠}. Now any Boolean
expression 𝑡(𝐱) over 𝐱 may be seen as encoding the subset [[𝑡(𝐱)]] = { 𝑠(𝜇) |𝜇 satisf ies 𝑡(𝐱) } ⊆ 𝑆.

Example 1. Consider the network topology in Figure 6a with the nodes 𝑉 = {𝑣0, 𝑣1, 𝑣2, 𝑣3} enumerated by the given
indices. We encode any subset of 𝑉 by a Boolean expression over two Boolean variables 𝑥1, 𝑥2—note that the encoding
of e.g. {𝑣1} is 𝐱(𝑣1) = ¬𝑥1 ∧ 𝑥2 as the binary encoding of 𝑣1 is 01. Conversely, the subset identified by the Boolean
expression 𝑡 ≡ ¬𝑥1 ∨ ¬𝑥2 is [[𝑡]] = {𝑣0, 𝑣1, 𝑣2} as the binary encoding of 𝑣0, 𝑣1, 𝑣2 are 00, 01, 10, respectively.

BDD encoding of routing configurations. Let 𝐺 = (𝑉 ,𝐸, 𝗌𝗋𝖼, 𝗍𝗀𝗍) be a network topology and let 𝑣 ∈ 𝑉 . We
denote by 𝐸𝑣 the set of edges having 𝑣 as a source-node, i.e. 𝐸𝑣 = {𝑒 ∈ 𝐸 ∣ 𝗌𝗋𝖼(𝑒) = 𝑣}. Now, a routing configuration
𝜌∶ 𝑉 ⇀ 𝐸 is isomorphic to indicating for each node 𝑣 whether 𝜌(𝑣) is defined and if so to identify an element from
𝐸𝑣. For the Boolean encoding of (sets of) elements from 𝐸𝑣 we use, as described above, ⌈log(|𝐸𝑣|)⌉ Boolean variables
𝐳𝑣. To indicate the definedness of 𝜌(𝑣), we use an additional Boolean variable 𝑧𝑑𝑣 . To encode the possible transitions
between nodes 𝑣 and 𝑣′ enabled by a given routing configuration 𝜌, we use Boolean variables 𝐱 for encoding the source
node 𝑣 and equally many Boolean variables 𝐲 for encoding the target node 𝑣′. The following Boolean expression 𝑇
encodes all possible transitions in a network:

𝑇 (𝐱, 𝐳𝑣0 ,… , 𝐳𝑣𝑘 , 𝑧
𝑑
𝑣0
,… , 𝑧𝑑𝑣𝑘 , 𝐲) =

⋁

𝑣∈𝑉

⋁

𝑒∈𝐸𝑣

(

𝐱(𝑣) ∧ 𝐳𝑣(𝑒) ∧ 𝑧𝑑𝑣 ∧ 𝐲(𝗍𝗀𝗍(𝑒))
)

where 𝑉 = {𝑣0,… , 𝑣𝑘}.

Example 2. Considering again the network topology from Figure 6a, we shall use three Boolean variables 𝑧0, 𝑧1, 𝑧2
for encoding routing configurations in terms of their choice of successor-node from 𝑣0, 𝑣1 and 𝑣21. Using the encoding
of nodes from Example 1, the possible transitions between nodes are given by the Boolean expression 𝑇 in Figure 6b.
The resulting unique ROBDD in Figure 6c with only 11 non-leaf nodes illustrates the compactness of the ROBDD
data structure (the missing edges lead to 0). The highlighted path encodes the transition (routing) from 𝑣0 to 𝑣1 under

1In this running example, we shall for simplicity assume that routing configurations are total functions, e.g. that the variables 𝑧𝑑𝑣 are true.
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the initial routing. Here the chosen ordering of the Boolean variables is crucial. Alternative orderings, e.g. with the 𝐳
variables being tested first respectively last results in ROBDDs with 25 respectively 17 non-leaf nodes.

BDD encoding of routing policies. Now let 𝐺 = (𝑉 ,𝐸, 𝗌𝗋𝖼, 𝗍𝗀𝗍) be a network topology and let 𝜑 be a routing policy
expressed in the LTL logic of Definition 3. Using Boolean variables 𝐱 for encoding nodes and Boolean variables 𝐳 for
encoding routing configurations2, we shall construct an ROBDD 𝐵𝜑(𝐱, 𝐳) such that: (𝑣, 𝜌) ∈ [[𝐵𝜑(𝐱, 𝐳)]] if and only if
𝜋𝜌(𝑣) ⊧ 𝜑 where 𝜋𝜌(𝑣) is the unique path starting in the node 𝑣 following the routing configuration 𝜌.

Definition 8. Let 𝐺 = (𝑉 ,𝐸, 𝗌𝗋𝖼, 𝗍𝗀𝗍) be a network topology and 𝜑 a routing policy. We define the ROBDD 𝐵𝜑(𝐱, 𝐳)
inductively on 𝜑 as follows:

𝐵𝗍𝗋𝗎𝖾(𝐱, 𝐳) = 1
𝐵𝑣(𝐱, 𝐳) = 𝐱(𝑣)

𝐵¬𝜑(𝐱, 𝐳) = ¬𝐵𝜑(𝐱, 𝐳)
𝐵𝜑1∧𝜑1

(𝐱, 𝐳) = 𝐵𝜑1
(𝐱, 𝐳) ∧ 𝐵𝜑2

(𝐱, 𝐳)

𝐵𝖭𝗈𝖫𝗈𝗈𝗉(𝐱, 𝐳)
min= ∀𝐲.(𝑇 (𝐱, 𝐳, 𝐲) → 𝐵𝖭𝗈𝖫𝗈𝗈𝗉(𝐲, 𝐳))

𝐵𝑋𝜑(𝐱, 𝐳) = ∃𝐲.
(

𝑇 (𝐱, 𝐳, 𝐲) ∧ 𝐵𝜑(𝐲, 𝐳)
)

𝐵𝜑1𝑈𝜑2
(𝐱, 𝐳) min= 𝐵𝜑2

(𝐱, 𝐳) ∨
(

𝐵𝜑1
(𝐱, 𝐳) ∧ ∃𝐲.

(

𝑇 (𝐱, 𝐳, 𝐲) ∧ 𝐵𝜑1𝑈𝜑2
(𝐲, 𝐳)

))

In Definition 8 we exploit the fact that ROBDDs are closed under Boolean operations as well as Boolean
quantification. In the case of 𝖭𝗈𝖫𝗈𝗈𝗉 and 𝜑1 𝑈 𝜑2, the changes of Boolean variables used in the parameter lists in
the right-hand sides are obtained by simple substitution of variables, an operation that may efficiently be performed on
ROBDDs. Finally, note that the definitions of 𝐵𝖭𝗈𝖫𝗈𝗈𝗉 and 𝐵𝜑1 𝑈 𝜑2

are given as least fixed points. These fixed points,
e.g. 𝐵𝖭𝗈𝖫𝗈𝗈𝗉, are obtained after a finite number of applications of the corresponding right-hand sides on increasing
approximations 𝐵𝑛

𝖭𝗈𝖫𝗈𝗈𝗉, starting with 𝐵0
𝖭𝗈𝖫𝗈𝗈𝗉 = 0, where 0 stands for false, and terminating when 𝐵𝑛+1

𝖭𝗈𝖫𝗈𝗈𝗉 = 𝐵𝑛
𝖭𝗈𝖫𝗈𝗈𝗉,

and similarly for 𝐵𝜑1 𝑈 𝜑2
. Such an 𝑛 must neccesarily exist because the applications of the right-hand sides can only

monotonically increase the respective Boolean functions represented by the ROBDDs.

Lemma 2. We have (𝑣, 𝜌) ∈ [[𝐵𝜑(𝐱, 𝐳)]] if and only if 𝜋𝜌(𝑣) ⊧ 𝜑.

Proof. The proof proceeds by structural induction on the formula 𝜑. The cases 𝜑 = 𝗍𝗋𝗎𝖾 and 𝜑 = 𝑣 are trivial, while
the case 𝜑 = 𝜑1 ∧ 𝜑2 follows directly by application of the induction hypothesis for the two conjuncts. We consider
the remaining cases in turn.

𝜑 = 𝖭𝗈𝖫𝗈𝗈𝗉:
Recall that 𝐵𝖭𝗈𝖫𝗈𝗈𝗉(𝐱, 𝐳) is obtained as the limit of the finite sequence of approximations 𝐵𝑛

𝖭𝗈𝖫𝗈𝗈𝗉(𝐱, 𝐳) with
𝐵0
𝖭𝗈𝖫𝗈𝗈𝗉(𝐱, 𝐳) = 0 and otherwise 𝐵𝑛+1

𝖭𝗈𝖫𝗈𝗈𝗉(𝐱, 𝐳) = ∀𝐲.(𝑇 (𝐱, 𝐳, 𝐲) → 𝐵𝑛
𝖭𝗈𝖫𝗈𝗈𝗉(𝐲, 𝐳)) i.e there exists a 𝑘 for which

𝐵𝑘+1
𝖭𝗈𝖫𝗈𝗈𝗉(𝐱, 𝐳) = 𝐵𝑘

𝖭𝗈𝖫𝗈𝗈𝗉(𝐱, 𝐳).
For the left to right implication, assume (𝑣, 𝜌) ∈ [[𝐵𝖭𝗈𝖫𝗈𝗈𝗉(𝐱, 𝐳]]. The proof follows by induction on 𝑘. For the
base case 𝑘 = 1, it follows that 𝑇 (𝐱, 𝐳, 𝐲) is false for all 𝐲, implying that 𝑣 does not have any outgoing transition
under routing configuration 𝜌, hence, the path induced by 𝜌 from 𝑣 is loop-free. For the inductive step 𝑘 > 1,
we have 𝐵𝑘

𝖭𝗈𝖫𝗈𝗈𝗉(𝐱, 𝐳) = ∀𝐲.(𝑇 (𝐱, 𝐳, 𝐲) → 𝐵𝑘−1
𝖭𝗈𝖫𝗈𝗈𝗉(𝐲, 𝐳). As 𝑣 has a unique successor under 𝜌, it must be the

case that (𝑣′, 𝜌) ∈ [[𝐵𝑘−1
𝖭𝗈𝖫𝗈𝗈𝗉(𝐲, 𝐳)]] for the unique successor 𝑣. Thus, we can apply the inductive hypothesis to

conclude 𝜋𝜌(𝑣′) ⊧ 𝖭𝗈𝖫𝗈𝗈𝗉, i.e the path 𝜋𝜌(𝑣′) is finite, hence the path 𝜋𝜌(𝑣) must necessarily be finite and we
can conclude 𝜋𝜌(𝑣) ⊧ 𝖭𝗈𝖫𝗈𝗈𝗉 following the LTL semantics.
For the right to left implication, assume 𝜋𝜌(𝑣) ⊧ 𝖭𝗈𝖫𝗈𝗈𝗉. Following the LTL semantics, this implies that 𝜋𝜌(𝑣)
is finite. We proceed by induction on the length of 𝜋𝜌(𝑣). For the base case |𝜋𝜌(𝑣)| = 1, 𝑣 has no successor in the
graph under 𝜌. Then trivially (𝑣, 𝜌) ∈ [[𝐵𝖭𝗈𝖫𝗈𝗈𝗉(𝐱, 𝐳)]] as 𝑇 (𝐱, 𝐳, 𝐲) is not satisfiable for any 𝐲. For the inductive
step |𝜋𝜌(𝑣)| > 1, 𝑣 has a unique successor 𝑣′ under 𝜌. As 𝜋𝜌(𝑣) may only be finite if 𝜋𝜌(𝑣′) is finite, we can apply
the induction hypothesis to conclude that (𝑣′, 𝜌) ∈ [[𝐵𝖭𝗈𝖫𝗈𝗈𝗉(𝐱, 𝐳)]], hence (𝑣, 𝜌) ∈ [[𝐵𝖭𝗈𝖫𝗈𝗈𝗉(𝐱, 𝐳)]].

2Recall that 𝐳 consists of variables 𝐳𝑣1 ,… , 𝐳𝑣𝑘 and 𝑧𝑑𝑣1 ,… , 𝑧𝑑𝑣𝑘
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𝜑 = 𝑋 𝜑′:
For the left to right implication, suppose (𝑣, 𝜌) ∈ [[𝐵𝑋𝜑′ (𝐱, 𝐳)]]. This implies that there exists a (unique) successor
𝑣′ of 𝑣 under routing configuration 𝜌, encoded by the variables 𝐲, such that (𝑣′, 𝜌) ∈ [[𝐵𝜑′ (𝐲, 𝐳)]]. By applying the
inductive hypothesis we immediately have that 𝜋𝜌(𝑣′) ⊧ 𝜑′, which following the LTL semantics yields 𝜋𝜌(𝑣) ⊧ 𝜑.
For the right to left direction, suppose 𝜋𝜌(𝑣) ⊧ 𝑋 𝜑′. Following the LTL semantics, we then have that for the
unique successor 𝑣′ of 𝑣 it holds that 𝜋𝜌(𝑣′) ⊧ 𝜑. By the inductive hypothesis we then have (𝑣′, 𝜌) ∈ [[𝐵𝜑′ (𝐱, 𝐱)]],
hence (𝑣, 𝜌) ∈ [[𝐵𝑋𝜑′ (𝐱, 𝐳)]].

𝜑 = 𝜑1 𝑈 𝜑2:
Recall that 𝐵𝜑1𝑈𝜑2

is obtained as the limit of the finite sequence of approximations 𝐵𝑛
𝜑1𝑈𝜑2

(𝐱, 𝐳) with
𝐵0
𝜑1𝑈𝜑2

(𝐱, 𝐳) = 0 and otherwise

𝐵𝑛+1
𝜑1𝑈𝜑2

(𝐱, 𝐳) = 𝐵𝜑2
(𝐱, 𝐳) ∨

(

𝐵𝜑1
(𝐱, 𝐳) ∧ ∃𝐲.

(

𝑇 (𝐱, 𝐳, 𝐲) ∧ 𝐵𝑛
𝜑1𝑈𝜑2

(𝐲, 𝐳)
))

i.e there exists a 𝑘 for which 𝐵𝑘+1
𝜑1𝑈𝜑2

= 𝐵𝑘
𝜑1𝑈𝜑2

.

For the left to right implication, assume (𝑣, 𝜌) ∈ [[𝐵𝜑1𝑈𝜑2
(𝐱, 𝐳)]]. We proceed by induction on 𝑘. For the base

case 𝑘 = 1, it follows that (𝑣, 𝜌) ∈ [[𝐵𝜑2
(𝐱, 𝐳)]], hence 𝜋𝜌(𝑣) ⊧ 𝜑2 by the induction hypothesis for the outer

structural induction and thus 𝜋𝜌(𝑣) ⊧ 𝜑1 𝑈 𝜑2 following the LTL semantics. For the inductive step 𝑘 > 1, we
have

𝐵𝑘
𝜑1𝑈𝜑2

(𝐱, 𝐳) = 𝐵𝜑2
(𝐱, 𝐳) ∨

(

𝐵𝜑1
(𝐱, 𝐳) ∧ ∃𝐲.

(

𝑇 (𝐱, 𝐳, 𝐲) ∧ 𝐵𝑘−1
𝜑1𝑈𝜑2

(𝐲, 𝐳)
))

.

and directly that (𝑣, 𝜌) ∈ [[𝐵𝜑(𝐱, 𝐱)]], hence 𝜋𝜌(𝑣) ⊧ 𝜑1 by the inductive hypothesis for the outer structural
induction. Furthermore, there exists a (unique) successor 𝑣′ of 𝑣 such that (𝑣′, 𝜌) ∈ [[𝐵𝑘−1

𝜑1𝑈𝜑2
(𝐲, 𝐳)]], which, by

the induction hypothesis for the inner induction on 𝑘 implies that 𝜋𝜌(𝑣′) ⊧ 𝜑1 𝑈 𝜑2, hence 𝜋𝜌(𝑣) ⊧ 𝜑1 𝑈 𝜑2
following the LTL semantics.
For the right to left implication, assume 𝜋𝜌(𝑣) ⊧ 𝜑1 𝑈 𝜑2. Suppose that 𝜋𝜌(𝑣) ⊧ 𝜑2. Then, by the inductive
hypothesis for the outer structural induction we then have (𝑣, 𝜌) ∈ [[𝐵𝜑2

(𝐱, 𝐳)]], hence (𝑣, 𝜌) ∈ [[𝐵𝜑1𝑈𝜑2
(𝐱, 𝐳)]].

Otherwise, it must be the case that 𝜋𝜌(𝑣) ⊧ 𝜑1, while for the unique successor of 𝑣, 𝑣′, we have 𝜋𝜌(𝑣′) ⊧ 𝜑1 𝑈 𝜑2
by LTL semantics. Hence, by applying the inductive hypothesis for the outer induction, we have (𝑣, 𝜌) ∈
[[𝐵𝜑1

(𝐱, 𝐳)]] and (𝑣′, 𝜌) ∈ [[𝐵𝜑1 𝑈 𝜑2
(𝐱, 𝐳)]], implying that (𝑣, 𝜌) ∈ [[𝐵𝜑1𝑈𝜑2

(𝐱, 𝐳)]].

Example 3. Consider the network topology from Figure 6a with the routing policy 𝖱𝖾𝖺𝖼𝗁(𝑣3). Given the LTL-
definition of 𝖱𝖾𝖺𝖼𝗁(𝑣3), the ROBDD 𝐵𝖱𝖾𝖺𝖼𝗁(𝑣3) is given by the limit of the following inductively defined sequence:
𝐵𝑛+1
𝖱𝖾𝖺𝖼𝗁(𝑣3)

(𝐱, 𝐳) = 𝐱(𝑣3) ∨ ∃.𝐲.
(

𝑇 (𝐱, 𝐳, 𝐲) ∧ 𝐵𝑛
𝖱𝖾𝖺𝖼𝗁(𝑣3)

(𝐲, 𝐳)
)

with 𝐵0
𝖱𝖾𝖺𝖼𝗁(𝑣3)

= 0. Figure 7 provides some of the
approximants with 𝐵4

𝖱𝖾𝖺𝖼𝗁(𝑣3)
found to be the least fixed point.

We shall denote by 𝐵∗
𝜑(𝐳) the ROBDD ∃𝐱.𝐵𝜑(𝐱, 𝐳) ∧ 𝐱(𝑣0), where 𝑣0 ∈ 𝑉 is the source node. Rather than

using BDDs for model-checking that individual routing configurations satisfy a given policy 𝜑 one by one, 𝐵∗
𝜑(𝐳)

characterizes exactly in one single ROBDD the full set of routing configurations satisfying 𝜑.

Example 4. Recall the network topology from Figure 6a and the Boolean encoding of routing configurations and
nodes from Example 2. Now consider the routing policies 𝑊 = 𝖶𝖺𝗒𝗉𝗈𝗂𝗇𝗍(𝑣2, 𝑣3) and 𝑅 = 𝖱𝖾𝖺𝖼𝗁(𝑣3). The resulting
ROBDDs for 𝐵∗

𝑅, 𝐵
∗
𝑊 and 𝐵∗

𝑊 ∧𝑅 are given in Figure 8. It can be concluded that there are 6, 6 respectively 4 routing
configurations satisfying the policies 𝑅, 𝑊 respectively 𝑅 ∧𝑊 . Moreover, both 𝜌𝑖 and 𝜌𝑓 satisfy all three policies.
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Figure 7: Increasing approximants 𝐵𝑛
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Figure 8: Encoding of different routing policies

BDD encoding of update sequences. Again let 𝐺 = (𝑉 ,𝐸, 𝗌𝗋𝖼, 𝗍𝗀𝗍) be a network topology and let 𝜑 be a
routing policy, with 𝜌𝑖 respectively 𝜌𝑓 being initial respectively final routing configuration. We shall show how
to symbolically synthesize correct (simple) update sequences using BDD encodings. The basis of the synthesis is
the ROBDD 𝐵∗

𝜑(𝐳) encoding all routing configurations that are correct with respect to 𝜑 using Boolean variables
𝐳 = 𝐳𝑣0 … 𝐳𝑣𝑘 , 𝑧

𝑑
𝑣0
,… , 𝑧𝑑𝑣𝑘 . For simple updates it suffices to use single Boolean variables 𝑧𝑣𝑗 , with 𝑧𝑣𝑗 encoding 𝜌𝑖(𝑣𝑗)

and ¬𝑧𝑣𝑗 encoding 𝜌𝑓 (𝑣𝑗), i.e. in case 𝜌𝑓 (𝑣𝑗) ≠ 𝜌𝑖(𝑣𝑗). To encode a simple update between configurations 𝜌 and 𝜌′

we shall use Boolean variables 𝐳 for encoding 𝜌 and a corresponding (distinct) sequence of Boolean variables 𝐳𝐳 for
encoding 𝜌′. The following Boolean expression 𝑈 𝑠

𝜑 encodes the set of possible simple updates that preserve correctness
with respect to 𝜑.

𝑈 𝑠
𝜑(𝐳, 𝐳𝐳) = 𝐵∗

𝜑(𝐳) ∧ 𝐵∗
𝜑(𝐳𝐳) ∧ ∃𝑖.

[

𝑧𝑣𝑖 ∧ ¬𝑧𝑧𝑣𝑖 ∧
⋀

𝑗≠𝑖
𝑧𝑣𝑗 = 𝑧𝑧𝑣𝑗

]

(1)

Note that in this simple update the routing configuration changes for exactly one node 𝑣𝑖 from the setting in the initial
configuration 𝜌𝑖, encoded as 𝑧𝑣𝑖 , to the setting in final configuration 𝜌𝑓 , encoded as ¬𝑧𝑧𝑣𝑖 . In the general case, the
update can change the setting of any node arbitrarily, as given by the following Boolean expression 𝑈𝜑.

𝑈𝜑(𝐳, 𝐳𝐳) = 𝐵∗
𝜑(𝐳) ∧ 𝐵∗

𝜑(𝐳𝐳) ∧ ∃𝑖.
[

𝐳𝑣𝑖 ≠ 𝐳𝐳𝑣𝑖 ∧
⋀

𝑗≠𝑖
𝐳𝑣𝑗 = 𝐳𝐳𝑣𝑗

]

(2)
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Lemma 3. We have (𝜌, 𝜌′) ∈ [[𝑈𝜑(𝐳, 𝐳𝐳)]] (resp. [[𝑈 𝑠
𝜑(𝐳, 𝐳𝐳)]]) iff 𝜌 ≠ 𝜌′ and there exists an update (resp. simple update)

𝑢 such that 𝜌𝑢 = 𝜌′, 𝜋𝜌(𝑣0) ⊧ 𝜑 and 𝜋𝜌′ (𝑣0) ⊧ 𝜑, where 𝑣0 is the given source node.

Proof. We prove the case for general updates. The simple case follows the same reasoning. First recall Equation (2).
For the left to right implication, assume (𝜌, 𝜌′) ∈ [[𝑈𝜑(𝐳, 𝐳𝐳)]]. By Lemma 2, it follows from the first two conjuncts
𝐵∗
𝜑(𝐳) and 𝐵∗

𝜑(𝐳𝐳) that the routing configurations encoded by 𝐳 and 𝐳𝐳, namely 𝜌 and 𝜌′ have the property that the
induced path (starting from 𝑣0) satisfies 𝜑, thus 𝜋𝜌(𝑣0) ⊧ 𝜑 and 𝜋𝜌′ (𝑣0) ⊧ 𝜑. The last conjunct ensures that the two
routing configurations 𝜌 and 𝜌′ differ by exactly one update 𝑢, hence 𝜌′ = 𝜌𝑢.

For the right to left implication, assume the existence of an update 𝑢 such that 𝜌𝑢 = 𝜌′, 𝜋𝜌(𝑣0) ⊧ 𝜑 and 𝜋𝜌′ (𝑣0) ⊧ 𝜑.
By Lemma 2 we then have (𝑣0, 𝜌) ∈ [[𝐵𝜑(𝐱, 𝐳)]] and (𝑣0, 𝜌′) ∈ [[𝐵𝜑(𝐱, 𝐳)]], implying 𝜌 ∈ [[𝐵∗

𝜑(𝐳)]] and 𝜌′ ∈ [[𝐵∗
𝜑(𝐳𝐳)]].

As 𝜌𝑢 = 𝜌′ and 𝜌 ≠ 𝜌′, there exists exactly one node where the routing is changed by the update 𝑢, implying that
the last conjunct is satisfied by 𝜌 and 𝜌′, encoded by variables 𝐳 and 𝐳𝐳 respectively. We can now conclude that
(𝜌, 𝜌′) ∈ [[𝑈𝜑(𝐳, 𝐳𝐳)]].

To enable synthesis of correct (simple) update sequences, the following recursively defined ROBDD is the key.

𝑅𝑠
𝜑(𝐳, 𝐳𝐳)

min= 𝐳(𝜌𝑓 ) ∨ ∃𝐳𝐳𝐳.
(

𝑈 𝑠
𝜑(𝐳, 𝐳𝐳) ∧ 𝑅𝑠

𝜑(𝐳𝐳, 𝐳𝐳𝐳)
)

(3)

The expression encodes the set of simple updates that preserve correctness with respect to 𝜑 while ensuring
reachability of the final routing configuration.

Lemma 4. We have (𝜌, 𝜌′) ∈ [[𝑅𝑠
𝜑(𝐳, 𝐳𝐳)]] iff there exists a correct simple update sequence 𝑤 = 𝑢0𝑢1⋯ 𝑢𝑘 with respect

to 𝜌 and 𝜑 such that 𝜌′ = 𝜌𝑢0 and 𝜌𝑤 = 𝜌𝑓 .

Proof. We recall Equation (3) and that 𝑅𝑠
𝜑(𝐳, 𝐳𝐳) is obtained as the limit of the finite sequence of approximations

𝑛
𝜑(𝐱, 𝐳) with 0

𝜑(𝐱, 𝐳) = 0 and otherwise

𝑛+1
𝜑 (𝐳, 𝐳𝐳) = 𝐳(𝜌𝑓 ) ∨ ∃𝐳𝐳𝐳.

(

𝑈 𝑠
𝜑(𝐳, 𝐳𝐳) ∧𝑛

𝜑(𝐳𝐳, 𝐳𝐳𝐳)
)

i.e there exists a 𝑘 for which 𝑘+1
𝜑 (𝐱, 𝐳) = 𝑘

𝜑(𝐱, 𝐳).
For the left to right implication, we assume (𝜌, 𝜌′) ∈ [[𝑅𝑠

𝜑(𝐳, 𝐳𝐳)]] and proceed by induction on 𝑘. For the base case
𝑘 = 0, we immediately have that 𝜌 = 𝜌𝑓 by the first conjunct and thus there exists a trivial empty update sequence
with the desired properties. For the inductive step 𝑘 > 0, we have

𝑘+1
𝜑 (𝐳, 𝐳𝐳) = 𝐳(𝜌𝑓 ) ∨ ∃𝐳𝐳𝐳.

(

𝑈 𝑠
𝜑(𝐳, 𝐳𝐳) ∧𝑘

𝜑(𝐳𝐳, 𝐳𝐳𝐳)
)

.

As (by assumption) (𝜌, 𝜌′) ∈ [[𝑅𝑠
𝜑(𝐳, 𝐳𝐳)]] and therefore (𝜌, 𝜌′) ∈ [[𝑘+1𝜑(𝐳, 𝐳𝐳)]], there exists a configuration 𝜌′′ such

that (𝜌′, 𝜌′′) ∈ [[𝑘
𝜑(𝐳𝐳, 𝐳𝐳𝐳)]] while also (𝜌, 𝜌′) ∈ [[𝑈 𝑠

𝜑(𝐳, 𝐳𝐳)]]. By application of Lemma 3, we immediately have
that (𝜌, 𝜌′) ∈ [[𝑈 𝑠

𝜑(𝐳, 𝐳𝐳)]] implies the existence of a 𝜑-preserving update 𝑢 from 𝜌 to 𝜌′. Furthermore, (𝜌′, 𝜌′′) ∈
[[𝑘

𝜑(𝐳𝐳, 𝐳𝐳𝐳)]] implies, by application of the inductive hypothesis, that there exists a correct simple update sequence
𝑤 = 𝑢0𝑢1⋯ 𝑢𝑛 with respect to 𝜌′ and 𝜑 such that 𝜌′′ = 𝜌𝑢0 and 𝜌𝑤 = 𝜌𝑓 . In conclusion, there must necessarily exists
an update sequence 𝑤∗ = 𝑢𝑤 that is simple and correct with respect to 𝜌 and 𝜑 such that 𝜌′ = 𝜌𝑢 and 𝜌𝑤∗ = 𝜌𝑓 .

For the right to left implication, we assume the existence of a correct simple update sequence 𝑤 = 𝑢0𝑢1⋯ 𝑢𝑛 with
respect to 𝜌 and 𝜑 such that 𝜌′ = 𝜌𝑢0 and 𝜌𝑤 = 𝜌𝑓 . We proceed by induction on the length of 𝑤. For the base case
|𝑤| = 0, it is the case that 𝜌 = 𝜌𝑓 and trivially (𝜌, 𝜌′) ∈ [[𝑅𝑠

𝜑(𝐳, 𝐳𝐳)]] by the first conjunct. For the inductive step
|𝑤| > 0, notice first by Lemma 3 that (𝜌, 𝜌′) ∈ [[𝑈 𝑠

𝜑(𝐳, 𝐳𝐳)]] by the property that 𝑤 is correct with respect to 𝜑. Now let
𝑤′ = 𝑢1𝑢2⋯ 𝑢𝑛 be the suffix of 𝑤 starting from 𝑢1. As 𝑤 is a correct simple update sequence w.r.t 𝜌 and 𝜑 such that
𝜌′ = 𝜌𝑢0 and 𝜌𝑤 = 𝜌𝑓 , 𝑤′ must be a correct simple update sequence with respect to 𝜌𝑢0 and 𝜑 such that 𝜌𝑢0𝑢1 = 𝜌𝑢0𝑢1

and 𝜌𝑢
𝑤′
0 = 𝜌𝑓 . We can now apply the inductive hypothesis as |𝑤′

| < |𝑤| to conclude that (𝜌𝑢0 , 𝜌𝑢0𝑢1 ) ∈ [[𝑅𝑠
𝜑(𝐳𝐳, 𝐳𝐳𝐳)]],

hence (𝜌, 𝜌′) ∈ [[𝑅𝑠
𝜑(𝐳, 𝐳𝐳)]].
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Figure 9: Encoding of all correct simple update-steps (a-c); unique update sequence (UUS) for 𝑊 ∧ 𝑅 (d)

All correct, simple update sequences of length 𝑁 may now be characterized by the following Boolean expression,
where 𝐳𝑖 are (distinct) Boolean variables encoding the routing configuration after 𝑖 updates:

𝑆𝑠
𝜑(𝐳

0,… , 𝐳𝑁 ) = 𝐳0(𝜌𝑖) ∧ 𝐳𝑁 (𝜌𝑓 ) ∧
𝑁−1
⋀

𝑖=0
𝑅𝑠
𝜑(𝐳

𝑖, 𝐳𝑖+1) . (4)

Theorem 1. We have (𝜌0, 𝜌1,… , 𝜌𝑁 ) ∈ [[𝑆𝑠
𝜑(𝐳

0,… , 𝐳𝑁 )]] iff there exists a simple correct update sequence 𝑤 =
𝑢0𝑢1⋯ 𝑢𝑁−1 with respect to 𝜑 and 𝜌0 such that 𝜌𝑘+1 = 𝜌𝑢𝑘𝑘 for all 𝑘 with 0 ≤ 𝑘 < 𝑁 , 𝜌0 = 𝜌𝑖 and 𝜌𝑁 = 𝜌𝑓 .

Proof. We recall Equation (4). For the left to right direction, suppose (𝜌0, 𝜌1,… , 𝜌𝑁 ) ∈ [[𝑆𝑠
𝜑(𝐳

0,… , 𝐳𝑁 )]]. The first
two conjuncts directly ensure that 𝜌0 = 𝜌𝑖 and 𝜌𝑛 = 𝜌𝑓 . By repeated application of Lemma 4, the last conjunct ensures
for all 𝑘 with 0 ≤ 𝑘 < 𝑁 the existence of a simple update 𝑢𝑘 such that 𝜌𝑘+1 = 𝜌𝑢𝑘𝑘 with 𝜑 preserved by both 𝜌𝑘+1
and 𝜌𝑘. Hence the update sequence 𝑤 = 𝑢0𝑢1… 𝑢𝑁−1 is a simple correct update sequence with respect to 𝜑 with the
desired properties.

For the right to left direction, suppose there exists a simple correct update sequence w.r.t 𝜑 and 𝜌0, given by
𝑤 = 𝑢0𝑢1⋯ 𝑢𝑁−1, such that 𝜌𝑘+1 = 𝜌𝑢𝑘𝑘 for all 𝑘 with 0 ≤ 𝑘 < 𝑁 , 𝜌0 = 𝜌𝑖 and 𝜌𝑁 = 𝜌𝑓 . Now, any suffix
𝑤′ = 𝑢𝑗 ⋯ 𝑢𝑁−1 with 0 ≤ 𝑗 ≤ (𝑁 − 1) is a simple correct update sequence w.r.t 𝜌𝑢0⋯𝑢𝑗−1

0 . Thus, we can repeatedly
apply Lemma 4 for all such suffixes, to conclude that (𝜌𝑢0⋯𝑢𝑘

0 , 𝜌𝑢0⋯𝑢𝑘𝑢𝑘+1
0 ) ∈ [[𝑅𝑠

𝜑(𝐳, 𝐳𝐳)]] for all 0 ≤ 𝑘 ≤ (𝑁 − 1).
As 𝜌𝑘+1 = 𝜌𝑢0⋯𝑢𝑘

0 we then have (𝜌𝑘, 𝜌𝑘+1) ∈ [[𝑅𝑠
𝜑(𝐳, 𝐳𝐳)]] for all 0 ≤ 𝑘 ≤ (𝑁 − 1). We can now conclude that

(𝜌0, 𝜌1,… , 𝜌𝑁 ) ∈ [[𝑆𝑠
𝜑(𝐳

0,… , 𝐳𝑁 )]] as required.

For the synthesis in the general case, we simply replace 𝑈 𝑠
𝜑 in (3) with 𝑈𝜑 to get a ROBDD 𝑅𝜑 characterizing

(general) update sequences leading to 𝜌𝑓 . We can now replace 𝑅𝑠
𝜑 with 𝑅𝜑 in (4) to get a characterization of all correct

(general) update sequences of length 𝑁 .

Example 5. Consider again the network topology from Figure 6a and the routing policies 𝑊 = 𝖶𝖺𝗒𝗉𝗈𝗂𝗇𝗍(𝑣2, 𝑣3) and
𝑅 = 𝖱𝖾𝖺𝖼𝗁(𝑣3). The full sets of correct simple update-steps with respect to 𝑊 ,𝑅 and 𝑊 ∧𝑅 are given by the ROBDDs
𝑅𝑠
𝑊 , 𝑅𝑠

𝑅 and 𝑅𝑠
𝑊 ∧𝑅 given in Figure 9(a-c). Instantiating Equation (4) with these ROBDDs reveals that there are 3,
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𝑣0 𝑣1 𝑣2

1 3

4 1

Figure 10: Weighted topology with initial (solid) and final (dashed) routings

3 respectively 1 correct simple update sequences of length 3 with respect to the routing policies 𝑊 ,𝑅 respectively
𝑊 ∧ 𝑅.

The unique simple update sequence for 𝑊 ∧ 𝑅 (ignoring the initial and final routing configurations) is given by
the ROBDD in Figure 9(d). Here the values suggested for the first three Boolean variables 𝑧10, 𝑧

1
1, 𝑧

1
2 indicate that the

routing configuration after the first update is given by the edges (𝑣0, 𝑣2), (𝑣1, 𝑣2), (𝑣2, 𝑣3). Similarly, the values of the
last three Boolean variables 𝑧20, 𝑧

2
1, 𝑧

2
2 indicate the edges (𝑣0, 𝑣2), (𝑣1, 𝑣3), (𝑣2, 𝑣3) as the configuration after the second

update. Note, that in case there is no correct (simple) update sequence the resulting ROBDD becomes empty (just
consisting of the node false).

4. Synthesis with Additional Optimization Criteria
During update synthesis, we may be interested in accounting for performance aspects in the update synthesis, which

is of practical importance but has not been studied yet in the literature. To this end, we extend our model to weighted
topologies representing quantities such as latency and hop-count [7, 20, 49]. In the following, we ignore loops as they
can be detected and do not need to be considered for optimization.

Definition 9 (Weighted Topology and Path Weight). A weighted network topology is a tuple 𝐺 = (𝑉 ,𝐸, 𝗌𝗋𝖼, 𝗍𝗀𝗍, 𝜂)
where (𝑉 ,𝐸, 𝗌𝗋𝖼, 𝗍𝗀𝗍) is a network topology and 𝜂∶ 𝐸 → ℕ is the edge weight function. The weight extends in a natural
way to paths, by 𝜂(𝑒1𝑒2… 𝑒𝑛) =

∑𝑛
𝑖=1 𝜂(𝑒𝑖) where 𝑒1𝑒2… 𝑒𝑛 ∈ 𝐸∗.

Definition 10 (Optimal Update Synthesis Problem). For an update synthesis problem 𝑃 = (𝐺, 𝜌𝑖, 𝜌𝑓 , 𝑣0, 𝜑) and path
valuation function 𝑓 over some edge weight function 𝜂, the optimal synthesis problem is to find a solution𝑤𝑜𝑝𝑡 ∈ 𝖲𝗈𝗅(𝑃 )
such that

𝑤𝑜𝑝𝑡 = argmin
𝑤∈𝖲𝗈𝗅(𝑃 )

max
𝑤′ prefix of 𝑤

𝜂(𝜋𝜌𝑤′
𝑖
(𝑣0)) .

Example 6. Consider a network update synthesis problem (𝐺, 𝜌𝑖, 𝜌𝑓 , 𝑣0,𝖱𝖾𝖺𝖼𝗁(𝑣2)) where 𝜌𝑖 (solid arrows) and 𝜌𝑓
(dashed arrows) are depicted in Figure 10 and edges are annotated by weights. Any of the two possible simple update
sequences is a solution. For the sequence that first updates 𝑣0 to use the expensive edge of weight 4 to 𝑣1, there is
an intermediate configuration of weight 7. However, the optimal solution is the update sequence that first updates 𝑣1
followed by 𝑣0 and creates a transient configuration of weight only 2.

We shall now extend our symbolic encoding of routing configurations, policies and (simple) update sequences to
the weighted setting. In particular, we shall show how our encoding allows us to synthesize weight-optimal simple
update sequences. Let 𝐺 = (𝑉 ,𝐸, 𝗌𝗋𝖼, 𝗍𝗀𝗍, 𝜂) be a weighted topology, and let 𝐶 ∈ ℕ be the maximum weight of any
acyclic path in 𝐺. Using 𝑘 = ⌈log(𝐶)⌉ Boolean variables 𝐜 = 𝑐0,… , 𝑐𝑘−1 we may encode in binary any weight between
0 and 𝐶 . As in before we shall encode routing configurations 𝜌 by using Boolean variables 𝐳𝑣 for each node 𝑣 to encode
the edge 𝜌(𝑣). For simplicity we shall assume that 𝜌(𝑣) is defined for any node 𝑣 in the remainder of this section. Using
Boolean variables 𝐱 and 𝐲 to encode source and target nodes and Boolean variables 𝐜 to encode the weight of edges,
the following Boolean expression 𝑇𝑐 encodes the possible weighted transitions:

𝑇𝑐(𝐱, 𝐳𝑣0 ,… , 𝐳𝑣𝑘 , 𝐲, 𝐜) =
⋁

𝑣∈𝑉

⋁

𝑒∈𝐸𝑣

(

𝐱(𝑣) ∧ 𝐳𝑣(𝑒) ∧ 𝐲(𝗍𝗀𝗍(𝑒)) ∧ 𝐜(𝑒)
)

.

As in Section 2.3, we shall assume that the routing policy 𝜑 considered enforces at least reachability, i.e. 𝜑 =
𝜑′ ∧ 𝖱𝖾𝖺𝖼𝗁(𝑑) for some node 𝑑. Now let 𝑅𝑑 = 𝑅𝑑(𝐱, 𝐳, 𝐜) be the minimal fixed point defined by

𝑅𝑑(𝐱, 𝐳, 𝐜)
min= 𝐱(𝑑) ∨ ∃𝐲, 𝐜′, 𝐜′′, 𝐜′′′.

[

𝑇𝑐(𝐱, 𝐳, 𝐲, 𝐜′) ∧ 𝑅𝑑(𝐲, 𝐳, 𝐜′′) ∧ 𝗌𝗎𝗆(𝐜′, 𝐜′′, 𝐜′′′) ∧ 𝗅𝖾𝗊(𝐜′′′, 𝐜)
]

.
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𝑧1 𝑧1
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(a) 𝐵∗,𝑐
𝜑 (𝐳, 𝐜)
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𝑧1 𝑧1

𝑧𝑧0 𝑧𝑧0 𝑧𝑧0
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𝑐1

𝑐2

1

(b) 𝑈 𝑠,𝑐
𝜑 (𝐳, 𝐳𝐳, 𝐜)
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𝑧20

𝑧11

𝑧21

1

(c) 𝑂𝜑(𝐳0,… , 𝐳𝑁 )

Figure 11: ROBDDs for Cost-Optimal Update Synthesis

Here we use the existence of simple ROBDD 𝗌𝗎𝗆 and 𝗅𝖾𝗊 encoding addition and comparison (as ternary and binary
predicates) of natural numbers such that (𝑛1, 𝑛2, 𝑛3) ∈ [[𝗌𝗎𝗆]] iff 𝑛1 + 𝑛2 = 𝑛3 and (𝑛1, 𝑛2) ∈ [[𝗅𝖾𝗊]] iff 𝑛1 ≤ 𝑛2. Then
(𝑣, 𝜌, 𝑐) ∈ [[𝑅𝑑]] if 𝜋𝜌(𝑣) ends in 𝑑 with a total weight 𝜂(𝜋𝜌(𝑣)) not exceeding 𝑐.

The Boolean expression 𝑅∗
𝑑(𝐳, 𝐜) given by ∃𝐱.𝐱(𝑣0) ∧𝑅𝑑(𝐱, 𝐳, 𝐜) describes all pairs (𝜌, 𝑐), where the weight of the

path 𝜋𝜌(𝑣0) does not exceed 𝑐. Now to ensure that the encoded routing configuration in addition satisfies the routing
policy 𝜑′, we use the Boolean expression 𝐵∗,𝑐

𝜑 (𝐳, 𝐜) = 𝐵𝜑′ (𝐳) ∧ 𝑅∗
𝑑(𝐳, 𝐜). Now, the expression

𝑈 𝑠,𝑐
𝜑 (𝐳, 𝐳𝐳, 𝐜) = 𝐵∗,𝑐

𝜑 (𝐳, 𝐜) ∧ 𝐵∗,𝑐
𝜑 (𝐳𝐳, 𝐜) ∧ ∃𝑖.

[

𝑧𝑣𝑖 ∧ ¬𝑧𝑧𝑣𝑖 ∧
⋀

𝑗≠𝑖
𝑧𝑣𝑗 = 𝑧𝑧𝑣𝑗

]

encodes a single correctness preserving update between configurations whose accumulated weight is bounded by 𝐜.
Thus, all correct, weight-bounded simple update sequences of length 𝑁 may be characterized by the following

Boolean expression 𝑆𝑐
𝜑, where 𝐳𝑖 are (distinct) Boolean variables encoding the routing configuration after 𝑖 updates:

𝑆𝑐
𝜑(𝐳

0,… , 𝐳𝑁 , 𝐜) = 𝐳0(𝜌𝑖) ∧ 𝐳𝑁 (𝜌𝑓 ) ∧
𝑁−1
⋀

𝑖=0
𝑈 𝑠,𝑐
𝜑 (𝐳𝑖, 𝐳𝑖+1, 𝐜) .

Finally, the update sequences of length 𝑁 solving the optimal synthesis problem are easily characterized by the
following single expression 𝑂:

𝑂𝜑(𝐳0,… , 𝐳𝑁 ) = ∃𝐜.
[

𝑆𝑐
𝜑(𝐳

0,… , 𝐳𝑁 , 𝐜) ∧ ∀𝐜′.
(

𝑆𝑐
𝜑(𝐳

0,… , 𝐳𝑁 , 𝐜′) → 𝗅𝖾𝗊(𝐜, 𝐜′)
)

]

.

Example 7. Recall the weighted topology from Figure 6a. To encode the routing configurations, two Boolean variables
𝑧0 and 𝑧1 suffice (with the initial routing being encoded by 𝑧0 ∧ 𝑧1). Given that the maximum weight of a path is 7,
three Boolean variables 𝑐0, 𝑐1, 𝑐2 suffice to encode weight of any acyclic path. In this example, we consider the property
𝜑 = 𝖱𝖾𝖺𝖼𝗁(𝑣2). Now Figure 11(a) is 𝐵∗,𝑐

𝜑 (𝐳, 𝐜) encoding all pairs (𝜌, 𝑐), where 𝜌 is a correct routing wrt. 𝜑 with total
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reachability weight no more than 𝑐. The highlighted path is the encoding of the routing where the node 𝑣0 uses the
expensive edge (weight 4) to 𝑣1 and 𝑣1 is still using the initial routing. It can be seen that the total weight indicated by
the path is 7. Now, Figure 11(b) is 𝑈 𝑠,𝑐

𝜑 (𝐳, 𝐳𝐳, 𝐜), encoding all updates that are correct wrt. 𝜑 as well as their weight.
Here the highlighted path indicates the update from the initial routing to the “expensive” routing, again with the path
indicating the weight 7. Finally, 𝑂𝜑(𝐳0,… , 𝐳𝑁 ) encodes the optimal (correct) update sequence, which first updates the
routing for 𝑣1 and only then the routing for 𝑣0.

5. Implementation and Evaluation
Our tool AllSynth for solving the update synthesis problem is implemented in Python and relies on a Cython

wrapper [2] of the CUDD [46] package for manipulation of ROBDD. The overall tool architecture is given in Figure 5.
From a given network topology with the initial and final routing, the tool produces either a simple or general update
sequence satisfying a given policy, as well as the information about the number of possible solutions. As all such
correct solutions are symbolically represented in a compact way as an ROBDD, it is possible to generate alternative
solutions without any additional computational effort.

We evaluate AllSynth, both with and without cost-optimization, against two state-of-the-art update synthesis tools,
NetSynth [40] and FLIP [48]. NetSynth can compute only a simple update sequence or inform the user that there is no
solution; the synthesis of general update sequences is not supported. FLIP can synthesise sequences of steps (groups
of switches or routers) in which order the network can be updated, however, if such a sequence does not exist, the tool
may introduce additional forwarding rules and use tagging of packets. As NetSynth and FLIP do not support general
update sequences, the running times are only compared for simple update sequences.

All experiments are executed on Ubuntu 14.04 cluster with 2.3 GHz AMD Opteron 6376 processors with 2 hour
timeout and 14 GB memory limit. To ensure the correctness of our implementation, we checked that for all instances, we
agree with both NetSynth and FLIP on the existence/nonexistence of simple update sequences and we verified that the
update sequences returned by NetSynth and FLIP are included in the ROBDD computed by AllSynth. A reproducibility
package with the Python implementation and all benchmarks with scripts allowing to rerun the experiments is available
in [33].

We consider a scalable synthetic topology and the standard benchmark of 261 real-world network topologies from
the Topology Zoo dataset [30]. The class of synthetic topologies, referred to as diamond topologies, are taken from the
NetSynth evaluation benchmark [40] and are formed by disjoint initial and final routing paths that only share the initial
and final node. The size of the problem is defined to be the sum of the lengths of the two paths—we include instances
of sizes up to 2000. The Topology Zoo instances are five times sequentially concatenated in order to obtain larger
topologies where the size of the update problems ranges from 20 to 679. We display the 50 most difficult instances of
the problem.

We consider three classes of update policies: 𝖱𝖾𝖺𝖼𝗁(𝑑), 𝖬𝗎𝗅𝗍𝗂𝖶𝖺𝗒𝗉𝗈𝗂𝗇𝗍(𝑊 ,𝑑) and 𝖲𝖾𝗋𝗏𝗂𝖼𝖾(𝜔, 𝑑). For
𝖬𝗎𝗅𝗍𝗂𝖶𝖺𝗒𝗉𝗈𝗂𝗇𝗍(𝑊 ,𝑑), we let every 5th node on both the initial and final path be included in 𝑊 . For 𝖲𝖾𝗋𝗏𝗂𝖼𝖾(𝜔, 𝑑),
the sequence 𝜔 is generated by including every 5th node that is traversed by both the initial and final path. Because
the diamond update problem consists of two disjoint paths, the service chaining policy is not considered here. The
policy language of NetSynth is identical to our LTL-based specifications and hence we are able to directly express
all these properties in this language. On the other hand, the policy input to FLIP enumerates all admissible subpaths
that are considered, in logical disjunction. The encoding of the service chaining policy then entails an exhaustive
enumeration of all paths that satisfy the service chaining policy and we therefore do not include FLIP in our service
chaining experiments.
Results. The experiments are summarized in a number of so-called cactus plots [8] in Figure 12, where for each method
all instances of the problem are independently sorted from the fastest to the slowest one and plotted on the x-axis, and
the y-axis (note the logarithmic scale) shows the increasing running time. If some curve does not reach to the right end
of the plot, this means that the corresponding tool is not able to solve the remaining instances within the given timeout
and memory limit. While cactus plots do not provide instance-to-instance runtime comparison, they provide an overall
performance evaluation of the different tools.

For the experiments on the collection of real networks from the Topology Zoo presented in Figures 12a to 12c, we
notice that none of the tools has difficulty solving the synthesis of the plain reachability policy and it takes less than
10 seconds for all instances—here our approach without the cost optimization (BDD) has a slight margin, whereas the
cost optimal algorithm (BDD-opt) is the slowest one (though solving a more general problem than the other ones). For
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(a) Zoo reachability (b) Zoo multiple waypoints

(c) Zoo service chaining

(d) Diamond reachability (e) Diamond multiple waypoints

Figure 12: Experimental Results

waypointing, while FLIP is performing well on small instances, it shows a noticeable decrease in performance once
it reaches the most difficult problems: its running time quickly deteriorates and it is as the only tool not able to solve
some of the largest instances. We maintain about one order of magnitude advantage over NetSynth (NS), which is the
case also for service chaining. The overhead for computing the cost optimal solutions is less significant for the more
complex policies.

Results for diamond topologies are given in Figures 12d and 12e. We observe that for reachability our computation
of all solutions is about one order of magnitude faster than FLIP (and even the cost optimal algorithm is faster than
FLIP) and several orders of magnitude faster than NetSynth (both tools terminate as soon as they find the first correct

Larsen, Mariegaard, Schmid and Srba: Preprint submitted to Elsevier Page 17 of 22



AllSynth: Network Update Synthesis

update sequence). For waypointing, we still significantly outperform NetSynth and both BDD and BDD-opt are almost
comparable with FLIP which shows better performance at the largest instances.

In conclusion, our experiments demonstrate that AllSynth, based on the symbolic BDD technology, not only
significantly outperforms state-of-the-art tools on all non-trivial real-world networks, but also provides higher
generality. Indeed, AllSynth computes all solutions, compared to only one solution returned by NetSynth or a more
general sequence of update steps generated by FLIP. This aspect is important for the practical usage by network
operators as it allows them to iteratively choose the most suitable update sequence. The additional optimization for
computing cost optimal update sequences yields an acceptable overhead compared, especially for the more complex
routing policies like waypointing and service chaining.

6. Conclusion
We presented an efficient approach for synthesizing correct update sequences for software-defined networks. In

contrast to existing tools, our approach is fully symbolic and relies on BDD technology. As a result, we are able to
represent all solutions to the update synthesis problem in a succinct binary tree, preserving generic routing policies
(e.g., service chaining) that can be described in LTL. Our prototype implementation of AllSynth outperforms the state-
of-the-art tools NetSynth and FLIP in many scenarios (e.g., on the real-world Internet topologies), while at the same
time extending the generality.

Our experiments focused on the generation of simple update sequences (at most one update per flow per switch),
similar to the methodology used in NetSynth and FLIP. AllSynth however also supports a novel generalization where
a switch can be updated several times. This is particularly useful for the instances of the update synthesis problem that
do not have any simple solution. In this case, NetSynth does not provide any alternative (and in fact does not terminate
even on relatively small negative instances); FLIP may degrade to a two-phase commit strategy that is less preferable
as it requires the duplication of forwarding rules as well as additional packet header space. AllSynth instead tries to
suggest a general update sequence that does not require packet tagging. Moreover, our tool allows us to further select
cost-optimal solutions with respect to any given cost function, representing for example the worst-case latency in any
transient configuration.
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[12] Černỳ, P., Foster, N., Jagnik, N., McClurg, J., 2016. Optimal consistent network updates in polynomial time, in: International Symposium on
Distributed Computing, Springer. pp. 114–128.

Larsen, Mariegaard, Schmid and Srba: Preprint submitted to Elsevier Page 18 of 22

https://github.com/tulip-control/dd
10.1109/TC.1986.1676819


AllSynth: Network Update Synthesis

[13] Chirgwin, R., 2017. Google routing blunder sent japan’s internet dark on friday, in: https://www.theregister.co.uk/2017/08/27/
google_routing_blunder_sent_japans_internet_dark/.

[14] Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M., 2000. NUSMV: A new symbolic model checker. Int. J. Softw. Tools Technol. Transf.
2, 410–425. URL: https://doi.org/10.1007/s100090050046.

[15] Dudycz, S., Ludwig, A., Schmid, S., 2016. Can’t touch this: Consistent network updates for multiple policies, in: 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), IEEE. pp. 133–143.

[16] Duluth News Tribune, 2018. Human error to blame in minnesota 911 outage, in: https://www.ems1.com/911/articles/
389343048-Officials-Human-error-to-blame-in-Minn-911-outage/.

[17] El-Hassany, A., Tsankov, P., Vanbever, L., Vechev, M., 2018. Netcomplete: Practical network-wide configuration synthesis with autocomple-
tion, in: 15th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 18), pp. 579–594.

[18] Feamster, N., Rexford, J., 2017. Why (and how) networks should run themselves. arXiv report .
[19] Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.R., 2019. Model checking data flows in concurrent network updates (full

version). arXiv preprint arXiv:1907.11061 .
[20] Foerster, K., Schmid, S., Vissicchio, S., 2019. Survey of consistent software-defined network updates. IEEE Communications Surveys

Tutorials 21, 1435–1461.
[21] Foerster, K.T., 2017. On the consistent migration of unsplittable flows: Upper and lower complexity bounds, in: 2017 IEEE 16th International

Symposium on Network Computing and Applications (NCA), IEEE. pp. 1–4.
[22] Foerster, K.T., Luedi, T., Seidel, J., Wattenhofer, R., 2018. Local checkability, no strings attached:(a) cyclicity, reachability, loop free updates

in SDNs. Theoretical Computer Science 709, 48–63.
[23] Giacomo, G.D., Vardi, M.Y., 2013. Linear temporal logic and linear dynamic logic on finite traces, in: Proceedings of the 23rd International

Joint Conference on Artificial Intelligence (IJCAI’13), AAAI Press. pp. 854–860.
[24] Glavind, M., Christensen, N., Srba, J., Schmid, S., 2020. Latte: Improving the latency of transiently consistent network update schedules, in:

Proc. 38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation (PERFORMANCE).
[25] Heller, B., Scott, C., McKeown, N., Shenker, S., Wundsam, A., Zeng, H., Whitlock, S., Jeyakumar, V., Handigol, N., McCauley, J., et al., 2013.

Leveraging sdn layering to systematically troubleshoot networks, in: Proceedings of the second ACM SIGCOMM workshop on Hot topics in
software defined networking, pp. 37–42.

[26] Jin, X., Liu, H.H., Gandhi, R., Kandula, S., Mahajan, R., Zhang, M., Rexford, J., Wattenhofer, R., 2014. Dynamic scheduling of network
updates, in: ACM SIGCOMM Computer Communication Review, ACM. pp. 539–550.

[27] Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., Whyte, S., 2013. Real time network policy checking using header space
analysis, in: Presented as part of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI’13), pp. 99–111.

[28] Kazemian, P., Varghese, G., McKeown, N., 2012. Header space analysis: Static checking for networks, in: Presented as part of the 9th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 12), pp. 113–126.

[29] Kellerer, W., Kalmbach, P., Blenk, A., Basta, A., Reisslein, M., Schmid, S., 2019. Adaptable and data-driven softwarized networks: Review,
opportunities, and challenges, in: Proceedings of the IEEE (PIEEE).

[30] Knight, S., Nguyen, H.X., Falkner, N., Bowden, R.A., Roughan, M., 2011. The internet topology zoo. IEEE J. Sel. Areas Commun. 29,
1765–1775. URL: https://doi.org/10.1109/JSAC.2011.111002.

[31] Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S., 2014. Software-defined networking: A comprehensive
survey. Proceedings of the IEEE 103, 14–76.

[32] Larsen, K., Mariegaard, A., Schmid, S., Srba, J., 2022a. Allsynth: Transiently correct network update synthesis accounting for operator
preferences, in: Proceedings of the 16th International Symposium on Theoretical Aspects of Software Engineering (TASE’22), Springer. pp.
344–362. doi:10.1007/978-3-031-10363-6_23.

[33] Larsen, K., Mariegaard, A., Schmid, S., Srba, J., 2022b. Reproducibility package for: The hazard value: A quantitative network connectivy
measure accounting for failures. URL: https://doi.org/10.5281/zenodo.6534948.

[34] Lee, C.Y., 1959. Representation of switching circuits by binary-decision programs. The Bell System Technical Journal 38, 985–999. URL:
10.1002/j.1538-7305.1959.tb01585.x.

[35] Liu, H.H., Wu, X., Zhang, M., Yuan, L., Wattenhofer, R., Maltz, D., 2013. zupdate: Updating data center networks with zero loss, in: ACM
SIGCOMM Computer Communication Review, ACM. pp. 411–422.

[36] Ludwig, A., Dudycz, S., Rost, M., Schmid, S., 2016. Transiently secure network updates. ACM SIGMETRICS Performance Evaluation
Review 44, 273–284.

[37] Ludwig, A., Marcinkowski, J., Schmid, S., 2015. Scheduling loop-free network updates: It’s good to relax!, in: Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, ACM. pp. 13–22.

[38] Ludwig, A., Rost, M., Foucard, D., Schmid, S., 2014. Good network updates for bad packets: Waypoint enforcement beyond destination-based
routing policies, in: Proc. 13th ACM Workshop on Hot Topics in Networks (HotNets), ACM. p. 15.

[39] Mahajan, R., Wattenhofer, R., 2013. On consistent updates in software defined networks, in: Proc. 12th ACM Workshop on Hot Topics in
Networks (HotNets), ACM. p. 20.

[40] McClurg, J., Hojjat, H., Cerný, P., Foster, N., 2015a. Efficient synthesis of network updates, in: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015, pp. 196–207. URL: https:
//doi.org/10.1145/2737924.2737980.

[41] McClurg, J., Hojjat, H., Černỳ, P., Foster, N., 2015b. Efficient synthesis of network updates, in: Acm Sigplan Notices, ACM. pp. 196–207.
[42] Monsanto, C., Reich, J., Foster, N., Rexford, J., Walker, D., 2013. Composing software defined networks, in: 10th USENIX Symposium on

Networked Systems Design and Implementation (NSDI’13), pp. 1–13.
[43] Pnueli, A., 1977. The temporal logic of programs, in: 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode

Island, USA, 31 October - 1 November 1977, IEEE Computer Society. pp. 46–57. URL: https://doi.org/10.1109/SFCS.1977.32.

Larsen, Mariegaard, Schmid and Srba: Preprint submitted to Elsevier Page 19 of 22

https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://doi.org/10.1007/s100090050046
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/
https://doi.org/10.1109/JSAC.2011.111002
http://dx.doi.org/10.1007/978-3-031-10363-6_23
https://doi.org/10.5281/zenodo.6534948
10.1002/j.1538-7305.1959.tb01585.x
https://doi.org/10.1145/2737924.2737980
https://doi.org/10.1145/2737924.2737980
https://doi.org/10.1109/SFCS.1977.32


AllSynth: Network Update Synthesis

[44] Prabhu, S., Chou, K.Y., Kheradmand, A., Godfrey, B., Caesar, M., 2020. Plankton: Scalable network configuration verification through model
checking, in: 17th USENIX Symposium on Networked Systems Design and Implementation ({NSDI} 20), pp. 953–967.

[45] Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D., 2012. Abstractions for network update. ACM SIGCOMM Computer
Communication Review 42, 323–334.

[46] Somenzi, F., 2015. Cudd: Cu decision diagram package release 3.0.0. University of Colorado at Boulder URL: http://vlsi.colorado.
edu/~fabio/CUDD/.

[47] Steffen, S., Gehr, T., Tsankov, P., Vanbever, L., Vechev, M., 2020. Probabilistic verification of network configurations, in: Proceedings of the
Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols
for computer communication, pp. 750–764.

[48] Vissicchio, S., Cittadini, L., 2016. FLIP the (flow) table: Fast lightweight policy-preserving SDN updates, in: 35th Annual IEEE International
Conference on Computer Communications, INFOCOM 2016, San Francisco, CA, USA, April 10-14, 2016, pp. 1–9. URL: https:
//doi.org/10.1109/INFOCOM.2016.7524419.

[49] Wang, Y., Wang, Z., 1999. Explicit routing algorithms for internet traffic engineering, in: Proceedings Eight International Conference on
Computer Communications and Networks (Cat. No. 99EX370), IEEE. pp. 582–588.

[50] Zerwas, J., Kalmbach, P., Fuerst, C., Ludwig, A., Blenk, A., Kellerer, W., Schmid, S., 2018. Ahab: Data-driven virtual cluster hunting, in:
Proc. IFIP Networking.

[51] Zhang, Q., Liu, V., Zeng, H., Krishnamurthy, A., 2017. High-resolution measurement of data center microbursts, in: Proceedings of the 2017
Internet Measurement Conference, pp. 78–85.

[52] Zhou, W., Jin, D., Croft, J., Caesar, M., Godfrey, P.B., 2015. Enforcing customizable consistency properties in software-defined networks, in:
Proc. 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI’15), pp. 73–85.

Larsen, Mariegaard, Schmid and Srba: Preprint submitted to Elsevier Page 20 of 22

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
https://doi.org/10.1109/INFOCOM.2016.7524419
https://doi.org/10.1109/INFOCOM.2016.7524419


AllSynth: Network Update Synthesis

A. Running The Tool
We will in this example consider running AllSynth [33] for a small instance of the diamond class of models.

Concretely, we consider a topology consisting only of two paths, where the nodes on the initial path are given by
𝑣0𝑣1𝑣2𝑣3𝑣4 and the nodes on the final path are 𝑣0𝑣6𝑣7𝑣8𝑣4. The policy of interest is 𝖱𝖾𝖺𝖼𝗁(𝑣4).

By running AllSynth with the following command, all solutions are synthesizes as one ROBDD:

Input

python3 run.py -t BDD -e diamond --index 5 --e-prop Reach

As a part of the output, the tool reports the time it takes to synthesize the set of all correct update sequences, as
well as an indication of whether this set is empty:

Output

Policy: (Reach 4)
Initial path of nodes: [0, 1, 2, 3, 4]
Final path of nodes: [0, 6, 7, 8, 4]
Time: 0.006619453430175781
Solution: non-empty

To get a concrete update sequence, we add the --some argument:

Input

python3 run.py -t BDD -e diamond --index 5 --e-prop Reach
--some

The synthesized update sequence is then given as a triple:

Output

Solution: (set(), [8, 6, 7, 0], {1, 2, 3, 4}).

The empty set indicates that no nodes were updated before the actual synthesis procedure executed. The middle
sequence encodes that nodes 𝑣8, 𝑣7 and 𝑣6 must be updated before 𝑣0 to maintain reachability of 𝑣4. The final set
includes all trivial nodes that do not change routing or is only present on the initial path.

To fully use Lemma 1 reduction, we add the --reduce argument:

Input

python3 run.py -t BDD -e diamond --index 5 --e-prop Reach
--some --reduce

As the initial and final path are disjoint, the critical middle part of the synthesized solution is now a singleton:

Output

Solution: ({8, 6, 7}, [0], {1, 2, 3, 4}).

The first set includes all nodes that may be updated (in any order) before synthesizing a correct update sequence
for the remaining nodes (now only node 𝑣0).

To count the number of solution, the --count argument can be provided instead of --some:

Larsen, Mariegaard, Schmid and Srba: Preprint submitted to Elsevier Page 21 of 22



AllSynth: Network Update Synthesis

Input

python3 run.py -t BDD -e diamond --index 5 --e-prop Reach
--reduce --count

python3 run.py -t BDD -e diamond --index 5 --e-prop Reach
--count

If the reduction is used, the tool counts 1 solution and otherwise 6 as one may update 𝑣6, 𝑣7 and 𝑣8 in any order as
long as 𝑣0 is updated at the end.
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