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Abstract

As views in a data warehouse become more complex, the view maintenance process can become
very complicated and potentially very inefficient. Storing auxiliary views in the warehouse can reduce
the complexity and improve the efficiency of view maintenance, and the same auxiliary views can help
in efficiently answering lineage tracing queries over the warehouse views. In this paper, we study the
problem of selecting auxiliary views to materialize in order to minimize the total view maintenance
and lineage tracing cost. We consider relational views with arbitrary use of aggregation operators, and
we define an initial search space for our optimization problem based on a normal form for such view
definitions. We present several auxiliary view selection algorithms, and to study their performance
we conduct experiments using the TPC-D benchmark in addition to synthetic view definitions and
statistics. The results of our experiments show: (1) the exhaustive algorithm that selects the optimal
set of auxiliary views is far too expensive in many cases; (2) two heuristic algorithms that we present
select good (often optimal) sets of auxiliary views in a much shorter time; (3) even auxiliary views
selected by a very simple algorithm can significantly reduce the overall view maintenance and lineage
tracing cost.

1 Introduction

Data warehousing systems collect data from multiple, distributed sources and integrate the information as
materialized views in local databases [CD97, IK93, LW95, Wid95]. Users can then perform data analysis
and mining on the warehouse views. The materialized views in the warehouse need to be kept up-to-date
when data at the sources changes. As the view definitions become more complex in order to support so-
phisticated data analyses, the view maintenance process can become very complicated and potentially very
inefficient. Most previous work on view maintenance, e.g., [CW91, GMS93, LW95, LYC+99, Qua96],
considers simple views containing at most one level of aggregation. In order to efficiently maintain com-
plex views which may contain multiple levels of aggregation, it is clearly advantageous to store auxiliary
data in addition to the original view to reduce overall view maintenance cost.

From a different perspective, for in-depth analysis of warehouse data sometimes it is useful to be able
to “drill through” from selected interesting (or possibly erroneous) view data to the original source data
that derived the view data. We call this process tracing the lineage of the view data [CWW97]. To trace
the lineage of a view data item efficiently, the warehouse also needs to store auxiliary data—to reduce
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the computation cost at the warehouse, and to reduce or entirely avoid expensive source accesses for
lineage tracing. It turns out that the same auxiliary data that can be used to improve the performance of
view maintenance as discussed in the first paragraph also can improve the performance of lineage tracing
queries. Therefore, the problems of selecting auxiliary data for the two purposes are closely related, and
we study the problems together.

The auxiliary data is stored as materialized views in the warehouse, called auxiliary views (as opposed
to the original warehouse views, which we call primary views). Given a complex relational primary view,
there are numerous possible sets of auxiliary views to materialize for view maintenance and lineage tracing,
with significant performance tradeoffs. In general, the more auxiliary views we materialize, the more
efficiently we can maintain and trace the lineage of data in the primary view. However, the auxiliary views
themselves also need to be maintained, so materializing too many auxiliary views can increase overall
cost.

Previous work has studied the selection of views to materialize for answering queries, e.g., [HRU96,
Gup97], and the selection of auxiliary views for efficient maintenance of given primary views, e.g.,
[LQA97, RSS96]. (Further discussion of this work appears in Section 2.) In [CW00], we introduced
the idea of materializing auxiliary views to minimize overall view maintenance and lineage tracing cost,
and we studied the problem in the context of select-project-join (SPJ) primary views. This paper inves-
tigates the more difficult and general problem of relational views with arbitrary use of aggregation and
SPJ operators. As we will see, it is an expensive combinatorial problem, and our overall approach differs
from [CW00].

In this paper, we first define a normal form for the primary view definition, which suggests an initial
search space of possible auxiliary views. We then propose a variety of algorithms for selecting auxiliary
views within this search space. Finally, we compare empirically the running time of our algorithms and
the optimality of the auxiliary view sets they select, using the TPC-D benchmark [TPC96] in addition to a
suite of synthetic view definitions and statistics. The results of our experiments show:

• The exhaustive algorithm that selects the optimal set of auxiliary views is far too expensive in many
cases.

• Two heuristic algorithms that we present select good (often optimal) sets of auxiliary views in a
much shorter time.

• Even auxiliary views selected by a very simple algorithm can significantly reduce the overall view
maintenance and lineage tracing cost.

1.1 Outline of Paper

The remainder of the paper proceeds as follows. Section 2 covers related work. Section 3 presents prelim-
inary material on materialized views, view maintenance, and lineage tracing, including a running example.
Section 4 introduces the auxiliary views we consider for efficient view maintenance and lineage tracing,
and defines the search space for selecting auxiliary views to materialize. Section 5 describes the cost
model and statistics we use for estimating view maintenance and lineage tracing costs, and for studying
the performance of our auxiliary view selection algorithms. Section 6 presents several algorithms for se-
lecting auxiliary views within our search space. Section 7 compares the performance of the algorithms
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using experiments on the TPC-D benchmark, as well as using a variety of synthetic view definitions and
statistics.

2 Related Work

Previous work related to this paper falls into three categories: selecting views to materialize in order to
minimize query costs, e.g., [HRU96, Gup97], selecting auxiliary views to materialize in order to minimize
the cost of maintaining given primary views, e.g., [LQA97, RSS96], and our own previous work in lineage
tracing and view maintenance [CWW97, CW00].

[HRU96] proposes a greedy algorithm for selecting auxiliary views to materialize, with the goal of
minimizing the cost of queries over aggregate views given certain constraints such as the maximum num-
ber of views that can be materialized. The work considers data-cube views only, and can make certain
simplifying assumptions based on this restriction. [Gup97] extends the work in [HRU96] to general rela-
tional views, and proves that the auxiliary view selection problem under maintenance cost constraints is
NP-hard.

[RSS96] proposes an exhaustive algorithm for selecting auxiliary views to optimize view maintenance,
and suggests simple search space pruning strategies when the view is too complex for exhaustive search.
[LQA97] presents an A* algorithm for selecting auxiliary views and indexes on different join combinations
for SPJ view maintenance. Both [RSS96] and [LQA97] consider a single algorithm for selecting auxiliary
views (and indexes in the case of [LQA97]), designed specifically for optimizing view maintenance. They
consider as potential auxiliary views all nodes in all possible relevant query plans, making the search space
doubly exponential in the view definition size.

We introduced lineage tracing for relational data warehouses in [CWW97], presenting a formal frame-
work and basic algorithms. In [CW00], we introduced the problem of selecting auxiliary views to simul-
taneously reduce view maintenance and lineage tracing costs, and we considered the restricted case of SPJ
views. We suggested several alternative auxiliary view schemes and compared their performance. In this
paper, we tackle the problem for complex relational views with arbitrary use of aggregation and SPJ op-
erators. Arbitrarily complex primary views make the auxiliary view selection problem more complicated
and expensive than for SPJ views, and we take a different approach to solving it than for the restricted
case considered in [CW00]. We introduce a normal form for our view definitions that suggests an initial
(still exponential) search space for useful auxiliary view sets, and then we consider heuristic algorithms
that explore various view sets in this search space.

Our work differs from the previous work discussed above in several ways:

• Unlike all previous work besides our own, we consider lineage tracing as well as view maintenance
costs when selecting auxiliary views to materialize.

• Instead of considering a doubly exponential search space of auxiliary views (as in [HRU96, Gup97,
LQA97, RSS96]), or a very simple fixed set (as in [CW00]), we explore a “middle ground” based
on our view definition normal form.

• We propose several different auxiliary view selection algorithms, as opposed to a single algorithm,
and we compare the performance of our algorithms (both running time and quality of solution)
through experiments.
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3 Preliminaries

We now introduce the relational materialized views we consider, as well as the processes of view main-
tenance and lineage tracing, using a running example. Along the way, we illustrate why materializing
auxiliary views is important for view maintenance and lineage tracing, and why it is useful to consider the
two problems together.

3.1 Materialized Views

To answer a variety of user queries efficiently, a data warehouse typically computes and stores a number of
materialized views [LW95]. In this paper, we consider relational views with arbitrary use of aggregation,
selection, projection, and join operators, which we call ASPJ views. We use an algebraic representation
for the operators: α for grouping and aggregation, σ for selection, π for (duplicate-eliminating) projection,
and ./ for join. A view definition is presented using a rooted operator DAG with source tables at the leaves.

Any ASPJ view definition v can be transformed into an equivalent form v ′ composed of α-π-σ-./
operator sequences, by commuting and combining some select-project-join operators in the view defini-
tion [CWW97]. We call the resulting form v’s ASPJ normal form, and we call each α-π-σ-./ sequence
a segment. An example will be given shortly. In ASPJ normal form, a segment may omit the π, σ, or ./
operator, but each segment except the topmost must include a non-trivial aggregation operator (or it would
be merged with an adjacent segment). Since our view definitions are DAGs, they may contain multiple
references to a source table or to a segment at any level.

We say that a view is an n-level ASPJ view if traversing from the root to any leaf in its normalized
definition crosses at most n segments. The fan-out of a segment is the number of operands of the segment’s
join operator, or 1 if there is no join.

Example 3.1 (Materialized View and ASPJ Normal Form) Consider a data warehouse for a department
store chain based on the following four tables, some or all of which may reside at remote source databases.

• Store(store-id, city, expenses) gives the city and monthly operating expenses of
each store. We assume that each city contains at most one store, and that the operating expenses
do not include employee salaries.

• Product(product-id, price, cost) gives the retail price and wholesale cost of each
product item.

• Sales(store-id, product-id, num) gives the expected monthly number of sales for
each product at each store.

• Employee(emp-id, store-id, salary) gives the monthly salary of each employee at
each store.

Consider a materialized view HighProfit that keeps track of those cities whose stores are very prof-
itable, i.e., whose monthly income exceeds expenses by at least $100,000. An SQL definition for High-
Profit is shown in Figure 1, and its normalized view definition tree is shown in Figure 2. We use
αG,aggr(A) to represent grouping and aggregation, where G is a list of grouping attributes, and aggr(A)
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CREATE VIEW HighProfit AS

SELECT city

FROM Store,

(SELECT store-id, SUM(num*(price−cost)) AS profit

FROM Sales, Product

WHERE Sales.product-id = Product.product-id

GROUP BY store-id) AS P,

(SELECT store-id, SUM(salary) AS salaries

FROM Employee

GROUP BY store-id) AS E

WHERE Store.store-id = E.store-id

AND E.store-id = P.store-id

AND P.profit−E.salaries−Store.expenses > 100000

Figure 1: SQL definition for HighProfit

HighProfit

π city

σprofit - expenses - salaries

store-id,
α

sum(salary)
store-id,

α

as profit

Sales ProductEmployee Store

> 100000

as salaries
sum(num    (price - cost))*

Figure 2: Normal form for HighProfit

abbreviates a list of aggregate functions over attributes in set A [CWW97].1 HighProfit is a 2-level
ASPJ view containing three segments: the topmost π-σ-./ segment with fan-out 3, the leftmost α segment
with fan-out 1, and the middle α-./ segment with fan-out 2.

�

3.2 View Maintenance Procedures

Materialized views must be maintained to keep their contents up-to-date as the source tables they are
defined over change. We assume a standard incremental view maintenance approach, as in [GMS93,
Qua96]. Insertions and deletions to each source table are monitored and recorded in delta tables (∆
and ∇ respectively) in the warehouse. Updates are modeled as deletions followed by insertions. During
view maintenance, changes to the view (also expressed as deltas) are computed based on the source delta
tables, the view contents, and the source data, using a predefined sequence of queries and updates called
the maintenance procedure. For 1-level ASPJ views we use the maintenance procedures from [GMS93,
Qua96]. The following example shows a 1-level ASPJ view and its maintenance procedure.

Example 3.2 (View Maintenance Procedure) Consider the source tables from Example 3.1 and a 1-level
ASPJ view Profit corresponding to the middle α-./ segment in Figure 2:

CREATE VIEW Profit AS

SELECT store-id, SUM(num*(price−cost)) AS profit

FROM Sales, Product

WHERE Sales.product-id = Product.product-id

GROUP BY store-id

Suppose the Sales table changes over time, and a set of insertions and deletions to the table are stored in
delta tables ∆Sales and∇Sales, respectively. The resulting changes to the view Profit (∆Profit

1This operator is similar to the generalized projection of [GHQ95], but we distinguish between projection and aggregation
operators because of the way our segments and auxiliary views are defined.
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and∇Profit) can be computed by the following maintenance procedure, which uses the summary-delta
approach from [Qua96]:

SELECT store-id, SUM(profit) AS profit INTO SummaryDelta

FROM (SELECT store-id, (num*(price−cost)) as profit

FROM ∆Sales, Product

WHERE ∆Sales.product-id = Product.product-id)

UNION

(SELECT store-id, -1*(num*(price−cost)) as profit

FROM ∇Sales, Product

WHERE ∇Sales.product-id = Product.product-id)

GROUP BY store-id

SELECT * INTO ∇Profit

FROM Profit

WHERE store-id IN

(SELECT store-id FROM SummaryDelta)

SELECT store-id, SUM(profit) INTO ∆Profit

FROM ∇Profit UNION SummaryDelta

GROUP BY store-id
�

For an n-level ASPJ view where n > 1, to compute the changes to the entire view we can compute
the changes for one segment at a time using the maintenance procedure for 1-level views, propagating
the deltas upward through the view definition DAG. Just as we needed source table Product along with
∆Sales and ∇Sales to compute the deltas for Profit in Example 3.2, to compute the deltas for
a higher-level segment we may need deltas and/or full contents for each lower segment. For example,
suppose we want to compute the deltas for HighProfit given ∆Profit and ∇Profit, where again
Profit corresponds to the middle α-./ segment as in Example 3.2. We need to join the delta tables for
Profit with source table Store, as well as with the leftmost α segment in Figure 2, then perform the
selection and projection in the topmost segment. If we materialize an auxiliary view Salary corresponding
to the leftmost α segment, we can significantly improve the performance of the maintenance procedure
by avoiding recomputation of the aggregate values. In addition to materializing “intermediate” views, if
source tables are remote and expensive (or impossible) to access, we may want to replicate some or all of
the source tables as auxiliary views at the warehouse.

Note that our approach in this paper applies to all views, including those with non-incrementally
maintainable aggregates (e.g., min, max). In the presence of such aggregates, the maintenance procedure
must involve some recomputation, but auxiliary views may still be of benefit.

3.3 Lineage Tracing

Given a materialized view in a data warehouse, in addition to issuing regular queries or performing other
kinds of analysis over the view, we may want to trace the lineage of selected “interesting” tuples in the
view. The lineage of a view tuple is defined as the set of original source tuples that derived the given view
tuple. To trace the lineage of a view tuple, we use a predefined sequence of queries called tracing queries
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(TQs) [CWW97].
Given a 1-level ASPJ view V whose definition is v = αG,aggr(B)(πA(σC(T1 ./ · · · ./ Tm))), and

given tuple t ∈ V , t’s lineage in T1, . . . , Tm according to v can be computed with the following query:

TQt,v = SplitT1,...,Tm(σC∧G=t.G(T1 ./ · · · ./ Tm))

where Ti, denotes the schema of table Ti, i = 1..m, and Split is an operator that breaks a table into
multiple projections: SplitA1,...,Am(T ) = 〈πA1(T ), . . . , πAm(T )〉.

2 Given a tuple set T ⊆ V , we can
simultaneously trace all the tuples in T with:

TQT,v = SplitT1,...,Tm(σC(T1 ./ · · · ./ Tm)n T )

Example 3.3 (Lineage Tracing Query) Consider the view Profit in Example 3.2. The lineage tracing
query for a tuple t ∈ Profit is

TQt,Profit = SplitSales,Product(σstore-id=t.store-id(Sales ./ Product))

The SQL presentation of the query is as follows:

SELECT Sales.* INTO LN Sales

FROM Sales, Product

WHERE Sales.product-id = Product.product-id AND Sales.store-id = t.store-id

SELECT Product.* INTO LN Product

FROM Sales, Product

WHERE Sales.product-id = Product.product-id AND Sales.store-id = t.store-id

where LN Sales and LN Product contain the lineage of t according to view Profit in the source ta-
bles Sales and Product, respectively.

�

To trace the lineage of an n-level ASPJ view where n > 1, we logically define an intermediate view
for each segment, and then recursively trace through the hierarchy of intermediate views top-down. At
each level, we use the tracing query for a 1-level ASPJ view to compute the lineage for the current traced
tuples with respect to the intermediate views or source tables at the next level below. The necessary
intermediate results can either be computed at tracing time, or we can materialize certain intermediate
results as auxiliary views for the purpose of lineage tracing.

For example, to trace the lineage of a tuple t in view HighProfit, we logically define interme-
diate views Salary and Profit corresponding to the leftmost α segment and middle α-./ segment,
respectively, in Figure 2. We trace the lineage of tuple t in Salary, Profit, and Store, producing
〈LN Salary, LN Profit, LN Store〉, using the following tracing query:

TQ = SplitSalary,Profit,Store(σC(Salary ./ Profit ./ Store))

where C = profit− expenses− salaries > 100000 ∧ city = t.city. Then, we further trace the
lineage of the tuples in LN Salary and LN Profit in the source tables to produce LN Employee,

2When we execute the tracing query, the selection condition σC∧G=t.G is pushed down to individual Ti’s whenever possible
to improve tracing query performance.
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LN Sales, and LN Product. As with view maintenance, materializing rather than recomputing inter-
mediate results can significantly improve tracing performance. Also, since lineage tracing queries always
return data from source tables by definition, replicating (portions of) the source data as auxiliary views at
the warehouse may be advantageous, for the same reasons outlined in Section 3.2.

4 Auxiliary Views for View Maintenance and Lineage Tracing

As motivated in Section 3, it may be advantageous to materialize certain auxiliary views in a data ware-
house to improve the performance of view maintenance and lineage tracing. View maintenance procedures
and lineage tracing queries use the auxiliary views to avoid recomputations and expensive source queries,
thereby reducing maintenance and query costs. There are many possible sets of auxiliary views to mate-
rialize. In this section, we first specify a number of potentially useful auxiliary views for arbitrary n-level
ASPJ primary views (Section 4.1). We then discuss how view maintenance procedures and lineage tracing
queries take advantage of the auxiliary views (Section 4.2). Finally, we formally define the auxiliary view
selection problem and estimate the size of our search space (Section 4.3).

4.1 The Auxiliary Views We Consider

Let us first define two types of potentially useful auxiliary views, based on a single segment. (Similar
auxiliary views were introduced in the context of SPJ primary views in [CW00].) Any segment can be
thought of as a view definition v = αG,aggr(B)(πA(σC(T1 ./ · · · ./ Tm))), where each T1, . . . , Tm is either
a source table or a lower-level segment (view). Let V denote the materialization of v over T1, . . . , Tm.

1. Lineage View (LV) for v: We can store the intermediate result LV (v) = σC(T1 ./ · · · ./ Tm) to
help trace the lineage of tuples in V . We can rewrite the lineage tracing queries in Section 3.3 using
LV (v) as:

TQt,v = SplitT1,...,Tm(σG=t.G(LV (v)))

TQT,v = SplitT1,...,Tm(LV (v) n T )

The maintenance procedure for V also can be simplified. If LV (v) is materialized, then we compute
∆LV (v) and ∇LV (v), and the query for computing the summary-delta table in the maintenance
procedure (Section 3.2) can be rewritten as:

SummaryDelta= αG,aggr(B)(αG,aggr(B)(∆LV ) ∪ αG,−aggr(B)(∇LV ))

2. Split Lineage Tables (SLTs) for v: For a view (segment) v ′ whose joins is many-to-many, LV (v′)
can be very large and inefficient to maintain. Thus, another possibility is to “split” the Lineage View
and store a set of smaller tables: SLTi(v) = πTi(σC(T1 ./ · · · ./ Tm)), i = 1..m. The lineage
tracing queries can then be rewritten using the SLTs as:

TQt,v = SplitT1,...,Tm(σG=t.G(σC((SLT1(v) n T ) ./ · · · ./ (SLTm(v)n T ))n T ))

TQT,v = SplitT1,...,Tm(σC((SLT1(v)n T ) ./ · · · ./ (SLTm(v)n T ))n T )
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Although these tracing queries look much more complex than with LV, performance can sometimes
be much better due to the smaller size of the SLTs. Furthermore, as with LV, the maintenance
procedure for V can use the deltas for the SLTs to be much more efficient. See [CW00] for details.

Given a general ASPJ view definition in normal form, in addition to considering Lineage Views and
Split Lineage Tables for each segment, we also may consider storing copies of some or all of the source
tables, to avoid expensive (remote) source queries during view maintenance and lineage tracing. We refer
to these source table copies in the warehouse as Base Tables (BTs). Finally, maintaining the results of
intermediate aggregations in the view (AGs) also can be very helpful in view maintenance and lineage
tracing, as motivated in Section 3.

To summarize, we divide the normalized view definition into three types of components, and for each
type of component we have certain choices of possible auxiliary views to materialize:

1. Topmost Segment: the segment at the root of the view definition DAG. Note that the α, π, σ, and/or
./ operators (but not all of them) may be omitted in this segment. Also note that the topmost node
corresponds to the primary view itself, so its contents are always materialized. We may further
choose to materialize the Lineage View (LV) or the Split Lineage Tables (SLTs) for this segment,
but not both. (If we store one, then storing the other will not further reduce the lineage tracing or
overall maintenance cost.)

2. Intermediate Segment: a non-root segment that is defined over the source tables and/or other
segments. Note that the π, σ, and/or ./ operators may be omitted in this segment, but the α operator
is always present. For an intermediate segment, we consider materializing the following auxiliary
views:

(a) The contents of the α node (AG)

(b) The Lineage View (LV) or the Split Lineage Tables (SLTs), but not both

3. Source Table: We assume that all local selection conditions in the view—predicates that involve
a single source table—are pushed down to the source tables. For each source table R, we decide
whether to store a Base Table (BT) copy of R. If BT is not materialized, we may need to issue
queries directly to source table R for view maintenance and lineage tracing.3

Example 4.1 (Auxiliary Views) Recall our example view HighProfit from Figure 2. Figure 3 shows
the three ASPJ segments in the view definition and all of the possible auxiliary views we consider materi-
alizing for HighProfit.

�

Notice that because of our search space reduction, it is possible that there are useful auxiliary views
we are not considering, notably different join combinations in the case of a many-way join. This special
case is considered in detail in [LQA97], and we could extend our search space accordingly.

3Most existing data warehousing systems automatically store a copy of each source table in the warehouse. However, as we
will see in Section 6, sometimes it is not beneficial to store a copy.
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ProductSales

π
σ

BT

1LV  or SLT1

BT2 3

LV   or SLT2

2AGα

Employee

AG

BT

1

1 BT4

Store

2

HighProfit

Figure 3: Possible auxiliary views for HighProfit

4.2 Using Auxiliary Views for View Maintenance and Lineage Tracing

In Section 4.1 we gave examples of how to rewrite queries for view maintenance and lineage tracing using
auxiliary views. In general, when we have a set of auxiliary views available, there may be more than
one way to rewrite a query to take advantage of auxiliary views. We assume that the “best” rewriting is
selected, and this assumption is reflected in the cost model we present in Section 5.

As an example, the lineage tracing query TQ for a tuple t according to the topmost segment in the
definition of HighProfit has the following rewritings using the auxiliary views in Figure 3:

TQ1 =SplitSalary,Profit,Store(σprofit−expenses−salaries>100000∧city=t.city(AG1 ./ AG2 ./ BT4))

TQ2 =SplitSalary,Profit,Store(σcity=t.city(LV2))

TQ3 =SplitSalary,Profit,Store(σcity=t.city(SLT
Salary

2 ./ SLT Profit2 ./ SLT Store2 ))

Suppose that LV2, AG1, and BT4 are materialized. Then we could use query TQ2, or (among other
options) we could use a tracing query similar to TQ1 that recomputes the contents of AG2. In this case it
is likely that TQ2 would be chosen as the best query rewriting based on the available auxiliary views.

4.3 The View Selection Problem and the Search Space Size

We have shown that various auxiliary views can be used in the view maintenance and lineage tracing
processes. Our goal is to select among the choices of auxiliary views described in Section 4.1 a set that
minimizes overall cost: the cost of lineage tracing plus the cost of maintaining the primary and auxiliary
views. Our cost model is described in Section 5. Here let us consider the size of our search space. Suppose
we have an n-level ASPJ view in normal form, and consider a balanced view definition tree4 with a fan-
out of m in each segment. There is one topmost segment, and for that segment we have 3 auxiliary view

4A tree is balanced if each leaf node in the tree has the same depth. We consider this view definition shape since it represents
the largest search space size for an n-level view.
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options: LV, SLTs, or nothing (case 1 in Section 4.1). There are m1 + m2 + · · · + mn−1 = O(mn−1)
intermediate segments, each having 2 options for case 2(a) in Section 4.1 (AG or nothing) and 3 options
for case 2(b) (LV, SLTs, or nothing). Finally, there are mn source tables, each having 2 options: BT or
nothing. Therefore, the size of the entire search space is

31 · (2 · 3)O(m
n−1) · 2(m

n) = O(2m
n

)

If k is the total number of components in the view definition, where a component is a segment or a source
table, then k = O(mn) and the search space size is O(2k).

Example 4.2 (Search Space Size) Consider our example view HighProfit (Figure 3). The number of
possible auxiliary view sets for HighProfit is 26 · 32 = 384.

�

The number of choices for HighProfit is quite manageable. However, real warehouse views tend to
have much higher fan-outs, as well as possibly more levels. As we will see in Section 7, even for a view
with only 2 levels and average fan-out of 5, we cannot consider all possible auxiliary view sets due to the
large search space.

5 Cost Model

In this section we present the model that we use to estimate view maintenance and lineage tracing costs
for a given primary view and set of auxiliary views. The statistics our cost model relies on are listed in
Table 1. Values for these statistics are set for each experiment, as described in Section 7. We briefly outline
our cost estimation procedure as follows.

Let cost(Q, s) denote the estimated cost of evaluating a query Q at the warehouse given a set of
statistics s. Q could be a lineage tracing query, or a query or update in a view maintenance procedure. To
compute cost(Q, s) we use a fairly conventional cost model for relational queries in a distributed database
setting, similar to, e.g., [LQA97, Ull89, ZGMHW95]. Details are omitted, but the cost formulas rely on
all of the statistics from Table 1, and assume no indexes.

Suppose we have a primary view v and a set of auxiliary viewsA = {v1, ..., vn}. To trace the lineage of
tuples in the primary view given the materialized auxiliary views inA, there are various possible rewritings
of the lineage tracing queries using the auxiliary views (recall Section 4.2). Our cost model selects the
sequence of lineage tracing queries with the lowest estimated cost. Let q(v,A, s) denote the estimated
lineage tracing cost for a given primary view v, set of auxiliary views A, and statistics s:

q(v,A, s) =
∑

1..m

cost(Qi, s)

where Q1, . . . , Qm is the set of tracing queries selected for v given auxiliary view set A. Note that the
lineage query rate and the average number of tuples traced in a lineage query (part of our usage statistics
in Table 1) are included in the input statistics s, and thus are incorporated into the lineage cost estimated
by q(v,A, s).

Maintenance costs are incurred both for the primary view v and for the auxiliary views in A =
{v1, ..., vn}. As with lineage tracing, when there are multiple possible rewritings for the view mainte-
nance queries and updates using the auxiliary views in A, our cost model selects the ones with the lowest
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Parameter name Description
usage statistics (for each primary view)

query rate # of tracing queries per unit time period
query size # of tuples traced per query

usage statistics (for each source table)

update rate # of source table updates per unit time period
update size # of changed tuples per source table update

data statistics (for each source table)

tuple num # of tuples in a source table
tuple size size of tuples in a source table (in bytes)

data statistics (for each view segment)

fan-out # of joined tables
join ratio # of joining tuples / # of tuples in cross-product
select ratio # of selected tuples / # of tuples before selection
proj ratio # of bytes projected / tuple size before projection
aggr ratio # of tuples in aggregate / # of tuples before aggregation

system statistics (for each source or warehouse)

block size # of bytes in a block
disk cost cost to read/write a disk block (in ms/block)
net cost network transmission cost (in ms/byte)

Table 1: Statistics for cost estimation

estimated cost. Let m(v,A, s) denote the estimated maintenance cost for a given primary view v, set of
auxiliary views A, and statistics s:

m(v,A, s) =
∑

1..n

cost(Mi, s)

where M1, . . . ,Mn is the set of maintenance queries and updates selected to maintain primary view v
and the auxiliary views in A. Note that the source table update rate and average number of source tuples
changed in each update (part of our usage statistics in Table 1) are included in the input statistics s, and
thus are incorporated into the maintenance cost estimated bym(v,A, s).

Finally, the total cost is the combination of lineage tracing cost and view maintenance cost:

total cost(v,A, s) = q(v,A, s) +m(v,A, s)

In our experiments, we measure the optimality of given sets of auxiliary views, by which we mean how
close the sets of views come to the set that yields the lowest estimated cost. For a given primary view
v and statistics s, let Aopt denote the set of auxiliary views within our search space (Section 4) with the
lowest total cost total cost(v,Aopt, s). For a set of auxiliary views A, we define the optimality of A as:

optimality(A) =
total cost(v,Aopt, s)

total cost(v,A, s)

6 Algorithms for Selecting Auxiliary Views

Having defined the search space for the optimization problem and the cost model that we use, we now
introduce four different algorithms for selecting a set of auxiliary views within the search space. The input
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Parameter name Values
HighProfit Employee Sales Product Store segment 1 segment 2 segment 3

query rate (#/unit time) 100
query size (tuples) 1
update rate (#/unit time) 10 10 10 0
update size (tuples) 1 100 1 0
tuple num 10000 1000000 100000 100
tuple size (bytes) 1000 500 500 400
fan-out 1 2 3
join ratio 0.0002 0.0001
select ratio 0.1
proj ratio 0.1 0.1 0.1
aggr ratio 0.01 0.001 0.2
block size (bytes) 8K 8K 8K 8K 8K
disk cost (ms/block) 1 1 1 1 1
net cost (ms/byte) 0 0.00001 0.0001 0.0001 0.0001

Table 2: Statistics for view HighProfit

to each algorithm is the primary view definition v in ASPJ normal form, and a set of statistics s as specified
in Section 5. The output is a set of auxiliary views A.

6.1 Exhaustive Algorithm

The exhaustive algorithm enumerates all choices in the search space, estimates the cost of each choice, and
picks the cheapest one. For our example view HighProfit, the exhaustive algorithm considers all 384
possible combinations of auxiliary views (recall Figure 3). We set a sample set of statistics s as shown in
Table 2, including statistics for view HighProfit, source tables Employee, Sales, Product, and
Store, as well as each ASPJ segment in the view definition (Figure 3). Over this set of statistics, the
exhaustive algorithm selects A = {BT4, AG1, AG2, SLT1, LV2}. The exhaustive algorithm always finds
the optimal auxiliary view set according to our cost model. However, the complexity of the algorithm is
the same as the search space size: O(2k) where k is the number of components in the view definition
(recall Section 4.3).

6.2 Naive Algorithm

At the other end of the spectrum, we consider a naive algorithm that selects a fixed set of auxiliary views:
Lineage Views (LVs) for the topmost and all intermediate segments, aggregation results (AGs) for all in-
termediate segments, and all Base Tables (BTs). For example view HighProfit, the naive algorithm
selects A = {BT1, BT2, BT3, BT4, AG1, AG2, LV1, LV2}. Even though this naive fixed set of auxiliary
views may not be optimal—in fact it can be arbitrarily bad compared to the optimal set—our experimen-
tal results in Section 7 show that the naive algorithm selects reasonably good view sets in many cases,
especially considering its simplicity. The complexity of the naive algorithm is O(1).
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6.3 Greedy Algorithm

We also consider a conventional greedy algorithm. This algorithm initializes the auxiliary view setA to be
empty. In each iteration, it adds into A the auxiliary view (not yet in A) that brings the most benefit, i.e.,
reduces the total cost the most given the current set of views in A. Iteration continues until there are no
more auxiliary views outside A that can further reduce the total cost. For our example view HighProfit

and the same sample statistics used in the exhaustive algorithm (Section 6.1), the greedy algorithm selects
the optimal set of auxiliary views in the following order: AG2, SLT1, AG1, LV2, BT4.

The greedy algorithm has complexity O(k2) instead of O(2k) as in the exhaustive algorithm, and it
selects the optimal auxiliary view set in most cases (see Section 7). However, the greedy algorithm cannot
guarantee an optimal answer, nor even an answer within some percentage of optimal. In Section 7.3, we
will see a scenario where the greedy algorithm performs very poorly.

6.4 Three-Step Algorithm

Our last algorithm divides the auxiliary view selection process into three phases. See Figure 4. In the first
phase, we use a greedy approach to add auxiliary views of the AG and BT types only. In the second phase,
we decide for the topmost and each intermediate segment whether to add LV or SLTs. At this point, it
may turn out that some of the AG or BT views selected in the first phase are no longer beneficial given the
LV or SLT views selected in the second phase, and they incur maintenance cost. Thus, in third phase we
remove AG and BT views that are not beneficial, and we do so in a greedy manner.

For example view HighProfit and the same statistics used in Sections 6.1 and 6.3, the three-step
algorithm also selects the optimal set of auxiliary views. In phase 1, it selects AG and BT views in the
following order: AG2, AG1, BT2, BT3, BT4. In phase 2, it selects SLT1 and LV2. In phase 3, it removes
BT2 and BT3 (in that order) because they are no longer beneficial given the views selected in phase 2.

The three-step algorithm has complexity O(k2), which is the same as the greedy algorithm, but its
actual running time is less than the greedy algorithm by a linear factor. The first phase of the three-step
algorithm is faster than the greedy algorithm since it only selects from the AG and BT views, instead of
from all auxiliary views. The second phase is linear in the number of segments. The third phase only
examines the AG and BT views selected in the first phase, which is a small number in most cases.

Like the greedy algorithm, the three-step algorithm usually selects the optimal set of auxiliary views
(see Section 7). However, also like the greedy algorithm, the three-step algorithm cannot make any guar-
antees about the optimality of its answers. In Section 7.3 we will see a scenario where the three-step
algorithm performs poorly. Interestingly, in the case we show where the three-step algorithm performs
poorly, the greedy algorithm performs well, and vice-versa. Thus, one practical option is to combine the
two algorithms: run both algorithms and select whichever answer has lower estimated cost. The running
time of the combined algorithm remains O(k2).

7 Performance Study

In this section, we study the performance of the four algorithms specified in Section 6, comparing their
running times and the optimality of the answers they produce. We also compare the cost of the answers
produced by these algorithms against the cost of storing no auxiliary views. In Section 7.1, we present
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input: primary view v, statistics s
output: auxiliary view set A
begin
A ← ∅;

// phase 1: use greedy algorithm on AG and BT nodes
Aall ← all possible auxiliary views for v;
while true do

for each vi ∈ Aall of type AG or BT such that vi 6∈ A do
benefiti ← total cost(v,A, s) − total cost(v,A ∪ {vi}, s);

pick vi with the highest benefiti;
if benefiti ≤ 0 then break else A ← A ∪ {vi};

endwhile;

// phase 2: decide LV and SLTs
for the topmost and each intermediate segment do

// Let LV and SLT be the Lineage View and Split Lineage Tables for the segment
cost1 ← cost(v,A ∪ {LV }, s);
cost2 ← cost(v,A ∪ {SLT}, s);
if cost1 ≥ cost2 > cost(v,A, s) then A ← A ∪ {LV }
else if cost2 > cost1 > cost(v,A, s) then A ← A ∪ {SLT};

endfor;

// phase 3: remove useless AGs and BTs
while true do

for each vi ∈ A of type AG or BT do
benefiti ← total cost(v,A − {vi}, s)− total cost(v,A, s);

pick vi with the lowest benefiti;
if benefiti > 0 then break else A ← A− {vi};

endwhile;

return A;
end

Figure 4: The three-step algorithm

results of experiments using the schema, statistics, and some views from the TPC-D benchmark. In Sec-
tion 7.2, we present results of experiments using more complex synthetic view definitions. Since the
greedy and three-step algorithms perform quite well in all of the experiments in Sections 7.1 and 7.2, in
Section 7.3 we show experiments illustrating that greedy and three-step can perform poorly.

7.1 TPC-D Experiments

Our first set of experiments is based on the TPC-D benchmark [TPC96]. We use the schema of tables
Customer, Order, Lineitem, Supplier, Nation, Region, PartSupp, and Part from the
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Figure 5: Materialized views for TPC-D experiments
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Figure 6: Optimality for TPC-D views

exhaustive greedy three-step naive none

Q5 11.15 4.79 2.38 0.08 0.09
Q11 14.07 0.94 0.38 0.03 0.04
Q17 0.62 0.29 0.10 0.02 0.03

Figure 7: Running time in seconds for TPC-D

benchmark for our experiments. The table statistics we use correspond to a scaling factor of 1. The
remaining statistics from Table 1 are set according to the benchmark and commonly used database and
network system settings. For example, we set the update rate for the Lineitem and Order tables
to be much higher than other tables, since Lineitem and Order are the fact tables according to the
benchmark specification. For views, we select queries Q5, Q11, and Q17 from the benchmark, since they
are relatively complex and differ somewhat from each other. In each case, we treat the benchmark query
as the definition of our primary materialized view to be stored at the warehouse. The general structure of
each of the three views is shown in Figure 5. The complete list of statistical settings (recall Table 1) for
our three TPC-D experiments is shown in Appendix A, Tables 3–5.

Recall that we are comparing five algorithms—the four algorithms from Section 6, as well as the
“algorithm” that selects no auxiliary views (which we call algorithm none). Figure 6 plots the optimality
of the five algorithms for each of the TPC-D views we consider. Recall from Section 5 that optimality is
defined as the cost of the optimal auxiliary view set divided by the cost of the chosen view set. Figure 7
plots the running time of the algorithms. Note that algorithms naive and none do incur a small running
time, which is the time required to compute the cost of their one solution.

We can see from Figure 6 that storing no auxiliary views can be dramatically worse than storing some,
even those selected by the naive algorithm. We also see from Figure 6 that the greedy and three-step
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Figure 8: Structure of view v1

levels fan-out query/update ratio

v1 2 3 100
v2 2 3 10
v3 2 3 1
v4 2 3 0.1
v5 2 3 0
v6 6 1 10
v7 2 5 10

Figure 9: Synthetic configurations

algorithms select the optimal auxiliary view set for all three views, and from Figure 7 we see that they
do so in a small fraction of the running time required by the exhaustive algorithm. We also note that the
three-step algorithm runs considerably faster than the greedy algorithm.

7.2 Synthetic Experiments

Our next set of experiments is conducted using synthetic views and data statistics. The views we con-
sider all have a regular tree definition, as illustrated by view v1 in Figure 8. We consider seven different
views. Figure 9 summarizes the “shape” of each view definition tree (number of levels and fan-out of
each segment), along with the query/update ratio, which represents the ratio of the average number of
tracing queries per unit time to the average number of source updates (recall Table 1). The complete set of
statistical settings for the seven experiments is summarized in Appendix A, Tables 6–8.

Figure 10 plots the optimality of our five algorithms for each of the seven synthetic views we consider.
Figure 11 plots the running time of the algorithms. The greedy and three-step algorithms always select
the optimal auxiliary view set or, in the one case of the three-step algorithm on v1, very near to optimal.
(Actually, for view v7 the exhaustive algorithm never finished, so optimality is measured against the aux-
iliary view set selected by the greedy algorithm.) The greedy and three-step algorithms find their answer
in a small fraction of the running time required by the exhaustive algorithm, and three-step is much faster
than greedy. Another interesting result is that algorithm none performs better when the query/update ratio
is lower (experiments v3–v5). However, we should not infer that the benefit of auxiliary views is primarily
for lineage tracing. In fact, in experiment v5 the query/update ratio is set to 0 (indicating view maintenance
only), and we still see significant benefit to using auxiliary views.

Next, we consider in more detail how the running times of the exhaustive, greedy, and three-step
algorithms are affected by view complexity. In Figure 12, we consider views where we fix the number of
levels at 2 and increase the fan-out from 1 to 9. The exhaustive, greedy, and three-step algorithms become
prohibitive when the fan-out exceeds 3, 7, and 8, respectively. We see similar behavior in Figure 13, where
we fix the fan-out at 2 and increase the number of levels from 1 to 8.
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Figure 10: Optimality for synthetic views

exhaustive greedy three-step naive none

v1 2411.68 3.18 0.67 0.05 0.07
v2 2414.86 3.18 0.99 0.03 0.03
v3 2455.74 3.28 0.71 0.08 0.03
v4 2493.06 3.17 0.63 0.03 0.05
v5 2376.53 3.93 0.64 0.03 0.03
v6 757.49 0.99 0.17 0.02 0.02
v7 156.36 35.29 0.33 0.21

Figure 11: Running time in seconds for synthetic views
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three-step
greedy

exhaustive

# levels

ru
nn

in
g

tim
e

(s
ec

)

87654321

10000

8000

6000

4000

2000

0

Figure 13: Running time vs. # levels

7.3 When Greedy and Three-Step Fail

The greedy and three-step algorithms select the optimal (or in one case very near to optimal) auxiliary
view set in all of the experiments reported in Sections 7.1 and 7.2. However, there are cases in which these
algorithms fail to pick an optimal or even near-optimal answer.

Consider a simple view definition v and the auxiliary views that are considered for v in Figure 14.
By setting the data statistics (Table 1) to different values, we can vary the costs and benefits of the four
different auxiliary views. We have set two different configurations, which we call v8 and v9, both based on
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Figure 15: Optimality for v8 and v9

the view in Figure 14. The complete set of statistical settings for these two experiments is summarized in
Appendix A, Tables 9 and 10. In particular, we set the source table network costs for v8 to be much higher
than for v9, and we set the join ratio of v8 higher (less selective) than v9. The optimal set of auxiliary
views for v8 is {BTR, BTS}, and the optimal set for v9 is {LV }.

Figure 15 plots the optimality of all five algorithms on views v8 and v9. In particular, the greedy
algorithm performs extremely poorly on v8 (selecting {LV } instead of {BTR, BTS}), while the three-
step algorithm misses the optimal solution for v9 (selecting {BTR, BTS} instead of {LV }). However,
as suggested in Section 6, if we use a combined algorithm that runs both greedy and three-step and then
selects the lower-cost solution, we will select the optimal view set for both v8 and v9.

8 Conclusion

We have examined the problem of selecting auxiliary views to materialize in a data warehouse in order to
reduce the cost of view maintenance and lineage tracing for complex primary views. We specify a normal
form for view definitions and use it to define an initial search space of potentially beneficial auxiliary
views. We presented four algorithms for exploring the search space and selecting a set of auxiliary views:
exhaustive, greedy, three-step, and naive. We compared the optimality and running time of the algorithms
using experiments based on the TPC-D benchmark, as well as on a variety of synthetic views and statistics.

Our experiments indicate that in terms of running time and optimality, the three-step algorithm appears
to be the best, although the running time of the greedy algorithm probably also is fast enough in practice
for most complex warehouse views. (The exhaustive algorithm, on the other hand, becomes intractable
quite quickly.) Both the greedy and three-step algorithms find the optimal auxiliary view set in most cases,
although we have shown (complementary) situations in which either one algorithm or the other performs
poorly. Our experiments also illustrate that even a naive selection of auxiliary views reduces overall cost
dramatically in most cases, underscoring the importance of materializing auxiliary views for the dual
purposes of view maintenance and lineage tracing in a warehousing environment.

Although we have presented our work in the context of selecting an auxiliary view set for a single
primary warehouse view, our approach extends easily to considering multiple primary views together.
Then the cost of an auxiliary view may be “shared” if the auxiliary view is beneficial to view maintenance
or lineage tracing for more than one primary view. Furthermore, although we have studied an environment
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in which both view maintenance and lineage tracing are important, if only one type of activity is present
our algorithms remain applicable.
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A Statistical Settings for Experiments

Parameter name Values
Q5 Customer Order LineItem Supplier Nation Region segment 1

query rate (#/unit time) 100
query size (tuples) 1
update rate (#/unit time) 1 10 40 1 0 0
update size (tuples) 1 10 10 1 0 0
tuple num 150000 1500000 6000000 10000 25 5
tuple size (bytes) 300 100 300 200 100 100
fan-out 6
join ratio 0.00001
select ratio 0.01
proj ratio 0.1
aggr ratio 0.001
block size (bytes) 8K 8K 8K 8K 8K 8K 8K
disk cost (ms/block) 1 1 1 1 1 1 1
net cost (ms/byte) 0 0.0001 0.00001 0.00001 0.0001 0.0001 0.0001

Table 3: Statistics for Q5

Parameter name Values
Q11 PartSupp Supplier Nation segment 1 segment 2 segment 3

query rate (#/unit time) 100
query size (tuples) 1
update rate (#/unit time) 10 1 0
update size (tuples) 1 1 0
tuple num 800000 10000 25
tuple size (bytes) 100 200 100
fan-out 1 3 3
join ratio 0.0006 0.0006
select ratio 0.1 0.04 0.04
proj ratio 0.6 0.1 0.1
aggr ratio 0.005 0.005
block size (bytes) 8K 8K 8K 8K
disk cost (ms/block) 1 1 1 1
net cost (ms/byte) 0 0.0001 0.0001 0.0001

Table 4: Statistics for Q11
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Parameter name Values
Q17 Part Lineitem segment 1 segment 2

query rate (#/unit time) 100
query size (tuples) 1
update rate (#/unit time) 10 10
update size (tuples) 1 10
tuple num 200000 6000000
tuple size (bytes) 200 300
fan-out 3 1
join ratio 0.0002
select ratio 0.002
proj ratio 0.1 0.2
aggr ratio 0.001 0.03
block size (bytes) 8K 8K 8K
disk cost (ms/block) 1 1 1
net cost (ms/byte) 0 0.0001 0.00001

Table 5: Statistics for Q17

Parameter name Values
v1 v2 v3 v4 v5 each source table each segment

query rate (#/unit time) 1000 100 10 1 0
query size (tuples) 1 1 1 1 1
update rate (#/unit time) 10
update size (tuples) 1
tuple num 10000
tuple size (bytes) 100
levels 2 2 2 2 2
fan-out 3
join ratio 0.001
select ratio 0.2
proj ratio 0.4
aggr ratio 0.1
block size (bytes) 8K 8K 8K 8K 8K 8K
disk cost (ms/block) 1 1 1 1 1 1
net cost (ms/byte) 0 0 0 0 0 0.0001

Table 6: Statistics for synthetic views v1–v5
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Parameter name Values
v6 each source table each segment

query rate (#/unit time) 100
query size (tuples) 1
update rate (#/unit time) 10
update size (tuples) 1
tuple num 1000000
tuple size (bytes) 1000
levels 6
fan-out 1
join ratio
select ratio 0.5
proj ratio 0.8
aggr ratio 0.2
block size (bytes) 8K 8K
disk cost (ms/block) 1 1
net cost (ms/byte) 0 0.0001

Table 7: Statistics for v6

Parameter name Values
v7 each source table each segment

query rate (#/unit time) 100
query size (tuples) 1
update rate (#/unit time) 10
update size (tuples) 1
tuple num 10000
tuple size (bytes) 100
levels 2
fan-out 5
join ratio 0.001
select ratio 0.2
proj ratio 0.4
aggr ratio 0.1
block size (bytes) 8K 8K
disk cost (ms/block) 1 1
net cost (ms/byte) 0 0.0001

Table 8: Statistics for v7

Parameter name Values
v8 R1 R2 segment 1

query rate (#/unit time) 100
query size (tuples) 1
update rate (#/unit time) 0 0
update size (tuples) 0 0
tuple num 100000 100000
tuple size (bytes) 1000 1000
fan-out 2
join ratio 0.001
select ratio 0.2
proj ratio 0.6
aggr ratio 0.2
block size (bytes) 8K 8K 8K
disk cost (ms/block) 1 1 1
net cost (ms/byte) 0 0.01 0.01

Table 9: Statistics for v8

Parameter name Values
v9 R1 R2 segment 1

query rate (#/unit time) 100
query size (tuples) 1
update rate (#/unit time) 0 10
update size (tuples) 0 20
tuple num 10000 1000000
tuple size (bytes) 1000 1000
fan-out 2
join ratio 0.00003
select ratio 0.2
proj ratio 0.6
aggr ratio 0.2
block size (bytes) 8K 8K 8K
disk cost (ms/block) 1 1 1
net cost (ms/byte) 0 0.0001 0.001

Table 10: Statistics for v9
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