Lineage Tracing in a Data Warehousing System*

(Demonstration Proposal)

Yingwei Cui and Jennifer Widom
Stanford University
{cyw, widom }@db.stanford.edu

A data warehousing system collects data from multiple distributed sources and stores the inte-
grated information as materialized views in a local data warehouse. Users then perform data analysis
and mining on the warehouse views. Figure 1 shows the basic architecture of a data warehousing
system.

In many cases, the warehouse view contents alone are not sufficient for in-depth analysis. It is
often useful to be able to “drill through” from interesting (or potentially erroneous) view data to the
original source data that derived the view data. For a given view data item, identifying the exact
set of base data items that produced the view data item is termed the view data lineage problem.
Motivation for and applications of lineage tracing in a warehousing environment are provided in [2].
In the context of the WHIPS data warehousing project at Stanford [3], we have developed a complete
prototype that performs efficient and consistent lineage tracing.

Some commercial data warehousing systems support schema-level lineage tracing, or provide
specialized drill-down and/or drill-through facilities for multi-dimensional warehouse views. Our
lineage tracing prototype supports more fine-grained instance-level lineage tracing for arbitrarily
complex relational views, including aggregation. Our prototype automatically generates lineage
tracing procedures and supporting auziliary views at view definition time. At lineage tracing time,
the system applies the tracing procedures to the source tables and/or auxiliary views to obtain the
lineage results and show the specific view data derivation process.

1 Lineage Tracing System

1.1 Lineage Example

Given a view data item I, the exact set of source data that produced I is called I’s lineage. We use
an example to illustrate the concepts; a full formalization of the problem along with solutions and
algorithms are given in [2]. Consider a financial data warehouse with the three source tables shown
in Figure 3. A view Promising (Figure 4) is defined to contain all “promising” industries, where an
industry is regarded as promising if some stock in that industry is gaining money over all purchases,
and the stock has a price-earnings ratio below 40. Over our sample source data the view contains
two tuples, (computer) and (medicine). To learn more about why tuple (computer) is in the view,
the user may choose to trace its lineage. The result is shown in Figure 6.

1.2 Tracing Procedure Generation

In general, to compute the lineage of a view data item, we need the view definition and the original
source data, and perhaps some auxiliary information. (In Section 1.3 below, we describe how we
can perform lineage tracing without access to the source data.) In our prototype, we first transform
the view definition into a normal form composed of aggregate-project-select-join sequences, called
ASP.J segments. The lineage of tuples in a view defined by a single ASPJ segment can be computed
using relational queries over the sources, called tracing queries, which are parameterized by the
tuple(s) being traced. To trace the lineage of a view defined by multiple levels of ASPJ segments, we
logically define an intermediate view for each segment, and recursively trace through the hierarchy
of intermediate views top-down. At each level, we use tracing queries for a one-level ASPJ view to

*This work was supported by DARPA and the Air Force Rome Laboratories under contracts F30602-95-C-0119 and
F30602-96-1-0312.



User Administrator User

Query & Analysis View Specifie Tracing Im
Query

/—l\ < AVGen > Interface

[ e vrons =

Data Integrator _

Source; Source, || Source,

[—
Figure 1: Basic warehousing architecture Figure 2: The lineage prototype
Daily Earnings Purchases
[ ticker | high [ low [ closing | [ ticker | industry [ earnings | [ ticker | date | price | shares |
AAA 29 25 26 AAA | automobile 0.5 BBB 1/5/98 16 100
BBB 89 87 89 BBB | computer 4.0 CCC | 3/24/98 80 300
cccC 75 74 74 CCC | computer 1.2 BBB | 6/7/98 40 50
DDD 120 100 120 DDD medicine 2.0 DDD | 6/11/98 80 200

Figure 3: Sample source data

T Tcindustry

CREATE VIEW Promising AS segment 1 o
SELECT e.industry L cost / shares < closing
FROM Purchases p, Daily d, Earnings e
WHERE p.ticker = d.ticker
AND d.ticker = e.ticker Kicker, industry, closing,
AND d.closing/e.earnings < 40 sum(shares) as shares,
. . segment 2 sum(price x shares) as cost
GROUP BY p.ticker, e.industry G
HAVING | closing / earnings < 40
SUM(p.price*p.shares)/SUM(p.shares) < d.closing <

[

[ — e — S —

Figure 5: Normalized view definition

i

Figure 4: View Promising

Daily Earnings _ Purchases.
[ ticker [ high [ low | closing | [ ticker | industry | earnings | | %Cé{g | 1?:;;8 | pI;IGCG | S}i?;)es |
[ BBB ] 8 [ 8 | 8 | [ BBB | computer | 4.0 | BBB | 6/7/9% 1o 0

Figure 6: Lineage of (computer) according to Promising

compute the lineage for the current traced tuples with respect to the views or base tables at the next
level below.

For example, consider the view Promising in Figure 4. Figure 5 shows Promising’s normalized
view definition with two ASPJ segments and one intermediate view Stocks. We generate one tracing
query for segment 1, where t is the tuple to be traced:



SELECT * FROM Stocks WHERE industry = t.industry AND cost/shares < closing

For segment 2 we have three tracing queries, and we trace a tuple set T:!

SELECT * FROM Daily WHERE ticker IN (SELECT ticker FROM T)
SELECT * FROM Earnings WHERE ticker IN (SELECT ticker FROM T)
SELECT #* FROM Purchases WHERE ticker IN (SELECT ticker FROM T)

When tracing the lineage of tuple ¢ = (computer) in Promising, we first use the tracing query for
segment 1 to compute t’s lineage in Stocks; the result is Stocks* = {(BBB, computer, 89, 150, 3600) }.
We then trace the lineage of Stocks™ in the source tables using the three queries for segment 2,
obtaining the final result as shown in Figure 6. Details and optimizations appear in [2].

1.3 Auxiliary View Generation

In the example of Section 1.2 we introduced an intermediate view Stocks for the purpose of lineage
tracing. In general, such intermediate views can either be materialized, or we can recompute the
relevant intermediate results at tracing time. Because efficient incremental maintenance of multi-
level aggregate views generally requires materializing the same intermediate views we need for lineage
tracing [4], we always choose to materialize these views as auziliary views in the warehouse. A second
type of auxiliary view is motivated by the fact that in a distributed multi-source data warehousing
environment, querying the sources for lineage information can be difficult or impossible: sources may
be inaccessible, expensive to access, and/or inconsistent with the views at the warehouse. By storing
additional auxiliary views in the warehouse based on the source tables, we can reduce or entirely
avoid source accesses for lineage tracing. There are numerous options for which auxiliary views to
store, with performance tradeoffs; see [1] for details. All of the auxiliary views we create to support
lineage tracing are maintained consistently with the user views in the warehouse by the WHIPS
prototype [3].

1.4 Prototype Architecture and Implementation

In Figure 2 we expand the Query & Analysis component in Figure 1 to illustrate the architecture
of our lineage tracing prototype. When a view is defined through the View Specifier, if the view
definition specifies that the view should be traceable, then the Auziliary View Generator (AVGen)
automatically generates the auxiliary views discussed in Section 1.3. The Maintenance Procedure
Generator (MPGen) and the Tracing Procedure Generator (TPGen) then generate the maintenance
procedures (see [3]) and lineage tracing procedures for the user view as well as its auxiliary views,
and store them as part of the Metadata. When a user issues a request through the Tracing Interface,
the Lineage Tracer is activated and calls the appropriate sequence of tracing procedures. The lineage
results are then returned to the user as tables. If the user further requests to see the derivation process,
the lineage tracer combines the lineage results and the view definition to generate a derivation tree
for the user, showing the complete lineage information as in Figure 7 below.

2 Demo Description

Our demonstration will be based on a financial warehouse scenario with three source tables and
several views, some quite complex. A web-based GUI interface is provided to interact with the
warehouse and the lineage tracing system. We will illustrate the various capabilities of the tracing
system. A screen shot showing the complete lineage, including derivation process, for a tuple in one
of our views is shown in Figure 7. Note that as of July 1999 the system is fully implemented and
functional.

'The tracing queries in this example are simple, but they can become quite complex in the general case [2].



HIPS Demo - Show View Lineage - Netscape

Flo Edit “ow Commuriicator  Help
" 7
Warchouwes | 5 . . it . e . .
| =k WHIPS Demo::Views::Show View Lineage =
SumGainLoss =
[TIcKERS1 [GAINLDSS [TUPLE_CNT
[nT le150 [2
' Cusiris Sources |
|
ARGRR /GRP
= Examinz Wiews |
|
] [rirkerst | [paTer [msn [ nw | [VnimmME o1 nsEp [TIRKERS [PRCRNIRHT [NIMSHARES. TTEKFRS [MAXDATE
[ira1c [opeer 7 [55 |[esomoo b [T 52 [100 e [wgtseer
' Corfiquration [T [opapr [l Ifzsomon 7 [T |50 |50 Nt [togasper |
|
-t i
|
m Shop Derng I I I
s CopyDaily CopyPort Max2aiyCate
TICKER31 | pATEL |[HiH [LOw [foLumE !cLosEPI [TrckERs3 [PRCBOUGHT [MUMSHARES | TICKERS [MAKDATE
INTC [w0iiz97 [ = |[omony |37 | [T 2] [0 [nre EEM7'_|
I [parc [z [z I
FRUIEL T I ALLKS GRE
} PROJECT }
|
daily ) | Copy2aly
TICKERSL |DATEL || [ | | I 1w [ran LLusi
| |HIGH |LOW [YOLUME [CLOSEP Fort [TIUKEHS1 (DA TEL [HIGH ‘LUW ‘VU[UHI: LLUSEP
NTE [wjta5r [ = |[mownd 57 | [TICKERS3 [DATEZ [PRCEOUGHT | NUMSHARES | | [INTC [topepr 57 |3 momor Br
[T lemr [lso 50 It hoarar [z a7 emo0 @0
[t lepar e 100 [t [opepr [en |7 [mocemoc |k
erme [opspr a7 ez fzseac b
|
|
PROICCT
|
|
daly
[rickers1 | [paTEL [HiGH [Low vOLumME CLosen
o hopapy sz sz |zmomoc a7
[NTE Az 33 a7 |[eswo B0
v [opep7 aa o7 [[answoc (Ba e
ramiz I T =
=l [Document: Done B
Figure 7: The demo interface

(1]

Y. Cui and J. Widom. Practical lineage tracing in data warehouses.  Technical re-
port, Stanford University Database Group, January 1999. Available at http://www-
db.stanford.edu/pub/papers/trace.ps.

Y. Cui, J. Widom, and J.L. Wiener. Tracing the lineage of view data in a warehousing envi-
ronment. Technical report, Stanford University Database Group, November 1997. Available at
http://www-db.stanford.edu/pub/papers/lineage-full.ps.

J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and Y. Zhuge. The Stanford Data Ware-
housing Project. IEFFE Data Engineering Bulletin, Special Issue on Materialized Views and Data
Warehousing, 18(2):41-48, June 1995.

D. Quass. Maintenance expressions for views with aggregation. In Proc. of the Workshop on
Materialized Views, Techniques and Applications, pages 110-118, Montreal, Canada, June 1996.



