Tracing the Lineage of View Data in a Warehousing Environment*

Yingwei Cui, Jennifer Widom, Janet L. Wiener

Computer Science Department, Stanford University
{cyw, widom, wiener }@db.stanford.edu

Abstract

We consider the view data lineage problem in a warehousing environment: For a given
data item in a materialized warchouse view, we want to identify the set of source data items
that produced the view item. We formally define the lineage problem, develop lineage tracing
algorithms for relational views with aggregation, and propose mechanisms for performing
consistent lineage tracing in a multi-source data warehousing environment. Our results can
form the basis of a tool that allows analysts to browse warchouse data, select view tuples
of interest, then “drill-through” to examine the exact source tuples that produced the view
tuples of interest.

1 Introduction

In a data warehousing system, materialized views over source data are defined, computed, and
stored in the warehouse to answer queries about the source data (which may be stored in dis-
tributed and legacy systems) in an integrated and efficient way [CD97, Wid95]. Typically, on-line
analytical processing and mining (OLAP and OLAM) systems operate on the data warehouse,
allowing users to perform analysis and predictions [CD97, HCC98]. In many cases, not only is
the view data itself useful for analysis, but knowing the set of source data that produced specific
pieces of view information also can be useful. Given a data item in a materialized view, deter-
mining the source data that produced it and the process by which it was produced is termed the
data lineage problem. Some applications of view data lineage are:

e OLAP and OLAM: Effective data analysis and mining requires facilities for data exploration
at different levels. The ability to select a portion of relevant view data and “drill-through”
to its origins can be very useful. In addition, an analyst may want to check the origins of
suspect or anomalous view data, to verify the reliability of the sources or even repair the
source data.

e Scientific Databases: Scientists apply algorithms to commonly understood and accepted
source data to derive their own views and perform specific studies. As in OLAP, it can be
useful for the scientist to focus on specific view data, then explore how it was derived from
the original raw data.

e On-line Network Monitoring and Diagnosis Systems: From anomalous view data computed
by the diagnosis system, the network controller can use data lineage to identify the faulty
data within huge volumes of data dumped from the network monitors.

*This work was supported by DARPA and the Air Force Rome Laboratories under contracts F30602-95-C-0119
and F30602-96-1-0312.

e Cleansed Data Feedback: Information centers download raw data from data sources and
“cleanse” the data by performing various transformations on it. Data lineage helps locate
the origins of data items, allowing the system to send reports about the cleansed data back
to their sources, and even link the cleansed items to the original items.

e Materialized View Schema Evolution: In a data warehouse, users may be permitted to
change view definitions (e.g., add a column to a view) under certain circumstances. View
data lineage can help retrofit existing view contents to the new view definition without
recomputing the entire view.

e View Update Problem: Not surprisingly, tracing the origins of a given view data item is
related to the well-known view update problem [BS81]. In Section 10.2, we discuss this
relationship, and show how lineage tracing can be used to help translate view updates into
corresponding base data updates.

In general, a view definition provides a mapping from the base data to the view data. Given a
state of the base data, we can compute the corresponding view according to the view definition.
However, determining the inverse mapping—from a view data item back to the base data that
produced it—is not as straightforward. To determine the inverse mapping accurately, we not only
need the view definition, but we also need the base data and some additional information.

The warehousing environment introduces some additional challenges to the lineage tracing
problem, such as how to trace lineage when the base data is distributed among multiple sources,
and what to do if the sources are inaccessible or not consistent with the warehouse views. At
the same time, the warehousing environment can help the lineage tracing process by providing
facilities to merge data from multiple sources, and to store auxiliary information in the warehouse
in a consistent fashion.

In this paper, we provide a complete solution for tracing the lineage of relational view data in
a warehousing environment. In summary, we:

e Formulate the view data lineage problem by giving a declarative, inductive definition of
lineage for arbitrarily complex relational views, including aggregation.

e Develop lineage tracing algorithms for relational views with aggregation, including proofs
of correctness. We separately consider the problem under set semantics and bag (multiset)
semantics.

e Address issues of lineage tracing in a warehousing environment, and show how to perform
lineage tracing consistently and efficiently for views defined on distributed, legacy sources.

The remainder of this paper is organized as follows. Section 2 surveys related work. Section 3
motivates the data lineage problem using detailed examples, and Section 4 formalizes the prob-
lem. Sections 5, 6, and 7 present set-semantics lineage tracing algorithms for Select-Project-Join
(SPJ) views, views with aggregation, and views with union and difference operators, respectively.
Section 8 extends our results to bag semantics, and Section 9 discusses additional issues for lineage
tracing in a warehousing environment. Section 10 revisits some related problems (e.g., the view
update problem) to further clarify their relationship with the data lineage problem. Section 11
concludes and discusses future extensions to our work. All proofs are provided in the Appendix.

| store_id | store_name | city | state |

001 Target Palo Alto CA - - - -

002 Target Albany Ny | store_id | item_id | price | num_sold |

003 Macy’s San Francisco CA 001 0001 4 1000

004 Macy’s New York City | NY 001 0002 L 3000

001 0004 30 600

Figure 1: store table 002 0001 5 800

002 0002 2 2000

- - - 002 0004 35 800

| item_d | 1tem_name | category | 003 0003 15 1500

0005 pot kitchenware

i . Figure 3: sales table
Figure 2: item table

2 Related Work

The problem of tracing view data lineage is related to work in several areas. Deductive database
techniques perform top-down recursive rule-goal unification to provide proofs for a goal proposi-
tion [UlI89]. The provided proofs find the supporting facts for the goal proposition, and therefore
also can be thought of as providing the proposition’s lineage. In this paper, we take a different
approach that designs relational queries for lineage tracing. In addition, we allow views with
aggregation, which are not considered by deductive databases, and we consider lineage tracing in
multi-source warehousing environments.

[Sto75] provides an algorithm to translate updates on SPJ views to updates on their base
tables. Data cube “rolling-up” and “drilling-down” enable a user to browse a summary view and
underlying detailed data at any level and any dimension of the aggregation [GBLP96]. Although
both papers address problems that roughly include retrieving lineage information for specific types
of relational views, neither of them formally define the view data lineage problem or tackle it in
the general case.

Scientific databases support view data lineage using metadata and annotations [HQGW93].
This approach is useful for providing schema-level lineage tracing. However, for applications that
require lineage at a finer (instance-level) granularity, their techniques may introduce high storage
overhead. [WS97] proposes a framework to compute instance-level data lineage lazily using the
view’s weak inverse mapping. However, the system requires the view definer to provide the view’s
weak inverse, an expectation that may not always be practical. Our algorithms trace instance-
level lineage automatically for the user and maintain the necessary auxiliary information to ensure
that views have inverses.

The lineage problem also relates somewhat to the problem of reconstructing base data from
summary data as in [FJS97], which uses a statistical approach and certain constraint knowl-
edge. However, that approach provides only estimated lineage information, and does not ensure
accuracy.

3 Motivating Examples

In this section, we provide examples that motivate a precise definition of data lineage and show
how lineage tracing can be useful. Consider a data warehouse with retail store data over three
source tables, whose schema and sample contents are shown in Figures 1-3. The store and item

CREATE VIEW Calif AS

. T store_name, item_name, num_sold
SELECT store_name, item_name, num_sold ‘
FROM store, item, sales ?state:”CA"
WHERE sales.store_id = store.store_id AND >

sales.item_id = item.item_id AND

store.state = "CA" —

Figure 4: View definition for Calif

| store_name | item_name | num_sold |

Target binder 1000
Target pencil 3000
Target pants 600
Macy’s shirt 1500
Macy’s pants 600

Figure 5: Calif table

store item sales
| sid | s_name | city | state | | iid | i_name | category | | said | iad | price | num_sold |
| 001 | Target | Palo Alto | CA | [0002 | pencil [stationery | [001 [0002] 1 [3000 |

Figure 6: Calif lineage for <Target, pencil, 3000>

tables are self-explanatory. The sales table contains sales information, including the price and
number of each product sold at that price by each store.

Example 3.1 (Lineage of SPJ View) Suppose an analyst wants to follow the selling patterns
of California stores. A materialized view Calif can be defined in the data warehouse for this
purpose. Figure 4 shows the SQL and relational algebra definitions of Calif. The materialized
view for Calif over our sample data is shown in Figure 5.

The analyst browses the view table and is interested in the second tuple <Target, pencil,
3000>. He would like to see the relevant detailed information and asks question Q1: “Which base
data produced tuple <Target, pencil, 3000>in view Calif?” Using the algorithms we present
in Section 5, we obtain the answer in Figure 6. The answer tells us that the Target store in Palo
Alto sold 3000 pencils at a price of 1 dollar each. O

Example 3.2 (Lineage of Aggregation View) Now let us consider another warehouse view
Clothing, for analyzing the total clothing sales of large stores (those that have sold more than
5000 clothing items). The SQL and relational algebra definitions of the view are shown in Figure 7.
We extend traditional relational algebra with an aggregation operator, denoted ag 44,.(5), where
G is a list of groupby attributes, and aggr(B) abbreviates a list of aggregate functions over
attributes. (Details are given in Section 4.1.) The materialized view contains one tuple, <56400>.

The analyst may wish to learn more about the origins of this tuple, and asks question Q2:
“Which base data produced tuple <6400> in view Clothing?” Not surprisingly, due to the more
complex view definition, this question is more difficult to answer than Q1. We develop the

CREATE VIEW Clothing AS 7‘tlotal

SELECT sum(num_sold) as total G toral > 5000

FROM item, store, sales \

WHERE sales.store_id = store.store_id AND O store_name, sum(num_sold) as total

sales.item_id = item.item_id AND (L)

. . category = "clothing"
item.category = "clothing" |

GROUP BY store_name

HAVING total > 5000

Figure 7: View definition for Clothing

sales
store item | sid | iad | price | num_sold
| sad | s_name | city | state | | iad | i_name | category | 003 | 0003 45 1500
003 | Macy’s | San Francisco CA 0003 shirt clothing 003 | 0004 60 600
004 | Macy’s | New York City | NY 0004 | pants clothing 004 | 0003 50 2100
004 | 0004 70 1200

Figure 8: Clothing lineage for <56400>

appropriate algorithms in Section 6, and Figure 8 presents the answer. It lists all the branches of
Macy’s, the clothing items they sell (but not other items), and the sales information. All of this
information is used to derive the tuple <5400> in Clothing. O

Questions such as Q1 and Q2 ask about the base tuples that derive a given view tuple. We call
these base tuples the derivation (or lineage) of the view tuple. In the next section, we formally
define the concept of derivation. Sections 5-9 then present algorithms to compute view tuple
derivations for different view and warehouse scenarios.

4 View Tuple Derivations

In this section, we define the notion of a tuple derivation, which is the set of base relation tuples
that produce a given view tuple. Section 4.1 first reviews relational view semantics. Tuple
derivations for operators and views are then defined in Sections 4.2 and 4.3, respectively.

We assume that a table (relation) R with schema R contains a set of tuples {¢1,...,¢,}. A
database D contains a list of base tables (Ry,...,R,;). A view V is a virtual or materialized
result of a query over the base tables in D. The query (or the mapping from the base tables
to the view table) is called the view definition, denoted as v. We say that Ry,..., R, derives
VitV =wv(Ry,...,Ry). We consider set semantics (no duplicates) in this section as well as in
Sections 5, 6, and 7. We adapt our work to bag semantics (duplicates permitted) in Section 8.

4.1 Views

We consider a class of views defined over base relations using the relational algebra operators
selection (o), projection (), join (<), aggregation («), set union (U), and set difference (—). We

use the standard relational semantics, included here for completeness:
e Base case: R={t|t € R}
o Selection: o (V1) ={t |t € V} and ¢t satisfies C'}
o Projection: m4(V1) = {t.A|t eV}

o Join: xg(Vi,..., Vi) ={(t1,...,tm) | t; € V; for i = 1..m and the ¢;’s satisfy condition 6}

We use infix notation and the special case of natural join >t in most of the paper, although
all results and algorithms hold directly for the general case of theta join.

o Aggregation: ag q0.8)(V1) = {(I".G, aggr(T.B)) | T CVyand Vt, t' € T, t" ¢ T:
V.G =t.G A G £ LG

o Set Union: Vi U---UV,, ={t|t eV, forsomeic l.m}
o Set Difference: Vi — Vo ={t |t € Vi and t ¢ V}
Thus, the grammar of our view definition language is as follows:

V.- R | UO(VI) | ﬂ'A(‘/I) | V1D<]"'D<]‘/m

aG,aggr(B)(Vl) | Viu---uv, | Vi—-V,

where R is a base table, Vi,...,V,, are views, C'is a selection condition (any boolean expression)
on attributes of Vi, A is a projection attribute list from Vi, GG is a groupby attribute list from V7,
and aggr(B) abbreviates a list of aggregation functions applied to attributes of V;.

For convenience in formulation, when a view references the same relation more than once, we
consider each relation instance as a separate relation. For example, we treat the self-join R <1 R
as (R as Ry) <t (R as Ry), and we consider Ry and Ry to be two tables in D. This approach
allows view definitions to be expressed using an algebra tree instead of a graph, while not limiting
the views we can handle.

Any view definition in our language can be expressed using a query tree, with base tables as
the leaf nodes and operators as inner nodes. Iigures 4 and 7 are examples of query trees.

4.2 Tuple Derivations for Operators

To define the concept of derivation, we assume logically that the view contents are computed by
evaluating the view definition query tree bottom-up. Each operator in the tree generates its result
table based on the results of its children nodes, and passes its result table upwards. We begin by
focusing on individual operators, defining derivations of the operator’s result tuples based on its
input tuples.

According to relational semantics, each operator can generate its result tuple-by-tuple based
on its operand tables. Intuitively, given a tuple ¢ in the result of operator Op, some subset of the
input tuples produced ¢t. We say that tuples in this subset contribute to t, and we call the entire
subset the derivation of t. Input tuples not in ¢’s derivation either contribute to nothing, or only
contribute to result tuples other than ¢t. Figure 9 illustrates the derivation of a result tuple. In the
figure, operator Op is applied to tables T; and T3, which may be base tables or temporary results

'Note that 7 is duplicate-eliminating here, and we generally abuse notation by writing ¢.A for {t.A1,...,t.A,)
where A = {A1,..., An}.

—

)

1% | J> T2

TI 12

Figure 9: Derivation of tuple ¢

from other operators. (In general, we use R’s to denote base tables and T’s to denote tables that
may be base or derived.) Table 7" is the operation result. Given tuple ¢ in 7', only subsets 77 and
Ty of Ty and T contribute to t. (T7,T5) is called t’s derivation. The formal definition of tuple
derivation for an operator is given next, followed by additional explanation.

Definition 4.1 (Tuple Derivation for an Operator) Let Op be any relational operator over
tables T11,...,T,,, and let T'= Op(11,...,T,,) be the table that results from applying Op to
Ti,...,T. Given a tuple t € T, we define t’s derivation in Ty,...,T,, according to Op to be
Op_l(Tl,...,Tm) (t) =y, ...,Ty), where T}, ..., T} are maximal subsets of T, ..., T}, such that:

(a) Op(Ty,...,Ty) = {t}
(b) VT7: V" € T Op(Ty, ..., {t}, T5) £ @

Also, we say that Op_lTl. (t) =17 is t’s derivation in T;, and each tuple ¢t* in T contributes to t,
fori=1..m. O

In Definition 4.1, requirement (a) says that the derivation tuple sets (the 7;*’s) derive exactly .
From relational semantics, we know that for any result tuple ¢, there must exist such tuple sets.
Requirement (b) says that each tuple in the derivation does in fact contribute something to ¢. For
example, with requirement (b) and given Op = o¢, base tuples that do not satisfy the selection
condition € and therefore make no contribution to any result tuple will not appear in any result
tuple’s derivation. By defining the 7;*’s to be the maximal subsets that satisfy requirements (a)
and (b), we make sure that the derivation contains exactly all the tuples that contribute to .
Thus, the derivation fully explains why a tuple exists in the result.?
Op~! can be extended to represent the derivation of a set of tuples:

Op~Yiry,. oy (T) = U Op™ 7y, iy (1)
teT

where |J represents the multi-way union of relation lists, i.e., (R1,...,Rn) U (S1,...,5m) =
((R1US1),...,(RyUSy)). Theorem 4.2 shows that there is a unique derivation for any operator
and result tuple. Note that all proofs are provided in the Appendix.

2By Definition 4.1, if V = R — S, then &’s derivation not only includes ¢ from R, but also includes all tuples
t' #tin S. We discuss this definition of derivation for set difference in more detail in Section 7.

X |Y X |sum(Y) R

2 0 — 1 6 X Y
e G D 2| o

1 4 2 3

2 5 2 5

(@R (b) Gy ey (R) (© o' p(<2,8>)

Figure 10: Tuple derivation for aggregation

Theorem 4.2 (Derivation Uniqueness) Given t € Op(Ty,...,T,,) where ¢ is a tuple in the
result of applying operator Op to tables Ty,...,T,,, there exists a unique derivation of ¢ in
T1,...,T,, according to Op. O

Example 4.3 (Tuple Derivation for Aggregation) Given table R in Figure 10(a), and tuple
t =(2,8) € ax sum(y)(R) in Figure 10(b), the derivation of ¢ is

aX,sum(Y)_lR(<27 8)) ={(2,0), (2,3), (2,5)}

shown in Figure 10(c). Notice that R’s subset {(2,3), (2,5)} also satisfies requirements (a) and
(b) in Definition 4.1, but it is not maximal. Intuitively, (2,0) also contributes to the result tuple,
since t = (2,8) € ax sum(y)(R) is computed by adding the Y attributes of (2,3), (2,5), and (2,0)
in R. O

From Definition 4.1 and the semantics of the operators introduced in Section 4.1, we now
specify the actual tuple derivations for each of our operators.

Theorem 4.4 (Tuple Derivations for Operators) Let T,T},...,T,, be tables. Recall that
T; denotes the schema of T;.

() =«
(t) =
< gy () = {6 T1}, o {E T}, for t € Ty Ty
O‘G,aggr(B)_1<T> (t) = (o6=1.c(T)), for t € ag agqrB)(T)
U™y, 1) () = {0y =e(T1)s -y 0T =t (Tin)), for t € T U -+ - U T,
— Ny () = {1}, To), fort € Ty = T, a

4.3 Tuple Derivations for Views

As mentioned earlier, a view definition can be thought of as an operator tree that is evaluated
bottom-up. Thus, in this section we proceed to define tuple derivations for views inductively
based on tuple derivations for the operators comprising the view definition tree. Intuitively, if a
base tuple t* contributes to a tuple #’ in the intermediate result of a view evaluation, and ¢’ further
contributes to a view tuple ¢, then t* contributes to t. We define a view tuple’s derivation to be
the set of all base tuples that contribute to the view tuple. The specific process through which
the view tuple is derived can be illustrated by applying the view definition tree to the derivation
tuple sets, and presenting the intermediate results for each operator in the evaluation.

X |y X X |sum(Y) R
? (2) 1|2 1] 6 x|y
- 2 33— |
| — = 2 8

o | 5 2|2 (2] 8) > | S

1 4

e L1175 215

@ R (1) Gy 2 oR) (©) V=0 i) (Oy (R) () v(<2,8>)

Figure 11: Tuple derivation for a view

Definition 4.5 (Tuple Derivation for a View) Let D be a database with base tables
Ry,..., Ry, and let V = v(D) be a view over D. Consider a tuple ¢ € V.

1. v = R;: Tuple t € R; contributes to itselfin V.

2. v = Op(vy,...,v;), where v; is a view definition over D, j = 1..k: Suppose t' € v;(D)
contributes to ¢ according to the operator Op (by Definition 4.1), and t* € R; contributes to
t" according to the view v; (by this definition recursively). Then t* contributes to t according
to v.

We define t’s derivation in D according to v to be v 'p(t) = (R},..., R}), where R}, ..., RY, are
subsets of Ry,..., R, such that t* € R iff t* € R; contributes to ¢ according to v, for i = 1..m.
Also, we call R} t’s derivation in R; according to v, denoted as v g, (t).

The derivation of a view tuple set T contains all base tuples that contribute to any view tuple in
the set T
vIip(M =Jv'p(t) O
teT
Theorem 4.2 can be applied inductively in the obvious way to show that view tuple derivations
are always unique.

Example 4.6 (Tuple Derivation for a View) Given base table R in Figure 11(a), view V =
ax sum(v)(Ovzo(R)) in Figure 11(c), and tuple ¢ = (2,8) € V, it is easy to see that tuples (2,3)
and (2,5) in R contribute to (2,3) and (2,5) in oyxo(R) in Figure 11(b), and further contribute
to (2,8) in V. The derivation of ¢ is v™15((2,8)) = {(2,3), (2,5)} as shown in Figure 11(d). O

We now state some properties of view tuple derivations to provide the groundwork for our
derivation tracing algorithms.

Theorem 4.7 (Derivation Transitivity) Let D be a database with base tables Ry,..., R,
and let V = v(D) be a view over D. Suppose that v can also be represented as V = v'(Vy, ..., Vi),
where V; = v;(D) is an intermediate view over D, for j = 1..k. Given tuple t € V', let V;* be t’s
derivation in V; according to v’. Then t’s derivation in D according to v is the concatenation of
all V;*s’ derivations in D according to v;, j = 1..k:

where (©) represents the multi-way concatenation of relation lists.® [

Theorem 4.7 follows from Definition 4.5. It shows that given a view V with a complex defini-
tion tree, we can compute a tuple’s derivation by recursively tracing through the hierarchy of
intermediate views that comprise the tree.

Since we define tuple derivations inductively based on the view query tree, an interesting
question arises: Are the derivations of tuples in two equivalent views also equivalent? Two view
definitions (or query trees) vy and vy are equivalent iff VD: vy (D) = vy(D) [UlI89]. We prove in
Theorem 4.8 that given any two equivalent Select-Project-Join (SPJ) views, their tuple derivations
also are equivalent.

Theorem 4.8 (Derivation Equivalence for SPJ Views) Tuple derivations of equivalent
SPJ views are equivalent. That is, given two equivalent SPJ views vy and v, VD: Vt € vy (D) =

v2(D): o p(8) = vy ' p(1). O

Thus, according to Theorem 4.8, we can transform an SPJ view to a simple canonical form before
tracing tuple derivations, and we will exploit this property in our algorithms. Unfortunately,
views with aggregation do not have this nice property, as shown in the following example.

Example 4.9 (Derivation Inequivalence for Views with Aggregation) Let V) = v(R) =
ax sum(y)(R)) and Vo = va(R) = @x sum(v)(0y 20(R)). v1 and vy are equivalent, since VR, v1(R) =
ve(R). Given base table R in Figures 10(a) and 11(a), Figures 10(b) and 11(c) show that the
contents of the two views are the same. However, the derivation of tuple t = (2,8) € V; according
to vy (shown in Figure 10(c)) is different from that according to vy (shown in Figure 11(d)). O

Given Definition 4.5, a straightforward way to compute a view tuple’s derivation is to compute
the intermediate results for all operators in the view definition tree, store the results as temporary
tables, then trace the tuple’s derivation in the temporary tables recursively until reaching the base
tables. Obviously, this approach is impractical due to the computation and storage required for all
the intermediate results. In the following sections, we separately consider SPJ views, views with
aggregation (ASPJ views), and more general views with set operators. Section 5 shows that one
relational query over the base tables suffices to compute tuple derivations for SPJ views. Sections 6
and 7 present recursive algorithms that require a modest amount of auxiliary information for ASPJ
and more general view derivation tracing.

5 SPJ View Derivation Tracing

Derivations for tuples in Select-Project-Join (SP.J) views can be computed using a single relational
query over the base data. In this section, we specify derivation tracing queries for SPJ views, and
briefly discuss some optimization issues for these queries.

5.1 Derivation Tracing Queries

Sometimes, we can write a query for a specific view definition v and view tuple ¢, such that if we
apply the query to the database D it returns ¢’s derivation in D (based on Definition 4.5). We

®The concatenation of two relation lists {(Ri,..., Rm) 0 {(S1,...,Sn) is (R1,...,Rm,S1,...,5,). Recall that
relations are renamed so that the same relation never appears twice.

10

call such a query a derivation tracing query (or tracing query) for t and v. More formally, we
have:

Definition 5.1 (Derivation Tracing Query) Let D be a database, and let v be a view over
D. Given tuple t € v(D), TQ+, is a derivation tracing query for t and v iff TQ; (D) = v=1p(t),
where v™!p(#) is ¢’s derivation in D according to v, and T'Q;,, is independent of database instance
D. We can similarly define the tracing query for a view tuple set 7', and denote it as TQr (D).
O

5.2 Tracing Queries for SPJ Views

All SPJ views can be transformed into the form 74 (oc(Ry &< -+ < R,,)) using a sequence of
algebraic transformations [UlI89]. We call this form the SP.J canonical form. From Theorem 4.8,
we know that SPJ transformations do not affect view tuple derivations. Thus, given an SPJ view,
we first transform it into SPJ canonical form, then compute its tuple derivations systematically
using a single tracing query based on the canonical form. We first introduce an additional operator
used in tracing queries for SPJ views.

Definition 5.2 (Split Operator) Let T be a table with schema T. The operator Split breaks
T into a list of tables; each table in the list is a projection of T onto a set of attributes A4; C T,
1= 1..m.

SplitA17...7Am(T) = <7TA1 (T),...,ﬁAm(T)> O

Theorem 5.3 (Derivation Tracing Query for an SPJ View) Let D be a database with
base tables Ry,..., Ry, and let V = v(D) = m4(0c(Ry < -+ < R,,)) be an SPJ view over
D. Given tuple t € V, t’s derivation in D according to v can be computed by applying the
following query to the base tables:

TQtn = Splitr, .. Rm (Tcra=t(R1 >+ Ryy,))
Given a tuple set T C V', T’s derivation tracing query is:

TQr, = Splitr, ... R (0c(Ry < -+ Ry) X T)
where X is the relational semijoin operator. [J

Example 5.4 (Tracing Query for Calif) Recall Q1 over view Calif in Example 3.1, where
we asked about the derivation of tuple <Target, pencil, 3000>. Figure 12(a) shows the tracing
query for <Target, pencil, 3000> in Calif according to Theorem 5.3. The reader may verify
that by applying the tracing query to the source tables in Figures 1, 2, and 3, we obtain the
derivation result in Figure 6. O

5.3 Tracing Query Optimizations

The derivation tracing queries in Section 5.2 clearly can be optimized for better performance.
For example, the simple technique of pushing selection conditions below the join operator is
especially applicable in tracing queries, and can significantly reduce query cost. Figure 12(b)
shows the optimized tracing query for the Calif tuple. If sufficient base table key information is
present in the view, the tracing query can be even simpler:

11

Split

store, item, sales Split

O state = "CA" A store_name = "Target" A >

‘ item_name = "pencil"A num_sold = 3000 %\
>

(¢}
Gstate ="CA" A c item_name = "pencil" num_sold = 3000

store_name = "Target"

— — — — — ——
store sales store sales

(a) Unoptimized (b) Optimized

store, item, sales

Figure 12: Derivation tracing queries for <Target, pencil, 3000> in view Calif

Theorem 5.5 (Derivation Tracing using Key Information) Let R; be a base table with
key attributes K;, i = 1..m, and let view V = m4(0¢c(R1 > --- < R,;,)) include all base table keys
(i.e., K; € A, i =1..m). View tuple ¢’s derivation is (ox,=r.x, (R1), ..., OK,,=t.K,, (Rm)). O

According to Theorem 5.5, we can use key information to fetch the derivation of a tuple directly
from the base tables, without performing a join. The worst-case query complexity is reduced from
O(n™) to O(mn), where n is the maximum size of the base tables, and m is the number of base
tables on which v is defined.

We have shown that tuple derivations for SPJ views can be traced in a simple manner. For
more complex views with aggregations or set operators, we cannot compute tuple derivations
using a single query over the base tables. In the next two sections, we present recursive tracing
algorithms for these views.

6 Derivation Tracing for ASPJ Views

In this section, we consider SPJ views with aggregation (ASP.J views). Although we have shown
that no intermediate results are required for SPJ view derivation tracing, some ASPJ views are
not traceable without storing or recomputing certain intermediate results. For example, Q2 in
Example 3.2 asks for the derivation of tuple ¢ = (5400) in the view Clothing. It is not possible to
compute t’s derivation directly from store, item, and sales, because total is the only column
of view Clothing, and it is not contained in the base tables at all. Therefore, we cannot find
t’s derivation by knowing only that ¢t.total = 5400. In order to trace the derivation correctly,
we need tuple (Macy’s, 5400) in the intermediate aggregation result to serve as a “bridge” that
connects the base tables and the view table.

We introduce a canonical form for ASPJ views in Section 6.1. In Section 6.2, we specify a
derivation tracing query for simple “one-level” ASPJ views. We then develop a recursive tracing
algorithm for complex ASPJ views and justify its correctness in Section 6.3. As mentioned
above, intermediate (aggregation) results in the view evaluation are needed for derivation tracing.
Relevant portions of the intermediate results can be recomputed from the base tables when needed,
or the entire results can be stored as materialized auziliary views in the warehouse; this issue is
further discussed in Section 9.1. In the remainder of this section we simply assume that all
intermediate aggregation results are available.

12

6.1 ASPJ Canonical Form

Unlike SPJ views, ASPJ views do not have a simple canonical form, because in an ASPJ
view definition some selection, projection, and join operators cannot be pushed above or be-
low the aggregation operators [GHQ95]. View Clothing in Figure 7 is such an example,
where the selection total > 5000 cannot be pushed below the aggregation, and the selection
category = "clothing" cannot be pulled above the aggregation. However, by commuting and
combining some SPJ operators [UlI89], it is possible to transform any ASPJ view query tree into
a form composed of a-m-0->x1 operator sequences that we call ASP.J segments. We call this seg-
mented form the ASPJ canonical form. An ASPJ segment may omit operators, although each
segment in the ASPJ canonical form except the outermost must include an aggregation operator
(otherwise the segment would be merged with an adjacent segment). For definition purposes,
when a unary operator is missing we assume there is a corresponding trivial operator to take
its place. The trivial aggregation on table T is a7, the trivial projection is 7, and the trivial
selection I8 Ctpye-

Definition 6.1 (ASPJ Canonical Form) Let v be an ASPJ view definition over database D.
1. v = R, where R is a base table in D, is in ASPJ canonical form.

2. v = agagerB)(Taloc(vi X -+ > vg)) is in ASPJ canonical form if v; is an ASPJ view in
ASPJ canonical form with a non-trivial topmost aggregation operator, j = 1..k. O

As mentioned in Section 4, although we can trace any view’s derivation by tracing through
one operator at a time based on the original view definition, that approach requires us to store or
recompute the intermediate results of every operator, which can be extremely expensive. Trans-
forming an ASPJ view definition into canonical form allows us to store or recompute fewer inter-
mediate results, by tracing through all operators in each segment together, as we will see in the
next section.

6.2 Derivation Tracing Queries for One-level ASPJ Views

A view defined by one ASPJ segment is called a one-level ASPJ view. Similar to SPJ views, we
can use one query to trace tuple derivations for a one-level ASPJ view.

Theorem 6.2 (Derivation Tracing Query for a One-Level ASPJ View) Given a one-
level ASPJ view V = v(Ry,..., Rp) = agager)(Taloc(R1 > -+ < Ry))), and given tuple
t € V, t’s derivation in Ry,..., R, according to v can be computed by applying the following
query to the base tables:

TQtw = SplitR, .. R (FoAG=1.G(R1 D - X Rpy))
Given tuple set T" C V', T’s derivation tracing query is:
TQT,U = SplitRl,...,Rm (Uc(Rl D] - e X Rm) X T) O

Here too, evaluation of the tracing query can be optimized in various ways as discussed in Sec-
tion 5.3.

13

Tctotal

O total > 5000

AllClothing

(‘xstore_name, sum(num_sold) as total
Gcategory = "clothing"

Figure 13: ASPJ segments and intermediate view for Clothing

6.3 Derivation Tracing Algorithm for Multi-level ASPJ Views

Given a general ASPJ view definition, we first transform the view into ASPJ canonical form,
divide it into a set of ASPJ segments, and define an intermediate view for each segment.

Example 6.3 (ASPJ Segments and Intermediate Views for Clothing) Recall the view
Clothing in Example 3.2. We can rewrite its definition in ASPJ canonical form with two seg-
ments, and introduce an intermediate view A11Clothing as shown in Figure 13. O

We then trace a tuple’s derivation by recursively tracing through the hierarchy of intermediate
views top-down. At each level, we use the tracing query for a one-level ASPJ view to compute
derivations for the current tracing tuples with respect to the views or base tables at the next level
below. Details follow.

6.3.1 Algorithm

Figure 14 presents our basic recursive derivation tracing algorithm for a general ASPJ
view. Given a view definition v in ASPJ canonical form, and tuple ¢ € wv(D), procedure
TupleDerivation(t, v, D) computes the derivation of tuple ¢ according to v over D. The main al-
gorithm, procedure TableDerivation(7, v, D), computes the derivation of a tuple set 7' C v(D)
according to v over D. As discussed earlier, we assume that v = v'(Vi,..., Vi) where v’ is
a one-level ASPJ view, and V; = v;(D) is available as a base table or an intermediate view,
j = 1.k. The procedure first computes 7’s derivation (Vi*,..., V) in (Vq,..., V) using the
one-level ASPJ view tracing query TQ(T,v', (V4,...,V,,)) from Theorem 6.2. It then calls pro-
cedure TableListDerivation({V},...,V;*},{v1,...,vx}, D), which computes (recursively) the
derivation of each tuple set V* according to vj, j = 1..k, and concatenates the results to form the
derivation of the entire list of view tuple sets.

Example 6.4 (Recursive Derivation Tracing) We divided the view Clothing into two seg-
ments in Example 6.3. We assume that the contents of the intermediate view A11Clothing are
available (shown in Figure 15). According to our algorithm, we first compute the derivation 77
of <6400> in AllClothing to obtain T} = {<Macy’s, 5400>}, then trace T}"’s derivation to the
base tables to obtain the derivation result in Figure 8. O

14

procedure TupleDerivation(¢,v, D)

input: a tracing tuple f, a view definition v, and a database D
output: ¢’s derivation in D according to v
begin
return (TableDerivation({t},v,D));
end

procedure TableDerivation(T,v, D)

input: a tracing tuple set 7', a view definition v, and a database D
output: 7"’s derivation in D according to v
begin

if v=R € D then return ((T));
// otherwise v = v’(vl,...,vk) where v’ is a one-level ASPJ view,
// V; =v;(D) is an intermediate view or a base table, j=1..k

(Vi VY« TQUT ' {V, . Vi)

return (TableListDerivation((Vy*,..., V), {v1,...,vx}, D));
end

procedure TableListDerivation({7y,...,Tx), {v1,..., v}, D)

input: a list of tuple sets 73,...,7; to be traced,

a list of view definitions vy....,v;, and a database D
output: the concatenation of 7;’s derivations according to wv;, 7= 1..k
begin

D* «+— o;

for j« 1 to k do
D* « D*o TableDerivation(Tj, v;, D);
return (D*);
end

Figure 14: Derivation tracing algorithm for ASPJ views

Note that we do not necessarily materialize complete intermediate aggregation views such as
AllClothing. In fact, there are many choices of what (if anything) to store. The issue of storing
versus recomputing the intermediate information needed for derivation tracing is discussed in
Section 9.1.

6.3.2 Correctness

To justify the correctness of our algorithm, we claim the following:

1. Transforming a view into ASPJ canonical form does not affect its derivation.

We can “canonicalize” an ASPJ view by transforming each segment between adjacent aggre-
gation operators into its SPJ canonical form. The process consists only of SPJ transforma-
tions [UlI89]. Theorem 4.8 shows that derivations are unchanged by SPJ transformations.

2. It is correct to trace derivations recursively down the view definition tree.

From Theorem 4.7, we know that derivations are transitive through levels of the view def-
inition tree. Thus, when tracing tuple derivations for a canonicalized ASPJ view, we can
first divide its definition into one-level ASPJ views, and then compute derivations for the
intermediate views in a top-down manner.

15

store_name ‘ total ‘

Target 1400
Macy’s 5400

Figure 15: A11Clothing table

We have so far introduced a simple tracing query for SPJ and one-level ASPJ views, and a
recursive tracing algorithm for general ASPJ views. In the next section, we consider derivation
tracing for even more general views that include the set operators union and difference.

7 Derivation Tracing for Views with Set Operators

In this section, we extend our derivation tracing algorithm for general ASPJ views that allow
arbitrary use of set union and difference operators in the view definition. In Section 7.1, we
briefly review tuple derivations for set operators, and provide an example justifying the definition
for the difference operator. In Section 7.2, we incorporate set operators into our view definition
canonical form, and we present a procedure to transform any ASPJ view with set operators
(referred to as a general view) into canonical form. Finally, in Section 7.3 we present a recursive
algorithm that traces tuple derivations for general views.

7.1 Tuple Derivations for Set Operators

Recall from Theorem 4.4 that the tuple derivations for set operators are:

U™ ry oy () = (00,24 (T1), -+ oy 0T =t (T)), for t € YU -+ - U Ty,
— Ny () = {1}, To), fort € Ty — T

For the union operator, given ¢t € Ty U ---U T,,, each tuple ¢ from any input table Ty,..., T,
contributes to t. For the difference operator, given t € Ty — Ty, the tuple t from T; and all tuples
in Ty contribute to t. Recall from Definition 4.1 that a tuple’s derivation fully explains why the
tuple appears in the operation result. In particular, a tuple ¢ appears in T7 — T3 not only because
dt € T, but also because =3t € T5. All tuples in Ty contribute to ¢ € T} — Ty in the sense that
they ensure =3t € T5. Example 7.1 further explains the necessity of including T5 in the derivation
oft € Ty —Ts.

Example 7.1 (Tuple Derivation for Difference) Consider tables R, S, T in Figure 16(a),
and view V. = R— (S —T) in Figure 16(b). Although we have not yet given our tracing algorithm
for general views, the derivation of tuple t = (2) € V using our algorithm (and consistent with the
tuple derivation definitions given above) is as shown in Figure 16(c). Notice that tuple (2) would
not have appeared in V without tuple (2) in 7. So (2) € T obviously contributes in a significant
way to (2) € V. In general, contributions of this sort are not exhibited in lineage tracing for a
tuple ¢ unless we include in #’s derivation all tuples in (or contributing to) the second operand of
the set difference operator. [

7.2 Canonical Form for General Views

We now define an extended canonical form that accommodates views with union and difference
operators, as well as aggregate, select, project, and join operators. The extended canonical form

16

R S T R S T
X X X X X X
1 2 2 1 2
2 4 3 4
3 4 6 6
-1
(a) b)) V=R—(S—T) © vy, (<2>)

Figure 16: Tuple derivation for set difference

is composed of two types of segments: A USP.J-segments, which are operator sequences in the form
a-U-m-0-Ix1, and D-segments, which contain a single difference operator. An AUSPJ-segment may
omit any of the operators in the operator sequence a-U-m-o-ix, but it must satisfy one of the
following:

1. It has an aggregate operator on the top.
2. It is directly below a D-segment.
3. It is below a join operator, and has a union operator on the top.

4. It is the top segment in the view definition, which means that no more segments lie above
this segment.

When a a, 7, or ¢ operator is missing from an AUSPJ-segment, for definition purposes we assume
a trivial operator is present, as in Section 6.1. In Figure 17, we provide a procedure Canonicalize
that transforms a general view definition tree into canonical form, divides the transformed view
definition into segments, and associates an intermediate view with each segment. We perform
canonicalizing transformations based on the following equivalences:

1. pulling up U: m4(RUS) =714(R)U7m4(S) and oc(RUS) = oc(R)U oc(9)
2. pulling up 7: o¢(m4(R)) = ma(oc(R)) and m4(R) g 7p(S) = maup (R < S)*
3. pulling up o: o¢(R) < 0c:(S) = ooacr (R 5)

As in Figure 17, we first pull up the union operators in the view definition tree as far as possible.
We then pull up projection and selection operators, and finally merge the same algebra operators
when they appear adjacent to each other. Notice that in the canonicalizing procedure, we pull
projection and selection operators above join operators, so that we can compress the operator
tree into as few segments as possible. This helps to reduce the total tracing cost, and possibly
the number of intermediate views that are stored. However, when we actually apply the tracing
query for each segment to obtain a derivation, we can sometimes push selection and projection
operators back below the join to reduce the cost of the tracing query, as discussed in Section 5.3.

Having obtained the canonicalized definition tree, we divide it into AUSPJ-segments and
D-segments, based on the following rules:

* Although we use natural join throughout most of the paper, all results carry over directly to theta join. For
this equivalence to hold in general, it is necessary to make the theta explicit.

17

procedure Canonicalize(wg)

input: a general view definition tree vg

output: a canonicalized view definition tree v with an intermediate view
associated with each segment in v

begin
copy vg to v;
pull union operators above selections and projections in v;
pull projection operators above joins and selections in v;
pull selection operators above joins in v;
merge the same algebra operators adjacent to each other in v;
divide v into segments;
define an intermediate view over each segment in v;
return (v);

end

Figure 17: Canonicalizing general view definitions

1. Every aggregation and difference operator begins a segment.
2. Every non-leaf child of a difference or join operator begins a segment.
3. The topmost node begins a segment.

Finally, we define an intermediate view for each segment. As with multi-level ASPJ views, when
tracing tuple derivations for a general view, each segment (intermediate view) becomes a “tracing
unit”. That is, we recursively trace tuple derivations down the view definition tree, through one
segment at a time, until we reach the base tables.

Theorem 7.2 (Extended Canonical Form) Procedure Canonicalize in Figure 17 returns a
view v in canonical form. v is equivalent to the given view vg, and the two views have equivalent
tuple derivations. [

Example 7.3 (Canonical Form for a View with Set Operators) Consider the general
view definition in Figure 18(a). Figure 18(b) shows the canonical form and its segments. Notice
that 011 is pulled up and merged with oy to obtain oya11, and 7g is subsumed by n5. O

7.3 Derivation Tracing Algorithm for General Views

Once we have obtained a canonicalized view definition, we can trace its tuple derivations through
one segment at a time. Theorem 7.4 presents the derivation tracing query for a one-level AUSPJ
view (or an AUSPJ segment). Tuple derivations for a D-segment are traced based on Theorem 4.4.

Theorem 7.4 (Derivation Tracing Query for a One-level AUSPJ View) Consider a

one-level AUSPJ view V = v(R],.. .,Rfk) = agagere)(U malog, (R] > --- 1 Rfj)). Given
7=1..k

tuple t € V, t’s derivation according to v can be computed by applying the following query to

the base tables:))
TQt = @ Splitle,...,R‘li (GenG=t.G(R{ > -+ R?]))

j=1.k d

18

>
/\
(‘53 <‘511
Uy (‘xlz
Us >0 14

(a) original view definition tree (b) canonicalized view definition

Figure 18: Canonical form for a general view

Given tuple set T" C V', T’s derivation tracing query is:

TQr,= () Splitg; g (o0(Rj <0< B) 1 T)

j=1.k d

For the special case where the traced tuple set is the entire view table V' (which will appear later
in our recursive tracing algorithm for general views), we use a flag “ALL” to specify that the
entire view table is to be traced, and the tracing query can be simplified by removing the semijoin:

TQALLy = @ SplitleMRJl' (o (R -+ R{])) O

j=1.k d

The recursive tracing algorithm for ASPJ views (Figure 14) can now be extended to
handle general views by modifying the procedure TableDerivation. The new specification for
TableDerivation(7,v, D) is given in Figure 19. As we recursively trace down a canonicalized
view definition tree, at each level we are tracing a view (or a base table) v that has one of three
forms: (1) v = R where R is a base table; (2) v = v'(vq,...,v;) where v’ is an AUSPJ-segment
and v; is an intermediate view or a base table, i = 1..k; (3) v = v; — vy where v; is an intermediate
view or a base table, ¢ = 1,2. These three cases map to the case statement in Figure 19.
For derivation tracing, we may need to store or recompute the contents of some intermediate
views, including the contents of the v;’s in case (2) and v in case (3). For case (2), to trace the
derivation of T according to v, we first apply the AUSPJ tracing query TQ from Theorem 7.4
to Vi,..., V¢ in order to obtain #’s derivation V;* in V;, + = 1..k. We then recursively trace
the derivations of the V;*’s through lower segments. For case (3), we trace the derivation of
T according to v; and the derivation of all tuples in vy(D) according to vy, as discussed in
Section 7.1. Recall from Theorem 7.4 that we do not need to store or recompute the actual
view table v3(D). Instead, we use a flag “ALL” to specify that the entire view table is to be traced.

19

procedure TableDerivation(T,v, D)
input: a tracing tuple set 7 (or the special symbol ALL),
a view definition v, and a database D
output: 7"’s derivation in D according to v
begin
case v=Re€ D:
if T= ALL then return ((R));
else return ((7));

case v="1'(v1,...,v8):
// v' is a one-level ASPJ view,
// V; =wv;(D) is an intermediate view or a base table, j=1..k
(VL Ve« T, (W, .., Ve D) s
return (TableListDerivation((Vj, ..., Vi), {v1,...,vx}, D));

case v = v — Vs
// V =uv(D),
// V; =wv;j(D) is an intermediate view or a base table, j=1,2
if T= ALL then T + V;
return (TableListDerivation((7, ALL),(v1,v2), D));
end

Figure 19: Derivation tracing algorithm for general views

8 Derivation Tracing with Bag Semantics

So far we have addressed the derivation tracing problem using set semantics: the base tables are
assumed to be sets, and the view is defined using operators with set semantics so that all operation
results, including the final view table, are also sets. In this section, we extend our definition for
tuple derivations as well as our tracing algorithms to consider bag semantics. That is, we treat
base tables and the results of o, 7, and <t operations as bags, and we use bag union (W) and
bag difference (=). Duplicate elimination, if desired, can be achieved using our aggregation ()
operator.

Duplicates can occur in base tables and/or in views. Consider the four scenarios in Figure 20.
Case (1) represents the scenario we have considered so far. Case (4) represents the most general
scenario to be addressed in this section, and case (2) will use the same algorithms as (4). Case
(3), in which views may have duplicates but base tables are known to have keys, allows us to
perform certain optimizations, related to the key-based example we gave earlier in Section 5.3. In
fact, we may choose to transform a case (4) scenario into case (3) by attaching system-generated
tuple IDs to the base data, in order to apply a more efficient tracing procedure.

In general, the derivation tracing problem for set semantics considered so far is subsumed by
the problem we are about to address for bag semantics. However, as we will see, the solutions we
gave for set semantics are simpler and more efficient than those for bag semantics, so the separate
treatment is worthwhile.

8.1 Tuple Derivations for Bag Semantics

Consider an operator Op with bag semantics. Given N copies of a tuple ¢ in Op(Ty,...,Tm),
there are N or more ways to derive ¢ from the T;’s, possibly because of duplicates in the T;’s,

20

base tables

no duplicates duplicates possible
' no duplicates))
view - -
duplicates possible 3) “4)

Figure 20: Base table and view scenarios

projection on non-key attributes, or because Op is a bag union. Thus, there may no longer be a
unique derivation for ¢ according to Definition 4.1. If Op is any operator except difference, there
are exactly IV derivations for ¢, each of which derives a copy of t. If Op is a difference operator,
the number of derivations may exceed the number of ¢’s in the result.

Similarly, given a view v, a tuple ¢ € v(D) may have multiple derivations. Sometimes, we may
want to retrieve the derivations of a tuple one by one. Other times, we may prefer a complete set
of contributing tuples, without distinguishing individual derivations. We introduce the concepts of
derivation set and derivation poolin Definitions 8.2 and 8.3 to cover both cases. Iirst, we redefine
tuple derivations for a view under bag semantics, because our previous definition (Definition 4.5),
although clearer, does not generalize to bag semantics. Definition 8.1 subsumes Definition 4.5.

Definition 8.1 (Tuple Derivations for a View) Let D be a database with base tables
Ry,..., Ry, and let V = v(D) be a view over D. Consider a tuple t € V.

1. v= R;: {t} is a derivation of t according to v.

2. v =Op(vi,...,v), where v; is a view definition over D, j = 1..k: Suppose (T7,...,T}) is
a derivation of ¢ according to Op (by Definition 4.1), and <R]1*, .. .,R?f) is a derivation of
T? according to v; over D (by this definition recursively), j = 1..k . Then (RI", .. .,Rf:)
is a derivation of t according to v.

Derivations for a tuple set T are constructed from all possible combinations of derivations for the
tuples in T such that the derivations selected for any t; =ty € T are different. 0O

As we can see, the number of derivations for a tuple set 7" may be exponential in the number of
tuples in T: if T contains n tuples, and each tuple has up to m derivations, then T" may have as
many as m" derivations. Thus, enumerating all derivations for a tuple set (Definition 8.2) can be
impractical, and we may prefer to trace the tuple set’s derivation pool (Definition 8.3).

Definition 8.2 (Derivation Set) Let D be a database with base tables Ry,..., R,,, and let
V = w(D) be a view over D. Given a tuple ¢ € V, the set of all of ¢’s derivations according to v
is called the derivation set of t according to v, denoted v=°p(t).> The derivation set of a tuple
set T'C Op(T1,...,Ty) is the set of all derivations of T, denoted v=°p (7). O

Definition 8.3 (Derivation Pool) Let D be a database with base tables Ry, ..., R,,, and let
V =wv(D) be a view over D. Given a tuplet € V, let (R;*,..., R,*) contain all tuples in any of ¢’s
derivations (based on Definition 8.1). (Ry*, ..., R,,”) is called the derivation pool of t according to
v, denoted v~ p(#). The derivation pool of a tuple set T C V contains all tuples in the derivation
pool of any tuple in 7', and is denoted by v=Fp (7). O

5 Although called a set, a derivation set may well have duplicates; that is, two derivations of ¢ may have the same
value.

21

D*,

| store_name | item_name |

Target binder
Target pencil
Target binder
Target pencil

Figure 21: Stationary contents

store

item

sales

| sad | s_name | city | state |

| iid |i_name | category |

| sad | iad | price | num_sold |

| 001 | Target | Palo Alto | CA |

| 0002 | pencil | stationery |

[001 Jooo2 [1 | 3000 |

store item sales
B | sad | s_name | city | state | | iad | i_name | category | | sad | iad | price | num_sold |
~ | [002 [Target | Albany [NY | [0002 [pencil [stationery | [002 J0002 [2 [2000]

Figure 22: Multiple derivations of (Target, pencil)

store

sales

| sid | s_name | city | state | | g | i_nainieem| prm— | | said | iad | price | num_sold |
001 | Target | Palo Alto | CA | 0(')02 | T t.g yv | 001 [0002 [1 3000
002 | Target | Albany | NY penct | satlonely 002 | 0002 | 2 2000

Figure 23: Derivation pool for (Target, pencil)

Notice that a view tuple’s derivation set and derivation pool contain exactly the same collection
of base tuples, but organized in different ways. As we will see, their tracing procedures will differ
considerably.

Example 8.4 (Multiple Derivations, Derivation Set, Derivation Pool) Consider a view
Stationary defined over our original tables store, item, and sales from Figures 1-3:
Stationary = ﬁStore—na-mevitem—“ame(Ucategory:“Stationary”(Store b item < sales)), where 7
now does not eliminate duplicates. Figure 21 shows Stationary’s contents. A single tuple
t = (Target, pencil) in Stationary has two derivations, DY and D}, as shown in Figure 22, so
t’s derivation set is {Df, D3}. Figure 23 shows t’s derivation pool. O

We are now considering two modes of derivation tracing: tracing individual derivations, and
tracing derivation pools. We can prove that the property of view and derivation equivalence after
our canonicalizing transformations (Theorem 7.2) still holds for bag semantics, derivation sets,
and derivation pools.
derivation sets or pools. The transitive property (Theorem 4.7) also applies to derivation sets
and pools under bag semantics, which allows us to trace derivations down the view definition tree
recursively. In addition, we prove the following theorems, which provide the groundwork for our
later tracing algorithms.

Thus, we can still transform a view into canonical form before tracing

Theorem 8.5 (Derivation Uniqueness for Unique View Tuples) Let v be a general view
over database D with bag semantics and no difference operators. If a tuple ¢ € v(D) has no
duplicates, then ¢ has a unique derivation in v. As a result, in this case v™'p(t) = v=Fp(t). O

22

Theorem 8.6 (Derivation Pool of a Tuple Set with Same-Valued Tuples) Let v be any
general view over database D. If all tuples in a tuple set 7" C v(D) have the same value ¢, then
v~ FPp(T) = v~Fp(t). This also implies that v=F p(ov=¢(v(D))) = v Fp(t). O

Theorem 8.7 (Derivation Pool of Selected Portion in View Table) Let v be any general
view over database D. To trace the derivation pool of a selected portion o¢(v(D)) of the view
table, we can define another view v’ = o¢(v), and trace the derivation of the entire view table
v'(D) according to v’. In other words:

v p(oc(v(D) = v p(v'(D)) = v~ p(ALL)
where v/ = o¢(v). O
In Sections 8.2, 8.3, and 8.4, we now develop techniques for: (1) tracing derivation pools; (2)

tracing derivation sets; and (3) associating a unique derivation with each view tuple using existing
or system-generated base table keys.

8.2 Tracing Derivation Pools

Tracing derivation pools for views with bag semantics is similar to tracing derivations for views
with set semantics as specified in Sections 5-7. We begin by specifying the derivation pools for
all of the relational operators, using bag semantics. Note that except for =, the only real change
from Theorem 4.4 is to replace {t} with or=(7") in several places.

Theorem 8.8 (Derivation Pools for Operators with Bag Semantics) Let T, Ty,..., T,
be tables. Recall that T denotes the schema of T;.

) = (or=((T)), for t € oc(T)
oa=¢(T)), for t € ma(T)
o, =T, (T1)s -+ o3 0T =t T (Tin)), for t € Ty - 1 Ty

0G= ()>7 fort € g aggr(B)(T)

t
t
t

)t

)(

P (Ty,.. ,Tm (
G aggr(B (
) (

(
(
(
(

t

0T, = t(Tl) 0T =t(T)), fort € Ty W--- W T,
<UT1:t(T1), UT2;,§7§(T2)>, fort € T1;T2 O

)
)
)
i Tl, Ty (8)

=Py () =

We show in Theorem 8.10 that the derivation pool tracing query for SPJ views can be obtained
by replacing the Split operator in Theorem 5.3 with a targeted split (TSplit) operator.

Definition 8.9 (T'Split Operator) Let T be a table with schema T, and let T; be a table with
schema Ty C T, ¢ = 1..m. We define the targeted split of T by Ty, ...,T,, to be:

TSplity, . 7, (T) = (Ti K Ty..., Trux T) O

Theorem 8.10 (Derivation Pool Tracing Query for an SPJ View) Let D be a database
with base tables Rq,..., R, and let V = v(D) = m4(0c(R1 < ... Ry,)) be an SPJ view over
D. Given tuple t € V, t’s derivation pool in D according to v can be computed by applying the
following query to the base tables:

TQtﬂJ = TSplitRl,...,Rm (UCAA:t(Rl DI ... X Rm))

Given a tuple set T'C V', T’s derivation pool tracing query is:

TQT, = TSplitRhm’Rm(Uc(Rl D .. DRy X T) O

23

procedure TableDerivation(T,v, D)

input: a tracing tuple set 7', a view definition v, and a database D
output: 7"s derivation pool in D according to v
begin

case v=Re D:
if T= ALL then return ((R));
else return ((Rx T));

case v = v'(v1,...,vk):
// v' is a one-level AUSPJ view,
// V; =wv;(D) is an intermediate view or a base table, j=1..k
(Vi VY« T, (W, .., Ve D) s
return (TableListDerivation((V{*,..., V), {v1,..., v}, D));

case v = v{=-vy:
// V =uv(D),
// V; =wv;(D) is an intermediate view or a base table, j=1,2
if T= ALL then T + V;
if T contains only tuples with value ¢
then return (TableListDerivation((7, ALL),(v1,0v,2:(v2)),D));
else return (TableListDerivation({T, ALL), (v1,vs), D));

end

Figure 24: Derivation pool tracing algorithm

We can similarly construct the derivation pool tracing query for one-level AUSPJ views (which
subsumes the tracing query for one-level ASPJ views) by replacing the Split operator in The-
orem 7.4 with TSplit. Notice that since TSplit (which performs semijoins) is less efficient than
Split (which performs projections), we recommend using the original tracing query when the base
tables are known to have no duplicates.

The derivation pool tracing procedure is obtained by making only small modifications to
procedure TableDerivation from Figure 19, shown as the underlined portions in Figure 24. We
replace T with R X T in the return value for the case v = R to retrieve all tuples in R that are
also in T, including duplicates. The tracing query TQ is now using TSplit from Theorem 8.10
instead of using Split from Theorem 7.4. Finally, for D-segments (v = vy +v3), we separate the
case where T’ contains only tuples with the same value t. When all tuples have the same value, the
recursive procedure call directly follows the derivation pool equation in Theorem 8.8. However,
if two tuples in T have distinct values, #; and ¢35 say, then we still need to include any copies of
t1 that might appear in vy (or derivations of such tuples), since any #1’s in vy are part of #3’s
derivation pool in v. A similar argument holds with ¢; and ¢, reversed.

8.3 Tracing Derivation Sets

Unlike the derivation pool for a tuple ¢, t’s derivation set separates its distinct derivations. In
this section we present a derivation enumeration technique that produces t’s derivations one by
one, thus generating t’s entire derivation set.

Procedure DerivationEnum(?, v, D) in Figure 25 traces the derivation set of a tuple ¢ according
to a general view v. We assume that v is already in canonical form (Section 7.2). However, when
recursively tracing down the view definition tree, we treat AUSPJ segments with an omitted

24

(i.e., trivial) aggregation operator separately. We also separate the bag union node from the SPJ
subtree in these segments for presentation clarity. Thus, each (intermediate) view v we trace
through during the derivation enumeration procedure has one of the following five forms: (1)
v=R; (2)v=ma(oc(vr - X< vg)); B) v=v1 W -Wog; (4) v="0"(v1,...,08); (5) v =v1-vg,
where R is a base table in database D, v; is an intermediate view or a base table, 7 = 1..k, and v’
is an AUSPJ segment with a non-trivial aggregation node. These cases map to the five cases in
Figure 25, in order.

For case (1), according to Definition 8.1 each copy of ¢ in R forms a derivation {t} of ¢ in V.
For case (2), we first compute ¢’s derivations in vy (D), ..., vx(D) based on Theorem 8.11:

Theorem 8.11 (Derivation Set for an SPJ View) Given an SPJ view V =v(T},...,T,,) =
ma(oc(Ti<x--->xTy)) and a tuple t € V, ¢’s derivation set according to v is

v () = {{t' T1}, .. A Tm}) |t € oopazi(Tix---xTp)} O

We initialize a Pending set to be ooaa=¢(vi(D) b -+ 1 vg(D)). According to Theorem 8.11,
Vt' € Pending: D* = ({t'.'V1},...,{t'.Vk}) forms a derivation of ¢ in v{(D),...,vs(D). We then
further trace the derivation set DS; of t.Vj according to v;, for j = 1..k. Based on Definition 8.1,
we then append the cross-product of the DS;’s to t’s derivation set, where DSy x DS; = {Dj o
D3 | DY € DSy, D; € DS3}. We remove t’ and its duplicates from the Pending set, and repeat
the above process until the Pending set becomes empty.

For case (3), where v is a bag union of vy, ..., v, each t in any v;(D) is a derivation of t € v(D)
according to the bag union operator, so each derivation of ¢ according to v; forms a derivation of
t according to v. Therefore, we simply enumerate through ¢’s derivations according to each v;,
adding them to the derivation set.

Consider case (4), where v is defined by an AUSPJ segment v’ over vy, ..., v; with a non-
trivial aggregation operator. Since v has no duplicates due to the aggregation, by Theorem 8.5
t has a unique derivation in Vi, ..., V} according to v’. This derivation (V*,..., V) is obtained
by tracing ¢ in Vi,...,V} according to v’. Then we trace the derivation set DS; for each Vr

according to v;. (More on this step below.) The cross-product of the DS;’s forms the derivation
set of t according to v.

For case (5), where v is a bag difference of v; and vy, each derivation of ¢ according to v; and
each derivation of Ty = v,z (v2(D)) according to vy together form a derivation of ¢ according
to v. Thus, t’s derivation set is the cross-product of ¢’s derivation set according to vy and Ty’s
derivation set according to vs.

Procedure TableDerivEnum(7, v, D) in Figure 25 is called to trace the derivation set of a
tuple set T" according to a view v. Recall from Definition 8.1 that derivations for a tuple set T" are
constructed from all possible combinations of derivations for the tuples in T such that the deriva-
tions selected for any t; = t5 € T are different. Let T have n tuples. We first trace the derivation
set DS; for each tuple t; € T, ¢ = 1..n. Then, for every combination of distinct derivations
Dq,...,D, from DS4,...,DS,, weadd D;U---U D, to the derivation set for T. Note that this
procedure can be extremely expensive if T is large. While calling TableDerivEnum is necessary
in the general case, in many cases we can replace it with the much cheaper TableDerivation
(Figure 24). In case (4), if v does not contain any difference operators, then by Theorem 8.5 ¢ has
a unique derivation in D according to v. Hence, we can use t’s derivation pool obtained by calling
TableDerivation, since in this case the derivation pool is the same as the derivation set. Like-
wise, in case (5), if v does not contain any difference operators, we can replace TableDerivEnum
with TableDerivation to obtain the single derivation for ALL.

25

procedure DerivationEnum(?, v, D)

input: a tracing tuple ¢, a view definition v, and a database D
output: the set of all ¢’s derivations in D according to v
begin

DS + @;

case v =Re D:
for each tuple in ogr=:(R) do
insert ({t}) into DS;
case v = my(oc(vy - DA wg)):
Pending + ocpa=t(vi(D) < -+ -1 vg(D));
while Pending # @ do
begin
pick a tuple t' in Pending;
for j <1 to k do
DS; + DerivationEnum(t'.Vj,v;, D);
insert all elements of DS; X ---x DS into DS
remove ' and all its duplicates from Pending;
end
case v = v W -Wug:
for j« 1 to k do
insert all elements of DerivationEnum(t,v;, D) into DS;
case v = v'(v1,...v;) where v/ is an AUSPJ segment with aggregation:
(Vo Ve = TQ{E o (VA o Vi) s
for j <1 to k do
DS; « TableDerivEnum(Vj*,vj, D);
DS « DSy x---x DS ;
case v = v1=vs:
DS + DerivationEnum(¢,v1, D) x TableDerivEnum(ALL, ov,z:(v2), D);
return (DS);
end

procedure TableDerivEnum (7T, v, D)

input: a tracing tuple set 7', a view definition v, and a database D
output: the set of all 7’s derivations in D) according to v
begin

let T={t1,...,tn};
for i< 1 to n do
DS; « DerivationEnum(#;, v, D);
DS + @;
for each element Dy,...,D, in DS; x ---x DS, do
if Vi#j:D; # D; then insert Dy U---UD, into DS;
return (DS);
end

Figure 25: Derivation enumeration algorithm

8.4 Using Key Information

We now propose an alternative approach to tracing view tuple derivations in the presence of
duplicates for multi-level ASPJ views. Suppose for now that view v’s base tables all have keys,
i.e., case (3) in Figure 20. We can extend v’s definition using the key information to obtain

26

a supporting view v’ such that v’, as well as all of its intermediate results, has no duplicates.
Then, after mapping each tuple ¢ € v(D) to a distinct tuple ¢’ € v/(D), we can retrieve a unique
derivation for ¢ by tracing the derivation of ¢’ according to v’ using the tracing algorithm for set
semantics. In other words, we use base table keys to assign a unique derivation to each copy of
each view tuple. If we are not interested in individual unique derivations, this technique is still
useful for tracing derivation sets and pools as in previous sections in a more efficient manner.

Theorem 8.12 (SPJ View Definition with Keys) Let D be a database with tables
Ri,..., Ry, and let V. = v(D) = mg(0c(Ry > --- < Ry,)) be an SPJ view over D. Sup-
pose each R; has a set of attributes K; that are a key for R;, 1+ = 1..m. Then we can define
a view V' = v'(D) = maur,u-uk,,(0c(Ry < -+ < Ry,)) that contains no duplicates. If V
contains n copies of a tuple ¢, then there are n tuples ¢,...,¢, in V’ such that ¢;.4 = ¢,
j = l..n. The derivation of each t; according to v’ is also a derivation of ¢ according to v, and

U_SD(t) = {’U/_lp(t]‘), j=1l.n}. O

According to Theorem 8.12, we can map each copy of a tuple ¢ € V to a distinct tuple ¢; € V/
such that £;.A = t. Then we can associate a unique derivation with each copy of ¢ by tracing
the corresponding t;’s derivation. We can also retrieve the entire derivation set (or pool) for ¢ by
tracing the derivations for all the ¢;’s. Recall from Theorem 5.5 that derivation tracing for views
that include base table keys (e.g., view v’) takes time at most linear in the size of Ry,..., R,
which is generally much more efficient than the derivation enumeration algorithm in Section 8.3.

Example 8.13 (SPJ View Extended with Keys) Consider again the problem of tracing the
derivation of (Target, pencil) according to view Stationary in Example 8.4. Suppose table
store has key store_id, item has key item_id, and sales has key (store_id, item_id). We first
define a view EXtStationary = ﬂ-store_name,item_name,store_id,item_id(Ucategory: “stat ionary”(Store =
item < sales)). Figure 26 shows the view contents. Let us map the traced tuple t =
(Target, pencil) in Stationary to ¢ = (Target, pencil, 001, 0002) in ExtStationary.
We retrieve t’s derivation according to ExtStationary and obtain the result in Fig-
ure 27. We can similarly map another copy of (Target, pencil) in Stationary to t” =
(Target, pencil, 002, 0002) in ExtStationary, and retrieve the second derivation, shown

in Figure 28. Notice that Figures 27 and 28 are identical to the two derivations in Figures 22, as
desired. [

Given a multi-level ASPJ view V = v(D), if v’s top segment contains an aggregation operator,
then V' has no duplicates, and each tuple in V' has a unique derivation (Theorem 8.5). If v’s top
segment contains no aggregation operator, i.e., V. = wq(oc(11 > --- 1 T,,)) where T; is a base
table or an intermediate aggregation view, we can first rewrite the top segment to include 7;’s key
attributes, asin Theorem 8.12. (For the cases where T; is an intermediate aggregation view, its key
is the groupby attributes. Otherwise we use base table keys.) Then, each tuple in the extended
view has a unique derivation which can be traced using the recursive algorithm in Figure 14.

For base tables without keys, we can still apply the techniques introduced in this section by
first attaching a system-generated key (e.g., the tuple ID or a surrogate) to each base tuple. We
then extend the view definition to include these keys as described earlier. After tracing tuple
derivations for the extended view, we project out the system-generated key attributes from the
derivation results to obtain the correct derivation according to the original view.

Extending the techniques of this section to general views including the bag operators union and
difference is somewhat complex, due in part to the requirement of uniform schemas in operands.
We leave the extension as an exercise for the reader.

27

store_name | 1item_name | store_id | 1itemad |

Target binder 001 0001
Target pencil 001 0002
Target binder 002 0001
Target pencil 002 0002

Figure 26: ExtStationary contents

store item sales
| s_id | s_name | city | state | | 1d | i_name | category | | s_id | 1d | price | num _sold |
| 001 | Target | Palo Alto | CA | | 0002 | pencil | stationery | | 001 | 0002 | 1 | 3000 |

Figure 27: Derivation of (Target, pencil,001,0002)

store item sales
| s_id | s_name | city | state | | 1ad | i_name | category | | s_id | 1id | price | num _sold |
| 002 | Target | Albany | NY | | 0002 | pencil | stationery | | 002 | 0002 | 2 | 2000 |

Figure 28: Derivation of (Target, pencil, 002,0002)

8.5 Algorithms Summary

We have presented four major derivation tracing algorithms:

1. The basic tracing algorithm (Sections 5-7) traces view tuple derivations under set semantics
for general views.

2. The pool tracing algorithm (Section 8.2) traces view tuple derivation pools under bag se-
mantics for general views. It retrieves all contributing tuples for the traced tuple without
distinguishing individual derivations. The algorithm itself is similar to the basic tracing
algorithm, although it incurs some overhead for handling duplicates in base tables and
intermediate views during the tracing process.

3. The enumerating algorithm (Section 8.3) traces view tuple derivation sets under bag seman-
tics for general views. It lists each derivation of the traced tuple separately. This algorithm
is the most expensive of the four algorithms we propose.

4. The key-based algorithm (Section 8.4) traces view tuple derivations in the presence of dupli-
cates in the view by using key information to associate a unique derivation with each view
tuple. In general, this algorithm is more efficient than the other three algorithms, but it
can only be used easily for multi-level ASPJ views and may require additional machinery
to generate tuple IDs.

9 Derivation Tracing in a Warehousing Environment

In a distributed, multi-source data warehousing environment, querying the sources for lineage
information can be difficult or impossible: sources may be inaccessible, expensive to access, ex-
pensive to transfer data from, and /or inconsistent with the views at the warehouse. In Section 9.1,

28

we consider the trade-offs between materializing and recomputing intermediate results in the view
definition tree, and conclude that storing intermediate aggregation results improves overall lin-
eage tracing and view maintenance performance. In Section 9.2, we discuss how we can reduce
or entirely avoid source queries, and perform efficient and consistent lineage tracing, by storing
modest amounts of additional auxiliary data from the source tables in the warehouse.

9.1 Materializing Intermediate Aggregate Results

In Sections 6 and 7, we saw that intermediate aggregation results are needed for derivation tracing
in the general case. There are two approaches to obtaining the necessary results. One approach is
to recompute the required intermediate data during the tracing process. This approach requires
no extra storage or maintenance cost, but the tracing process takes longer, especially when the
recomputation may require querying the sources. The other approach is to maintain materialized
auzxiliary views containing the intermediate results. In this approach, less computation is required
at tracing time, but the auxiliary views must be stored and kept up-to-date. Because efficient
incremental maintenance of multi-level aggregate views generally requires materializing the same
intermediate views we need for lineage tracing [QGMWO96], we take the materialized approach.

Example 9.1 (Materialized View for A11Clothing) To improve the efficiency of the tracing
process in Example 6.4, we materialize auxiliary view A11Clothing (in Figure 13) with the con-
tents shown in Figure 15. O

Note that when materializing A11Clothing, the tuple (Target, 1400) is never used when
tracing tuple derivations for Clothing since it is filtered out by the selection condition 1414155000
in Clothing’s definition. In this case, materializing the result of V' = 04,14155000(A11Clothing)
instead of A11Clothing seems to be a better choice. However, notice that V' is not incrementally
maintainable without storing A11Clothing. Thus, we would either need to recompute V' for each
relevant update, which would incur a high maintenance cost, or we need to store all of A11Clothing
in order to maintain V’. Therefore, materializing V' is not actually an improvement. In general,
given a view definition tree where selections are pushed down as far as possible, all selection
conditions above an aggregate are selections on the aggregated attributes, and therefore are not
incrementally maintainable without storing the entire aggregation results.

9.2 Derivation Views

By storing auxiliary data based on the source tables in the warehouse, we can reduce or entirely
avoid expensive source queries during lineage tracing. There is a wide variety of possible auxiliary
views to maintain, with different performance tradeoffs in different settings. A simple extreme
solution is to store a complete copy of each source table in the warehouse. Our tracing procedures
will then query these source table copies as if they are the sources. However, this solution can be
costly and wasteful if a source is large, especially if much of its data does not contribute to the view.
Also, computing selections and joins over large source table copies each time a tuple’s derivation
is traced can be expensive. Other solutions can in some cases store much less information and still
enable derivation tracing without accessing the sources, but the maintenance cost is higher. We
propose an intermediate scheme that achieves low tracing query cost with modest extra storage
and maintenance cost. For the following discussion, we focus on general ASPJ views with set
semantics.

After adding auxiliary views for intermediate aggregation results as described in Section 9.1,
the views of concern are those defined by the lowest-level segments, which are directly over the

29

|

o store_name,
sum(num_sold) as total

DV_AIlIClothing

Ocategory = "clothing"

Figure 29: View definition for DV_A11Clothing

source tables. Let V = v(Ry,..., R,,) be such a view. We introduce an auxiliary view, called
the derivation view for v. It contains information about the derivation of each tuple in V over
Ry, ..., R, as specified in Definition 9.2 given next. Theorem 9.3, which follows directly from
Theorem 6.2, then shows that any V tuple’s derivation in Ry,..., R, can be computed with a
simple selection and split operation over the derivation view.

Definition 9.2 (Derivation View) Let V = v(Ri,..., Rn) = agagerB)(Taloc(Ry > -+ b
R,.))) be a one-level ASPJ view over source tables Ry, ..., R,,. The derivation view for v, denoted
DV (v), is

DV (v)=0c(Ri<--- < Ry,) O

Theorem 9.3 (Derivation Tracing using the Derivation View) Let V be a one-level
ASPJ view over base tables: V = v(R1,..., Rn) = ag g) (Ta(oc(R1 > - 4 Ry))). Let
DV (v) be v’s derivation view as defined in Definition 9.2. Given a tuple t € V, t’s derivation in
Ry, ..., R, according to v can be computed by applying the following query to DV (v):

TQq = Splilr,,.. Rm (9G6=t.c(DV (v)))

Given tuple set 7" C V, T’s derivation tracing query using DV (v) is:
TQT,U = SplitRl,...,Rm (DV(U) X T), O

Example 9.4 (Derivation View for A11Clothing) The view A11Clothing in Example 9.1 is
defined on base tables store, item, and sales. Suppose these base tables are located in re-
mote sources that we cannot or do not wish to access. In order to trace tuple derivations for
Al1Clothing, we maintain a derivation view DV_Al11Clothing. Figure 29 shows the derivation
view definition, and Figure 30 shows its contents. Then, computing derivations for tuples in view
Al1Clothing only requires accessing view DV_A11Clothing, and not the source tables. [

Using previously devised techniques for data warehousing [ZGMW96, ZWGM97], the auxiliary
intermediate views and derivation views can be maintained consistently with each other, and with
other views in the warehouse. Note that in cases of warehousing environments where the sources
are inaccessible, the auxiliary views themselves need to be made self-maintainable. Previously

devised techniques can be used here as well [GIJM96, QGMW96].

30

| store_id | store_name | city | state | item_d | item_name | category | price | num_sold |

001 Target Palo Alto CA 0004 pants clothing 30 600
002 Target Albany NY 0004 pants clothing 35 800
003 Macy’s San Francisco CA 0003 shirt clothing 45 1500
003 Macy’s San Francisco CA 0004 pants clothing 60 600
004 Macy’s New York City | NY 0003 shirt clothing 50 2100
004 Macy’s New York City | NY 0004 pants clothing 70 1200

Figure 30: DV_A11Clothing table

There are alternative derivation views to the one proposed here that trade tracing query
cost for storage or maintenance cost. One simple option is to split the derivation view into
separate tables that contain the base tuples of each source relation that contribute to the view.
This scheme may reduce the storage requirement, but tracing queries must then recompute the
join. Of course if accessing the sources is cheap and reliable, then it may be preferable to query
the sources directly. However, a compensation log [HZ96] may be needed to keep the tracing
result consistent with the warehouse views. Determining whether it is better to materialize the
necessary information for derivation tracing or to query the sources and recompute information
at tracing time in a given setting (based on query cost, update cost, storage constraints, source
availability, etc.) is an interesting question left open for future work, and is closely related to

results in [Gup97, LQA97].

9.3 A System Supporting Derivation Tracing

Figure 31 illustrates an overall warehouse structure for our example that supports tuple derivation
tracing with materialized intermediate aggregation results and derivation views. The query tree on
the left side of Figure 31 is the original definition of view Clothing. In order to trace Clothing’s
tuple derivations, an auxiliary view Al1Clothing is maintained to record the intermediate ag-
gregation results (as discussed in Section 9.1). Furthermore, to trace tuples in A11Clothing,
derivation view DV_AllClothing is maintained (as discussed in Section 9.2). The final set of
materialized views is:

Clothing = mtotal(Ftotal>so00(A11C1lothing))

AllClothing = Qstore_name, sum(num_sold) as total(DV—A]-lClothing)
DV_Al1Clothing = 0category="clothing"(Store b item < sales)

Each view can be computed and maintained based on the views (or base tables) directly
beneath it using warehouse view maintenance techniques [QGMW96, ZWGM97]. Bold arrows
on the right side of Figure 31 show the query and answer data flow. Ordinary view queries are
sent to the view Clothing, while derivation queries are sent to the Derivation Tracer module.
The tracer takes a request for the derivation of a tuple ¢ in Clothing and queries auxiliary view
Al1Clothing for t’s derivation 73 in A11Clothing as specified in Theorem 5.3. The tracer then
queries DV_A11Clothing for the derivation 75 of 17 in D as specified in Theorem 9.3. T, is ¢’s
derivation in D.

10 Related Work Revisited

In this section, we revisit top-down Datalog query processing and the view update problem, and
examine the differences between those problems and ours. We also show how our lineage tracing

31

% User

Derivation Queries:
t’s derivation = ?

View Queries

Tctotal 7ttotal
‘ ‘ Derivation Tracer

Ootal > 5000 Gotal > 5000

; AHC]Othm T1 = t’s derivation
in AllClothing

0 store_name, o store_name,
sum(num_sold) as total ‘ sum(num_sold) as total

[DV_AIIClothing]
‘ T2 =T1’s derivation in D

category = "clothing" (‘Scategory = "clothing"
Warehouse

>

Sources

Figure 31: Derivation tracing in the warehouse system

algorithms can be applied to facilitate solutions to the view update problem.

10.1 Top-down Datalog Query Processing

In Datalog, relations are represented as predicates, tuples are atoms (or facts), and queries or
views are represented by logical rules. Each rule contains a head (or goal) and a body with some
subgoals that can (possibly recursively) derive the head [UlI89].

There are two modes of reasoning in Datalog: the bottom-up (or forward-chaining) mode and
the top-down (or backward-chaining) mode. The top-down mode proves a goal by constructing a
rule-goal graph with the goal as the top node, scanning the graph top-down, and recursively ap-
plying rule-goal unification and atom matching until finding an instantiation of all of the subgoals
in the base data. Backtracking is used if a dead-end is met in the searching (proving) process.

Top-down evaluation of a Datalog goal thus provides information about the facts in the base
data that yield the goal; in other words, it provides the lineage of the goal tuple. Our approach
to tracing tuple lineage is obviously different from Datalog top-down processing. Instead of
performing rule-goal unification and atom matching one tuple at a time, we generate a single
query to retrieve all lineage tuples of a given tuple (or tuple set) in an SPJ or one-level ASPJ
view. Our approach is better suited to tracing query optimization (as described in Section 5.3).
Also, we support lineage tracing for aggregation views and bag semantics, which are not handled
in Datalog. We do not handle recursion in this paper, although we believe our approach can be

32

extended to recursive views while maintaining efficiency.

10.2 View Update Problem

The well-known view update problem is to transform updates on views into updates against the
base tables on which the view is defined, so that the new base tables will continue to derive the
updated view. The problem was first formulated in [Sto75] and [DB78], and solutions were based
generally on the idea of view data lineage. In fact, [Sto75] provides a view update algorithm that
is similar to our algorithm for tracing the lineage of SPJ views. However, neither paper formally
defines the notion of data lineage, nor does it consider complex view scenarios (e.g., views with
aggregation) or the warehousing environment.

Our derivation tracing algorithm for ASPJ views can guide the view update process to find
an appropriate update translation for views with aggregation in many cases. For deletions (or
modifications), our derivation tracing algorithms can directly identify an appropriate set of base
relation tuples to delete (or modify), as shown in the following example.

Example 10.1 (View Update: Deletion) In Example 4.6 (Figure 11), we illustrated the
derivation for (2,8) in view V' = ax sum(v)(0y20(R)). When the view update command “delete
(2,8) from V7 is issued, we can use the tuple derivation to determine that (2,3) and (2,5)
should be deleted, and these should be the only changes. The updated base table will be
R ={(1,2),(1,4),(2,0)}, which derives the updated view {(1,6)}. Note that without using tuple
derivation tracing, a more naive algorithm might choose to delete (2,0) also, which maintains
“correctness” but deletes more than necessary. [

For insertions, the problem is harder, since the view tuple being inserted as well as its deriva-
tion do not currently exist. Our derivation tracing algorithms can be adapted to identify some
components of the possible derivations of a view tuple being inserted, thereby guiding the base
tuple insertions. Any attribute that is not projected into the view must be guessed using extra
semantics, such as user instructions or base table constraints, or left null. Even here, derivation
tracing can help the “guessing” process in certain cases, as shown in the following example.

Example 10.2 (View Update: Insertion) Suppose view update “insert (3,2) into V7 is
issued to the view in Example 4.6 (Figure 11). Since (3,2) is not in view V, we cannot ask for its
current derivation. We only know that after we update R, R should produce a new view with (3, 2)
in it. According to the tracing query for V' (as specified in Theorem 6.2), we can guess that after
the update, the derivation R* of (3,2) must satisfy the condition: ¥t € R*: t.X =3 A t.Y #0.
Assuming a constraint that R.Y attributes are positive integers, and considering the requirement
sum(R*.Y') = 2, we can also assert that V¢ € R*: .Y < 2. By further assuming a constraint that
R has no duplicates, we can assert that Vii,to € R*: ;.Y # t3.Y. Putting all these assertions
together, the only potential derivation of (3,2) is (3,2), so an appropriate base table update is to
insert (3,2) into R. O

Notice that the inserted tuple in Example 10.2 was carefully chosen. If (3,8) were inserted
instead, we would have to randomly pick a translation from the reasonable ones or ask the user
to choose. Even in this case, lineage tracing techniques together with base table constraints can
be very useful in reducing the number of possible translations.

33

11 Conclusions and Future Work

We formulated the view data lineage problem and presented lineage tracing algorithms for re-
lational views with aggregation using both set and bag semantics. Our algorithms identify the
exact set of base data that produced a given view data item. We also presented techniques for
efficient and consistent lineage tracing in a multi-source warehousing system. Our results can
form the basis of a tool by which an analyst can browse warehouse data, then “drill-through” to
the source data that produced certain warehouse data of interest. The basic data lineage problem
and solutions presented in this paper lead to the following additional research issues.

e Tuple derivations as defined in this paper explain how certain base relation tuples cause
certain view tuples to exist. Assuch, derivation tracing is a useful technique for investigating
the origins of potentially erroneous view data. However, in some cases a view tuple may
be erroneous not (only) because the base tuples that derive it are erroneous, but because
base relation tuples that should appear in the derivation are missing. For example, a base
tuple may contribute to the wrong group in an aggregate view because its grouping value is
incorrect. We plan to explore how this “missing derivation data” problem can be addressed
in our lineage framework.

e In Sections 9.1 and 9.2 we discussed trade-offs associated with materializing versus recom-
puting intermediate and derivation views, and we mentioned briefly self-maintainability of
auxiliary views. We are in the process of conducting a comparative performance study of
the various options.

e We believe that lineage tracing can be used to help solve related problems such as view
schema evolution and view update. Some initial ideas for view update were presented in
Section 10.2.

e In some situations, an analyst may wish to see not only the base data that derive a given
view data item, but also a representation of the process by which the view data item was
derived. Appropriate user interfaces need to be explored.

In summary, data lineage is a rich problem with many interesting applications. In this paper we
provide an initial practical solution for lineage tracing in data warehouses. We are implementing
a lineage tracing package within the WHIPS data warehousing prototype at Stanford [WGL196],
and we plan to extend our work in the many directions outlined above.

Acknowledgements

We are grateful to Sudarshan Chawathe, Himanshu Gupta, Jeff Ullman, Vasilis Vassalos, Yue
Zhuge, and all of our WHIPS group colleagues for helpful and enlightening discussions.
References

[BS81] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Trans-
action on Database Systems, 6(4):557-575, 1981.

[CDIT] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology.
SIGMOD Record, 26(1):65-74, March 1997.

34

[DB78]

[FJS97]

[GBLPY6]

[GHQO5]

[GIMO6]

[Gup97]

[HCC98]

[HQGW93]

[HZ96]

[LQA9T]

[QGMW96]

[Sto75]

[U1189]

U. Dayal and P.A. Bernstein. On the updatability of relational views. In Proc.
of the Fourth International Conference on Very Large Data Bases, pages 368-377,
Germany, September 1978.

C. Faloutsos, H.V. Jagadish, and N.D. Sidiropoulos. Recovering information from
summary data. In Proc. of the Twenty-Third International Conference on Very Large
Data Bases, pages 36-45, Athens, Greece, August 1997.

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational ag-
gregation operator generalizing group-by, cross-tab, and sub-totals. In Proc. of the
Twelfth International Conference on Data Engineering, pages 152-159, New Orleans,
Louisiana, February 1996.

A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data ware-
housing environments. In Proc. of the Twenty-First International Conference on
Very Large Data Bases, pages 358-369, Zurich, Switzerland, September 1995.

A. Gupta, H. Jagadish, and 1. S. Mumick. Data integration using self-maintainable
views. In Proc. of Fifth International Conference on Fxtending Database Technology,
pages 140-144, Avignon, France, March 1996.

H. Gupta. Selection of views to materialize in a data warehouse. In Proc. of the
Sizth International Conference on Database Theory, pages 98-112, Delphi, Greece,
January 1997.

J. Han, S. Chee, and J.Y. Chiang. Issues for on-line analytical mining of data
warehouses. In Proc. of the Workshop on Research Issues on Data Mining and
Knowledge Discovery, Seattle, Washington, June 1998.

N. I. Hachem, K. Qiu, M. Gennert, and M. Ward. Managing derived data in the
Gaea scientific DBMS. In Proc. of the Ninteenth International Conference on Very
Large Data Bases, pages 1-12, Dublin, Ireland, August 1993.

R. Hull and G. Zhou. A framework for supporting data integration using the material-
ized and virtual approaches. In Proc. of the ACM SIGMOD International Conference
on Management of Data, pages 481-492, Montreal, Canada, June 1996.

W.J. Labio, D. Quass, and B. Adelberg. Physical database design for data ware-
housing. In Proc. of the Thirteenth International Conference on Data Engineering,
pages 277-288, Birmingham, UK, April 1997.

D. Quass, A. Gupta, I. S. Mumick, and J. Widom. Making views self-maintainable for
data warehousing. In Proc. of the Fourth International Conference on Parallel and
Distributed Information Systems, pages 158-169, Miami Beach, Florida, December
1996.

M. Stonebraker. Implementation of integrity constraints and views by query modifi-
cation. In Proc. of the ACM SIGMOD International Conference on Management of
Data, pages 65-78, San Jose, California, May 1975.

J. D. Ullman. Database and Knowledge-base Systems (Vol 2). Computer Science
Press, 1989.

35

[WGL*96]

[Wid95]

[WS97]

[ZGMWO6]

[ZWGM97T]

J.L. Wiener, H. Gupta, W.J. Labio, Y. Zhuge, H. Garcia-Molina, and J. Widom.
A system prototype for warehouse view maintenance. In Proc. of the Workshop on
Materialized Views: Techniques and Applications, pages 26-33, Montreal, Canada,
June 1996.

J. Widom. Research problems in data warehousing. In Proc. of the Fourth In-
ternational Conference on Information and Knowledge Management, pages 25-30,
Baltimore, Maryland, November 1995.

A. Woodruff and M. Stonebraker. Supporting fine-grained data lineage in a database
visualization environment. In Proc. of the Thirteenth International Conference on
Data Engineering, pages 91-102, Birmingham, UK, April 1997.

Y. Zhuge, H. Garcia-Molina, and J. L. Wiener. The Strobe algorithms for multi-
source warehouse consistency. In Proc. of the Fourth Conference on Parallel and
Distributed Information Systems, pages 146-157, Miami Beach, Florida, December
1996.

Y. Zhuge, J. L. Wiener, and H. Garcia-Molina. Multiple view consistency for data
warehousing. In Proc. of the Thirteenth International Conference on Data Engineer-
ing, pages 289-300, Birmingham, UK, April 1997.

36

A Proofs

Al

Proof of Theorem 4.2

Theorem 4.2 (Derivation Uniqueness) Given ¢t € Op(11,...,T,,) where t is a tuple in the
result of applying operator Op to tables Ty,...,T,,, there exists a unique derivation of ¢ in
T1,...,T,, according to Op. O

Proof: Recall that we are assuming set semantics at this point. Suppose that ¢ has two derivations
in Tl, ..
be the same.

If Opis o m = 1. T] is a maximal set that satisfies Op(T]) = {t} and V¢’ € T]: Op({t'}) # @.
From the semantics of the aggregate operator, we know that 77 contains exactly all tuples in 7}
that have the same groupby attributes as t. So does T}'. Therefore, T{ = T}'.

For SPJ operator Op, we first prove that D* = (T7,..., T}) = D" U D" also satisfies require-

Wy D' =17,...,T})and D" = (T7,...,T)). We prove that the two derivations must

m

ments (a) Op(Ty,...,Ty) = {t}; (b) Vi = 1.m: Vt* € T*: Op(Ty,....{t"},....,T}) # @ in
Definition 4.1.
If Opis o, 7, or U.

(a
(b

)

Since D" and D" satisfy Definition 4.1(a), Op(D*) = Op(D'U D") = Op(D') UOp(D") = {t}

) Vt*eTre D*:t* €T ort* €T Supposet* € T!. Since D' and D" satisfy Definition 4.1(b),

Op(T7,{t"}, T7,) 2 Op(11,{t"}, Ty,) # @

If Op is x:

(a

=

LUy

R G R

)

~—

=
O

4=

= 4y

~—

~—

(17,...,T)]) satisfies Definition 4.1(a) and Op is monotone
Op(TE, -T2 2 Op(TY, ..., T0) = {1}

Consider an arbitrary 7] € D’ and t' € T/ since (17, ..., T}) also satisfies Definition 4.1(b)
@ COp(Ty,... . {t'},....,1,,) COp(T1,....,T},....,T,,) = {t}

Op(Ty,....{t'},....,T.) ={t}

t=t.Ty

Similarly, we can prove VI € D": Vt" € T": t" = t. T

VT e D*: Vt* € T: t* € T] or t* € T}, and therefore t* = ¢.T;

Op(Ty,...,Tr) C{t}

Op(Ty,...,Tx) =1t}

Consider an arbitrary 77" € D* and t* € T

t*e T ort* € T!. Suppose t* € T/

According to Definition 4.1(b), Op(Ty, ..., {t*},...,T}) # @

According to monotonicity of Op, Op(T7F, ..., {t*},..., 1) 2 Op(1},...,{t*},..., 1))
Op(Ty,.. {t*},..., T} # O

pis —:
(T7,T3) satisfies Definition 4.1(a): T — T3 = {t}.
t is the only tuple that is in 77, but not in T3.
Also, (17,T}) satisfies Definition 4.1(b): Vt* € T]: {t*} =T, # @, t* ¢ T}
T{ = {t}. Similarly, T{" = {t}
T =15 ={t}
From (a), we know Vt* € T7: t* =t = {t*} - Ty ={t} # @.
Also, Vi* e T5: t* £t = 1Ty —{t*} ={t} #0

Above, we have shown that D* = D’ U D" also satisfies requirements (a) and (b) in

37

Definition 4.1. According to the maximality of tuple derivation, D’ is a maximal subset of D
that satisfies the requirements. Thus, we know that D’ = D*. Similarly, we can prove D" = D*.
Therefore D' = D", and there is a unique derivation for every view tuple. O

A.2 Proof of Theorem 4.4

Theorem 4.4 (Tuple Derivations for Operators) Let T,T},...,T,, be tables. Recall that
T; denotes the schema of T;.
(1) = ({t}), for t € oc(T)
(t) = (o4=+(T)), for t € m4(T)
(t) = ({t-T1},.. ., {t.Tm}), fort € Ty -1},
anflggT(B)_1<T> (t) = <O-G=t~G(T)>7 fort € aG,aggr(B)(T)
() <UT1=f(T1)7"'7UTm:t(Tm)>,fOI‘tETlLJ---UTm
(t) = ({t}, Ty), for t € T — Ty O

Proof: To prove Op_l(Tl,...,Tm)(t) =(T,...,T,."), according to Definition 4.1 we need to prove:
1. T/ CTii=1.m.

2. Op(TY,..., T = {t}.
3.Vt e Op(Ty',...,{t'},....T) # @.

4.1, ..., T,") that satisfy 1, 2, 3: (T1",...,T,,") C (T, ...,T.").

o0~ iy (t) = ({1}), for t € o (T).
Let T' = {t}.

1. teoc(T)=teT=>T={}CT

2. teoc(T) = tsatisfies C = oc(T") = {t}

3. Consider an arbitrary ¢ € T, t' = t. Therefore, oc({t'}) = {t} # @
4. Consider an arbitrary 7" that satisfies 1, 2, 3.

= YWeT" oc({t"}) # @ and oc(T") = {t}

= Ve T ac({17) = {17} = {1)

= Vel t"=tel

= T"rCT 0

7TA_1<T>(t) = <UA:75(T)>, fort € ﬂ'A(T).
Let 7' = 04=+(T).

1. T" C T according to the definition of o
2. Vt'eT": t/.A=t. Therefore, m4(1') = {t}
3. Consider an arbitrary ¢ € T, t".A = t. Therefore, 74({t'}) = {t} # @

38

4. Consider an arbitrary 7" that satisfies 1, 2, 3.
ma(T") = {t}

Vi"eT": t" A=t

Vt// E T//: t// E T/

™ CcT [l

LU

<y () = ({8 T}, {E T }), for t € Ty o - Ty
Let ;' = {t.T;}, i = 1..m.
teTix---xTy,

tTieT,i=1..m
T/ CT;i=1.m

{t.T1} < - -1 {t.T;n} = {t} according to the definition of <

w oo e

Consider an arbitrary ¢ in an arbitrary T}

t=t.Ty

TV {t'}yx ... T ={t} £ @

Consider an arbitrary (T1",...,T,,") that satisfies 1, 2, 3.
TV Ty ={tand V" € TV TV . A"y T # @
V" e T!: Ty .. "} = T, = {t}

vt"e T t"=t.T; € T

" C T n

S

aG,aggr(B)_1<T> (t) = <UG=t~G(T)>7 for ¢ € aG,aggr(B)(T)°

Let T' = UG:t.G(T)-

T' C T according to the definition of &

Vt' e T" : /.G = t.G and Vt" such that t” € T and t" ¢ T' : t".G # t.G
t=(T"G,aggr(T".B)) (In other words, T" is the group from which ¢ is computed.)
G agerB)(T") = {t}

Consider an arbitrary ¢’ € 7"

t'.G=tG

G aggr(B){t'}) = {{t-G; aggr({t'.B}))} # @

w | =

4. Consider an arbitrary 7" that satisfies 1, 2, 3.
aG,aggr(B)(T”) = {t}

= Vi"eT" "G =tG

= Vt// 6 T//: t// 6 T/

= T"rCT n

U_I(Tl,...,Tm)(t) = (o1,=t(T1), ..., 0r=t(Th)), for t e TH U ---UT,,
Let TZ-I = UTi:t(Ti)-

1. T! C T; according to the definition of &
2. Ty UJ---UT,, = {t} according to the definition of U
3. Consider an arbitrary ¢ € T/, T{ U ... {t'}---UT], C{t'} # O

39

Consider an arbitrary (17, ...,T") that satisfies 1, 2, 3.
T/U---UT) =1t}

Vt"eT!" t"=tel)

Ti// g Ti/ D

o=

__1<T17T2>(t) = <{t}7T2>7 fOI‘ t E Tl - T2

It is obvious that 77 C T;.
tel —1T,
tg T

T =Ty =A{t} - T, ={t}

Consider an arbitrary t' € T}, t' =t

(W} - Ty= {1} £ @

Consider an arbitrary t' € T5, t' # t

-A{ty={t}#2

Consider an arbitrary (77, TJ) that satisfies 1, 2, 3.

T/ =Ty ={t}and Vt" € T{": {t"} = T) # &

vt" e T{": t" =t. Otherwise, if t” ¢ T then T — T} = {t}; if t"” € T} then {t"} - T} =@
Ty C 1l

Also, T) C T4 =1} O

I

S

A.3 Proof of Theorem 4.7

Theorem 4.7 (Derivation Transitivity) Let D be a database with base tables Ry,..., R,
and let V = v(D) be a view over D. Suppose that v can also be represented as V = v'(V1,..., V),
where V; = v;(D) is an intermediate view over D, for j = 1..k. Given tuple t € V, let V;* be t’s
derivation in V; according to v’. Then ¢’s derivation in D according to v is the concatenation of
all V;*s’ derivations in D according to v;, j = 1..k:

1=1..k
where (©) represents the multi-way concatenation of relation lists. [

Lemma A.1 (Contribution Transitivity) Let D be a database with base tables Ry, ..., R,,.
Given view V = v(D) =v'(V4,..., V%), where V; = v;(D) for j = 1.k, ¥Vt € V: Vt* € R; € D:

t* contributes to ¢t according to v <=

dj € 1..k,t' € V; such that t* contributes to ¢’ according to v; and ¢’ contributes to ¢ according to v'.

Proof of Lemma A.1: We use induction on the height of the query tree for v/, denoted h(v'),
where the v;’s are the leaves.

Base: For h(v') =0, v =v;. Lemma A.1 holds trivially.
Induction hypothesis: Suppose for 0 < h(v') < n — 1, Lemma A.1 also holds.
Induction step: For h(v') = n, v' = Op(v/',...,v)), V) = v,/(V1,..., V&), and h(v,’) < n—1,

40

p=1l.gq.

If t* contributes to ¢

According to Definition 4.5, 3p € 1..¢,3t"” € V,/ such that
t* contributes to t”” and t” contributes to ¢

Since h(v,’) < n — 1, according to the induction hypothesis, 35 € 1..k,t' € V; such that
t* contributes to t’ and t’ contributes to ¢”

According to Definition 4.5, t' contributes to ¢

dj € 1.k, t' € V;, t* contributes to ¢’ and ¢’ contributes to ¢.

If 35 € 1..k,t € V;: t* contributes to t’ and ¢’ contributes to ¢
According to Definition 4.5, 3p € 1..q,3t"” € V,/ such that
t' contributes to t” and t” contributes to ¢
Since h(v,’) < n — 1, according to the induction hypothesis, t* contributes to t"
According to Definition 4.1, t* contributes to ¢.

J -

U

> Uy

=
=
By induction, Lemma A.1 holds for v’ of height n, and therefore for any v’ and v. O

Proof of Theorem 4.7: Now, we prove Theorem 4.7 using Lemma A.l. We need to prove

that Vi = 1..m: all tuples in the R; component® of v~!p(t) are also in the R; component of
‘C?kvj_lD(Vj*)’ and vise versa.
7=1..

1. Consider an arbitrary R; and t* € v™!g, (¢)
= According to Definition 4.5, t* contributes to ¢
= According to Lemma A.1, 35 € 1..k,t' € V; such that
t'" contributes to ¢ according to v’, and ¢* contributes to ¢’ according to v;
t' € Vi and t* € v; 7'y (t)
t* e vj_lRi(Vj*), where Uj_lRi(‘/]‘)k) is the R; component of ,C?kvj_lD(Vj*)
7=1..

4y

[\

Consider an arbitrary R; and ¢* in the R; component of 4C?kvj_1D(Vj*)
7=1..

dj € 1..k, such that v; is defined over R;

€ vl p (V])

Jt' € V7, such that t* € v; ™" ()

t' contributes to ¢ according to v’, and t* contributes to ¢’ according to v;

According to Lemma A.1, t* contributes to ¢

According to Definition 4.5, t* € v=!p, (t) O

2

R AR

A.4 Proof of Theorem 4.8

Theorem 4.8 (Derivation Equivalence after SPJ Transformation) Tuple derivations of
equivalent SPJ views are equivalent. That is, given two equivalent SPJ views v; and vy, VD:
Vt € vi(D) = vo(D): vy p(t) = vy ' (). O

To prove this theorem, we first give a new definition of tuple derivation for SPJ views, which is
equivalent to Definition 4.5 when only SPJ views are considered. We then prove Theorem 4.8

6The derivation of a tuple consists of a list of subsets of base tables. The R; component of the derivation is the
subset of base table R; in the list. Here specifically, the R; component of U_lp(t) is vTlR, (®).

41

based on the new definition.

Definition A.2 (Tuple Derivation for an SPJ View) Let D be a database with base tables
Ry,..., Ry, and let V = v(D) be an SPJ view over D. Given tuple t € V,VR;, t* € R; contributes
to ¢ iff IR’ C R; for j = 1..m, such that

a) tev(R,...,R._ ,{t;}, R\, ,,...,R!
1 1—1 2+1 m
(b) t ¢ v(R}, ..., Ry, @, Ry, RL)

t’s derivation according to vis v™'p(t) = (R},..., R;,), where each R} contains all the tuples in
R; that contribute to ¢. O

Definition A.2 says that a base tuple t* € R; contributes to t in the view if there exist some
subsets of base tables (R}, ..., Rl), such that they produce ¢ with R, = {t*}, and cannot produce
t if R = @. We first prove that Definition A.2 is equivalent to Definition 4.5 for SPJ views.

Lemma A.3 (Definition Equivalence) Definition A.2 is equivalent to Definition 4.5 for SP.J
views. In other words, the derivation of ¢ defined by Definition 4.5 is the same as that defined by
Definition A.2 for every SPJ view and every traced tuple. [

Proof of Lemma A.3: We first prove the equivalence of the two definitions for views with a
single SP.J operator.

For V. = o¢(R) or m4(R), Vt € V, let (R*) and (R**) be t’s derivations defined by Defini-
tion 4.5 and Definition A.2.

Consider an arbitrary t* € R*

According to Definition 4.5 and the monotonicity of V, @ C v({t*}) C v(R*) = {t}
v({t7}) = {1}

v(2) =@ and v({t*}) = {t}

t* contributes to t according to Definition A.2

" e R™

Consider an arbitrary t* € R**

According to Definition A.2, v(2@) = @ and v({t*}) = {t}

v(R*UA{t*}) = v(R*)Uv({t*}) ={t} and ¥t; € R*U{t*}: v({t1}) # @
R* U {t*} also satisfies requirements (a) and (b) in Definition 4.5

From the maximality of R*, we know that t* € R*

Therefore, R* = R**.
For V=R S,Vt € V,let (R*, S*) and (R**, S**) be t’s derivations defined by Definition 4.5
and Definition A.2.

S 2 A

Consider an arbitrary t* € R*

According to Definition 4.5 and the monotonicity of V, @ C {t*} b S* C R* 1 §* = {t}
{t'}S*={t}and I S* =0

t* contributes to t according to Definition A.2

t e R

R

42

2. Consider an arbitrary t* € R**
= According to Definition A.2, 35" C S such that @< 5" = @ and {t*} 1 5" = {t}
= dt' € 5" such that {t*} > {t'} = {t}
= (R*U{t*}) x (S*U{t'}) = {t}. Also,
Vip € R*U{t*}: {t1} < (S*U{t'}) £ and V2 € S*U{t'}: (R*U{t*}) = {t2} # T
= (R*U{t*}, S*U{t'}) also satisfies requirements (a) and (b) in Definition 4.5.
= From the maximality of (R*, S*), we know that t* € R*.

Therefore, R* = R**. Similarly, we can prove S* = §**.

We already know from Theorem 4.7 that tuple derivation as defined by Definition 4.5 is
transitive. We can also prove this property for derivation as defined by Definition A.2. After
proving that Definition 4.5 and Definition A.2 are equivalent for views with a single SPJ operator,
due to the transitive property of tuple derivation, we can easily prove that Definition 4.5 and
Definition A.2 are equivalent for any SPJ view by induction. O

Proof of Theorem 4.8: Having proved that Definition A.2 is equivalent to Definition 4.5 for
SPJ views, we now prove Theorem 4.8 based on Definition A.2 (instead of Definition 4.5, which
is a more general definition originally used in the paper).

Given two equivalent SPJ views vy and vq, we know that VD = (11,...,T,,): v1(D) = va(D).
Given t € vi(D) = vo(D), Vt* € v;' (t): According to Definition A.2, there exists subsets of
the base tables (R},..., R],), such that they produce ¢ with R: = {t*}, and cannot produce ¢
if R = @, according to vy. Since these subsets produce exactly the same result using vy, we
know that ¢* must also contribute to ¢ according to vy. Therefore, v;' ,(t) C vy ' (t). We can
similarly prove that vy',(t) C vi',(t). Therefore, vy H(t) = vy p(t). O

A.5 Proof of Theorem 5.3

Theorem 5.3 (Derivation Tracing Query for an SPJ View) Let D be a database with base
tables Ry,..., Ry, and let V = v(D) = m4(0c(R1 < -+ - Ry,)) be an SPJ view over D. Given
tuple t € V, t’s derivation in D according to v can be computed by applying the following query
to the base tables:

TQtn = Splitr, . Rm (Fcra=t(R1 - A Ry,))

Given a tuple set T C V', T’s derivation tracing query is:
TQT,U = SplitR17...7Rm (UO(Rl D] - B Rm) X T)

where X is the relational semijoin operator. [

Proof: We need to prove:

vl p(t) = Splitr, ... R (Cazirc(R1 b4 ... Ryy))

’U_1D(T) = SplitR17...7Rm (Oc(Rl I Y Rm) X T)
Let:

VQIRlbﬂ"'NRm
Vlzac(Vg)
V =m4(Vh)

43

According to Theorem 4.7, we have:

'p(ma”lv (1)

'p(0a=(V1))

"ploc™ v, (04=:(V1)))

= Uy 1D(UA=t(V1))

= Splitr, .. Ru (04=t(V1))

= Splitr,,.. Rpy (Fa=t(oc(R1 <. .. Rpy)))
= SplitR, .. Ru (Ca=trc(R1 ... Ry,))

U_ID() =

v (1) = (v ()

teT

= U SplitR17...7Rm (UA:t/\C(Rl Y Rm))
teT

= SplitR, .. R (| Ta=tnc (R1 ... 4 Ryp)

teT
= Splitr, ... Rm (Faer(0c(R1 ... R,)
= SplitR17...7Rm (Uc(Rl ... Rm) X T) O

A.6 Proof of Theorem 5.5

Theorem 5.5 (Derivation Tracing using Key Information) Let R; be a base table with
key attributes K;, i = 1..m, and let view V = m4(0¢c(R1 X --- < R,;,)) include all base table keys
(i.e., K; € A, i = 1..m). View tuple ¢’s derivation is (ox,=t.x, (R1),- .., OK,=t.K,, (Rm)). O

Proof: Assuming (R7,..., R},) is the derivation of ¢, we need to prove that R} = ox,=+.x,(R;),
for i = 1..m. From Theorem 5.3, we know that

< 1(7 BERR) R:(n> = SplitRL...,Rm (UA:t/\C(Rl ... Rm))

L. Vt* € R} = mRr;(0a=iac(l1 > ... < Ry)): Since K; € A and K; € R;, t".K; = t.K,.
Therefore, t* € ox, =1k, (R;).

2. Vt* € og,=t.x,(R;): t*.K; = t.K;, and therefore t* € R}. Because otherwise, 3" € R¥, such
that t'.K; = t.K;. Then there exist two tuples t* # ¢/ in R; with the same K; value, which
conflicts with the key constraint.

Therefore RY = ox,=+.x,(R;), for i =1..m. O

A.7 Proof of Theorem 6.2

Theorem 6.2 (Derivation Tracing Query for a One-Level ASPJ View) Given a one-level
ASPJ view V = v(Ry, ..., Rn) = agager(B)(Ta(oc(R1 <+ Ry))), and given tuple t € V, t's
derivation in Ry, ..., R,, according to v can be computed by applying the following query to the
base tables:

TQtn = Splitr,,. . Rum (Oonc=t.(R1 - X Ry,)

44

Given tuple set T C V', T’s derivation tracing query is:

TQ7, = Splitr, . R (0c(Ri - Ry) x T) - [

Proof: We need to prove:

v_lD(t) = Splitr, .. Tw(0g=t.arc(Ti>x...x1,))
v~ p(T) = Splity, .1, (0c (T ...x Tp) X T)

Let:

‘/1 = ﬂ'A(U'C(Tl - XA Tm))

V= QG aggr(B) ("/1)

According to Theorem 4.7 and Theorem 5.3, we have:

’U_ID(t) = Ul_lD(aG,aggr(B)_lvl (t))
= U1_1D(UG:t.G(V1))
= SplitT17...7Tm (Uc(Tl > ... Tm) X UG:t.G(Vl))

= SplitThm Uc(Tl > ... Tm) X UG:t.G("TA(UO(Tl Y Tm))))

T
= Splitt,,. Tw(0c=tc(oc(Ti ... Ty)))
T

= Splitr, .. T (06=teac(T1 ... Tpy))

v™1p(T) can be computed from v~ (¢) similar as in Section A.5. O

A.8 Proof of Theorem 7.2

Theorem 7.2 (Extended Canonical Form) Procedure Canonicalize in Figure 17 returns a
view v in canonical form. v is equivalent to the given view vg, and the two views have equivalent
tuple derivations. [

Proof: If an operator o is the parent of another operator o’ in a view definition tree, we say o — o'.
We first prove that procedure Canonicalize(wg) returns the canonical form. In Canonicalize,
after we pull up the union operators in a top-down manner, there are only the following possibilities
for a union node (U) and the node right above it: — - U, & — U, x— U, U — U, or nothing
above U. For any other possibility, we can always pull the union operator further up. Pulling
up the projections afterwards does not affect the above patterns. At the same time, there are
only the following patterns for projections: — - U, @« — 7, U — @, @ — 7, or nothing above
7. Similarly, pulling up selections does not affect any of the above patterns, and there are only
the following patterns for selections: — - ¢, @ - 0, U = o, # = 0, ¢ — o, or nothing above
o. For join, any operator could be its parent: — —i<, @ =<, U =1, T =K, 0 =<, X=X,
or nothing above .. After merging the same-type operators, we are left with 18 possible two-
operator sequences out of 36 total possibilities in the definition tree after applying Canonicalize.
With the given 18 sequences, any two adjacent operators either belong to different segments, or
are in the order consistent with the sequence order in an AUSPJ-segment. Therefore, procedure
Canonicalize(vg) returns a canonical form.

45

We now prove the view equivalence after view transformations in Canonicalize. We learn
from [UlI89] that projection can be pushed above selections and joins while keeping a query (or
view) equivalent. Here, we prove that union operators can be also pushed above selections and
projections while keeping the transformed view equivalent to the original view. In other words,
we need to prove (1) m4(RUS) = m4(R)Uma(S5); (2) 04(RUS) = 04(R)Uca(S). For (1), Vt:
tems(RUS) < 3t' € RUS such that A=t < 3t' € Ror € Ssuchthat /. A=t <t € m4(R)
or m4(S) & t € ma(RUT4(S). We can similarly prove (2).

Finally, we prove the derivation equivalence after applying Canonicalize. Alternatively, we
can prove equivalent SPJ views with set unions have equivalent derivations. We have proven that
two equivalent SPJ views have equivalent derivations in Appendix A.4. We can easily extend the
results to views with set unions. [

A.9 Proof of Theorem 7.4

Theorem 7.4 (Tracing Queries for a One-level AUSPJ View) Consider a one-level AUSP.J

view V = U(R%,...,Rﬁ) = ag g (U WA(ch(R{ DI - D R{J)). Given tuple t € V, t’s
1=1..k
derivation according to v can be computed by applying the following query to the base tables:

TQiw = @ Splitle,...,R‘li (UC/\G:t.G(R{ B e X R?J))

j=1.k d

Given tuple set T" C V', T’s derivation tracing query is:

TQT,U = @ SplitRj R‘lij (Oc(R{ B - - - D] R?J) X T)

~)
7=1..

For the special case where the traced tuple set is the entire view table V' (which will appear later
in our recursive tracing algorithm for general views), we use a flag “ALL” to specify that the
entire view table is to be traced, and the tracing query can be simplified by removing the semijoin:

TQALLy = @ SplitleMRal'. (oc(Rj a1 R{])) L
J

7=1..k

Proof: We first prove:

vTp(t) = @ Splitijl,...,ijlj (og=tarc(Tjiva ... T)

1=1..k
’U_lp(T) = @ Splitijl,...,ijlj (UO(T]‘J > ...] T]'J]) X T)
7=1..k
U—lD(ALL) = @ SplitTj,17~~~7Tj,1j (UO(T]‘J I =Y T]'J]))
7=1..k

Let:
Vi=maloc(Tji>a---aTj))

vi= U)

1=1..k

V = aG,aggr(B)(V/)

46

According to Theorem 4.7, Proof A.7, and the derivation for set union operator, we have:

v_lD(t) = D(aG,aggr(B)_lvl(t))
="' p(og=ta(V"))

= @ vj_lD(UG:t.G(V/)))

= Splitijl,...,ijlj (0G=tarc(Tjiva...0aTj))

v~ 'p(T) can be computed from v~!p(t) similar as in Section A.5. We now prove v~' (V) based
on v=1p(T).

’U_1D(V) = @ Spl?:tijl,...,ijlj (UO(T]'J Y Tj,l]) X V)
7=1..k

= @ Spl@'tijl,...,ijlj (UO(T]‘J Y TL[])) O
7=1..k

A.10 Proof of Theorem 8.5

Theorem 8.5 (Derivation Uniqueness for Unique View Tuples) Let v be a general view
over database D with bag semantics and no difference operators. If a tuple ¢ € v(D) has no
duplicates, then ¢ has a unique derivation in v. As a result, in this case v™'p(t) = v=Fp(t). O

Proof: According to Definition 8.1, given a tuple ¢ in view v(D), a derivation of ¢ is a group of
base tuples that can produce ¢ by themselves. Given a monotonic view, each of t’s derivations
derive a tuple with value ¢ in the view table. These derived tuples cannot be removed by other
base tuples due to the view monotonicity. Therefore, if tuple ¢ € v(D) has no duplicates, it has
a unique derivation v=!p(¢). (Otherwise, if ¢ has multiple derivations, there must be multiple
tuples in v(D) with the same value as ¢. This conflicts with the fact that ¢ has no duplicates in
v(D).) Furthermore, t’s derivation pool contains exactly all tuples in ¢’s unique derivation; in
other words, v=Fp(t) = v 'p(t). O

A.11 Proof of Theorem 8.6

Theorem 8.6 (Derivation Pool of a Tuple Set with Tuples with the Same Value) Let
v be any general view over database D. If all tuples in a tuple set 7" C v(D) have the same value
t, then v=Fp(T) = v=Fp(t). This also implies that v=Fp(ov=¢(v(D))) = v Fpt). O

Proof: Vi* € v~ 'p(T): 3t' € T such that ¢* contributes to ¢. Because T contains only tuples

with value ¢, # = t. So, t* contributes to ¢, and t* € v=1p(¢). Therefore, v='p(T) C v=1p(t).
Also, since t € T, v™'p(T) D v~ 'p(t). Therefore, v 'p(T)=v " 'p(t). O

A.12 Proof of Theorem 8.7

Theorem 8.7 (Derivation Pool of Selected Portion in View Table) Let v be any general
view over database D. To trace the derivation pool of a selected portion oc(v(D)) of the view

47

table, we can define another view v’ = o¢(v), and trace the derivation of the entire view table
v'(D) according to v’. In other words:

v (oc(v(D))) = o' Tp(v'(D)) = v'Tp(ALL)

where v/ = o¢(v). O

Proof: Let v' = o¢(v),

A.13 Proof of Theorem 8.8

Theorem 8.8 (Derivation Pools for Operators with Bag Semantics) Let T, Ty,..., T,
be tables. Recall that T denotes the schema of T;.

Proof: We prove the theorem for <t and =. Others can be proved similarly.

N_l(Tl,...,Tm) (t) = <UT1:7§,T1 (Tl), vy OT =t T (Tm)>, forte Ty,

D> is a derivation of t € Ty < -+ 1 Ty, iff D* = ({£.T1},...,{t.Tm}), since D* satisfies
Theorem 4.4 as proved in Proof A.2. Therefore, in T}, only tuples with value ¢.T; contributes to
t €Ty <+ Ty, for i = 1..m. According to the definition of derivation pool, >~ !7,(#) contains
all tuples that contribute to t. Therefore, 17, (¢) = op,=+(T}), for i = 1.m. O

=N my () = (01, =4(Th), 01,2 (T2)), for t € Ty — T

D~ is a derivation of t € Ty =T, iff D* = ({t}, o1,2:(T%)), since D* satisfies Theorem 4.4 as proved
in Proof A.2. Therefore, tuples in 17 with value ¢ and tuples in T3 with value different from ¢
contribute to t € Ty — Ty. Therefore, =" q, 1y (t) = (o1, =1(T1), 0,24 (T2)), for t € Ty = T. O

A.14 Proof of Theorem 8.10

Theorem 8.10 (Derivation Tracing Query for an SPJ View) Let D be a database with
base tables Ry,..., Ry, and let V = v(D) = ma(0c(R1 < ... Ry,)) be an SPJ view over D.
Given tuple t € V, t’s derivation pool in D according to v can be computed by applying the
following query to the base tables:

TQL‘,U = TSplitRl,...,Rm (UC/\AZL‘(RI ... X Rm))

48

Given a tuple set T'C V', T’s derivation pool tracing query is:

TQr. = TSplitg, . g, (cc(R1<...d Ry) X T) O

Proof: We need to prove:

’U_lp(t) = TSplitRhm’Rm (UA:t/\C’ (R1 > ...] Rm))
U_lp(T) = TSplitR17...7Rm (UO(Rl > ... Rm) X T)

From Theorem 4.4 with bag semantics, we know that
w4y (T) = Ty x T), for T C w4 (T1)
oo™ iy (T) = (T1 x T), for T C ¢ (T1)
<y) (D) = (T X Ty Ty X T), for T C Ty p<t -+ -0 Ty
= TSplitThm’Tm (T)

Let:
V2 Rl D] Rm
Vi = UC(V2)
V =m4a(V1)
According to Theorem 4.7, we have:
vTip(t) = v p(ra Ty (1)
= v p(oa=t(V1))
= U2_1D(UO_1V2(UA (V1))
=vy (V2 X A= t(Vl))

= v ' ploa= (V1))
TSplitr, . Rm (04=:(V1))

= TSplitr, .. Ru (0a=t(0c(R1 X ...x Ry,)))
= TSplitr,,..Rm (Ta=trc(R1 X ... 4 Ry))

= v p(ra” v (1))
=up(VixT)
'ploc™, (Vi x T))
=wv 'p(Vax (Vi xT))
TSplitr, .. R (Vi X T)
= TSplitr, . R (0c(R11 ... Ry,) X T) O

A.15 Proof of Theorem 8.11

Theorem 8.11 (Derivation Set for an SPJ View) Given an SPJ view V = v(T7y, ..

ma(oc(Ti<--->x1Ty)) and a tuple ¢ € V, ¢’s derivation set according to v is

v () = {{tT1}, T} | V€ oopami(Tix -+ T))} O

49

'7Tm)

Proof: VD*,
D~ is a derivation of ¢t € V' according to v

< JI"CV' =o0c(Ri...R,) such that 77 is a derivation of ¢ according to vy = w4(V’),
and D* is a derivation of 7" according to v’
Jt' € oa=tac(R1 ... R,,) such that 7" = {t'}
AT" CV" = Ry ... Ry, such that T” is a derivation of {t'} according to vy = o (V"),
and D* is a derivation of T” according to v”
T" =+t ,and D* = {t'."T1},...,{t'."Tm})
D*e DS,(t) O

T o

T o

A.16 Proof of Theorem 8.12

Theorem 8.12 (Extending SPJ View Definition Using Keys) Let D be a database with
tables Ry,..., R, and let V = v(D) = ma(oc(R1 > -+ <4 Ry,)) be an SPJ view over D.
Suppose each R; has a set of attributes K; that are a key for R;, + = 1..m. Then we can
define a view V' = v/(D) = maur,u--UK,, (6c(Ry X -+~ <1 Ry,)) that contains no duplicates. If
V' contains n copies of a tuple ¢, then there are n tuples ¢y,...,t, in V' such that ¢;.4 = ¢,
j = l..n. The derivation of each t; according to v’ is also a derivation of ¢ according to v, and

U_SD(t) = {’U/_lp(t]‘), j=1l.n}. O

Proof: We first prove that V’ contains no duplicates. Suppose there exist two tuples t = € V/,
then t.K; = t'.K; for i = 1..m. Since K; is the key of table R;, there exists a unique tuple
t; € R; such that ¢;.K; = t.K; = t'.K;. According to Definition 8.1, we know that ¢ has a unique
derivation D* = ({(t1)},...,{(tm)}). So has ¢’. Both ¢ and ¢’ are derived uniquely from D*,
which is conflicting to the fact that v'(D*) contains a single tuple.

According to Theorem 4.8, We can rewrite v as v = m4(v") while not affecting its tuple
derivations. Given n copies of a tuple ¢ in V, there are n derivations of ¢ in V'’ according to 7 4:
({(t;)}) such that ¢;,A = t, for j = 1..n. Since V' contains no duplicates, each ¢; has a unique

1—1

derivation v/~ p(t;) in D according to v’. According to Theorem 4.7, v'~' p(t;) is a derivation of

t according to v, and {v'"'p(t;) | 5 = 1..n} is the set of all derivations (the derivation set) of ¢
according to v. O

A.17 Proof of Theorem 9.3

Theorem 9.3 (Derivation Tracing using the Derivation View) Let V be a one-level ASPJ
view over base tables: V = v(Ri,..., Rn) = agaggr(B)(Taloc(R1 <-4 Ry))). Let DV (v) be
v’s derivation view as defined in Definition 9.2. Given a tuple t € V, ¢’s derivation in Rq,..., R,
according to v can be computed by applying the following query to DV (v):

TQ1 = Splitr, .. Rum (0G=t.c(DV (v)))

Given tuple set 7" C V| T’s derivation tracing query using DV (v) is:
TQT,U = SplitRl,...,Rm (DV(U) X T), O

Proof: The proof is obvious according to the definition of the derivation view (Definition 9.2)
and tracing queries for one-level ASPJ views (Theorem 6.2). O

50

