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Abstract

We consider the view data lineage problem in a warehousing environment: For a given data
item in a materialized warehouse view, we want to identify the set of source data items that
produced the view item. We formalize the problem, and we present a lineage tracing algorithm
for relational views with aggregation. Based on our tracing algorithm, we propose a number of
schemes for storing auziliary views that enable consistent and efficient lineage tracing in a multi-
source data warehouse. We report on a performance study of the various schemes, identifying
which schemes perform best in which settings. Based on our results, we have implemented a
lineage tracing package in the WHIPS data warehousing system prototype at Stanford. With this
package, users can select view tuples of interest, then efficiently “drill through” to examine the
exact source tuples that produced the view tuples of interest.

1 Introduction

Data warehousing systems collect data from multiple distributed sources, integrate the information
as materialized views in local databases, and keep the view contents up-to-date when the sources
change [CD97, IK93, LW95, Wid95]. Users can then perform data analysis and mining based on the
warehouse views. However, the view contents alone sometimes do not provide sufficient information
for in-depth analysis. In many cases, it is useful to be able to “drill through” from interesting view
data all the way to the original source data that derived the view data. For a given view data
item, identifying the exact set of base data items that produced the view data item is termed the
view data lineage problem [CWW97]. The primary motivation for supporting view data lineage
is to enable further analysis of interesting or potentially erroneous view data, and this function is
of clear benefit in OLAP and data mining environments. Other application domains include, e.g.,
scientific databases [HQGW93] and network monitoring systems. Our algorithms and results for
lineage tracing also can be applied to the problems of view update [DB78], materialized view schema
evolution [GMR95], and data cleansing. See [CWWO97] for further discussion on these applications.

To compute the lineage of a view data item, we need the view definition and the original source
data, as well as possibly auziliary information representing certain intermediate results in the view
definition. In a distributed multi-source data warehousing environment, querying the sources for
lineage information can be difficult or impossible: sources may be inaccessible, expensive to access,
expensive to transfer data from, and/or inconsistent with the views at the warehouse. By storing
additional auxiliary information in the warehouse, we can reduce or entirely avoid source accesses
for lineage tracing. There are numerous options for which auxiliary information to store, with
significant performance tradeoffs. For example, storing a copy of all source data in the warehouse
will improve lineage tracing by avoiding remote source queries altogether, but it also significantly
increases warehouse storage cost and may introduce extra maintenance cost.

*This work was supported by DARPA and the Air Force Rome Laboratories under contracts F30602-95-C-0119 and
F30602-96-1-0312.



There has been growing interest in lineage tracing in industry (often referred to there as drill-
through) although products so far support only primitive or special-purpose capabilities, based only
on schema information or specific forms of aggregate views. The problem of how to enable and
perform instance-level lineage tracing for general views in a consistent and efficient manner in a
warehousing environment has not been studied to the best of our knowledge. In this paper, we
provide an initial practical solution for tracing the lineage of tuples in set-based aggregate-select-
project-join (ASP.J) views in relational data warehouses.! This class of views is quite powerful and
includes many of the commonly-used warehouse data transformations. As future work we plan to
extend our results to other, more general, data transformations.

The contributions of the paper include the following.

1. We formulate the view data lineage problem and develop a lineage tracing algorithm for re-
lational ASPJ views. The tracing procedure can be generated automatically from a view
definition, and all queries in the procedure can be optimized easily by a standard DBMS. We
also discuss further optimizations of the tracing procedure in special-case scenarios.

2. For the restricted case of SPJ views, we introduce a family of schemes for storing auziliary views
to provide consistent and efficient lineage tracing in a distributed warehousing environment.
The various schemes offer different advantages and tradeoffs, thus different schemes are suitable

for different settings.

3. We present a performance study of our proposed auxiliary view schemes using a cost model
that incorporates lineage tracing cost as well as overall view maintenance and storage costs.
We identify which schemes present the best overall performance in which settings.

Based on these results, we have implemented a view tuple lineage tracing package as part of the
WHIPS [HGMW95] data warehousing prototype at Stanford.

1.1 Related Work

The problem of tracing view data lineage is clearly related to work in the area of view update [Sto75,
Kel86]. In [CWW97] we provide an in-depth discussion of the relationship, including showing how
our work on lineage tracing can be used to improve the view update process. Our work also re-
lates to some extent to work in deductive databases [UlI89], scientific databases [HQGW93], and
multi-dimensional databases [GBLP96]. In each case, a problem is addressed that roughly includes
retrieving lineage information for a specific type of views. However, none of these papers, including
the previous view update work, develops a complete lineage tracing solution for general relational
views with aggregation in a distributed warehousing environment. Nor has the performance issue
been investigated in any depth considering lineage tracing, view maintenance, and storage costs.
Note that our initial work on lineage tracing in warehousing environments [CWW97] forms the basis
for the present paper.

[LBMO8] presents a solution for explicitly storing lineage (which they call attribution) of data
items in query results based on a mediation architecture. Coarse-grained lineage information is
stored when queries are computed—it identifies which sources data items were derived from, along
with additional information such as timestamps and source quality. In the data warehousing context,

'Our approach generalizes to include other relational operators such as union and difference, as well as to duplicate
semantics, but we omit the extensions due to space limitations in this paper; please see [CWWO97].
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Figure 1: A simple warehousing scenario

[BB99] presents a scheme whereby the identifier of each warehouse data transformation is attached
to all objects generated by the transformation, so that the user can trace which transformations
produced each warehouse data object. Neither [LBM98] nor [BB99] can retrieve fine-grained lineage,
such as identifying exactly which source data items produced a given view data item. [WS97] proposes
a framework for computing and verifying the approximate lineage of any given view “grain” based
on the view’s weak inverse. The paper does not, however, provide a mechanism for generating the
weak inverse given the view definition. Finally, [FJS97] uses a statistical approach to reconstruct
base data from summary data and certain knowledge of constraints. This approach does not require
access to the base data. However, it provides only estimated lineage information, and does not ensure
accuracy. In contrast to all of the above approaches, we propose a solution that computes exact, fine-
grained lineage for any tuple in any relational ASPJ view, using a tracing procedure automatically
generated from the view definitio and a small amount of auxiliary information maintained together
with the warehouse views.

Some other recent work has dealt with data warehouse design issues, and thus relates to our
storage of auxiliary views to improve performance. [LQA97] and [RSS96] consider the problem of
selecting auxiliary views and indexes to store in order to minimize total view maintenance cost.
[Gup97] provides a theoretical solution that finds the warehouse design that minimizes warehouse
query cost given certain constraints on the maintenance cost. All three papers develop heuristics
and search algorithms for a large solution space. In this paper, we consider the problem of storing
auxiliary views primarily to enable and optimize the lineage tracing process. Because lineage tracing
queries are of a special form, we have a relatively small solution space. Therefore, we are able to
conduct a comprehensive performance study of different schemes under different scenarios considering
lineage tracing, view maintenance, and storage costs.

In industry, most OLAP systems support a “drill-down” capability for multidimensional ware-
house data, allowing aggregated dimension data to be unrolled one level at a time within the ware-
house. A few products further support “drilling through” to the original transactional data, also
stored in the warehouse [DB2, Pow]. Some on-line reporting systems allow report-to-report “drilling”
based on annotations, e.g., by creating hyperlinks from data in one report to lineage information in
another report [Imp]. All of these products focus on specific types of views in specific settings, and
do not enable lineage tracing through general relational views as we consider in this paper.

2 Motivating Example

In this section, we provide a simple example to motivate the lineage tracing problem and to intro-
duce terminology used throughout the paper. Figure 1 shows a simplified diagram of a financial data



Daily Earnings Purchases

| ticker | high | low | closing | | ticker | industry earnings | | tranlD | ticker | date | price | shares
AAA 29 25 26 AAA | automobile 0.5 0021 AAA 1/5/98 40 100
BBB 89 87 89 BBB computer 4.0 0022 BBB 1/5/98 16 100
CCC 75 74 74 CCC computer 1.2 0023 CCC | 3/24/98 70 300
DDD 120 | 100 120 DDD medicine 2.0 0024 BBB 6/7/98 40 50
EEE 72 67 70 EEE retail 1.5 0025 DDD | 6/11/98 80 200
FFF 12 10 12 FFF | automobile 0.5 0026 CCC 7/2/98 80 300

Figure 2: Sample data

warehousing system, in which the solid arrows represent data flow and the dashed arrows represent

queries.

Warehouse sources. The warehouse is based on information from the following source tables:
s1.Daily(ticker, high, low, closing)
s2.Earnings(ticker, industry, earnings)
s3.Purchases(tranID, ticker, date, price, shares)

The Daily table at source s1 (a stock market database, say) contains the latest stock price infor-
mation, including the high, low, and closing price of each stock (identified by ticker symbol) for the
most recent working day. The Earnings table at source s2 (an analysis firm’s database, say) lists the
latest earnings per share of each stock, and the industry the stock belongs to. The Purchases table
at source s3 (a stockbroker’s database, say) records all stock purchases, including the transaction
ID, purchase date and price, as well as number of shares in each transaction. Sample table contents
appear in Figure 2.

Warehouse materialized view. Suppose the warehouse user wants to monitor a list of all
“promising” industries, where an industry is regarded as promising if some stock in that industry
is gaining money over all purchases (i.e., the latest closing price is higher than the average share
purchase price), and the stock has a price-earnings ratio below 40. To this end, the warehouse defines
a materialized view Promising. The view definition is expressed as SQL and as a relational algebra
tree in Figure 3, where the a operator represents group-by and aggregation [CWW97]. Over our
sample data the view contains two tuples, (computer) and (medicine).

Data lineage. Suppose the user wishes to learn more about why an industry is listed in his
view. He selects view tuple (computer) and traces its lineage to see the source tuples that produced
the view tuple. The lineage result contains three tables, each of which contains those tuples in
the corresponding source that produced the view tuple; see Figure 4. Section 3 provides a formal
definition of view data lineage and a procedure to identify the lineage of any tuple in any given view.

Auxiliary views. We may want to store additional information to enable lineage tracing. In our
example, intermediate results from the group-by/aggregate node oy;jcker,... in Promising’s algebraic
definition (Figure 3) are needed to trace the lineage of tuples in Promising. We can recompute
the relevant portion of the aggregate when tracing a tuple’s lineage, or we can define an auziliary
materialized view over this node specifically for lineage tracing. As mentioned in the introduction,
we may also choose to store auxiliary views in the warehouse in order to perform lineage tracing
without querying the sources. Section 4 describes a number of schemes for auxiliary information and



CREATE VIEW Promising AS

SELECT e.industry o

| industry
FROM Purchases p, Daily d, Earnings e G
. . closing / earnings <40 A
WHERE p.ticker = d.ticker | cost / shares < closing
AND d.ticker = e.ticker =
AND d.closing/e.earnings < 40
GROUP BY p.ticker, e.industry

HAVING

SUM(p.price*p.shares)/SUM(p.shares) < d.closing [ij%;;j Purchases LE%TET%J

Figure 3: View definitions for Promising

Octicker, .
sum(price * shares) as cost,
sum(shares) as shares

i

Daily Purchases Earnings
| ticker | high | low | closing | | trantD | ticker | date | price | shares | | ticker | industrf | earnings |
0022 BBB | 1/5/98 16 100
| BBB | 89 | 87 | 89 | 0076 BBB | 6/7/93 10 = | BBB | computer | 4.0 |

Figure 4: Lineage of (computer) according to Promising

Section 5 analyzes their relative performance.

View maintenance. Both the user view being traced and any auxiliary views to support lineage
tracing must be kept up-to-date when the sources change. In this paper, we assume a standard
incremental view maintenance approach [GMS93, ZGMHW95]. Changes to each source table are
recorded in a delta table. During view maintenance, changes to the view are computed using a
predefined query called the maintenance expression. In our example, when tuples are inserted into
s1.Daily, the insertions are recorded in a delta table Daily-ins. Insertions to the view Promising
can then be computed using a query (maintenance expression) that is the same as in Figure 3,
except that Daily is replaced by Daily-ins. Deletions to the view are computed similarly. We then
refresh the view table by applying the changes, and the view becomes up-to-date. To compute the
maintenance expressions, it is usually necessary to query the source tables, which can be problematic
as discussed earlier. Prior work has addressed this problem by adding auxiliary views to ensure self-
maintainability: a set of views is self-maintainable if they can be maintained using only the source
changes and the view data, without querying the sources [QGMW96].

As we introduce auxiliary views in the warehouse to support lineage tracing, overall warehouse
maintenance cost may increase since more views need to be maintained. However, the same auxiliary
views that help lineage tracing often can help maintain the user view, sometimes even making the
entire set of views self-maintainable.

3 Tracing View Data Lineage

Given a view data item I, the exact set of base data that produced I is called its lineage. In this
section we provide a formal definition of the data lineage problem, and we present our lineage tracing
algorithm for relational aggregate-select-project-join (ASPJ) views under set semantics. Extensions
for additional operators (union and difference) and for duplicate semantics, as well as further details
of our tracing solution, can be found in [CWW97].



3.1 View Data Lineage

To define the concept of view data lineage, we assume logically that the view contents are computed
by evaluating an algebraic view definition query tree bottom-up. Each operator in the tree generates
its result tuple-by-tuple based on the results of its children nodes, and passes the result upwards. For
convenience in formulation, when a view references the same relation more than once, we consider
each relation instance as a separate relation. (This approach allows view definitions to be expressed
using an algebra tree instead of a graph, while not limiting the views we can handle.) We first focus

on individual operators, defining the lineage of a tuple in an operator’s result based on its input.

Definition 3.1 (Tuple Lineage for an Operator) Let Op be a relational operator (o, 7, b, or
«), and let T'=Op(Ty,...,T,) be the table that results from applying Op to tables T1,...,T),.
Given a tuple t € T, we define t’s lineage in T4,...,T,, according to Op to be Op~!

(Ty,...,1r), where T7, ..., T are maximal subsets of 71, ..., T, such that:

(a) Op(T7,...,Ty) = {t}
(b) VT7: V* € T Op(Tr, ..., it} ... T5) # @

(T1yo o) (E) =

Also, we say that Op_lTi (t) = 17 is t’s lineage in T;, and each tuple t* in T contributes to t, for

k3 k3
! can be extended for the lineage of a set of tuples:

Op~Y gy, (1) = U(Op_l(Tl,...,Tm)(t))
teT

1= 1..m. Op~

where [ J represents the multi-way union of table lists, i.e., (Ry,..., Rp) U (S1,...,8,) = (R1 U
S1)y.. 0 (RnUSR)). O

In Definition 3.1, requirement (a) says that the lineage tuple sets (the 7;*’s) derive exactly t. From
relational semantics, we know that for any result tuple ¢, there must exist such tuple sets. Require-
ment (b) says that each tuple in the lineage does in fact contribute something to t. For example,
with requirement (b) and given Op = o, base tuples that do not satisfy the selection condition C'
and therefore make no contribution to any view tuple will not appear in any view tuple’s lineage.
By defining the 7;*’s to be the maximal subsets that satisfy requirements (a) and (b), we make sure
that the lineage contains exactly all the tuples that contribute to t. Thus, the lineage fully explains
why a tuple exists in the view. (Further motivation for and discussion of this definition appears in
[CWW9IT].)

Now that we have defined tuple lineage for the individual operators, we proceed to define tuple
lineage for arbitrary views. As mentioned earlier, a view definition can be expressed as a query tree
evaluated bottom-up. Intuitively, if a base tuple t* contributes to a tuple ¢ in the (logical) table
corresponding to an intermediate node in the view definition tree, and ¢’ further contributes to a
view tuple ¢, then t* contributes to t. More formally:

Definition 3.2 (Tuple Lineage for a View) Let D be a database with base tables Ry, ..., R,,,
and let V =v(D) be an ASPJ view over D. Consider a tuple t € V.
1. v = R;: Tuple t € R; contributes to itselfin V.
2. v=0p(vy,...,vx), where v; is a view defined over D, j = 1..k: Suppose t' € v;(D) contributes
to t according to operator Op (by Definition 3.1), and t* € R; contributes to ¢’ according to
view v; (by this definition recursively). Then t* contributes to t according to v.
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Figure 5: Tuple lineage for a view
Then t’s lineage in D according to v is v 1p(t) = (R},..., R, where R}, ..., R} are subsets of

Ry, ..., R, such that t* € R} iff t* € R; contributes to ¢ according to v, for i = 1.m. R} is t’s
lineage in R; according to v, denoted v='g, (¢). Finally, the lineage of a view tuple set T contains all

base tuples that contribute to any view tuple in the set T: v=!1p(T) = Jv~ip(t). O
teT

Example 3.3 (Tuple Lineage for a View) Consider tables R(X,Z) and S(Z,Y) in Figure 5(a),
and view V' = ax sum(v)(0y>o(R < S)) in Figure 5(d). We are interested in the lineage of tuple
(2,8) in V. It is easy to see that tuple (2,b) in R and tuples (b, 3) and (b, 5) in S contribute to (2, 3)
and (2,5) in (R < S), which contribute to the same tuples in oyso(R <1 .5), and further contribute
to (2,8) in V. Thus v ' g s((2,8)) = ({(2,0)}, {(b,3), (b,5)}) as shown in Figure 5(e). O

3.2 Lineage Tracing Procedure

Any aggregate-select-project-join (ASPJ) view v can be transformed into an equivalent form o’
composed of amo X1 operator sequences by commuting and combining some select-project-join (SP.J)
operators in the view definition tree. We call the resulting form v’s ASP.J canonical form, and we
call each amo < sequence an ASPJ segment. In ASPJ canonical form, each ASPJ segment except
the outermost must include a non-trivial aggregation («) operator (or it would be merged with an
adjacent segment). For details see [CWW9T7].

An ASPJ view v and its canonical form v’ are equivalent in the sense that VD: v(D) = v'(D).
In addition, lineage of tuples in v and v’ are also equivalent, i.e., VD: Vt € v(D) = v'(D): v ip(t) =
v’_lp(t); see [CWW9T7] for a proof. Thus, when tracing lineage for an ASPJ view, we can first
transform the view definition to its ASPJ canonical form, and then trace the view’s lineage based on
the canonical form. The uniformity of the canonical form makes it easier to generate view lineage
tracing procedures automatically, and it can make the tracing process more efficient. In the remainder
of the paper, we assume that the views we are tracing are in ASPJ canonical form. Note that our
example view Promising in Figure 3 is already in ASPJ canonical form. It contains two ASPJ
segments: (1) gicker,..(Purchases) (2) Minqustry(0...(Daily < (segment(1)) <t Earnings)).

A view defined by one ASPJ segment is called a one-level ASP.J view, and SPJ views are special
cases of one-level ASPJ views. The lineage of tuples in a one-level ASPJ view can be computed using

a single relational query, called the lineage tracing query.

Definition 3.4 (Lineage Tracing Query) Let D be a database, and let v be a view over D.
Given tuple t € v(D), TQ:, is a lineage tracing query for t and v iff TQ:, (D) = v™1p(t), where



procedure Lineage(7, v, D)
begin
if v = R € D then return ((T));
// else v = v'(vy, ..., vg) where v/ is a one-level ASPJ view,
// V; = v;(D) is an intermediate view or a base table, j = 1.k
(Vi VY« TQ(T, ', {1, ..., V& });
D + o;
for j « 1 to k do
// concatenate the lineage of each subview onto the result
D* + D*o Lineage(V;", v;, D);
return (D*);

end

Figure 6: Algorithm for ASPJ view tuple lineage tracing

v1p(t) is t’s lineage in D according to v, and T'Q:,, is independent of database instance D. We can
similarly define the tracing query for a view tuple set 7', and denote it as TQr, (D). O

Theorem 3.5 (Lineage Tracing Query for One-level ASPJ Views) Given a one-level ASPJ
view V = v(T1,...,Tn) = g ager(B)(Ta(oc(T1 > -+ -1 Ty))), and given tuple ¢ € V, t’s lineage in
Ti,..., T, according to v can be computed with the following query:

TQtn = Splitr, .. T (0cra=t.a(T1 - T},))

where Split is an operator that breaks a table into multiple tables, i.e., Splita, a4, (T) =
(ma, (1), ...,ma,,(T)). Given a tuple set 7' C V', T’s lineage tracing query is:

TQT,U = SplitT17...7Tm (Uc(Tl D] e X Tm) X T) O

Proof: See [CWWO97]. O

To trace the lineage of a view defined by multiple levels of ASPJ segments, we logically define an
intermediate view for each segment, and then recursively trace through the hierarchy of intermediate
views top-down. At each level, we use the tracing query for a one-level ASPJ view to compute
lineage for the current traced tuples with respect to the views or base tables at the next level below.
As discussed earlier, we can either materialize and maintain the intermediate views for the purpose
of lineage tracing, or we can recompute the relevant intermediate results at tracing time. Because
efficient incremental maintenance of multi-level aggregate user views generally requires materializing
the same intermediate views we use for lineage tracing [Qua96], let us assume that the intermediate
views are materialized.

Figure 6 presents the recursive tracing procedure. Given a view v in ASPJ canonical form and
tuple t € v(D), procedure Lineage(T = {t},v, D) computes the lineage of ¢ according to v over
D. As discussed earlier, we assume that v = v'(vy,...,vx) where v’ is a one-level ASPJ view, and
V; = v;(D) is available as a base table or an intermediate view, j = 1..k. The procedure first computes
T’s lineage (Vi*, ..., V) in (V1,..., Vi) using the one-level view tracing query TQ(T, v, (V1, ..., V)
as in Theorem 3.5. It then computes (recursively) the lineage of each tuple set V7 according to vy,
7 = 1.k, and concatenates the results to form the lineage of the entire list of view tuple sets.
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Figure 8: Tracing queries

Figure 7: Tracing Promising

Example 3.6 (Tracing the Lineage of Promising) Consider view Promising from Section 2.
Recall that it has two ASPJ segments, illustrated in Figure 7. We define a materialized intermediate
view Stocks corresponding to segment 1 as shown in Figure 7. Given view tuple ¢ = (computer),
we first compute ¢’s lineage in tables Daily, Stocks, and Earnings using the lineage tracing
query: SplitpailystocksEarnings(0c (Daily > Stocks i<t Earnings)) where the selection condition
C'is (price/earnings < 40 A cost/shares < closing A industry = “computer”). The result of
this first tracing query is (Daily*, Stocks*, Earnings®) as shown in Figure 7. Since Stocks is an
intermediate view, we then further trace the lineage of Stocks™ in source table Purchases, obtaining
Purchases™ in Figure 7. Concatenating Daily*, Purchases™, and Earnings*, we obtain the final
lineage result that was shown in Figure 4. [

3.3 Optimizations

There are some obvious improvements that we can make to our basic algorithm. For example,
selection conditions or semijoins in the tracing query can be pushed below the join operator, which
significantly reduces tracing cost in many cases. If the user view contains a key for each base table,
we can use the keys in the traced view tuple to fetch its lineage directly from the base tables without
performing any joins. Finally, although the contents of intermediate « results (e.g., Stocks) are
needed in general to trace the lineage of a multi-level ASPJ view, in the case where the user view
contains all group-by attributes of an intermediate « node, we can trace the view’s lineage through

that node without maintaining or recomputing the intermediate result.

4 Auxiliary Views for Lineage Tracing

Recall that in a distributed multi-source warehousing environment, querying the sources for lineage
information can be difficult or impossible: sources may be inaccessible, expensive to access, expensive
to transfer data from, and/or inconsistent with the views at the warehouse. By storing auxiliary

views in the warehouse we can reduce or entirely avoid source queries during lineage tracing. In
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@ Figure 10: Contents of view BadPurchase

Figure 9: View definition for BadPurchase

addition, as we saw in Section 3, auxiliary views corresponding to intermediate ASP.J segments in
the view definition can be useful for efficient lineage tracing.

As will be seen in the following subsections, there is a wide variety of possible auxiliary views
to maintain, with different performance tradeoffs in different settings. The remainder of this paper
focuses on auxiliary view schemes and their relative performance for the restricted case of SPJ views.
As future work we will first extend our results to one-level ASPJ views, which we expect to be
relatively straightforward, and then to the full generality of multi-level views.

Given an SPJ view V = v(D) = mg(oc(T1 > -+ < 1},)) and a tuple set 77 C V to be traced,
Figure 8(a) shows the generic form of its tracing query from Theorem 3.5.2 We assume that all local
selection conditions in the view—conditions that involve a single base table—are pushed down to
the T;’s, so o¢ contains join conditions only. Since the size of T tends to be small, in some cases we
also push down the semijoin and rewrite the tracing query as in Figure 8(b). The auxiliary views we
consider are based on the forms of these two query trees. (Of course since the traced tuple set 7" is not
available until tracing time, we cannot define or maintain auxiliary views on subqueries involving 7T'.)
We propose seven schemes for storing auxiliary views to support tracing the lineage of T’ according to
v. For each scheme we specify the lineage tracing procedure, as well as the maintenance procedures
for the auxiliary views and the original view, since they are all factors in overall performance.

In the maintenance procedures, we use & to denote the delta tables (as discussed in Section 2),
but with insertions and deletions combined, and we use W to denote application of the delta ta-
bles [GMS93]. We refer to the original view v as the user view when we need to distinguish it from
the auxiliary views. As a running example, we use a simple SPJ view BadPurchase defined in Fig-
ure 9, where Daily and Purchases are the same source tables introduced in Section 2. BadPurchase
contains all purchases where the purchase price was higher than the current closing price, including
the stock ticker and the number of shares in the purchase. Figure 10 shows the view contents over
our sample source data.

4.1 Store Nothing (2)

The extreme case is to store no auxiliary views for lineage tracing.
1. Auxiliary views: None
2. Lineage tracing: TQt, = Splitt, . 1. (cc(Ty x T)pxt - (T, x T)) x T')
3. Maintenance of auxiliary views: None
4. Maintenance of v [GMS93]: 8V = my(oc (871 > (T2 W 6T2) <t -+ -1 (T3, W 8T, W Ty <1 615 <
(TsWéTs5) b+ < (T, W) W W Ty e Ty g 1 6T0,))

2We consider tracing a tuple set T rather than a single tuple t for generality: it sets the stage for generalizing our
results to multi-level views, and in practice we expect that a warehouse tracing package might permit multiple tuples
to be traced together for convenience and efficiency.
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| ticker | high | low | closing | tranlD | date | price | shares

AAA 29 25 26 0021 1/5/98 40 100
CCC 75 74 74 0026 7/2/98 80 300

Figure 11: Lineage view (LV)

This scheme retrieves all necessary information from source tables every time a user poses a lineage
tracing query. It incurs no extra storage or maintenance cost, but leads to poor tracing performance.
This scheme is included primarily as a baseline to compare with other, more attractive, schemes.

4.2 Store Base Tables (BT)

If we can trace the lineage of any tuple in a view without querying the sources, then we say that the
view is self-traceable. Self-traceable views can be traced correctly even if source tables are inaccessible
or inconsistent with the warehouse views. One easy way to make a view self-traceable is to store in
the warehouse a copy of each source table that the view is defined on (after local selections), and
issue the tracing queries to the local copies instead of to the source tables during lineage tracing. We
refer to these source copies as the base tables (BT's) for v.

1. Auxiliary views: BT, =T;,1=1..m

2. Lineage tracing: TQt, = Splitt, . 1, (cc((BT1 X T)v< -+ (BT,,, x T)) x T)

3. Maintenance of auxiliary views: 8§BT; = §T;,1=1..m

4. Maintenance of v: Same as scheme @ replacing T; with BT;, i = 1..m
Storing base tables can improve user view maintenance as well as lineage tracing, and maintaining
the base tables is fairly easy. However, base tables can be large, even after applying local selections,
and much of the source data may be irrelevant to any view tuple’s lineage if joins are selective. In
our example, base tables for view BadPurchase are simply copies of tables Daily and Purchases.

4.3 Store Lineage Views (LV)

An alternative way of improving tracing query performance is to store an auxiliary view based on
the left subtree in Figure 8(a), which we call the lineage view (LV) for v, since it contains all lineage
information for all tuples in the user view.

1. Auxiliary views: LV =oc(Ti<---xT),)

2. Lineage tracing: 1TQ, = Splitt, . 1., (LV xT)

3. Maintenance of auxiliary views: 8LV = o (811 < (T W 8T3) <t -+ < (T, W 6T,,) W T <

0y (T3 W 6T5) -+ (T, WO ) W - - W Ty -+ Ty g 1 8T,,)

4. Maintenance of v: 6V = m4(8LV)
The LV scheme significantly simplifies the tracing query and thus reduces tracing query cost. How-
ever, lineage views can be large and are usually expensive to maintain. On the other hand, like base
tables, lineage views can be helpful in maintaining the user view. Figure 11 shows the contents of

the lineage view for BadPurchase.

4.4 Store Split Lineage Tables (SLT)

For views whose joins are many-to-many, lineage views as defined in Section 4.3 can be very large,
and thus not efficient when performing the semijoin with T° during lineage tracing. One solution is to
split the lineage view and store a set of tables instead, which we call the split lineage tables (SLT's).

Note that we use lineage view LV as defined in Section 4.3 in the following definitions.
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SLT-Daily SLT-Purchases

| ticker | high | low | closing tranlD | ticker | date | price | shares
AAA 29 25 26 0021 AAA | 1/5/98 40 100
DDD 75 74 74 0026 CCC | 7/2/98 80 300

Figure 12: Split lineage tables (SLT's)

PBT-Purch
PBT-Daily urchases

| tranlD | ticker | date | price | shares

0021 | AAA [ 1/5/98 | 40 100
0023 | CCC | 3/24/98 | 70 300
0026 | CCC | 7/2/98 | 80 300

| ticker | high | low | closing |
AAA 29 25 26
CCC 75 74 74

Figure 13: Partial base tables (PBTs)

. Auxiliary views: SLT; = mr,(LV),i=1..m

. Lineage tracing: TQr1, = Splitt, . 1. (0c((SLTy X T)px -+ (SLT,, X T)) x T')
. Maintenance of auxiliary views: §SLT; = mr,(6LV), i =1..m

4. Maintenance of v: 6V = m4(8LV)

Split lineage tables contain no irrelevant source data, since every tuple in SLT;, ¢ = 1..m, contributes

W N =

to some view tuples. Furthermore, the size of the split lineage tables can be much smaller than
the lineage view. Their maintenance cost is similar to that of the lineage view. Note that although
we do not materialize the lineage view LV in the SLT scheme, we still compute §LV, in order to
maintain the user view V and auxiliary views SLT;, ¢ = 1..m. The disadvantage of SLT is that
lineage tracing queries may be more expensive. Iigure 12 shows the contents of the split lineage
tables for BadPurchase. Since in our example the join is one-to-one, there is little advantage to the

SLT scheme over LV in this case.

4.5 Store Partial Base Tables (PBT)

Reconsidering the BT scheme (Section 4.2), another way to reduce the size of the base tables is to
store the semijoin of each source table T; with the user view V'; we call this semijoin result the partial
base table (PBT) for T; according to v.

1. Auxiliary views: PBT; =T, xV,i=1.m

2. Lineage tracing: TQt, = Splitt,, 1. (cc((PBTy X T)px -+ (PBT,, x T)) x T)

3. Maintenance of auxiliary views: dPBT;, =0T; x (VWSV)WT, x 6V, i=1..m

4. Maintenance of v: Same as scheme @
For views with selective join conditions, the PBT scheme replicates much less source data than the
BT scheme, with several benefits: It reduces the storage requirement, as well as the cost of refreshing
the auxiliary views. It also reduces the tracing cost, because the tracing query operates on a much
smaller table. However, partial base tables do not help with the maintenance of the user view.
Instead, the user view needs to be maintained first. The partial base tables are then relatively cheap
to maintain based on the user view’s contents and changes. Figure 13 shows the contents of the

partial base tables for BadPurchase.

4.6 Storing Base Table Projections (BP)

When source tables have known keys, we can store in our auxiliary views key attributes from the

source tables together with other necessary attributes, which we call the base table projections (BPs).
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BP-Daily BP-Purchases

| ticker | closing | | tranlD | ticker | price | shares |
AAA 26 0021 AAA 40 100
BBB | 89 0022 | BBB | 16 100 | ticker [ tranID | shares
ccc 74 0023 ccc 70 300 AAA | 0021 100
DDD 120 0024 | BBB 40 50 CCC | 0026 300
EEE 70 0025 DDD 80 200
FFF 12 0026 1 ccC | =0 300 Figure 15: Lineage view projection (LP)

Figure 14: Base table projections (BPs)

This scheme improves tracing query performance (over storing nothing) while reducing view main-
tenance and storage costs (over storing full source replicas).

1. Auxiliary views: BP; = w4,(T;), where A; includes the key attributes K;, attributes that are

projected into V (T N'V), and attributes involved in v’s join conditions (T; N C)

2. Lineage tracing: T;* = T;X (o ((BP1XT) -+ (BPp X T))XT), v p(T) = (T1*, ..., Tn™)

3. Maintenance of auxiliary views: 6BP; = m4,(01;), i =1..m

4. Maintenance of v: Same as scheme @ replacing T; with BP;, i = 1..m
Note that the semijoins in the tracing procedure are key-based. This scheme can be especially
useful when a source table has wide tuples but the view projects only a small fraction. During
lineage tracing, the stored information identifies by key which source tuples really contribute to
a given view tuple, then the detailed source information is fetched from the source using the key
information. Maintenance of the user view is easy. However, in the BP scheme we do need to query
the sources, which has its drawbacks as discussed earlier. Iigure 14 shows the contents of the base
table projections for BadPurchase.

4.7 Storing Lineage View Projections (LP)

Again assuming base tables with known keys, we can store a projection over the lineage view (Sec-
tion 4.3) that includes only base table keys and user view attributes. We call this view the lineage
view projection (LP). Note that we use lineage view LV as defined in Section 4.3 in the following
definitions.

1. Auxiliary views: LP= msuk,u.-uK,,(LV), where A is the set of attributes in V', and K; is the

set of key attributes of table T}, 1 = 1..m

2. Lineage tracing: T;* = T; x (LPxT), v 'p(T) = (T1*, ..., Tn™)

3. Maintenance of auxiliary views: §LP= msuk,u.-uK,,(0LV),i=1..m

4. Maintenance of v: 8V = 714(5LP)
Compared with the BP scheme, the LP scheme further simplifies the tracing query and improves
tracing performance. However, the maintenance cost for the lineage view projection is higher than for
the base table projections. LP also requires a source query as the last step of the tracing process, with
the disadvantages previously discussed. Figure 15 shows the contents of the lineage view projection
for BadPurchase.

4.8 Self-Maintainability and Self-Traceability

As mentioned in Section 4.2, self-traceable views can be traced correctly even if the sources are

inaccessible or inconsistent with the warehouse views. Analogously, view self-maintainability as in-
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scheme @ | BT | LV | SLT | PBT | BP | LP | LV-S | SLT-S | PBT-S

self-traceable? no | yes | yes | yes yes no | no yes yes yes

self~maintainable? || no | yes | no no no yes | no yes yes yes

Table 1: Scheme self-traceability and self-maintainability

troduced in Section 2 ensures that views can be maintained without querying the sources [QGMW96].
In cases where the sources are inaccessible, we must ensure that the user view together with our aux-
iliary views are both self-traceable and self-maintainable. Table 1 summarizes these properties with

respect to the seven schemes introduced so far. We also consider self-maintainable extensions of
three of the schemes, LV, SL'T, and PBT, calling the extensions LV-S, SLT-S, and PBT-S.

5 Performance Study

This section presents our simulation-based performance evaluation of the proposed auxiliary view
schemes for lineage tracing. We address several questions, including: What is the tracing and
maintenance cost distribution in each scheme? What is the impact of parameters such as the source
table size, the number of source tables, the view selectivity, and the tracing-query/update ratio?
Finally, which scheme performs the best, in terms of tracing time and maintenance cost, in different
settings?

5.1 System Model

Table 2 summarizes the configuration parameters for a simple warehousing system with the archi-
tecture in Figure 1. We again study SPJ views only, and consider two types of operations on the
view: lineage tracing queries and view maintenance. Most entries in the table are self-explanatory.
We assume all local selection conditions are pushed down to corresponding source tables and have
been incorporated in the source table size. For simplicity, we assume that all source tables in the
view have the same statistics. We also assume that the warehouse and the source databases have the
same data block size and the same disk access cost. Finally, we assume that all sources can perform
simple SPJ operations, and all join operations are nested-loop index joins. We consider table scans
as well as key-based index lookups. We use the base values in the table as the baseline setting for
our experiments, varying relevant parameters one at a time.

5.2 Cost Model

In our performance analysis we consider several performance metrics. The first is lineage tracing
query performance, where we use the average tuple lineage tracing time as the metric. The second
metric measures view maintenance cost, including total time spent maintaining auxiliary views as
well as the user view. We consider total view maintenance cost since, as discussed earlier, certain
auxiliary view schemes for lineage tracing also improve the performance of user view maintenance.
For both lineage query performance and view maintenance cost, we consider database access as well
as network cost. More specifically:

lineage tracing (resp. view maintenance) time
= disk_cost * # of disk I/Os in lineage tracing (resp. in view change computation and refresh)
+ trans_cost x # of bytes transmitted in lineage tracing (resp. in view maintenance)

+ msg._cost x # of network messages in lineage tracing (resp. in view maintenance)

14



Parameter name | Description Base value | Variation range |

| workload |
query_ratio # of tracing queries / total # of operations 0.8 0~1
query_size # of tuples traced per query 10 -

| view parameters |
rel_num # of tables in the view 3 1~8
join_ratio # of joining tuples / # of tuples in cross-product 0.000125 0.0001 ~ 0.0005
select_ratio # of selected tuples / # of tuples before selection 0.1 -
proj_ratio # of bytes projected into view / tuple size in bytes 0.2 -

source parameters

tuple_num # of tuples in source tables 10,000 1000 ~ 50, 000
tuple_size tuple size of source tables (in bytes) 1000 -
update_size # of changed tuples per source table update 10 -
trans_cost network transmission cost (in ms/byte) 0.2 -
msg_cost network setup cost (in ms/message) 100 -

database configuration

block_size # of bytes in a block at warehouse and source 8000 -
disk_cost cost to read/write a disk block (in ms/block) 10 -

Table 2: System model parameters

We also consider total tracing query and view maintenance time based on the query/update ratio.
Finally, we consider the size of the user view and auxiliary views, which compares the schemes’
warehouse storage requirements.

5.3 Experiments and Results

We present a sample of five experiments addressing the questions raised at the beginning of this
section. For each experiment we simulated a total of 1000 operations. Each operation is either a
lineage tracing query (tracing a set of view tuples) or view maintenance, which computes and applies
changes to the user view and auxiliary views based on a set of source changes. We first look at the
overall performance of our schemes using the base settings of Table 2, investigating how their cost
distributes among the relevant cost components. We then study the impact on the various schemes
of source table size, number of source tables, view selectivity, and query/update ratio. Because we
measure all ten schemes in our experiments, some graphs are admittedly difficult to decipher, so we
highlight the most important aspects of our results in text.

5.3.1 Cost Distribution

Our first experiment compares the performance of our ten proposed schemes under the base settings.
Figure 16 shows the cost distributions divided into two parts: the tracing query cost on the right
and the view maintenance cost on the left. Figure 17 shows the storage requirement of each scheme,
including the user and auxiliary views. (The user view is fairly selective under our base settings,
resulting in the high variance in storage requirement.) From Figure 16 we see that under our base
settings, LV-S and SLT-S achieve low lineage tracing cost as well as fairly low total cost. @ (NOTH)
has the highest tracing cost but low maintenance cost as expected, while conversely LV and SLT
have low tracing cost but high maintenance cost. BT and PBT are reasonable compromises between
the two extremes. The self-maintainable extensions (LV-S, SLT-S, and PBT-S) significantly reduce
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Figure 18: Impact of source table size

the network cost for maintenance, at the expense of higher refresh 1/O cost and higher storage
requirements (Figure 17). The projection-based schemes (BP and LP) achieve low tracing and
maintenance 1/O cost, but since they require queries to the sources the network cost remains high.

5.3.2 Impact of Source Table Size

Next, we look at how our schemes are affected by source table size scale-up. In Figure 18, we vary
the size of each source table from 1000 to 50,000 tuples, and study the impact on tracing query
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Figure 19: Impact of number of source tables

and maintenance costs as well as on the storage requirement. The x-axis represents the number of
tuples in each source table and the y-axis represents the relevant costs. The results tell us that as
the source table size increases, SLT and SLT-S provide the lowest tracing cost (the cost is identical
for the two schemes), while BP incurs the lowest maintenance and total time costs. SLT and BP

both have relatively low storage requirements.

5.3.3 Impact of Source Table Number

We now consider scale-up in the number of source tables. From the results in Figure 19, we observe
that LV-S, which performed poorly in lineage tracing when scaling up source table size, presents the
best tracing performance in source number scale-up. PBT-S, BT, and BP incur the lowest total cost

as the number of source tables increases; @, LP, and SLT have the lowest storage requirement.

5.3.4 Impact of View Join Selectivity

This experiment studies how the join selectivity of the user view affects the schemes. Figure 20
shows the results. The x-axis represents the view join ratio, whose value varies from 0.0001 to
0.0005. We can see that the tracing performance of LV, LV-S, and LP degrades substantially as the
view join ratio increases, while other schemes are much less sensitive. BT, BP, SLT-S, and PBT-S

incur significantly lower total cost than other schemes in this experiment.
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5.3.5 Impact of Workload Pattern

Our final experiment studies the impact of the workload ratio of tracing queries to view maintenance.
In Figure 21, the x-axis varies the ratio from one extreme where the query ratio = 0 (no tracing
queries) to the other extreme where the query ratio = 1 (no view maintenance). According to the
total cost, LV-S and SLT-S are preferred for high query ratios, BT is preferred for medium query
ratios, and BP is preferred for low query ratios.

6 Conclusion and Future Work

We defined the view data lineage problem and presented a lineage tracing algorithm for relational
aggregate-select-project-join (ASPJ) views. In brief, given an ASPJ view, to trace its lineage we first
transform the view definition into a canonical form, then generate a tracing procedure (Figure 6).
For simple (one-level) ASPJ views, the procedure is one tracing query. For more complex views, the
algorithm applies tracing queries recursively through the view definition tree. All tracing queries
can be optimized using known techniques such as pushing down selections, and we can further
optimize the tracing procedure for certain types of views. (Additional motivation and details of
our tracing definitions and algorithms can be found in [CWW97], which also extends the results to
set operators—including difference—and duplicate semantics.) For the restricted case of SPJ views,
we designed several schemes for storing auxiliary views that enable and improve the performance
of lineage tracing and view maintenance in a warehousing environment. We compared the schemes
through simulations, identifying which schemes perform best in different settings.

Our results can be used as the basis for an efficient data warehouse analysis and debugging tool,
by which analysts can browse their views, then “drill through” to the underlying source data that
produced view data items of interest. We have implemented such a tool based on our lineage tracing
algorithms in the WHIPS prototype data warehousing system at Stanford.

Future work includes the following.

1. Extend our auxiliary view schemes and performance study to cover arbitrary ASPJ views.

2. Extend our techniques beyond relational views. In particular, we are studying the types of
data transformations used in commercial data warehouses, and we plan to extend our lineage

tracing framework to acommodate them.

3. Lineage tracing is particularly compelling when the lineage of a view tuple may involve not
only current source data, but also perhaps historical source data, or source data from previous
database versions. We plan to explore extensions of our work along these lines, considering the

problem of lineage tracing through versions and/or history.

4. View data lineage as defined in this paper explains how certain base relation tuples cause
certain view tuples to exist. Sometimes, an erroneous view tuple may exist not because of
erroneous base tuples in its lineage, but because some base tuples are missing; we would like

to provide support for identifying such cases.

5. We believe that lineage tracing can be used to help solve related problems such as view schema

evolution and view update. Initial ideas are presented in [CWW97].
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