
Common Warehouse Metamodel
(CWM) Specification

Version 1.0, 2 February 2001

Copyright 1999, IBM Corporation

Copyright 1999, Unisys Corporation

Copyright 1999, NCR Corporation

Copyright 1999, Hyperion Solutions

Copyright 1999, Oracle Corporation

Copyright 1999, UBS AG

Copyright 1999, Genesis Development Corporation

Copyright 1999, Dimension EDI

The companies listed above hereby grant a royalty-free license to the Object Management Group,
Inc. (OMG) for worldwide distribution of this document or any derivative works thereof, so long as
the OMG reproduces the copyright notices and the below paragraphs on all distributed copies.

The material in this document is submitted to the OMG for evaluation. Submission of this document
does not represent a commitment to implement any portion of this specification in the products of
the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE,THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The companies listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material. The
information contained in this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved. Except
as otherwise provided herein, no part of this work may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems--without the permission of one of the copyright owners.
All copies of this document must include the copyright and other information contained on this
page.

The copyright owners grant member companies of the OMG permission to make a limited number
of copies of this document (up to fifty copies) for their internal use as part of the OMG evaluation
process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer
Software Clause at DFARS 252.227.7013.

CORBA, OMG, and Object Request Broker are trademarks of Object Management Group.

2 February 2001 CWM 1.0 iii

1. Preface . 1-17

1.1 Co-submitting Companies and Supporters 1-17

1.2 Introduction . 1-18

1.3 Specification contact points . 1-20

1.4 Status of this Document . 1-23

1.5 Guide to the Specification . 1-23
1.5.1 Other Parts of the Submission 1-25

2. Proof of Concept . 2-27

2.1 Copyright Waiver . 2-27

2.2 Proof of Concept . 2-27

3. Response to RFP Requirements . 3-29

3.1 Mandatory Requirements . 3-29

3.2 Optional Requirements. 3-31

3.3 Issues to be Discussed . 3-31

3.4 Evaluation Criteria . 3-32

4. Design Rationale . 4-33

4.1 Design Overview . 4-33

4.2 CWM and the MOF . 4-33
4.2.1 An Overview of the MOF. 4-33
4.2.2 The relationship between CWM and MOF . . 4-37

4.3 CWM and UML . 4-37
4.3.1 An Overview of UML 4-37
4.3.2 The relationship between CWM and UML. . 4-38

4.4 CWM and XMI . 4-39
4.4.1 An Overview of XMI 4-39
4.4.2 The relationship between CWM and XMI . . 4-39

4.5 Major Design Goals and Rationale. 4-40
4.5.1 Reuse of UML concepts 4-40
4.5.2 Modularity . 4-40
4.5.3 Generic model . 4-41

5. Usage Scenarios . 5-43

5.1 Overview . 5-43

5.2 Users of CWM . 5-43

5.3 Usage Scenarios . 5-46

iv CWM 1.0 2 February 2001

5.3.1 ETL Scenario. 5-47
5.3.2 OLAP Scenario. 5-47
5.3.3 Questionnaire Scenario. 5-47
5.3.4 Warehouse Administration Scenario. 5-48
5.3.5 Tool Scenarios . 5-49

6. CWM . 6-51

6.1 Overview . 6-51
6.1.1 The Roles of UML in CWM. 6-53

6.2 Organization of the CWM . 6-54
6.2.1 Modeling Conventions 6-55

6.3 How the CWM Metamodel is Described 6-60
6.3.1 Classes . 6-60
6.3.2 Associations . 6-63

7. ObjectModel . 7-65

7.1 Overview . 7-65

7.2 Organization of the ObjectModel Package 7-65

7.3 Core Metamodel. 7-67
7.3.1 Core Data Types . 7-68
7.3.2 Core Classes . 7-70
7.3.3 Core Associations . 7-89
7.3.4 OCL Representation of Core Constraints . . . 7-95

7.4 Behavioral Metamodel . 7-99
7.4.1 Behavioral Data Types 7-99
7.4.2 Behavioral Classes . 7-100
7.4.3 Behaviorial Associations 7-107
7.4.4 OCL Representation of Behavioral Constraints 7-110

7.5 Relationships Metamodel . 7-113
7.5.1 Relationships Data Types 7-114
7.5.2 Relationships Classes 7-115
7.5.3 Relationships Associations 7-119
7.5.4 OCL Representation of Relationships Constraints 7-

120

7.6 Instance Metamodel . 7-123
7.6.1 Instance Classes . 7-125
7.6.2 Instance Associations 7-129
7.6.3 OCL Representation of Instance Constraints 7-131

2 February 2001 CWM 1.0 v

8. Foundation . 8-133

8.1 Overview . 8-133

8.2 Organization of the Foundation 8-133

8.3 Business Information Metamodel. 8-135
8.3.1 BusinessInformation Classes 8-138
8.3.2 BusinessInformation Associations 8-148
8.3.3 OCL Representation of BusinessInformation Constraints

8-152

8.4 DataTypes Metamodel . 8-154
8.4.1 DataTypes Classes . 8-154
8.4.2 DataTypes Associations 8-160
8.4.3 OCL Representation of DataTypes Constraints 8-162

8.5 Expressions Metamodel . 8-163
8.5.1 Expressions Classes 8-164
8.5.2 Expressions Associations 8-168
8.5.3 OCL Representation of Expressions Constraints 8-

171

8.6 KeysIndexes Metamodel . 8-173
8.6.1 KeysIndexes Classes 8-174
8.6.2 KeysIndexes Associations 8-179
8.6.3 OCL Representation of KeysIndexes Constraints 8-

182

8.7 SoftwareDeployment Metamodel. 8-183
8.7.1 SoftwareDeployment Classes 8-187
8.7.2 SoftwareDeployment Associations 8-195
8.7.3 OCL Representation of SoftwareDeployment Constraints

8-200

8.8 TypeMapping Metamodel . 8-201
8.8.1 TypeMapping Classes. 8-202
8.8.2 TypeMapping Associations 8-205
8.8.3 OCL Representation of TypeMapping Constraints 8-

206

9. Relational . 9-207

9.1 Overview . 9-207

9.2 Organization of the Relational package 9-207
9.2.1 Inheritance . 9-207
9.2.2 Containers. 9-209
9.2.3 Tables, columns and data types 9-209
9.2.4 Structured types and object extensions 9-210

vi CWM 1.0 2 February 2001

9.2.5 Keys . 9-213
9.2.6 Index. 9-214
9.2.7 Triggers . 9-215
9.2.8 Procedures . 9-216
9.2.9 Instances . 9-217

9.3 Relational Classes . 9-218
9.3.1 Catalog . 9-218
9.3.2 CheckConstraint . 9-219
9.3.3 Column . 9-219
9.3.4 ColumnSet . 9-221
9.3.5 ColumnValue . 9-221
9.3.6 ForeignKey. 9-222
9.3.7 NamedColumnSet. 9-222
9.3.8 PrimaryKey . 9-223
9.3.9 Procedure . 9-224
9.3.10 QueryColumnSet . 9-224
9.3.11 Row . 9-224
9.3.12 RowSet . 9-225
9.3.13 Schema . 9-225
9.3.14 SQLDataType abstract

9-225
9.3.15 SQLDistinctType . 9-226
9.3.16 SQLIndex . 9-227
9.3.17 SQLIndexColumn. 9-228
9.3.18 SQLParameter . 9-228
9.3.19 SQLSimpleType . 9-229
9.3.20 SQLStructuredType 9-230
9.3.21 Table . 9-231
9.3.22 Trigger . 9-234
9.3.23 UniqueConstraint . 9-236
9.3.24 View . 9-237

9.4 Relational Associations . 9-238
9.4.1 ColumnOptionsColumnSet

protected . 9-238
9.4.2 ColumnRefStructuredType

protected . 9-240
9.4.3 ColumnSetOfStructuredType protected

9-240
9.4.4 DistinctTypeHasSimpleType 9-241
9.4.5 TableOwningTrigger

protected . 9-241

2 February 2001 CWM 1.0 vii

9.4.6 TriggerUsingColumnSet protected
9-242

9.5 OCL Representation of Relational Constraints 9-243

10. Record . 10-245

10.1 Overview . 10-245

10.2 Organization of the Record Package 10-245
10.2.1 Instances . 10-248

10.3 Record Classes . 10-249
10.3.1 Field . 10-249
10.3.2 FieldValue. 10-250
10.3.3 FixedOffsetField. 10-250
10.3.4 Group . 10-251
10.3.5 Record . 10-251
10.3.6 RecordDef . 10-252
10.3.7 RecordFile . 10-253
10.3.8 RecordSet . 10-254

10.4 Record Associations. 10-255
10.4.1 RecordToFile Protected

10-255

10.5 OCL Representation of Record Constraints 10-255

11. Multidimensional. 11-257

11.1 Overview . 11-257

11.2 Organization of the Multidimensional Package 11-258
11.2.1 Dependencies . 11-258
11.2.2 Major Classes and Associations 11-258
11.2.3 Inheritance from the ObjectModel 11-259

11.3 Multidimensional Classes . 11-259
11.3.1 Dimension . 11-259
11.3.2 DimensionedObject 11-261
11.3.3 Member . 11-262
11.3.4 MemberSet . 11-262
11.3.5 MemberValue . 11-263
11.3.6 Schema . 11-263

11.4 Multidimensional Associations 11-264
11.4.1 CompositesReferenceComponents 11-264
11.4.2 DimensionOwnsMemberSets 11-265
11.4.3 DimensionsReferenceDimensionedObjects . 11-265
11.4.4 MDSchemaOwnsDimensionedObjects 11-266

viii CWM 1.0 2 February 2001

11.4.5 MDSchemaOwnsDimensions 11-266

11.5 OCL Representation of Multidimensional Constraints. . 11-267

12. XML . 12-269

12.1 Overview . 12-269
12.1.1 Semantics . 12-269

12.2 Organization of the XML Package 12-270

12.3 XML Classes . 12-273
12.3.1 Attribute . 12-273
12.3.2 Content . 12-274
12.3.3 Document . 12-276
12.3.4 Element . 12-276
12.3.5 ElementContent . 12-276
12.3.6 ElementType. 12-277
12.3.7 ElementTypeReference. 12-278
12.3.8 MixedContent . 12-279
12.3.9 Schema . 12-280
12.3.10 Text. 12-281

12.4 XML Associations . 12-282
12.4.1 ContentElementTypeReference protected

12-282
12.4.2 ElementTypeContent protected

12-282
12.4.3 MixedContentText protected

12-283
12.4.4 OwnedElementContent protected

12-283

12.5 OCL Representation of XML Constraints 12-284

13. Transformation . 13-285

13.1 Overview . 13-285
13.1.1 Semantics . 13-286

13.2 Organization of the Transformation Package 13-288

13.3 Transformation Classes . 13-294
13.3.1 ClassifierFeatureMap 13-294
13.3.2 ClassifierMap . 13-295
13.3.3 DataObjectSet. 13-297
13.3.4 FeatureMap. 13-298
13.3.5 PrecedenceConstraint 13-299
13.3.6 StepPrecedence. 13-300

2 February 2001 CWM 1.0 ix

13.3.7 Transformation . 13-300
13.3.8 TransformationActivity 13-302
13.3.9 TransformationMap 13-303
13.3.10 TransformationStep 13-303
13.3.11 TransformationTask 13-305
13.3.12 TransformationTree 13-306
13.3.13 TransformationUse . 13-307

13.4 Transformation Associations . 13-308
13.4.1 CFMapClassifier . 13-308
13.4.2 CFMapFeature . 13-308
13.4.3 ClassifierMapSource 13-309
13.4.4 ClassifierMapTarget 13-309
13.4.5 ClassifierMapToCFMap derived protected

13-310
13.4.6 ClassifierMapToFeatureMap derived protected

13-310
13.4.7 DataObjectSetElement 13-311
13.4.8 FeatureMapSource . 13-311
13.4.9 FeatureMapTarget. 13-312
13.4.10 InverseTransformationTask protected

13-312
13.4.11 TransformationSource protected

13-313
13.4.12 TransformationStepTask 13-313
13.4.13 TransformationTarget protected

13-314
13.4.14 TransformationTaskElement 13-314

13.5 OCL Representation of Transformation Constraints . . . 13-315

14. OLAP . 14-317

14.1 Overview . 14-317

14.2 Objectives of the OLAP Package 14-318

14.3 Organization of the OLAP Package 14-318
14.3.1 Dependencies . 14-318
14.3.2 Major Classes and Associations 14-319
14.3.3 Dimension and Hierarchy 14-320
14.3.4 Inheritance from the Object Model. 14-323
14.3.5 Deploying OLAP Models 14-324

14.4 OLAP Classes . 14-326
14.4.1 CodedLevel . 14-326
14.4.2 ContentMap . 14-326

x CWM 1.0 2 February 2001

14.4.3 Cube . 14-327
14.4.4 CubeDeployment . 14-329
14.4.5 CubeDimensionAssociation 14-331
14.4.6 CubeRegion . 14-332
14.4.7 DeploymentGroup . 14-335
14.4.8 Dimension . 14-337
14.4.9 DimensionDeployment 14-340
14.4.10 Hierarchy abstract

14-343
14.4.11 HierarchyLevelAssociation 14-345
14.4.12 Level. 14-347
14.4.13 LevelBasedHierarchy 14-347
14.4.14 Measure . 14-348
14.4.15 MemberSelection . 14-348
14.4.16 MemberSelectionGroup 14-349
14.4.17 Schema . 14-350
14.4.18 StructureMap . 14-351
14.4.19 ValueBasedHierarchy 14-352

14.5 OLAP Associations . 14-353
14.5.1 CubeDeploymentOwnsContentMaps 14-353
14.5.2 CubeDimensionAssociationsReferenceCalcHierarchy

14-354
14.5.3 CubeDimensionAssociationsReferenceDimension14-

354
14.5.4 CubeOwnsCubeDimensionAssociations. . . . 14-355
14.5.5 CubeOwnsCubeRegions 14-355
14.5.6 CubeRegionOwnsCubeDeployments 14-356
14.5.7 CubeRegionOwnsMemberSelectionGroups . 14-356
14.5.8 DeploymentGroupReferencesCubeDeployments 14-

357
14.5.9 DeploymentGroupReferencesDimensionDeployments

14-357
14.5.10 DimensionDeploymentHasImmediateParent 14-358
14.5.11 DimensionDeploymentHasListOfValues . . . 14-358
14.5.12 DimensionDeploymentOwnsStructureMaps. 14-359
14.5.13 DimensionHasDefaultHierarchy. 14-360
14.5.14 DimensionOwnsHierarchies 14-360
14.5.15 DimensionOwnsMemberSelections 14-361
14.5.16 HierarchyLevelAssociationOwnsDimensionDeployments

14-361
14.5.17 HierarchyLevelAssociationsReferenceLevel 14-362

2 February 2001 CWM 1.0 xi

14.5.18 LevelBasedHierarchyOwnsHierarchyLevelAssociations
14-362

14.5.19 MemberSelectionGroupReferencesMemberSelections
14-363

14.5.20 SchemaOwnsCubes 14-363
14.5.21 SchemaOwnsDeploymentGroups 14-364
14.5.22 SchemaOwnsDimensions 14-364
14.5.23 ValueBasedHierarchyOwnsDimensionDeployments

14-365

14.6 OCL Representation of OLAP Constraints 14-365

15. Data Mining . 15-369

15.1 Overview . 15-369

15.2 Organization of the Data Mining Metamodel 15-369
15.2.1 Dependencies . 15-369
15.2.2 Major Classes and Associations 15-370
15.2.3 Inheritance from the ObjectModel 15-372

15.3 Data Mining Classes . 15-373
15.3.1 ApplicationAttribute. 15-373
15.3.2 ApplicationInputSpecification 15-374
15.3.3 AssociationRulesSettings 15-375
15.3.4 AttributeUsageRelation 15-376
15.3.5 CategoricalAttribute 15-378
15.3.6 Category . 15-378
15.3.7 CategoryHierarchy . 15-379
15.3.8 ClassificationSettings 15-379
15.3.9 ClusteringSettings . 15-380
15.3.10 CostMatrix . 15-381
15.3.11 MiningAttribute . 15-381
15.3.12 MiningDataSpecification 15-382
15.3.13 MiningModel . 15-382
15.3.14 MiningModelResult 15-384
15.3.15 MiningSettings . 15-384
15.3.16 NumericAttribute . 15-386
15.3.17 OrdinalAttribute . 15-387
15.3.18 RegressionSettings . 15-387
15.3.19 StatisticsSettings. 15-387
15.3.20 SupervisedMiningModel 15-388
15.3.21 SupervisedMiningSettings 15-388

15.4 Data Mining Associations . 15-390

xii CWM 1.0 2 February 2001

15.4.1 ContainsAttributeUsage 15-390
15.4.2 ContainsCategory . 15-390
15.4.3 DerivedFromSettings 15-391
15.4.4 HasAttribute . 15-391
15.4.5 InputSpecOwnsAttributes. 15-392
15.4.6 MiningModelOwnsInputSpecification 15-392
15.4.7 OrdersCategory . 15-393
15.4.8 PertainsToAttribute. 15-393
15.4.9 ProducedByModel . 15-394
15.4.10 SupervisedMiningModelReferencesTargetAttribute

15-394
15.4.11 UsesAsInput . 15-395
15.4.12 UsesAsTarget . 15-395
15.4.13 UsesAsTaxonomy . 15-396
15.4.14 UsesCostMatrix . 15-396
15.4.15 UsesItemId . 15-397
15.4.16 UsesTransactionId . 15-397

15.5 OCL Representation of Data Mining Constraints. 15-398

16. Information Visualization . 16-401

16.1 Overview . 16-401

16.2 Organization of the Information Visualization Metamodel 16-
401

16.2.1 Dependencies . 16-401
16.2.2 Major Classes and Associations 16-402

16.3 Inheritance from the Object Model 16-403

16.4 Information Visualization Classes 16-404
16.4.1 RenderedObject . 16-404
16.4.2 RenderedObjectSet . 16-408
16.4.3 Rendering . 16-409
16.4.4 XSLRendering . 16-412

16.5 Information Visualization Associations 16-412
16.5.1 CompositesReferenceComponents 16-412
16.5.2 NeighborsReferenceNeighbors 16-412
16.5.3 RenderedObjectSetOwnsRenderedObjects . . 16-413
16.5.4 RenderedObjectSetOwnsRenderings 16-413
16.5.5 RenderedObjectsReferenceDefaultRendering 16-414
16.5.6 RenderedObjectsReferenceModelElement . . 16-414
16.5.7 RenderedObjectsReferenceRenderings. 16-415

2 February 2001 CWM 1.0 xiii

16.6 OCL Representation of Information Visualization Constraints
16-415

17. Business Nomenclature . 17-417

17.1 Overview . 17-417
17.1.1 Semantics . 17-417

17.2 Organization of the Business Nomenclature Package . . 17-418

17.3 Business Nomenclature Classes 17-421
17.3.1 BusinessDomain . 17-421
17.3.2 Concept . 17-422
17.3.3 Glossary . 17-423
17.3.4 Nomenclature . 17-424
17.3.5 Taxonomy. 17-425
17.3.6 Term . 17-426
17.3.7 VocabularyElement. 17-428

17.4 Business Nomenclature Associations 17-429
17.4.1 GlossaryToTaxonomy. 17-429
17.4.2 NomenclatureHierarchy 17-430
17.4.3 RelatedConcepts derived

17-431
17.4.4 RelatedTerms derived

17-432
17.4.5 RelatedVocabularyElements 17-433
17.4.6 SynonymToPreferredTerm 17-434
17.4.7 TermToConcept . 17-435
17.4.8 VocabularyElementToModelElement 17-436
17.4.9 WiderToNarrowerTerm. 17-437

17.5 OCL Representation of Business Nomenclature Constraints 17-
438

18. Warehouse Process . 18-441

18.1 Overview . 18-441

18.2 Organization of the Warehouse Process Package 18-441

18.3 Warehouse Process Classes . 18-445
18.3.1 CalendarDate . 18-445
18.3.2 CascadeEvent . 18-446
18.3.3 CustomCalendar . 18-446
18.3.4 CustomCalendarEvent 18-447
18.3.5 ExternalEvent . 18-447
18.3.6 InternalEvent . 18-448

xiv CWM 1.0 2 February 2001

18.3.7 IntervalEvent . 18-449
18.3.8 PointInTimeEvent . 18-449
18.3.9 ProcessPackage . 18-450
18.3.10 RecurringPointInTimeEvent 18-450
18.3.11 RetryEvent . 18-452
18.3.12 ScheduleEvent abstract

18-453
18.3.13 WarehouseActivity . 18-453
18.3.14 WarehouseEvent abstract

18-454
18.3.15 WarehouseProcess abstract

18-455
18.3.16 WarehouseStep . 18-456

18.4 Warehouse Process Associations 18-457
18.4.1 Event .

protected . 18-458
18.4.2 EventUsesCustomCalendar

protected . 18-458
18.4.3 TriggeringProcess .

protected . 18-459
18.4.4 WarehouseActivityRunsTransformationActivity 18-

459
18.4.5 WarehouseActivityStep protected

18-460
18.4.6 WarehouseStepRunsTransformationStep . . . 18-460

18.5 OCL Representation of Warehouse Process Constraints 18-461

19. Warehouse Operation . 19-463

19.1 Overview . 19-463
19.1.1 Transformation Executions. 19-463
19.1.2 Measurements. 19-463
19.1.3 Change Requests . 19-464

19.2 Organization of the Warehouse Operation Package 19-464

19.3 Warehouse Operation Classes . 19-466
19.3.1 ActivityExecution. 19-466
19.3.2 ChangeRequest . 19-467
19.3.3 Measurement . 19-468
19.3.4 StepExecution. 19-470
19.3.5 TransformationExecution 19-471

19.4 Warehouse Operation Associations 19-472

2 February 2001 CWM 1.0 xv

19.4.1 ActivityStepExecutions protected
19-473

19.4.2 ModelElementChangeRequest 19-473
19.4.3 ModelElementMeasurement 19-474
19.4.4 StepExecutionCallAction 19-474
19.4.5 TransformationActivityExecutions 19-475
19.4.6 TransformationStepExecutions 19-475

19.5 OCL Representation of Warehouse Operation Constraints19-476

20. Compatibility with Other Standards 20-477

20.1 Introduction . 20-477

20.2 Background: Components of the OMG Metamodeling Architecture
20-477

20.3 CWM and MDC Meta Data Interchange Specification . 20-478
20.3.1 Overview . 20-478
20.3.2 Comparison with CWM 20-478

20.4 CWM and MDC Open Information Model 20-480
20.4.1 Overview . 20-480
20.4.2 Comparison with CWM: Database Schema . 20-481
20.4.3 Comparison with CWM: Data Transformations 20-

482
20.4.4 Comparison with CWM: OLAP Schema . . . 20-482
20.4.5 Comparison with CWM: Record-Oriented Database Schema

20-484

20.5 CWM and OLAP Council/MDAPI 20-484
20.5.1 Overview . 20-484
20.5.2 Comparison with CWM 20-485

21. Conformance Points . 21-487

21.1 Introduction . 21-487

21.2 Required Compliance . 21-487
21.2.1 CWM Metamodel Compliance 21-487
21.2.2 CWM XML Compliance 21-487
21.2.3 CWM IDL Compliance 21-488
21.2.4 CWM DTD Compliance 21-488

21.3 Optional Compliance Points. 21-488

22. CWM Data Types . 22-491

22.1 Overview . 22-491

22.2 Organization of the CWM Data Types 22-492

xvi CWM 1.0 2 February 2001

22.3 CORBA IDL Data Types . 22-493
22.3.1 Overview . 22-493
22.3.2 Organization of the CORBA IDL Data Types 22-493
22.3.3 CORBA IDL Data Type Instances 22-494
22.3.4 CORBA IDL Data Types Classes 22-494
22.3.5 CORBAL IDL Data Types Associations . . . 22-499

22.4 Java Data Types . 22-500

22.5 SQL-99 Data Types . 22-500

22.6 Type Mapping Examples . 22-504

References References-509

Glossary Glossary-511

2 February 2001 CWM 1.0 1-17

Preface 1

1.1 Co-submitting Companies and Supporters

The following companies are co-submitters of the Common Warehouse Metamodel
specification (hereafter referred to as CWM):

• International Business Machines Corporation

• Unisys Corporation

• NCR Corporation

• Hyperion Solutions Corporation

• Oracle Corporation

• UBS AG

• Genesis Development Corporation

• Dimension EDI

The following companies are supporters of CWM:

• Deere & Company

• Sun Microsystems Inc.

• Hewlett-Packard Company

• Data Access Technologies

• InLine Software

• Aonix

• Hitachi, Ltd

• SAS Institute Inc.

• Meta Integration Technology, Inc.

1-18 CWM 1.0 2 February 2001

1

• Adaptive Ltd

• Cognos Inc.

1.2 Introduction

The main purpose of CWM is to enable easy interchange of warehouse and business
intelligence metadata between warehouse tools, warehouse platforms and warehouse
metadata repositories in distributed heterogeneous environments. CWM is based on
three key industry standards:

• UML - Unified Modeling Language, an OMG modeling standard

• MOF - Meta Object Facility, an OMG metamodeling and metadata repository
standard

• XMI - XML Metadata Interchange, an OMG metadata interchange standard

These three standards form the core of the OMG metadata repository architecture as
illustrated in Figure 1-1.

The UML standard defines a rich, object oriented modeling language that is supported
by a range of graphical design tools. The MOF standard defines an extensible
framework for defining models for metadata, and providing tools with programmatic
interfaces to store and access metadata in a repository. The XMI standard allows

Figure 1-1 OMG Metadata Repository Architecture

OMG Metadata Repository Architecture

Object Request Broker (ORB)

Object Services

UML XMIMOF

Repository Common Facility

Tools and
Repositories

2 February 2001 CWM 1.0 1-19

1

metadata to be interchanged as streams or files with a standard format based on XML.
The complete architecture offers a wide range of implementation choices to developers
of tools, repositories and object frameworks. XMI in particular lowers the barrier to
entry for the use of OMG metadata standards.

Key aspects of the architecture include:

• A four layered metamodeling architecture for general purpose manipulation of
metadata in distributed object repositories. See the MOF and UML specifications
for more details

• The use of UML notation for representing metamodels and models

• The use of standard information models (UML) to describe the semantics of object
analysis and design models

• The use of MOF to define and manipulate metamodels programmatically using fine
grained CORBA interfaces. This approach leverages the strength of CORBA
distributed object infrastructure.

• The use of XMI for stream based interchange of metadata

This specification mainly consists of definitions of metamodels in the following
domains:

• Object model (a subset of UML)

• CWM foundation

• Relational data resources

• Record data resources

• Multidimensional data resources

• XML data resources

• Data transformations

• OLAP (On-line Analytical Processing)

• Data mining

• Information visualization

• Business nomenclature

• Warehouse process

• Warehouse operation

This specification defines these metamodels and provides proof of concept that covers
key aspects of CWM. The specification represents the integration of work currently
underway by the submitters and supporters in the areas of warehouse metadata
management in distributed object environments. The submitters intend to
commercialize the CWM technology within the guidelines of the OMG.

The adoption of the UML and MOF specifications in 1997 was a key step forward for
the OMG and the industry in terms of achieving consensus on modeling technology
and repositories. The adoption of XMI in 1999 reduced the plethora of proprietary

1-20 CWM 1.0 2 February 2001

1

metadata interchange formats into one. The adoption of CWM in 2000 has solidified
these core technologies by demonstrating their applicability in data warehousing and
business intelligence - a major industry domain, as well as solving the most critical
problem facing data warehousing and business intelligence today - metadata
interchange and management.

1.3 Specification contact points

Please send comments on this specification to cwm-feedback@omg.org.

All questions about this specification should be directed to:

Daniel T. Chang
IBM Corporation
555 Bailey Ave., DRYA/D164
San Jose, CA 95141
Phone: +1 408 463-2319
E-mail: dtchang@us.ibm.com

Sridhar Iyengar
Unisys Corporation
25725 Jeronimo Rd.
Mission Viejo, CA 92691
Phone: +1 949 380-5692
E-mail: sridhar.iyengar2@unisys.com

Contact information for representatives of other co-submitting companies is:

Vilhelm Rosenqvist
NCR Corporation
SE-Copenhagen
Vibevej 20
DK-2400 Copenhagen NV, Denmark
Phone: +45 38 15 75 43
E-mail: Vilhelm.Rosenqvist@Copenhagen.ncr.com

John D. Poole
Hyperion Solutions Corporation
900 Long Ridge Road
Stamford, CT 06902-1135
Phone: +1 203 703-4359
E-mail: john_poole@hyperion.com

Gordon Callan
Oracle Corporation
500 Oracle Parkway, M/S 2op7
Redwood Shores, CA 94065
Phone: +1 650 506-2757
E-mail: gordon.callan@oracle.com

2 February 2001 CWM 1.0 1-21

1

Hans-Peter Hoidn
UBS AG
P.O. Box, CH-8098
Zurich, Switzerland
Phone: +41 1 238 29 38
E-mail: hans-peter.hoidn@ubs.com

David S. Frankel
Genesis Development Corporation
741 Santiago Court
Chico, CA 95973-8781
Phone: +1 530 893-1100
E-mail: dfrankel@gendev.com

Chris Nelson
Dimension EDI
High Trees, Elmbridge Road
Cranleigh, Surrey GU6 8JX
England
Phone: +44 1483 271443
E-mail: chris@dimension-edi.com

Contact information for other members of the co-submitting companies is:

J. J. Daudenarde
IBM Corporation
Phone: +1 408 463-3470
E-mail: jjd@us.ibm.com

Debra LaVergne
IBM Corporation
Phone: +1 408 463-2428
E-mail: lavergne@us.ibm.com

Christoph Lingenfelder
IBM Corporation
Phone: +49 7031 16 4065
E-mail: lin@de.ibm.com

Doug Tolbert
Unisys Corporation
Phone: +1 949 380-6606
E-mail: doug.tolbert@unisys.com

Don Baisley
Unisys Corporation
Phone: +1 949 380-6382
E-mail: donald.baisley@unisys.com

David Zhang
Hyperion Solutions Corporation
Phone: +1 203 703-4875

1-22 CWM 1.0 2 February 2001

1

E-mail: david_zhang@hyperion.com

David Last
Oracle Corporation
Phone: +44 118 924 6218
E-mail: david.last@oracle.com

David Mellor
Oracle Corporation
Phone: +1 781 684-5663
E-mail: david.mellor@oracle.com

Mark Hornick
Oracle Corporation
Phone: +1 781 684-7564
E-mail: mark.hornick@oracle.com

Jeffrey Peckham
UBS AG
Phone: +41 61 288 1575
E-mail: jeffrey.peckham@ubs.com

Phil Longden
Genesis Development Corporation
Phone: +44 1276 513990
E-mail: plongden@gendev.com

Steve Allman
Dimension EDI
Phone: +34 93 454 2287
E-mail: sallman@vo.lu

Anders Tornqvist
Dimension EDI
Phone: +46 31 69 30 45
E-mail: anders.tornqvist@comfact.com

Contact information for the supporting companies is:

David C. Smith
Deere & Company
E-mail: ds60162@deere.com

Chuck Mosher
Sun Microsystems, Inc.
E-mail: chuck.mosher@sun.com

Jishnu Mukerji
Hewlett-Packard Company
E-mail: jis@fpk.hp.com

Cory B. Casanave
Data Access Technologies

2 February 2001 CWM 1.0 1-23

1

E-mail: cory-c@dataaccess.com

Jack J. Greenfield
InLine Software
E-mail: jack@inline-software.com

Charles E. Simon
Aonix
E-mail: chaz@aonix.com

Yuichi Yagawa
Hitachi Ltd.
E-mail: yagawa@sdl.hitachi.co.jp

Barbara Walters
SAS Institute Inc.
E-mail: Barbara.Walters@sas.com

Christian Bremeau
Meta Integration Technology, Inc.
E-mail: bremeau@metaintegration.com

Pete Rivett
Adaptive Ltd.
E-mail: pete.rivett@adaptive.com

Tina Groves
Cognos Inc.
E-mail: tina.groves@cognos.com

The submitters and supporters of the CWM specification appreciate the contributions
of the following individuals during the CWM specification development process:

Ravi Dirckze, Susan Donahue, Giuseppe Facchetti, James Jonas, Robert Kemper,
Suresh Kumar, Joanne Lamb, Don Lind, Tony Maresco, Bruce McLean, Karel
Pagrach, William Perlman, Jeff Pinard, Curtis Sojka, Robin Noble-Thomas, Chris
de Vaney, Robert Vavra, Adriaan Veldhuisen

1.4 Status of this Document

This document is the final draft of CWM 1.0. Refer to the OMG web site,
http://www.omg.org for additional information and the status of the finalization
process.

1.5 Guide to the Specification

This specification is presented in the following chapters:

Chapter 1 Preface

Introduces the specification and provides the context for the CWM technology
within the OMG repository architecture

http://www.omg.org

1-24 CWM 1.0 2 February 2001

1

Chapter 2 Proof of Concept

Describes proof of concept efforts and results, in demonstration of the
specification’s technical viability.

Chapter 3 Response to RFP Requirements

Identifies the specific CWMI RFP requirements and this specification’s response to
each requirement.

Chapter 4 Design Rationale

Describes the design goals and rationale of this specification, giving an overview of
the provided solution and insight into the motivation and design forces.

Chapter 5 Usage Scenarios

Describes how CWM is expected to be used by customers and tool vendors

Chapter 6 CWM

Describes the overall organization of the CWM metamodel and how it is specified.

Chapter 7 ObjectModel

Describes the ObjectModel package which contains classes and associations that
serve as the base metamodel for CWM. This package is a subset of UML.

Chapter 8 Foundation

Describes the CWM Foundation package which contains classes and associations
that are used by more than one CWM package.

Chapter 9 Relational

Describes the Relational package which contains classes and associations that
represent metadata of relational data resources.

Chapter 10 Record

Describes the Record package which contains classes and associations that
represent metadata of record data resources.

Chapter 11 Multidimensional

Describes the Multidimensional package which contains classes and associations
that represent metadata of multidimensional data resources.

Chapter 12 XML

Describes the XML package which contains classes and associations that represent
metadata of XML data resources.

Chapter 13 Transformation

Describes the Transformation package which contains classes and associations that
represent metadata of data transformation tools.

Chapter 14 OLAP

Describes the OLAP package which contains classes and associations that represent
metadata of on-line analytical processing tools.

2 February 2001 CWM 1.0 1-25

1

Chapter 15 Data Mining

Describes the Data Mining package which contains classes and associations that
represent metadata of data mining tools.

Chapter 16 Information Visualization

Describes the Information Visualization package which contains classes and
associations that represent metadata of information visualization tools.

Chapter 17 Business Nomenclature

Describes the Business Nomenclature package which contains classes and
associations that represent business metadata.

Chapter 18 Warehouse Process

Describes the Warehouse Process package which contains classes and associations
that represent metadata of warehouse processes.

Chapter 19 Warehouse Operation

Describes the Warehouse Operations package which contains classes and
associations that represent metadata of results of warehouse operations.

Chapter 20 Compatibility with Other Standards

Discusses how CWM is related to other industry standards.

Chapter 21 Conformance Points

Discusses compliance points in the CWM specification.

Chapter 22 CWM Data Types

Describes some widely supported data types the use of which can facilitate the
interchange of metadata based on CWM. These are given as examples. This chapter
is not a normative part of the CWM specification.

References

Lists the references used in this specification.

Glossary

Describes a glossary of terms relevant to CWM.

1.5.1 Other Parts of the Submission

Volume 2 Extensions

Contains the CWM Extensions (CWMX), which consist of: Entity Relationship,
COBOL Data Division, DMS II, IMS, Essbase, Express, InformationSet, and
Information Reporting. This volume is not a normative part of the CWM
specification.

CWM XML, IDL and DTD files

Contain the CWM XML, CWM IDL and CWM DTD.

In the generation of CWM XML and CWM DTD files:

1-26 CWM 1.0 2 February 2001

1

a. The CWM metamodel identifies the XML namespaces using MOF Tags.

b. No data type model is used for the metadata beyond what is directly supported
by MOF.

c. Any special string encodings are described in the documentation of string valued
attributes where such encodings apply.

CWMX XML, IDL and DTD files

Contain the CWMX XML, CWMX IDL and CWMX DTD. These files are not a
normative part of the CWM specification.

In the generation of CWMX XML and CWMX DTD files:

a. The CWMX metamodel identifies the XML namespaces using MOF Tags.

b. No data type model is used for the metadata beyond what is directly supported
by MOF.

c. Any special string encodings are described in the documentation of string valued
attributes where such encodings apply.

CWM/CWMX MDL files

Contain the CWM/CWMX MDL. These files are not a normative part of the CWM
specification.

2 February 2001 CWM 1.0 2-27

Proof of Concept 2

2.1 Copyright Waiver

Upon adoption by OMG, the CWM submitters grant to the OMG, a non-exclusive,
royalty-free, paid-up, worldwide license to copy and distribute this specification
document and to modify the document and distribute copies of the modified version.
For more detailed information, see the disclaimer on the inside of the cover page of
this submission.

2.2 Proof of Concept

CWM submitters and supporters have extensive experience in the areas of databases,
data warehousing, metadata repositories, data modeling tools, CORBA and the related
problems of interchange of metadata and data across tools and databases in distributed
heterogeneous environments. Representative portions of their experience and ongoing
proofs of concept are highlighted below:

• IBM, Hyperion, Oracle and NCR have extensive experience in implementing
enterprise class data warehouses which have a critical need for metadata
management. Current implementations of metadata use proprietary formats and
interfaces. A fundamental goal of CWM is to open up this proprietary metadata
using OMG standard metadata interfaces and interchange formats.

• Unisys, IBM and Oracle have extensive experience in implementing metadata
repositories. Their contributions to OMG Meta Object Facility (MOF) and XML
Metadata Interchange (XMI) form a solid foundation on which this specification
has been designed. Unisys and IBM have shipped commercial implementations of
object repositories and XMI based technologies.

• Oracle, NCR, Hyperion and IBM have commercial implementations of products in
the areas of OLAP and Multidimensional databases - a key area addressed by this
submission.

2-28 CWM 1.0 2 February 2001

2

• Dimension EDI has experience in the area of statistical analysis and use of
statistical metadata.

• The CWM submission is based on three key available metadata standards - MOF,
UML and XMI - that have been implemented by several vendors. In addition the
CWM metamodel extends UML and reuses the core concepts in UML.

• IBM, Unisys, NCR, Oracle, Dimension EDI, SAS Institute, and Meta Integration
have implemented XMI for a subset of the CWM metamodel and verified
interoperability in the context of database and data warehouse modeling tools.

• The CWM specification has been analyzed by end user organizations implementing
data warehouses. The end user organizations that have participated in the design
include UBS, John Deere and Sun. Three companies have participated in
evaluation and feedback: InLine, Aonix, and Hitachi.

The submitters have demonstrated some proofs of concept as they relate to the CWM
submission at the November, 1999. A more complete Enablement Showcase
demonstrating cross-vendor exchange of metadata with CWM using production-quality
software was provided at the December, 2000 OMG meeting.

2 February 2001 CWM 1.0 3-29

Response to RFP Requirements 3

3.1 Mandatory Requirements

The table below describes how the submission meets the mandatory
requirements, as put forth in Section 6.5, Mandatory Requirements, of the
Common Warehouse Metadata Interchange RFP.

RFP Mandatory Requirement How the submission meets the requirement

Proposals shall use the MOF as the
meta-metamodel.

The CWM metamodel uses the MOF Model as its meta-
metamodel.

Proposals shall provide a complete
specification of the syntax and semantics
needed to export/import warehouse
metadata and the common warehouse
metamodel. This may consist of a
specification for common warehouse
metamodel, APIs (in IDL), and/or
interchange formats.

The submission includes the complete specification of the
CWM metamodel and detailed descriptions of all types
and associations. Also included are both IDL and DTD
specifications that have been directly generated from the
metamodel. These specifications define the API and
interchange formats, respectively.

Proposals shall address the interchange
of all warehouse metadata including both
technical metadata and business
metadata.

The CWM metamodel includes comprehensive definitions
of both the technical metadata (e.g., Software
Deployment, Transformation, Warehouse Process) and
business metadata (e.g., OLAP, Business Information in
CWM Foundation) required to represent a fully-functional
data warehouse.

3-30 CWM 1.0 2 February 2001

3

Proposals shall address the interchange
of metadata that describes all warehouse
data elements including data sources,
transformations, and data targets.

The CWM metamodel contains a generic and powerful
Transformation package that leverages core metaclasses in
such a manner that transformation mappings and
processes can be specified between any conceivable data
source and target. A number of widely used data
source/target packages are also defined, such as
Relational, Record, Multidimensional, XML, and OLAP.
In addition, a number of tool-specific extensions of these
generic data source/target packages (e.g., IMS, DMSII,
COBOLData, Essbase, Express) are included as
substantive examples in Volume 2, Extensions.

Proposals shall address the interchange
of metadata that describes all warehouse
processing elements including
scheduling, status reporting, and history
recording.

The submission includes a complete metamodel of all
warehouse processing elements. These are defined
collectively by the Software Deployment, Warehouse
Process and Warehouse Operation metamodels.

Proposals shall address the interchange
of metadata that describes informational
data and the use of major types of
informational data models (e.g.,
relational, multidimensional, and
hierarchical classification) for
representing informational data.

The submission defines Relational, Multidimensional,
XML and OLAP metamodels as the primary
representations of informational data models. In addition,
it includes Essbase and Express, both extensions of the
Multidimensional metamodel, and Information Set, an
extension of the OLAP metamodel encompassing
hierarchical classifications, as substantive examples.

Proposals shall demonstrate support for
import/export of warehouse metadata
and the common warehouse metamodel.
This demonstration shall include
demonstration of a round-trip metadata
exchange without information loss.

The submission includes XML, DTD and IDL definitions
that have been generated directly from the CWM
metamodel. These definitions support the import/export of
the CWM metamodel and its metadata instances. The
CWM Enablement Showcase at the December 2000 OMG
Technical Conference demonstrated metadata interchange
between tool sets from six different vendors.

Proposals shall support use of
international standard codesets.

The CWM metamodel supports internationalization
features required by specific, widely used domains (e.g.,
SQL-99). Use of XMI as the stream-based metadata
interchange format means that the CWM metamodel and
its metadata instances can be exchanged using
international standard codesets supported by XML. Use of
IDL as the API means that programmatic access to CWM
metadata can be achieved using international standard
codesets supported by IDL.

RFP Mandatory Requirement How the submission meets the requirement

2 February 2001 CWM 1.0 3-31

3

3.2 Optional Requirements

The table below describes how the submission satisfies any optional requirements
described in Section 6.6, Optional Requirements, of the Common Warehouse Metadata
Interchange RFP.

3.3 Issues to be Discussed

The table below describes how the submission addresses issues described in Section
6.7, Issues to be discussed, of the Common Warehouse Metadata Interchange RFP.

RFP Optional Requirement How the submission satisfies the requirement

Proposals may address the interchange
of metadata that describes operational
data and the use of major types of
operational data models (e.g., relational,
object-oriented, and hierarchical) for
representing operational data.

The submission defines Relational and Record
metamodels as the primary representations of operational
data models. In addition, it includes IMS, DMSII, and
COBOLData, as substantive examples of extensions of the
Record metamodel.

Proposals may address the administrative
aspects of metadata interchange such as
security (authorization and
authentication).

The submission does not address the administrative
aspects of metadata interchange such as security
(authorization and authentication). These should be
addressed at the MOF and XMI levels since they are
applicable to all types of metadata, not just common
warehouse metadata.

In order to preserve the investments of
OMG members, proposals may be
upward-compatible with MDIS, MDAPI,
and/or OIM. This does not imply
downward-compatibility. The CWMI
specification may contain constructs
unsupported by MDIS, MDAPI, or OIM.

The CWM metamodel is generally upward-compatible or
aligned to some extent with these specific standards. See
Chapter 20, Compatibility with Other Standards, of the
submission for a more detailed discussion.

RFP Issue How the submission addresses the issue

Proposals in response to this RFP may
discuss the usage and relevance of
related technologies such as MDIS.

The CWM metamodel was designed using MDIS, MDAPI
and MDC-OIM as design references. See Chapter 20,
Compatibility with Other Standards, of the submission for
a more detailed discussion.

Proposals should include information on
how to perform conformance tests.

Conformance points are defined in Chapter 21.

3-32 CWM 1.0 2 February 2001

3

3.4 Evaluation Criteria

The submission satisfies the evaluation criteria described in Section 6.8. Evaluation
Criteria, of the Common Warehouse Metadata Interchange RFP. The CWM metamodel
has been designed independently of any particular data warehouse implementation.
The CWM uses the MOF as its meta-metamodel, the UML Notation as its graphical
notation, and the XMI as its stream-based interchange format.

2 February 2001 CWM 1.0 4-33

Design Rationale 4

4.1 Design Overview

This submission proposes that XML Metadata Interchange (XMI) is used to
interchange data warehouse metadata based on the CWM metamodel. The CWM
metamodel is specified using the Meta Object Facility (MOF) Model, allowing XMI to
be used

• to transform the CWM metamodel into a CWM Document Type Definition (DTD),

• to transfer instances of warehouse metadata that conform to the CWM metamodel
as XML documents, based on the CWM DTD, and

• to transform the CWM metamodel itself into an XML document, based on the MOF
DTD, for interchange between MOF-compliant repositories.

Thus these specifications work together to allow warehouse metadata and the CWM
metamodel to be interchanged using W3C’s Extensible Markup Language (XML).

This submission additionally proposes that IDL is used for specifying programmatic
access to data warehouse metadata based on the CWM metamodel. Other programming
language APIs may be generated based on the CWM IDL and specific IDL-
programming language mappings (e.g. IDL-Java, CORBA-COM).

This submission specifically defines the CWM metamodel. The CWM DTD, CWM
XML and CWM IDL specifications are automatically generated from the CWM
metamodel, as defined by the MOF and XMI specifications.

4.2 CWM and the MOF

4.2.1 An Overview of the MOF

The Meta Object Facility (MOF) is the OMG’s adopted technology for defining
metadata and representing it as CORBA objects. Metadata is a general term for data

4-34 CWM 1.0 2 February 2001

4

that in some sense describes information. The information so described may be
information represented in a computer system; e.g. in the form of files, databases,
running program instances and so on. Alternatively, the information may be embodied
in some system, with the metadata being a description of some aspect of the system
such as a part of its design.

The MOF supports any kind of metadata that can be described using Object Modeling
techniques. This metadata may describe any aspect of a system and the information it
contains, and may describe it to any level of detail and rigour depending on the
metadata requirements.

The term model is generally used to denote a description of something from the real
world. The concept of a model is highly fluid, and depends on one’s point of view. To
someone who is concerned with building or understanding an entire system, a model
would include all of the metadata for the system. On the other hand, most people are
only concerned with certain components (e.g. programs A and B) or certain kinds of
detail (e.g. record definitions) of the system.

In the MOF context, the term model has a broader meaning. Here, a model is any
collection of metadata that is related in the following ways:

• The metadata conforms to rules governing its structure and consistency; i.e. it has a
common abstract syntax.

• The metadata has meaning in a common (often implied) semantic framework.

Metadata is itself a kind of information, and can accordingly be described by other
metadata. In MOF terminology, metadata that describes metadata is called meta-
metadata, and a model that consists of meta-metadata is called a metamodel.

One kind of metamodel plays a central role in the MOF. A MOF metamodel defines
the abstract syntax of the metadata in the MOF representation of a model. Since there
are many kinds of metadata in a typical system, the MOF framework needs to support
many different MOF metamodels. The MOF integrates these metamodels by defining a
common abstract syntax for defining metamodels. This abstract syntax is called the
MOF Model and is a model for metamodels; i.e. a meta-metamodel. The MOF
metadata framework is typically depicted as a four layer architecture as shown in
Table 1 below.

Table 4-1 OMG Metadata Architecture

Meta-level MOF terms Examples

M3 meta-metamodel The “MOF Model”

M2 metamodel, meta-metadata UML Metamodel,
CWM Metamodel

M1 model, metadata UML models,
CWM metadata

M0 object, data Modeled systems,
Warehouse data

2 February 2001 CWM 1.0 4-35

4

Some points on OMG and MOF metadata terminology:

• To make things easier to understand, we often describe things in terms of their level
in the meta-stack; e.g. the MOF Model is an M3-level model in a 4 level stack.

• The “meta-” prefix should be viewed in a relative rather than absolute sense.
Similarly, the numbering of meta-levels is not absolute.

• While there are typically four layers in a MOF-based metadata stack, the number of
layers can be more or less than this.

The MOF specification has three core parts; i.e. the specification of the MOF Model,
the MOF IDL Mapping and the MOF’s interfaces.

The MOF Model

The “MOF Model” is the MOF’s built-in meta-metamodel. One can think of it as the
“abstract language” for defining MOF metamodels. This is analogous to the way that
the UML metamodel is an abstract language for defining UML models. While the
MOF and UML are designed for two different kinds of modeling (i.e. metadata versus
object modeling), the MOF Model and the core of the UML metamodel are closely
aligned in their modeling concepts. (The alignment of the two models is close enough
to allow UML notation to be used to express MOF-based metamodels!)

The three main metadata modeling constructs provided by the MOF are the Class,
Association and Package. These are similar to their counterparts in UML, with some
simplifications:

• Classes can have Attributes and Operations at both “object” and “class” level.
Attributes have the obvious usage; i.e. representation of metadata. Operations are
provided to support metamodel specific functions on the metadata. Both Attributes
and Operation Parameters may be defined as “ordered”, or as having structural
constraints on their cardinality and uniqueness. Classes may multiply inherit from
other Classes.

• Associations support binary links between Class “instances”. Each Association has
two AssociationEnds that may specify “ordering” or “aggregation” semantics, and
structural constraints on cardinality or uniqueness. When a Class is the type of an
AssociationEnd, the Class may contain a Reference that allows navigability of the
Association’s links from a Class “instance”.

• Packages are collections of related Classes and Associations. Packages can be
composed by importing other Packages or by inheriting from them. Packages can
also be nested, though this provides a form of information hiding rather than reuse.

The other significant MOF Model constructs are DataTypes and Constraints.
DataTypes allow the use of non-object types for Parameters or Attributes. In the OMG
MOF specification, these must be data types or interface types expressible in CORBA
IDL.

Constraints are used to associate semantic restrictions with other elements in a MOF
metamodel. This defines the well-formedness rules for the metadata described by a

4-36 CWM 1.0 2 February 2001

4

metamodel. Any language may be used to express Constraints, though there are
obvious advantages in using a formal language like OCL.

The MOF IDL Mapping

The MOF’s “IDL Mapping” is a standard set of templates that map a MOF metamodel
onto a corresponding set of CORBA IDL interfaces. If the input to the mapping is the
metamodel for a given kind of metadata, then the resulting IDL interfaces are for
CORBA objects that can represent that metadata. The mapped IDL are typically used
in a repository for storing the metadata.

The IDL mapping is too large to describe here, and indeed it is largely irrelevant to the
problem of model interchange. Instead, we will simply note the main correspondences
between elements in a MOF metamodel (M2-level entities) and the CORBA objects
that represent metadata (M1-level entities):

• A Class in the metamodel maps onto an IDL interface for metadata objects and a
metadata class proxy. These interfaces support the Operations, Attributes and
References defined in the metamodel, and in the case of class proxy, provide a
factory operation for metadata objects.

• An Association maps onto an interface for a metadata association proxy that
supports association queries and updates.

• A Package maps onto an interface for a metadata package proxy. A package proxy
acts as a holder for the proxies for the Classes and Associations contained by the
Package, and therefore serves to define a logical extent for metadata associations,
classifier level attributes and the like.

The IDL that is produced by the mapping is defined in precise detail so that different
vendor implementations of the MOF can generate compatible repository interfaces
from a given MOF metamodel. Similarly, the semantic specification of the mapped
interfaces allows metadata objects be interoperable.

In addition to the metamodel specific interfaces for the metadata (defined by the IDL
mapping), MOF metadata objects share a common set of Reflective base interfaces.
These interfaces allow a ‘generic’ client program to access and update metadata
without either being compiled against the metamodel’s generated IDL or having to use
the CORBA DII.

The MOF Interfaces

The final component of the MOF specification is the set of IDL interfaces for the
CORBA objects that represent a MOF metamodel. These are not of interest to the
meta-modeller who will typically use vendor supplied graphical editors, compilers and
generator tools to access a MOF Model repository. However, they are of interest to
MOF-based tool vendors, and to programmers who need to access metadata using the
Reflective interfaces.

In fact, there is not a lot to say about these interface, except to explain how they were
derived. In the MOF specification, the MOF Model is defined using the MOF Model as

2 February 2001 CWM 1.0 4-37

4

its own modeling language; i.e. it is the “fixed point” of the metadata stack
Conceptually, the MOF Model is M3 level metadata conforming to an M4 level
metamodel that is isomorphic to the MOF Model. The IDL mapping is then applied to
this metamodel (or strictly speaking meta-metamodel) to produce the MOF Model’s
IDL interfaces. Likewise, the MOF Model IDL’s operational semantics are largely
defined by the mapping and the OCL constraints in the MOF Model specification.

4.2.2 The relationship between CWM and MOF

The MOF has been adopted as OMG’s standard for representing metamodels. The
CWM metamodel has been designed to conform to this standard. This allows CWM to
use other OMG specifications that are dependent on the MOF. In particular, it allows
use of XMI to interchange warehouse metadata that is represented using the CWM
metamodel, and it allows use of IDL (and other programming languages) for
programmatic access to warehouse metadata based on the CWM metamodel.

4.3 CWM and UML

4.3.1 An Overview of UML

The Unified Modeling Language (UML) is a graphical language for modeling discrete
systems. Although the UML is not necessarily tied to any particular application area
or modeling process, its greatest applicability is in the area of object-oriented software
design.

UML is the synthesis, or unification, of three preceding modeling languages that had
previously dominated the field of object-oriented software development: The Booch
(Grady Booch), OMT (James Rumbaugh) and OOSE (Ivar Jacobson) notational
systems were combined together by their authors into the Unified Modeling Language,
at Rational Software Corporation, in the 1994-1995 time frame.

The UML definition was subsequently submitted by Rational and a number of other
OMG member companies, as a proposal to the Object Management Group in
September, 1997, in response to an OMG RFP (OA&DTF RFP-1), requesting a
standard approach to object-oriented modeling. The UML proposal was created by a
team consisting of both its original authors and representatives from the various OMG
submitters. The UML proposal was subsequently ratified by the OMG in November
1997. Today, UML, along with the Meta Object Facility and XML Meta Data
Interchange specifications, serves as one of the cornerstones of the OMG metadata
architecture (of which CWM is a proposed, domain-specific extension).

The various modeling elements of UML support the specification of both static and
behavioral aspects of discrete, object-oriented systems. UML static models include the
definition of classes, their attributes, operations and interfaces. Standard relationships
between classes, such as inheritance/generalization, association, dependency and
containment, can be specified under UML and are used in the construction of class
diagrams. The behavioral semantics of the system being modeled can be specified
using UML conventions for expressing time-ordered inter-object message sequencing

4-38 CWM 1.0 2 February 2001

4

(sequence diagrams) and spatially-oriented collaborations between instances
(collaboration diagrams). Support for the specification of state-machines is also
provide for detailed modeling of object internals. UML also supports object-oriented
analysis and the modeling of external system behavior through use case diagrams.
Finally, UML provides notations for specifying the packaging of a logical design into
components and the deployment and allocation of those components to nodes in a
distributed computing architecture.

The UML language is formally defined by a metamodel (or semantic model) which is
itself defined recursively, using UML. This meta-circular definition enables the entire
UML to be based on a small number of elementary terms.

4.3.2 The relationship between CWM and UML

A primary objective of the CWM is to define a metamodel (or, equivalently, a
"metadata model") of a generic data warehouse architecture. Thus, the CWM
metamodel defines formal rules for modeling instances of data warehouses. However,
there is also a requirement for the CWM metamodel to be expressed in MOF (and thus
enabled for interchange via either CORBA interfaces or XMI).

The CWM metamodel includes an Object Model package which is based on the UML
metamodel. It consists of a version of the UML metamodel in which those aspects that
are not relevant in a data warehouse scenario have been removed. This Object Model
serves two purposes:

• as the base on which the CWM metamodel is built, and

• as the metamodel for object-oriented data resources.

The CWM metamodel is effectively an extension of the UML-based Object Model.
Any metaclass within CWM ultimately (if not directly) inherits from some metaclass
of the Object Model. For example, consider the CWM Relational Package. The
Relational metamodel defines a metaclass called "Table" that represents any relational
database table. This metaclass derives from the Object Model metaclass "Class".
Similarly, the Relational metaclass "Column" derives from the Object Model metaclass
"Attribute". This formally establishes the semantic relationship between the relational
concepts of Table and Column that it is well-understood intuitively, i.e. that a Table is
"something" that has properties (or attributes) and serves as a template for a collection
of "things" (i.e. rows) that all share that same set of properties but supply their own
"values" of those properties. The semantic equivalent in UML is the notion of a Class
and its Attributes, and this equivalence is established by defining Table as a
specialization of the notion of Class, and Column as a specialization of Attribute.

The UML specification is also used in the following ways:

• The UML notation is used in the diagrammatic representations of the CWM
metamodel.

• Additional constraints on the CWM metamodel are represented in Object Constraint
Language (OCL), as defined in the UML specification.

2 February 2001 CWM 1.0 4-39

4

4.4 CWM and XMI

4.4.1 An Overview of XMI

The purpose of XMI is to allow the interchange of models in a serialised form. Since
the MOF is the OMG’s adopted technology for representing metadata, it is natural that
XMI focuses on the interchange of MOF metadata; i.e. metadata conforming to a MOF
metamodel. In fact, XMI is really a pair of parallel mappings: one between MOF
metamodels and XML DTDs, and another between MOF metadata and XML
documents.

XMI can be viewed as a common metadata interchange format that is independent of
middleware technology. Any metadata repository or tool that can encode and decode
XMI streams can exchange metadata with other repositories or tools with the same
capability. There is no need for products to implement the MOF-defined CORBA
interfaces, or even to “speak” CORBA at all.

XMI provides a possible route for interchange of metadata with repositories whose
metamodels are not MOF based. This interchange can be realised by ad hoc mappings
between an XMI document and the repository’s native metamodel.

XMI is based on the W3C’s Extensible Markup Language (XML), and has two major
components:

• The XML DTD Production Rules for producing XML Document Type Definitions
(DTDs) for XMI encoded metadata. XMI DTDs serve as syntax specifications for
XMI documents, and allow generic XML tools to be used to compose and validate
XMI documents.

• The XML Document Production Rules for encoding metadata into an XML
compatible format. The production rules can be applied in reverse to decode XMI
documents and reconstruct the metadata.

XMI supports the interchange of any kind of metadata that can be expressed using the
MOF specification. It supports the encoding of metadata consisting of both complete
models and model fragments, as well as tool-specific extension metadata. XMI has
optional support for interchange of metadata in differential form, and for metadata
interchange with tools that have incomplete understanding of the metadata.

4.4.2 The relationship between CWM and XMI

CWM uses XMI as its interchange mechanism. This means that the full power and
flexibility of XMI is available for interchanging both warehouse metadata and the
CWM metamodel itself. CWM does not require any extensions to XMI.

A standard DTD for the CWM metamodel is generated using XMI’s DTD Production
Rules. Warehouse metadata can then be encoded as an XML document using XMI’s
Document Production Rules.

A standard XML document for the CWM metamodel is also generated using XMI’s
Document Production Rules, based on the MOF DTD.

4-40 CWM 1.0 2 February 2001

4

4.5 Major Design Goals and Rationale

This section describes the major design goals that the CWM developers are aiming to
meet, and explains some of the more significant design choices that have been made.

4.5.1 Reuse of UML concepts

Design Goal: The CWM model should reuse concepts in the UML
metamodel where applicable.

The CWM metamodel has as its base an Object Model based on a version of the UML
metamodel in which those aspects that are not relevant in a data warehouse scenario
have been removed. The CWM metamodel is built on top of and extends this Object
Model.

Many of the core UML object types and associations are reflected by the CWM Object
Model. Wherever appropriate, Object Model types are subtyped to provide more
specific object types in the CWM metamodel, normally with additional attributes or
associations. All CWM object types are direct or indirect subtypes of appropriate
Object Model types, and so inherit their attributes and associations.

This approach has many advantages. It allows the CWM specification to capitalise on
the substantial investment in developing and refining the UML metamodel. The
general awareness of UML concepts should aid understanding of the CWM
specification and its base Object Model. It also enables easy inclusion of UML models
as part of the data warehouse metadata.

4.5.2 Modularity

Design Goal: The CWM model should be subdivided into packages
allowing implementation of relevant subsets of the model.

The CWM metamodel is split up into a set of packages. This should aid
comprehension of the metamodel, by splitting it up into smaller units, and also allow
users and implementors to ignore packages that are not relevant to their needs.

The CWM metamodel has a layered structure:

• The foundation consists of the UML-based Object Model and the CWM
Foundation, which supports additional concepts and structures that are shared by
other packages. Additionally, the Software Deployment package supports the
deployment information for the data sources and targets in the next layer.

• The Relational, Record, Multidimensional and XML packages support the
definition of various types of data sources and data targets.

• The Transformation, OLAP, Data Mining, Information Visualization and Business
Nomenclature packages define the transformations and analytical processing that
takes place on these data sources.

2 February 2001 CWM 1.0 4-41

4

• Finally, the Warehouse Process package supports scheduling information, and the
Warehouse Operation package is used to record operational details such as the
results of transformation runs.

4.5.3 Generic model

Design Goal: The CWM metamodel should be independent of any
specific data warehouse implementation. Yet it should contain
features that are effective in, and mappable to, a broad range of
representative warehouse configurations based on specific tools.

Much attention has been taken to ensure that the CWM metamodel has been made as
generic as possible, and that only information that is shareable between different
implementations has been included in the metamodel. Shareability of information has
been checked and refined by examining the metadata needs of several different, but
representative, implementations as well as a broad range of representative warehouse
configurations.

4-42 CWM 1.0 2 February 2001

4

2 February 2001 CWM 1.0 5-43

Usage Scenarios 5

5.1 Overview

This chapter describes some of the problems that data warehousing users,
administrators, developers and vendors face today and illustrates how CWM helps to
address these problems.

As stated in Section 4.5.3, a design goal of CWM is to be independent of any specific
data warehouse implementation and to contain features that are effective and easy to
use in a broad range of representative warehouse configurations based on specific
tools. The usage scenarios contained in this chapter are provided to demonstrate that
this design goal is met.

In addition these usage scenarios illustrate problem domains in which CWM is
applicable.

5.2 Users of CWM

CWM is targeted at six categories of users:

• Warehouse platform and tool vendors

• Professional service providers

• Warehouse developers

• Warehouse administrators

• End users

• Information technology managers

These users participate in one or more of the following four stages in the development
and usage of CWM-based data warehouses:

5-44 CWM 1.0 2 February 2001

5

• Establishment
Implementing and deploying CWM, including a Repository Common Facility (as
shown in Fig. 1-1. OMG Metadata Repository Architecture).

• Build
Exercising CWM to define a baseline data warehouse configuration (establishing
the exchange paths between known data sources and targets).

• Operation
Operating the CWM-based data warehouse.

• Maintenance
Exercising CWM to define changes in data warehouse configuration (to cover
changes as small as the addition of more elements of a type already in the
configuration and as large as merger with or replacement by another configuration).

In this chapter, we present usage scenarios that illustrate activities in the Build and
Maintenance steps.

The following table shows how CWM benefits users in data warehouse development
and usage.

Table 5-1 Value of CWM to Users

 Value of CWM to Users

User Category Stage Problem or
Need

Tools and Repositories How CWM promotes
better Data
Warehouse utilization

Warehouse
platform and
tool vendors

Build Must subscribe
to standards for
inter-vendor
interconnect

· CWM
· OMG Repository
Common Facility
· Tools for modeling,
development, deployment
and system management

CWM provides a common
backplane for pluggable
subsystems. It is a
globally usable notation
for metadata exchange
protocols which enables
flexible distribution of
enterprise services over a
heterogeneous collection
of systems.

Professional
service
providers

Build Must
accumulate and
reuse objects
from service
engagement

Third party and in-house
tools that apply CWM
metadata to concrete
database catalogs and vice
versa

Reusable, editable, and
extensible CWM metadata
provides an asset base that
builds value. This base of
reusable objects starts a
self-reinforcing feedback
loop with continually
increasing returns
(improved engagement
productivity).

2 February 2001 CWM 1.0 5-45

5

Professional
service
providers

Maintenance Must modify
configuration:
knowing what
and where to
modify;
knowing
dependency
closure

Third party or in-house
tools to manage
reconfiguration editing of
a warehouse model

CWM exposes the
information required to
modify a model. Context
definition and self-
describing features of
CWM are used to isolate
dependency relationships.

Professional
service
providers,
warehouse
administrators

Maintenance Must integrate
existing tools
and data which
adhere to
standards other
than CWM into
a data
warehouse
configuration.

Tools based on CWM’s
ability to incorporate
metamodels of legacy,
web, proprietary, and
alternate metadata
definition practices and
standards.

CWM provides submodels
supporting details of
information held in a
variety of different
formats, including XML,
Relational SQL and
conventional file formats.

Warehouse
administrators

Build Must establish
and manage
expressions,
relationships,
and lineage
over multiple
database
schemata.

Tools that use built-in
facilities of CWM to
define schema content,
relationships, and lineage.

CWM design is based on
need to manage such
information at multiple
levels. The
Transformation and
Warehouse Operation
packages are designed to
allow navigation of
metadata correlated to
schemata.

Warehouse
administrators

Maintenance Must add,
subtract, re-
partition,
reallocate, or
merge
resources in
deployment
configuration.

System management tools. CWM consists of models
of metadata that assist in
making such changes and
allow impact of these
changes to be assessed.

Table 5-1 Value of CWM to Users

 Value of CWM to Users

User Category Stage Problem or
Need

Tools and Repositories How CWM promotes
better Data
Warehouse utilization

5-46 CWM 1.0 2 February 2001

5

5.3 Usage Scenarios

This section identifies four application scenarios and six tool scenarios outlining likely
usages of CWM. The application scenarios cover key data warehousing activities.
These are summarized in sections 5.3.1 through 5.3.4 below and illustrated in
Table 5-2. The tool scenarios in section 5.3.5 and Table 5-3 cover some significant
data warehousing tools from the submitters used in present day practice.

The purpose of these scenarios is purely to illustrate potential usage of CWM.

In warehouse operations, two common categories of data movement are (a) loading
data into a data store, and (b) accessing data for analysis and presentation from the
data store. The ETL Scenario addresses the first category. The OLAP Scenario
addresses the second category.

Warehouse
developers

All Must view
source, target,
application
descriptions
(including
interfaces).

Tools to facilitate
development with ability
to refer to information in
metadata repository

CWM includes containers
for description at fine and
coarse grain levels.

End users All Must know
- refresh state
of inputs and
outputs of
queries,
- mapping
between
models for
transfer of data
sets between
tools, and
- transforma-
tion rules.

Query and presentation
tools

CWM presents models of
metadata to be exploited
by query and presentation
tools.

Information
technology
managers

All Must have
visibility into
warehouse
deployment
state.

System management and
report tools

CWM presents models of
metadata to be exploited
by system management
and report tools.

Table 5-1 Value of CWM to Users

 Value of CWM to Users

User Category Stage Problem or
Need

Tools and Repositories How CWM promotes
better Data
Warehouse utilization

2 February 2001 CWM 1.0 5-47

5

5.3.1 ETL Scenario

ETL, Extract-Transform-Load, is a common term for the warehouse load process
comprising a set of data movement operations, each from a data source to a data target
with some transforming or restructuring logic applied.

The ETL Scenario starts by defining a CWM Transformation model for movement
from a data source to a data target. Parameters of the source data, target data, and
transformation logic are assigned values in the model. Source data parameters depend
on the type of the data source (object-oriented, relational, record-oriented,
multidimensional, or XML). Target data parameters are similarly chosen.
Transformation logic parameters include identification of a transformation component
and of data sources and data targets. The transformation component is a method
composed of a possibly large hierarchy of components (commercial tools, commercial
libraries, custom scripts) whose detailed structure is defined elsewhere.

An ETL process is realized by a number of components across several CWM
packages. A CWM warehouse process may launch an ETL process as a scheduled
operation consisting of a number of transformation steps executed in sequence.

For example, the first transformation consists of the extraction and filtering of data
from any of a number of possible data sources. A second transformation cleanses,
combines, or otherwise reduces the data and then stores it in a normalized format in
some primary relational database of the warehouse. A third transformation selects
certain rows from the primary relational database and loads their values into the input
cells of a multidimensional database. Finally, the CWM warehouse process might
instruct the multidimensional database to re-calculate its aggregated cells based on the
new input data.

5.3.2 OLAP Scenario

An end user of a data warehouse engages in an analytic session with a
multidimensional or relational database through the OLAP layer. The user navigates
cubes and dimensions and selectively launches OLAP queries. At some point, the user
decides to drill-down from a consolidated value to lower levels of detail in an OLAP
hierarchy, possibly down to the lowest level input value(s) in the hierarchy.

Leveraging CWM’s inherent ability to preserve data lineage, the user may view the
operational detail which formed the input value(s). The original data sources can be
identified from the CWM Warehouse Operation that recorded the production of the
input value(s).

5.3.3 Questionnaire Scenario

An important aspect of data warehousing is the collection of raw data from external
resources using for example application-generated reports, questionnaires or surveys.
To allow for inter-operability of tools supporting raw data collection, the metadata
identifying the data to be collected must be defined, together with metadata that can be
used to ensure accuracy and validity of data.

5-48 CWM 1.0 2 February 2001

5

Questionnaires are commonly used as a means of collecting data about real-world
activities, processes, and opinions. Most of us experience questionnaires as paper
documents. However, technological advances are making possible on-line acquisition
of questionnaire data and generation of questionnaires from automated sources, such as
application systems.

Once assimilated, questionnaire data can be stored in data warehouses for further
statistical processing and analysis. The inherent multi-category, hierarchical nature of
questionnaire responses makes them ideal candidates for multidimensional analysis.
Once questionnaire data has been transformed by an ETL process into a
multidimensional data store, it becomes available for analysis with OLAP tools.

5.3.4 Warehouse Administration Scenario

A warehouse administrator needs access to all the necessary information to control and
monitor the state of the data warehouse. To accomplish this, ETL processes need to be
scheduled to update information in the data warehouse. Monitoring ETL operations
and journalizing changes to data warehouses must be performed for a variety of data
integrity, organizational and regulatory reasons. In the event of problems arising, the
administrator needs to be able to take appropriate action (such as initiating a rerun of a
set of warehouse processes).

For information held in the data warehouse, the administrator may need to determine
its source, derivation, and update history. This involves identifying transformations
that created the information and determining when they last ran. Because the source of
a transformation may itself be another transformation, it may be necessary for the
administrator to track backward through several transformations to identify the original
source(s) of the information.

Table 5-2 Application Scenarios

Application Scenario

CWM Package

ETL (Extract,
Transform,
Load) OLAP Questionnaire

Warehouse
Administration

Software
Deployment

X X X

Object-
Oriented
(UML)

X

Relational X X X

Record X X

Multi-
dimensional

X X

XML X X

2 February 2001 CWM 1.0 5-49

5

5.3.5 Tool Scenarios

The following tool scenarios cover some significant data warehousing tools from the
submitters used in present day practice:

• Dimension EDI

Polyval XML Mediator, Polyval XML Questionnaire

• Hyperion

Hyperion Essbase OLAP Server, Hyperion Integration Server, Hyperion
Application Link, Hyperion Analytical Reporting

• IBM

Visual Warehouse, DB2 Family, DB2 OLAP Server, IMS, Team Connection

• NCR

Teradata Warehouse Suite

• Oracle

Oracle Express, Oracle 8i, Oracle Discoverer, Oracle Warehouse Builder, Oracle
Repository

• Unisys

Unisys Universal Repository (UREP)

Transforma-
tion

X X X X

OLAP X X

Data Mining X

Information
Visualization

X X X

Business
Nomenclature

X X X X

Warehouse
Process

X X X

Warehouse
Operation

X X X

Table 5-2 Application Scenarios

Application Scenario

CWM Package

ETL (Extract,
Transform,
Load) OLAP Questionnaire

Warehouse
Administration

5-50 CWM 1.0 2 February 2001

5

Table 5-3 Tools Scenarios

Tools Scenario

CWM Package
Dimension
EDI Hyperion IBM NCR Oracle Unisys

CWM and
Metadata
Repository
Facility

X X X X

Software
Deployment

X X X

Relational X X X X X X

Record X X X

Multi-
dimensional

X X

XML X X X X

Transforma-
tion

X X X X X

OLAP X X X X

Data Mining X X X X

Information
Visualization

X X X X

Business
Nomenclature

X X X X

Warehouse
Process

X X X

Warehouse
Operation

X X X

2 February 2001 CWM 1.0 6-51

CWM 6

6.1 Overview

The amount of data in a given organization doubles every five years. Most
organizations suffer from an overabundance of redundant and inconsistent data that is
difficult to manage effectively, to access, and to use for decision making purposes.
Data warehousing provides an excellent approach for transforming data into useful and
reliable information to support the business decision making process and to achieve
business intelligence. One of the most important aspects of data warehousing is
metadata. Metadata is used for building, maintaining, managing, and using the data
warehouse. Unfortunately, the proliferation of data management and analysis tools has
resulted in almost as many different representations and treatments of metadata as
there are tools.

Since every data management and analysis tool requires different metadata and a
different metadata model (known as a metamodel) to solve the data warehouse
metadata problem, it is simply not possible to have a single metadata repository that
implements a single metamodel for all the metadata in an organization. Instead, what is
needed is a standard for interchange of warehouse metadata.

The CWM is a response to these needs. It provides a framework for representing
metadata about data sources, data targets, transformations and analysis, and the
processes and operations that create and manage warehouse data and provide lineage
information about its use.

The CWM Metamodel consists of a number of sub-metamodels which represent
common warehouse metadata in the following major areas of interest to data
warehousing and business intelligence (see Figure 6-1 on page 52):

• Data Resources

These include metamodels that represent object-oriented, relational, record,
multidimensional, and XML data resources. In the case of object-oriented data
resource, CWM reuses the base object model.

6-52 CWM 1.0 2 February 2001

6

• Data Analysis

These include metamodels that represent data transformations, OLAP (On-line
Analytical Processing), data mining, information visualization, and business
nomenclature.

• Warehouse Management

These include metamodels that represent warehouse processes and results of
warehouse operations.

Figure 6-1 The CWM Metamodel.

The CWM Metamodel is designed to maximize the reuse of Object Model (a subset of
UML) and the sharing of common modeling constructs where possible. The most
prominent example is that CWM reuses/depends on Object Model for representing
object-oriented data resources. In addition, where applicable, key elements of the
metamodels for other types of data resources all subclass from the same model
elements in Object Model, as shown in Table 6-1 below. (The entries listed under
Software System and Deployed Software System are examples.)

 The CWM Metamodel

Object Model

Software
Deployment

Type
Mapping

Keys
and

Indexes
Expression Data Types Business

Information
Foundation

XML Multidimensional Record Relational Object Model Resource

Business
Nomenclature

Information
Visualization

Data
Mining OLAP Transformation Analysis

Warehouse Operation Warehouse Process Management

2 February 2001 CWM 1.0 6-53

6

6.1.1 The Roles of UML in CWM

UML is used in CWM in three different critical roles:

• UML is used as the MOF-equivalent meta-metamodel.
UML, or the part that corresponds to the MOF Model, UML Notation, and OCL
(Object Constraint Language) are used as the modeling language, graphical
notation, and constraint language, respectively, for defining and representing CWM.

• UML is used as the foundation metamodel.
UML, specifically a subset as represented by the Object Model packages, is used as
the foundation of CWM from which other metamodels inherit classes and
associations

• UML is used as the object-oriented metamodel.
UML, specifically the Object Model package, is relied on for representing object-
oriented data resources.

Table 6-1 CWM Data Resources

Software
System

Deployed
Software
System

Package Class Attribute

Object
Model

Java Java installa-
tion

Package Class Attribute

Relational DB2 UDB,
Oracle 8i,
Teradata

DB2 UDB,
Oracle 8i,
Teradata
installations

Catalog/
Schema

Table Column

Record IMS, DMS II IMS, DMS II
installations

RecordFile RecordDef Field

Multidimen-
sional

Essbase,
Express

Essbase,
Express
installations

Schema Dimension Dimensioned
Object

XML XML4J XML4J
installation

Schema ElementType Attribute

6-54 CWM 1.0 2 February 2001

6

6.2 Organization of the CWM

The CWM Metamodel uses packages and a hierarchical package structure to control
complexity, promote understanding, and support reuse. The model elements are
contained in the following packages:

• ObjectModel package

• Core package
Contains classes and associations that form the core of the CWM object model,
which are used by all other CWM packages including other ObjectModel
packages.

• Behavioral package
Contains classes and associations that describe the behavior of CWM objects and
provide a foundation for describing the invocations of defined behaviors.

• Relationships package
Contains classes and associations that describe the relationships between CWM
object.

• Instance package
Contains classes and associations that represents instances of CWM classifiers.

• Foundation package

• Business Information package
Contains classes and associations that represent business information about model
elements.

• Data Types package
Contains classes and associations that represent constructs that modelers can use
to create the specific data types they need.

• Expressions package
Contains classes and associations that represent expression trees.

• Keys and Indexes package
Contains classes and associations that represent keys and indexes.

• Software Deployment package
Contains classes and associations that represent how software is deployed in a
data warehouse.

• Type Mapping package
Contains classes and associations that represent mapping of data types between
different systems.

• Resource package

• Relational package
Contains classes and associations that represent metadata of relational data
resources.

• Record package
Contains classes and associations that represent metadata of record data
resources.

• Multidimensional package
Contains classes and associations that represent metadata of multidimensional
data resources.

2 February 2001 CWM 1.0 6-55

6

• XML package
Contains classes and associations that represent metadata of XML data resources.

• Analysis package

• Transformation package
Contains classes and associations that represent metadata of data transformation
tools.

• OLAP package
Contains classes and associations that represent metadata of on-line analytical
processing tools.

• Data Mining package
Contains classes and associations that represent metadata of data mining tools.

• Information Visualization package
Contains classes and associations that representing metadata of information
visualization tools.

• Business Nomenclature package
Contains classes and associations that represent metadata on business taxonomy
and glossary.

• Management package

• Warehouse Process package
Contains classes and associations that represent metadata of warehouse processes.

• Warehouse Operation package
Contains classes and associations that represent metadata of results of warehouse
operations.

6.2.1 Modeling Conventions

To promote clearer understanding of the contents of the CWM metamodels, this
specification contains a number of UML representations of portions of the CWM
model packages. The CWM design team has used several conventions in the
construction of CWM metamodel packages and accompanying diagrams. These
conventions are outlined here and apply to the remainder of the specification.

Names

The names of UML packages, classifiers, and associations are shown with the initial
letter of their names in upper case; these names must be unique within a package.
Features (attributes and operations), references and association ends are shown with
the initial letter of their names in lower case; these names must be unique within their
containing classifier or association. Internal upper case letters are used in both types of
names to separate words; intervening spaces, hyphens, or underscores have been
avoided. Double colon delimiters (“::”) are used to connect individual names into
qualified names.

Classes

6-56 CWM 1.0 2 February 2001

6

Conforming to standard UML notation, classes are represented in diagrams as
rectangular boxes with three horizontal sections containing the class name, attributes,
and operations, respectively, from the top. CWM itself defines no operations, but
extension packages are permitted to do so.

Classes defined in the current CWM package are shown with all their attributes and
operations visible. Classes imported from UML or other CWM packages show only the
class name and a notation in parentheses identifying the source package. Attributes and
operations of imported classes are not displayed; refer to the package where they are
defined to see their complete definition.

In diagrams, classes defined in any CWM package are shown with lightly shaded
background fill, whether imported or local. Classes imported from a UML package are
shown with no background fill.

Attributes

Unless specified otherwise in the specification, attributes have a multiplicity of exactly
one; attribute multiplicity is not shown in diagrams. Attributes are shown
diagrammatically following standard UML notation:

 <<stereotype>> name : type = initvalue.

Attribute stereotypes and initial values are suppressed in diagrams if they are not
defined.

Data Types

Metamodel (M2) data types are placed in the most specific package possible and have
a stereotype of <<primitive>>, <<datatype>> or <<enumeration>>.

Enumerations are used infrequently within the CWM. In diagrams, the names of
enumerations appear only as the types of attributes; their individual values are not
displayed. The defined values for an enumeration begin with a lower case letter and
can be found in the text where the enumeration is used as the type of an attribute. For
example, the values of the WeekDay enumeration used as the type of an attribute
named dayOfWeek would appear in the text as follows:

dayOfWeek

The day of the week on which something interesting happened.

type: WeekDay (sunday | monday | tuesday | wednesday |
 thursday | friday | saturday)

multiplicity: exactly one

2 February 2001 CWM 1.0 6-57

6

Data types required by CWM extension packages, such as the types of a programming
language, are generally represented as instances of the UML DataType class or as
instances of other classes that are subclasses of UML’s Classifier class. Refer to the
Foundation and Data Types chapters for additional details.

Associations

All CWM associations are named. However, to improve readability, their names
usually do not appear in diagrams.

Associations declared in UML and other CWM packages can be reused in two ways:
inheritance or derivation. Inherited associations are reuses, without modification, of
associations declared elsewhere in the metamodel. In contrast, derived associations are
“filtered” by OCL statements so that only a subset of the source association’s instances
are available in the derived association.

Inherited associations are never renamed and are added to the diagrams only when they
clarify the relationships between types appearing in the diagram. They can be
identified in diagrams by leading forward slash characters (“/”) on the names of their
association ends. For example, the association between a relational table and its
columns can be drawn between the Table and Column classes with end names of
“/owner” and “/feature”, indicating that the association is an application of the UML
association between the Classifier and Feature classes.

Derived associations are separately named and have a real presence in the metamodel.
They do not have slashes on the names of association ends. One “filtering” OCL
statement on at least one association end is required. (Note, however, that OCL
statements that simply restrict the multiplicity of inherited association ends are not
sufficient to turn them into derived associations.)

Shared (open diamond) aggregation associations have been avoided unless there was
not other way of representing the required semantics. UML association classes have
been avoided because MOF 1.3 does not support them.

Association Ends

All association ends are named in CWM. By default, the names of association ends are
the same as the names of the classes to which they connect. Association end names are
defined only within the scope of the association whose ends they name. The names of
association ends appear in the diagrams only when they have some name other than the
default or when their presence is required to clarify the meaning or identity of the
association (as with inherited associations appearing on diagrams).

Generally, all CWM association ends are navigable. In the diagrams, navigable
association ends are marked with an arrowhead when the opposite end is non-
navigable for some specific semantic reason. Such situations are considered rare, occur
only when associations cross package boundaries and are dependent on the specific
semantics of each situation.

6-58 CWM 1.0 2 February 2001

6

References

Because it is based on the MOF, CWM distinguishes references and association ends.
References appear as attributes of classes and indicate related instances of the class
that is the attribute’s stated type. The names of references are preceded by forward
slashes (“/”) in diagrams. Association ends, in contrast, appear as labels on the ends of
lines representing associations.

It is appropriate to think of a reference as being “implemented” by a corresponding
association end of an association between the reference’s class and the class
represented by the reference’s type. Reference names are generally identical to their
corresponding association end’s name. However, reference names may differ from end
names when doing so improves the clarity of the model.

References may be omitted if traversal to the associated class is either not possible, as
is often the case when crossing package boundaries, or not desirable for some other
semantic reason. For example, references should be omitted when the association end
they correspond to resides in another package or when they would interfere with
federation across network metadata repositories (refer to the MOF specification for
details).

Examples of these relationships are illustrated in the following figure.

Figure 6-2 References and Association Ends

In the figure, X.a and Y.b are attributes of type String in classes X and Y, respectively.
X.y is a reference from class X to class Y, and Y.x is a reference from Y to X. Although
CWM does not specify implementation details, this pair of references can be thought
of as being implemented by the XY association, with the XY.x association end
implementing the reference Y.x and XY.y implementing X.y. Consequently, X.y and Y.x
are mutually inverse references. Similarly, X.q is implemented by XtoY.q but has no
inverse reference. Because the inverse reference is not defined, instances of X cannot
be directly accessed from Y. However, related instances of X still can be found by
examining the XtoY association itself. This technique is commonly used when an
association crosses a package boundary, and a reference cannot be added to the class in
the other package (Y, in this case).

If traversal from Y to X were not semantically valid, the XtoY association could be so-
marked with an open arrowhead at the q association end, pointing to Y (but not shown
in the figure).

Constraints

X

a : S tring
/ q : Y
/ y : Y

Y

b : S tring
/ x : XXY

yx

XtoY
qp

2 February 2001 CWM 1.0 6-59

6

Constraints are statements of “facts” assumed to be true always and are core parts of
any expressive metamodel.

CWM constraints are expressed in two ways. Some constraints are represented in the
structure of the model itself. These constraints take the form of multiplicity statements
for attributes and association ends, positioning of containment and inheritance
relationships, and the abstractness of some metaclasses. Other constraints are,
following OMG requirements, expressed as OCL statements. Within the body of a
chapter, these constraints are described in text, and corresponding OCL statements are
referenced by number and enclosed in square brackets. For example, a reference to the
third OCL statement in a chapter would appear as “[C-3]”. OCL statements within a
chapter are numbered sequentially from C-1 and collected together in a section at the
end of chapter. Because the Foundation chapter contains an additional layer of
subsections, constraint numbers in it include the subsection number; for example, “[C-
2-1]” is the first constraint in the second subsection of the chapter.

A complete description of CWM includes both structural constraints and their
accompanying OCL statements. Structural constraints are used to capture general
features of CWM and are generally preferred over OCL statements. OCL statements
are used when capturing a constraint structurally would overly complicate or otherwise
obscure the basic intent and understanding of the metamodel. OCL statements are
written to capture specific situational constraints (such as uniqueness, filters for
derived associations, and dependencies between attribute values) or to express
relationships between instances that cannot be inferred from the metamodel itself (such
as “or-ed” or “xor-ed” associations and attributes, references to superclasses or other
related instances, subsets, and implied transitivity).

Following the ground rules of OCL, CWM does not specify the nature of actions taken
when constraints fail. Rather, specification of failure actions and recognition of failure
modes are left to individual implementations of CWM.

Unless otherwise stated for a particular OCL constraint, the evaluation policy for all
CWM constraints is “deferred” meaning that constraint checking should occur at the
end of bulk operations, such as a load, or as part of a model validation operation.

Instance Diagrams

The specification contains examples of metamodel usage in a graphical presentation
similar in appearance to UML collaboration diagrams. These instance diagrams should
not, however, be confused with UML collaboration diagrams. Individual instances are
represented as rectangular boxes containing the instance’s name (if any) followed by
the instance’s type. Lines represent links between instance rectangles and are labeled
only when required for clarity. Refer to the specification text for precise definition of
the identity and semantics of individual lines. Attribute values are shown, when
necessary, in separate boxes linked to their owning instance with text in the form
<attribute name> = <value>.

Modularity

6-60 CWM 1.0 2 February 2001

6

As much as possible, different modeling areas have been placed in different packages,
and dependencies between packages have been kept to a minimum. This has been done
so that CWM packages can be deployed in various combinations rather than as one
enormous model.

6.3 How the CWM Metamodel is Described

The following topics briefly describe the conventions this specification uses to define
the metamodel elements and their characteristics. This section is extracted from the
MOF specification.

6.3.1 Classes

Classes are the fundamental building blocks of CWM metamodels. A Class can have
three kinds of features: Attributes, References and Operations. They may inherit from
other Classes, and may be related to other Classes by Associations.

The CWM uses the term Class with a meaning that is identical to that of Class in
UML. A Class is an abstract specification of meta-objects that includes their state,
their interfaces and (at least informally) behavior. A Class specification is sufficient to
allow the generation of concrete interfaces with well defined semantics for managing
meta-object state. However, a Class specification does not include any methods to
implement meta-object behavior.

Each Class is defined in terms of its name(s), super-Classes, the Classes whose
instances it can contain, its attributes, its references, its operations, its constraints and
whether it is abstract or concrete. This specification uses a hybrid textual and tabular
notation to define the important characteristics of each Class. The notation defines
defaults for most characteristics, so that the Class definitions need only explicitly
specify characteristics that are different from the default.

The following text explains the notation used for defining Classes and their
characteristics.

Class Heading

Each Class is introduced by a section heading. The heading defines the standard
ModelElement name for the Class. The Class’s name on the heading line can be
followed by the word "abstract" or by a "substitute_name" for some mapping.

Superclasses

This heading lists the Classes which generalizes the Class being described.
Generalization is another term for inheritance. Multiple inheritance is permitted in
CWM.

Contained Elements

2 February 2001 CWM 1.0 6-61

6

If presented, the heading lists the Classes whose instances may be contained by an
instance of this container Class. Instances of Classes may act as containers of other
elements by means of composite aggregation associations. Only Classes that are in the
current metamodel package or in other packages upon which it is dependent are listed
in this section. Omission of a Class from this list does not necessarily preclude
instances of that Class from being contained by this container Class.

Attributes

This heading lists the Attributes for a Class. Attributes that are inherited from the
super-Classes are not listed. If the "Attributes" heading is absent, the Class has no
Attributes.

The following text explains the notation used for defining variable characteristics of
Attributes.

References

This heading lists the References for a Class. References that are inherited from the
super-Classes are not listed If the "References" heading is absent, the Class has no
References.

type: This entry defines the base type for the Attribute.

multiplicity: This entry defines the "multiplicity" for the Attribute,
consisting of its "lower" and "upper" bounds, and
"isOrdered" flag, and an "isUnique" flag.

The multiplicity for an Attribute is expressed as follows:
(1) The "lower" and "upper" bounds are expressed as
"exactly one", "zero or one", "zero or more" and "one or
more".
(2) If the word "ordered" appears, "isOrdered" should be
true. If it is absent, "isOrdered" should be false.
(3) If the word "unique" appears, "isUnique" should be true.
If it is absent, "isUnique" should be false.

changeable: This optional entry defines the "isChangeable" flag
for the Attribute. If omitted, "isChangeable" is true.

derived from: This optional entry describes the derivation of a
derived Attribute. If the entry is present, the
Attribute’s "isDerived" flag will be true. If it is
absent, the flag will be false.

scope: This optional entry defines the "scope" of an Attribute
as either "instance_level" or "class_level". If the entry
is absent, the Attribute’s "scope" is "instance_level".

6-62 CWM 1.0 2 February 2001

6

A Reference connects its containing Class to an AssociationEnd belonging to an
Association that involves the Class. This allows a client to navigate directly from an
instance of the Class to other instance or instances that are related by links in the
Association.

The following text explains the notation used for defining variable characteristics of
References.

Operations

This heading lists the Operations for a Class. Operations that are inherited from the
super-Classes are not listed. If the "Operations" heading is absent, the Class has no
Operations.

class: This entry defines the base type of the Reference.
Note the "type" of a Reference must be the same as
the "type" of the referenced AssociationEnd.

defined by: This entry defines the Association and
AssociationEnd that the Reference is linked to.

multiplicity: This entry defines the "multiplicity" for the
Reference. These are defined in the same way as
Attribute "multiplicity" characteristics, except that
"unique" is omitted. Note the "multiplicity" settings
for an AssociationEnd and its corresponding
Reference(s) must be the same.

changeable: This optional entry defines the "isChangeable" flag
for the Reference. If omitted, "isChangeable" is true.

inverse: This optional entry defines the "inverse" Reference
for this Reference. If this entry is absent, the
Reference does not have an inverse Reference.

2 February 2001 CWM 1.0 6-63

6

The following text explains the notation used for defining variable characteristics of
Operations.

Constraints

This heading lists the Constraints that are attached to this Class. If the "Constraints"
heading is absent, the Class has no Constraints.

6.3.2 Associations

Associations describe relationships between instances of Classes. The properties of an
Association rests mostly in its two AssociationEnds.

The following text explains the notation used for defining Associations and their
characteristics.

Association Heading

Each Association is introduced by a section heading. The heading defines the standard
ModelElement name for the Association. The Association’s name on the heading line
can be followed by the word "derived", and "protected" or "private".

return type: This optional entry defines the "type" and
"multiplicity" of the Operations’s return Parameter. If
this entry is absent, the Operation does not have a
return Parameter.

isQuery: This optional entry defines the Operation’s "isQuery"
flag. If it is absent, "isQuery’ has the value false.

scope: This optional entry defines the Operation’s "scope". If
it is absent, the Operation has a "scope" of
"instance_level".

parameters: This entry defines the Operation’s non-return
Parameter list in the order that they appear in the
Operation’s signature. The "name", "direction",
"type" and "multiplicity" are defined for each
Parameter. If the entry simple says "none", the
Operation has no non-return Parameters.

exceptions: This optional entry defines the list of Exceptions that
this Operation may raise in the order that they appear
in the Operation’s signature. If it is absent, the
Operation raises no Exception.

operation semantics: This optional entry simple gives a cross reference to
the OCL defining the Operation’s semantics.

6-64 CWM 1.0 2 February 2001

6

Ends

This heading defines the two AssociationEnds for an Association. They are defined by
giving their names and defining the remaining characteristics in tabular form.

The following text explains the notation used for defining variable characteristics of
AssociationEnds.

Derivation

This heading defines how a derived Association should be computed. If the
"Derivation" heading is absent, the Association is not derived.

class: This entry specifies the Class whose instances are
linked at this end of the Association.

multiplicity: This entry defines the "multiplicity" for the
AssociationEnd. These are defined in the same way as
Attribute "multiplicity" characteristics, except that
"unique" is omitted. Note the "multiplicity" settings
for an AssociationEnd and its corresponding
Reference(s) must be the same.

aggregation: This optional entry defines the AssociationEnd’s
"aggregation" attribute as one of "composite",
"shared" or "none". If the entry is absent, the
AssociationEnd’s "aggregation" attribute takes the
value "none".

2 February 2001 CWM 1.0 7-65

ObjectModel 7

7.1 Overview

The CWM ObjectModel provides basic constructs for creating and describing
metamodel classes in all other CWM packages. The ObjectModel is a subset of UML
that includes only those features that are needed for creating and describing the CWM.
Defining a subset of UML containing only those things needed by CWM allows the
CWM to leverage UML’s concepts and modeling power without burdening
implementations with the full breadth of UML’s capabilities.

The specification defined in this chapter, where applicable, is based on and taken from
the UML specification.

7.2 Organization of the ObjectModel Package

The CWM uses packages to control complexity and create groupings of logically
interrelated classes. The ObjectModel is a collection of packages that are described
together because they all provide basic metamodel constructs to other CWM packages.
A subsection of this chapter is devoted to each of the ObjectModel packages. Because
it relies on no other package, the Core package is described first, followed by the
Behavioral, Instance, and Relationships packages. Each of the subsequent packages
depends only on the Core package; there are no other dependencies between the
ObjectModel packages. The relationship between the ObjectModel and each of its
constituent packages is shown diagrammatically in Figure 7-2-1.

Organizing the ObjectModel in this fashion allows the individual metamodel packages
to be understood and used independently of each other without sacrificing their
common purpose. For example, the CWM Record metamodel depends only on the
ObjectModel’s Core and Instance packages for its definition; other ObjectModel
packages are not needed for defining records.

7-66 CWM 1.0 2 February 2001

7

Figure 7-2-1 ObjectModel metamodel packages

ObjectModel
(from CWM)

Behavioral
<<metamodel>>

Instance
<<metam odel>>

Relat ionships
<<metamodel>>

Core
<<metamodel>>

2 February 2001 CWM 1.0 7-67

7

7.3 Core Metamodel

The Core metamodel depends on no other packages.

The ObjectModel Core metamodel contains basic metamodel classes and associations
used by all other CWM metamodel packages, including other ObjectModel packages.
The classes and associations that make up the Core metamodel are shown in Figure
7-3-1. Figure 7-3-2 contains supporting classes within the Core metamodel that are
generally used as the types of attributes. Figure 7-4 contains classes and associations
that provide generic extension mechanisms to existing metamodels.

Figure 7-3-1 Core metamodel.

Element

Class DataTypeAttribute

initialValue : Expression

Feature

ownerScope : ScopeKind
/ owner : Classifier

Classifier

isAbstract : Boolean
isRoot : Boolean
isLeaf : Boolean
/ feature : Feature

*

0..1

*
{ordered}

owner
0..1

StructuralFeature
changeability : ChangeableKind
multiplicity : Multiplicity
targetScope : ScopeKind
/ type : Classifier

1*

type

1*

ModelSubsystem

Namespace
/ ownedElement : ModelElement

Package
/ importedElement : ModelElement

Constraint
body : BooleanExpression
/ constrainedElement : ModelElement

Dependency
kind : String
/ client : ModelElement
/ supplier : ModelElement

ModelElement
name : Name
visibility : VisibilityKind
/ clientDependency : Dependency
/ constraint : Constraint
/ importer : Package
/ namespace : Namespace

0..1

*

0..1

ownedElement

*

*

*

importer *

importedElement

*

*

*

*

constrainedElement

*{ordered}

*

1..*

clientDependency

*

client

1..*

*

1..*

supplierDependency

*

supplier

1..*

7-68 CWM 1.0 2 February 2001

7

Figure 7-3-2 Core metamodel supporting classes.

Figure 7-3-3 ObjectModel extension mechanisms.

7.3.1 Core Data Types

The ObjectModel metamodel contains the data types, shown below in alphabetical
order. Each of these data types is an instance of the DataType class.

Some of these data types have default values. These default values only apply for
mandatory attributes or parameters of the relevant data type where an explicit value is
not supplied.

• Any

The Any data type is used to indicate that an attribute or parameter may take values
from any of the available data types. In CWM, the set of data types an Any
attribute or parameter may assume includes the data types and enumerations
described in this chapter plus any available instances of the Classifier class.

There is no default value for data type Any.

• Boolean

Element

Expression
body : String
language : Name

BooleanExpression ProcedureExpression

MultiplicityRange
lower : Integer
upper : UnlimitedInteger
/ multiplicity : Multiplicity

Multiplicity
/ range : MultiplicityRange

1..*1

range

1..*1

TaggedValue

tag : Name
value : String
/ modelElement : ModelElement
/ stereotype : Stereotype

ModelElement

*

0..1

taggedValue *

0..1

Stereotype
baseClass : Name
/ extendedElement : ModelElement
/ requiredTag : TaggedValue
/ stereotypeConstraint : Constraint0..1* 0..1

requiredTag

*

0..1

*

0..1

extendedElement *

Constraint
*

*

*

constrainedElement

* {ordered}

0..1

*

constrainedStereotype0..1

stereotypeConstraint *

2 February 2001 CWM 1.0 7-69

7

Boolean defines an enumeration that denotes a logical condition. Its enumeration
literals are:

true The Boolean condition is satisfied.

false The Boolean condition is not satisfied.

The default for data type Boolean is false.

• Float

The Float data type is used to indicate that an attribute or parameter may take on
floating point numeric values. The number of significant digits and other
representational details are implementation defined.

The default for the Float data type is the value 0.0.

• Integer

Integer represents the predefined type of integers. An instance of Integer is an
element in the (infinite) set of integers (…-2, -1, 0, 1, 2…).

The default for Integer is 0.

• Name

Name defines a token which is used for naming ModelElements and similar usages.
Each Name has a corresponding String representation. For purposes of exchange a
name should be represented as a String.

The default for the Name data type is an empty string.

• String

String defines a piece of text. Strings do not normally have a defined length; rather,
they are considered to be arbitrarily long (practical limits on the length of Strings
exist, but are implementation dependent). When String is used as the type of an
Attribute, string length sometimes can be specified (see the Relational and Record
packages for examples).

The default for the String data type is an empty string.

• Time

Time defines a statement which will define the time of occurrence of an event. The
specific format of time expressions is not specified here and is subject to
implementation considerations.

There is no default for the Time data type.

• UnlimitedInteger

UnlimitedInteger defines a data type whose range is the nonnegative integers
augmented by the special value “unlimited”. It is used for the upper bound of
multiplicities.

The default for an UnlimitedInteger is the special value "unlimited".

The ObjectModel metamodel contains the enumerated data types shown below in
alphabetical order. Enumeration literals defined for each enumerated type are
described as well.

• ChangeableKind

7-70 CWM 1.0 2 February 2001

7

In the metamodel ChangeableKind defines an enumeration that denotes how an
attribute link may be modified. Its values are:

ck_changeable No restrictions on modification.

ck_frozen The value may not be changed from the source end after the creation and
initialization of the source object. Operations on the other end may change a value.

ck_addOnly If the multiplicity is not fixed, values may be added at any time from
the source object, but once created a value may not be removed from the source
end. Operations on the other end may change a value.

The default value is ck_changeable.

• OrderingKind

In the metamodel OrderingKind defines an enumeration that specifies how the
elements of a set are arranged. Used in conjunction with elements that have a
multiplicity in cases when the multiplicity value is greater than one. The ordering
must be determined and maintained by operations that modify the set. Its values are:

ok_unordered The elements of the set have no inherent ordering.

ok_ordered The elements of the set have a sequential ordering.

The default value is ok_unordered.

• ScopeKind

In the metamodel ScopeKind defines an enumeration that denotes whether a feature
belongs to individual instances or an entire classifier. Its values are:

sk_instance The feature pertains to instances of a Classifier. For example, it is a
distinct attribute in each instance or an operation that works on an instance.

sk_classifier The feature pertains to an entire Classifier. For example, it is an
attribute shared by the entire Classifier or an operation that works on the Classifier,
such as a creation operation.

The default value is sk_instance.

• VisibilityKind

In the metamodel VisibilityKind defines an enumeration that denotes how the
element to which it refers is seen outside the enclosing name space. Its values are:

vk_public Other elements may see and use the target element.

vk_protected Descendants of the source element may see and use the target element.

vk_private Only the source element may see and use the target element.

vk_package Elements declared in the same package as the target element may see
and use the target element.

vk_notapplicable May be used where namespaces do not support the concept of
visibility.

The default value is vk_public.

7.3.2 Core Classes

2 February 2001 CWM 1.0 7-71

7

7.3.2.1 Attribute

An Attribute describes a named slot within a Classifier that may hold a value.

Superclasses

StructuralFeature

Attributes

initialValue

7.3.2.2 BooleanExpression

In the metamodel BooleanExpression defines a statement which will evaluate to an
instance of Boolean when it is evaluated.

Superclasses

Expression

7.3.2.3 Class

A class is a description of a set of objects that share the same attributes, operations,
methods, relationships, and semantics. A class may use a set of interfaces to specify
collections of operations it provides to its environment. In the metamodel, a Class
describes a set of objects sharing a collection of Features that are common to the set of
objects.

The purpose of a Class is to declare a collection of Features that fully describe the
structure and behavior of objects. Some Classes may not be directly instantiated. These
Classes are said to be abstract and exist only for other Classes to inherit and reuse the
Features declared by them. No object may be a direct instance of an abstract Class,
although an object may be an indirect instance of one through a subclass that is non-
abstract.

A Class acts as the namespace for various kinds of contained elements defined within
its scope, including classes, interfaces and associations (note that this is purely a

An Expression specifying the value of the attribute upon initialization. It is meant
to be evaluated at the time the object is initialized. (Note that an explicit
constructor may supersede an initial value.)

type: Expression

multiplicity: zero or one

7-72 CWM 1.0 2 February 2001

7

scoping construction and does not imply anything about aggregation). The contained
classes can be used as ordinary classes in the container class. If a class inherits another
class, the contents of the ancestor are available to its descendents if the visibility of an
element is public or protected; however, if the visibility is private, then the element is
not visible and therefore not available in the descendant.

Superclasses

Classifier

7.3.2.4 Classifier Abstract

A classifier is an element that describes structural and behavioral features; it comes in
several specific forms, including class, data type, interface, component, and others that
are defined in other metamodel packages.

Classifier is often used as a type.

In the metamodel, a Classifier may declare a collection of Features, such as Attributes,
Operations and Methods. It has a name, which is unique in the Namespace enclosing
the Classifier. Classifier is an abstract metaclass.

Classifier is a child of Namespace. As a Namespace, a Classifier may declare other
Classifiers nested in its scope. Nested Classifiers may be accessed by other Classifiers
only if the nested Classifiers have adequate visibility. There are no data value or state
consequences of nested Classifiers, i.e., it is not an aggregation or composition.

Superclasses

Namespace

Contained Elements

Feature

isAbstract

References

An abstract Classifier is not instantiable.

type: Boolean

multiplicity: exactly one

2 February 2001 CWM 1.0 7-73

7

feature

7.3.2.5 Constraint

A constraint is a semantic condition or restriction expressed in text.

In the metamodel, a Constraint is a BooleanExpression on an associated
ModelElement(s) which must be true for the model to be well formed. This restriction
can be stated in natural language, or in different kinds of languages with well-defined
semantics. Certain Constraints are predefined, others may be user defined. Note that a
Constraint is an assertion, not an executable mechanism.

The specification is written as an expression in a designated constraint language. The
language can be specially designed for writing constraints (such as OCL), a
programming language, mathematical notation, or natural language. If constraints are
to be enforced by a model editor tool, then the tool must understand the syntax and
semantics of the constraint language. Because the choice of language is arbitrary,
constraints can be used as an extension mechanism.

The constraint concept allows new semantics to be specified linguistically for a model
element. In the metamodel a Constraint directly attached to a ModelElement describes
semantic restrictions that this ModelElement must obey.

Superclasses

ModelElement

Attributes

body

An ordered list of Features owned by the Classifier.

class: Feature

defined by: ClassifierFeature::feature

multiplicity: zero or more; ordered

inverse: Feature::owner

A BooleanExpression that must be true when evaluated for an instance of a system
to be well-formed. A boolean expression defining the constraint. Expressions are

written as strings in a designated language. For the model to be well formed, the expression

must always yield a true value when evaluated for instances of the constrained elements at

any time when the system is stable (i.e., not during the execution of an atomic operation).

type: BooleanExpression

multiplicity: exactly one

7-74 CWM 1.0 2 February 2001

7

References

constrainedElement

Constraints

A Constraint cannot be applied to itself. [C-3-1]

7.3.2.6 DataType

A data type is a type whose values have no identity (i.e., they are pure values). Data
types include primitive built-in types (such as integer and string) as well as definable
enumeration types.

In the metamodel, a DataType defines a special kind of Classifier in which operations
are all pure functions (i.e., they can return data values but they cannot change data
values, because they have no identity). For example, an “add” operation on a number
with another number as an argument yields a third number as a result; the target and
argument are unchanged.

A DataType is a special kind of Classifier whose instances are primitive values, not
objects. For example, integers and strings are usually treated as primitive values. A
primitive value does not have an identity, so two occurrences of the same value cannot
be differentiated. Usually, DataTypes are used for specification of the type of an
attribute or parameter.

Superclasses

Classifier

Constraints

A DataType cannot contain any other ModelElements. [C-3-2]

7.3.2.7 Dependency

A dependency states that the implementation or functioning of one or more elements
requires the presence of one or more other elements.

A ModelElement or list of ModelElements affected by the Constraint.

class: ModelElement

defined by: ElementConstraint::constrainedElement

multiplicity: zero or more

inverse: ModelElement::constraint

2 February 2001 CWM 1.0 7-75

7

In the metamodel, a Dependency is a directed relationship from a client (or clients) to
a supplier (or suppliers) stating that the client is dependent on the supplier (i.e., the
client element requires the presence and knowledge of the supplier element).

A dependency specifies that the semantics of a set of model elements requires the
presence of another set of model elements. This implies that if the source is somehow
modified, the dependents probably must be modified. The reason for the dependency
can be specified in several different ways (e.g., using natural language or an algorithm)
but is often implicit.

Whenever the supplier element of a dependency changes, the client element is
potentially invalidated. After such invalidation, a check should be performed followed
by possible changes to the derived client element. Such a check should be performed
after which action can be taken to change the derived element to validate it again.

Superclasses

ModelElement

Attributes

kind

References

client

Contains a description of the nature of the dependency relationship between the
client and supplier. The list of possible values is open-ended. However, CWM
predefines the values "Abstraction" and "Usage".

type: String

multiplicity: zero or one

The element that is affected by the supplier element. In some cases the direction is
unimportant and serves only to distinguish the two elements.

class: ModelElement

defined by: DependencyClient::client

multiplicity: one or more

inverse: ModelElement::clientDependency

7-76 CWM 1.0 2 February 2001

7

supplier

7.3.2.8 Element Abstract

An element is an atomic constituent of a model. In the metamodel, an Element is the
top metaclass in the metaclass hierarchy. Element is an abstract metaclass.

7.3.2.9 Expression

In the metamodel an Expression defines a statement which will evaluate to a (possibly
empty) set of instances when executed in a context. An Expression does not modify the
environment in which it is evaluated. An expression contains an expression string and
the name of an interpretation language with which to evaluate the string.

Superclasses

Element

Attributes

body

Inverse of client. Designates the element that is unaffected by a change. In a two-
way relationship this would be the more general element. In an undirected
situation the choice of client and supplier may be irrelevant.

class: ModelElement

defined by: DependencySupplier::supplier

multiplicity: one or more

inverse: ModelElement::supplierDependency

The text of the expression expressed in the given language.

type: String

multiplicity: exactly one

2 February 2001 CWM 1.0 7-77

7

language

7.3.2.10 Feature Abstract

A feature is a property, like attribute or operation, which is encapsulated within a
Classifier.

In the metamodel, a Feature declares a structural or behavioral characteristic of an
instance of a Classifier or of the Classifier itself. Feature is an abstract metaclass.

Superclasses

ModelElement

Attributes

ownerScope

References

owner

Names the language in which the expression body is represented.
The interpretation of the expression depends on the language. If the language
name is omitted, no interpretation for the expression can be assumed.
In general, a language name should be spelled and capitalized exactly as it appears
in the document defining the language. For example, use COBOL, not Cobol; use
Ada, not ADA; use PostScript, not Postscript.

type: Name

multiplicity: zero or one

Specifies whether the Feature appears in every instance of the Classifier or
whether it appears only once for the entire Classifier.

type: ScopeKind

multiplicity: zero or one

The Classifier declaring the Feature.

class: Classifier

defined by: ClassifierFeature::owner

multiplicity: zero or more

inverse: Classifier::feature

7-78 CWM 1.0 2 February 2001

7

7.3.2.11 Model

A model captures a view of a physical system. It is an abstraction of the physical
system, with a certain purpose. The model completely describes those aspects of the
physical system that are relevant to the purpose of the model, at the appropriate level
of detail.

In the metamodel, Model is a subclass of Package. It contains a containment hierarchy
of ModelElements that together describe the physical system. A Model also contains a
set of ModelElements that represents the environment of the system.

Different Models can be defined for the same physical system, where each model
represents a view of the physical system defined by its purpose and abstraction level,
e.g. an analysis model, a design model, an implementation model. Typically different
models are complementary and defined from the perspectives (viewpoints) of different
system stakeholders.

Superclasses

Package

7.3.2.12 ModelElement Abstract

A model element is an element that is an abstraction drawn from the system being
modeled.

In the metamodel, a ModelElement is a named entity in a Model. It is the base for all
modeling metaclasses in the CWM. All other modeling metaclasses are either direct or
indirect subclasses of ModelElement.

Superclasses

Element

Contained Elements

TaggedValue

Attributes

name

An identifier for the ModelElement within its containing Namespace.

type: Name

multiplicity: exactly one

2 February 2001 CWM 1.0 7-79

7

visibility

References

clientDependency

constraint

importer

Specifies extent of the visibility of the ModelElement within its owning
Namespace.

type: VisibilityKind

multiplicity: exactly one

Inverse of client. Designates a set of Dependency in which the ModelElement is a
client.

class: Dependency

defined by: DependencyClient::clientDependency

multiplicity: zero or more

inverse: Dependency::client

A set of Constraints affecting the element. A constraint that must be satisfied by the
model element. A model element may have a set of constraints. The constraint is
to be evaluated when the system is stable (i.e., not in the middle of an
atomic operation).

class: Constraint

defined by: ElementConstraint

multiplicity: zero or more

inverse: Constraint::constrainedElement

References the set of Package instances that import the ModelElement.

class: Package

defined by: ImportedElements::importer

multiplicity: zero or more

inverse: Package::importedElement

7-80 CWM 1.0 2 February 2001

7

namespace

Constraints

Tags associated with a model element (directly via a property list or indirectly via a
stereotype) must not clash with any meta attributes associated with the model element.
[C-3-3]

A model element must have at most one tagged value with a given tag name. [C-3-4]

A stereotype cannot extend itself. [C-3-5]

7.3.2.13 Multiplicity

In the metamodel a Multiplicity defines a non-empty set of non-negative integers. A
set which only contains zero ({0}) is not considered a valid Multiplicity. Every
Multiplicity has at least one corresponding String representation.

Superclasses

Element

Contained Elements

MultiplicityRange

References

Designates the Namespace that contains the ModelElement. Every ModelElement except a root

element must belong to exactly one Namespace or else be a composite part of another Mod-

elElement (which is a kind of virtual namespace). The pathname of Namespace or ModelEle-

ment names starting from the root package provides a unique designation for every

ModelElement. The association attribute visibility specifies the visibility of the

element outside its namespace (see ElementOwnership).

class: Namespace

defined by: ElementOwnership::namespace

multiplicity: zero or one

inverse: Namespace::ownedElement

2 February 2001 CWM 1.0 7-81

7

range

7.3.2.14 MultiplicityRange

In the metamodel a MultiplicityRange defines a range of integers. The upper bound of
the range cannot be below the lower bound. The lower bound must be a nonnegative
integer. The upper bound must be a nonnegative integer or the special value unlimited,
which indicates there is no upper bound on the range.

Superclasses

Element

Attributes

lower

upper

References

References the set of MultiplicityRange instances that describe the cardinality of
the Multiplicity instance.

class: MultiplicityRange

defined by: RangeMultiplicity

multiplicity: one or more

inverse: MultiplicityRange::multiplicity

Specifies the positive integer lower bound of the range.

type: Integer

multiplicity: exactly one

Specifies the upper bound of the range, which is a positive integer or the special
value ’unlimited’ indicating no upper bound is defined.

type: UnlimitedInteger

multiplicity: exactly one

7-82 CWM 1.0 2 February 2001

7

multiplicity

7.3.2.15 Namespace Abstract

A namespace is a part of a model that contains a set of ModelElements each of whose
names designates a unique element within the namespace.

In the metamodel, a Namespace is a ModelElement that can own other
ModelElements, such as Classifiers. The name of each owned ModelElement must be
unique within the Namespace. Moreover, each contained ModelElement is owned by at
most one Namespace. The concrete subclasses of Namespace may have additional
constraints on which kind of elements may be contained.

Namespace is an abstract metaclass.

Note that explicit parts of a model element, such as the features of a Classifier, are not
modeled as owned elements in a namespace. A namespace is used for unstructured
contents such as the contents of a package, or a class declared inside the scope of
another class.

Superclasses

ModelElement

Contained Elements

ModelElement

References

ownedElement

References the Multiplicity instance that owns the MultiplicityRange.

class: Multiplicity

defined by: RangeMultiplicity::multiplicity

multiplicity: exactly one

inverse: Multiplicity::range

A set of ModelElements owned by the Namespace. The ModelElement’s visibility
attribute states whether the element is visible outside the namespace.

class: ModelElement

defined by: ElementOwnership::ownedElement

multiplicity: zero or more

inverse: ModelElement::namespace

2 February 2001 CWM 1.0 7-83

7

7.3.2.16 Package

A package is a grouping of model elements.

In the metamodel, Package is a subclass of Namespace. A Package contains
ModelElements such as Packages and Classifiers. A Package may also contain
Constraints and Dependencies between ModelElements of the Package.

The purpose of the package construct is to provide a general grouping mechanism. In
fact, its only semantics is to define a namespace for its contents. The package construct
can be used for organizing elements for any purpose; the criteria to use for grouping
elements together into one package are not defined.

A package owns a set of model elements, with the implication that if the package is
removed from the model, so are the elements owned by the package. Elements with
names, such as classifiers, that are owned by the same package must have unique
names within the package, although elements in different packages may have the same
name.

There may be relationships between elements contained in the same package, and
between an element in one package and an element in a surrounding package at any
level. In other words, elements “see” all the way out through nested levels of packages.
Elements in peer packages, however, are encapsulated and are not a priori visible to
each other. The same goes for elements in contained packages, i.e. packages do not see
“inwards”.

Elements owned by a Package can be made available to other Packages by importing
them. Although any ModelElement may be imported by a Package, imported
ModelElements are typically other Packages. When an element is imported by a
package it extends the namespace of that package. Thus the elements available in a
Package consists of its owned and imported ModelElements.

 Superclasses

Namespace

References

importedElement

The namespace defined by the package is extended by model elements imported
from other packages.

class: ModelElement

defined by: ImportedElements::importedElement

multiplicity: zero or more

inverse: ModelElement::importer

7-84 CWM 1.0 2 February 2001

7

7.3.2.17 ProcedureExpression

In the metamodel ProcedureExpression defines a statement which will result in a
change to the values of its environment when it is evaluated.

Superclasses

Expression

7.3.2.18 Stereotype

The stereotype concept provides a way of branding (classifying) model elements so
that they behave as if they were instances of new virtual metamodel constructs. These
model elements have the same structure (attributes, associations, operations) as similar
non-stereotyped model elements of the same kind. The stereotype may specify
additional constraints and required tagged values that apply to model elements. In
addition, a stereotype may be used to indicate a difference in meaning or usage
between two model elements with identical structure.

In the metamodel the Stereotype metaclass is a subclass of ModelElement. Tagged
Values and Constraints attached to a Stereotype apply to all ModelElements branded
by that Stereotype.

A stereotype keeps track of the base class to which it may be applied. The base class
is a class in the metamodel (not a user-level modeling element) such as Class,
Association, etc. If a model element is branded by an attached stereotype, then the
CWM base class of the model element must be the base class specified by the
stereotype or one of the subclasses of that base class.

Superclasses

ModelElement

Contained Elements

Constraint

TaggedValue

Attributes

2 February 2001 CWM 1.0 7-85

7

baseClass

References

extendedElement

requiredTag

stereotypeConstraint

Specifies the name of a modeling element to which the stereotype applies, such as Class,

Association, Constraint, etc. This is the name of a metaclass, that is, a class from the
metamodel itself rather than a user model class.

type: Name

multiplicity: exactly one

Designates the model elements affected by the stereotype. Each one must be a
model element of the kind specified by the baseClass attribute.

class: ModelElement

defined by: StereotypedElement::extendedElement

multiplicity: zero or more

inverse: ModelElement::stereotype

Specifies a set of TaggedValues, each of which specifies a tag that an element
classified by the Stereotype is required to have. The value part indicates the
default value for the tagged value, that is, the tagged value that an element will be
presumed to have if it is not overridden by an explicit tagged value on the element
bearing the stereotype. If the value is unspecified, then the element must explicitly
specify a tagged value with the given tag.

class: TaggedValue

defined by: StereotypeTaggedValues::requiredTag

multiplicity: zero or more

inverse: TaggedValue::stereotype

Designates constraints that apply to all model elements branded by this stereotype.
These constraints are defined in the scope of the full metamodel.

class: Constraint

defined by: StereotypeConstraints::stereotypeConstraint

multiplicity: zero or more

inverse: Constraint::constrainedStereotype

7-86 CWM 1.0 2 February 2001

7

Constraints

The base class name must be provided. [C-3-6]

7.3.2.19 StructuralFeature Abstract

A structural feature refers to a static feature of a model element.

In the metamodel, a StructuralFeature declares a structural aspect of a Classifier that is
typed, such as an attribute. For example, it specifies the multiplicity and changeability
of the StructuralFeature. StructuralFeature is an abstract metaclass.

Superclasses

Feature

Attributes

changeability

multiplicity

ordering

Specifies whether the value may be modified after the object is created.

type: ChangeabilityKind

multiplicity: exactly one

The possible number of data values for the feature that may be held by an
instance. The cardinality of the set of values is an implicit part of the feature. In
the common case in which the multiplicity is 1..1, then the feature is a scalar (i.e.,
it holds exactly one value).

type: Multiplicity

multiplicity: zero or one

Specifies whether the set of instances is ordered. The ordering must be determined
and maintained by Operations that add values to the feature. This property is only
relevant if the multiplicity is greater than one.

type: OrderingKind

multiplicity: zero or one

2 February 2001 CWM 1.0 7-87

7

targetScope

References

type

7.3.2.20 Subsystem

A subsystem is a grouping of model elements that represents a behavioral unit in a
physical system. A subsystem offers interfaces and has operations.

In the metamodel, Subsystem is a subclass of both Package and Classifier. As such it
may have a set of Features.

The purpose of the subsystem construct is to provide a grouping mechanism for
specifying a behavioral unit of a physical system. Apart from defining a namespace for
its contents, a subsystem serves as a specification unit for the behavior of its contained
model elements.

The contents of a subsystem is defined in the same way as for a package, thus it
consists of owned elements and imported elements, with unique names within the
subsystem.

Superclasses

Classifier

Package

7.3.2.21 TaggedValue

A tagged value allows information to be attached to any model element in the form of
a "tagged value" pair (i.e., name = value). The interpretation of tagged value
semantics is intentionally beyond the scope of CWM. It must be determined by user or
tool conventions. It is expected that tools will define tags to supply information needed
for their operations beyond the basic semantics of CWM. Such information could

Specifies whether the targets are ordinary Instances or are Classifiers.

type: ScopeKind

multiplicity: zero or one

Designates the Classifier whose instances are values of the feature. It must be a
Class, DataType or Interface.

class: Classifier

defined by: StructuralFeatureType::type

multiplicity: exactly one

7-88 CWM 1.0 2 February 2001

7

include code generation options, model management information, or user-specified
semantics.

Even though TaggedValues are a simple and straightforward extension technique, their
use restricts semantic interchange of metadata to only those tools that share a common
understanding of the specific tagged value names.

Superclasses

Element

Attributes

tag

value

References

modelElement

stereotype

Contains the name of the TaggedValue. This name determines the semantics that
are applicable to the contents of the value attribute.

type: Name

multiplicity: exactly one

Contains the current value of the TaggedValue.

type: String

multiplicity: exactly one

References the ModelElement to which the TaggedValue pertains.

class: ModelElement

defined by: TaggedElement::modelElement

multiplicity: zero or one

inverse: ModelElement::taggedValue

References a Stereotype that uses the TaggedValue.

class: Stereotype

2 February 2001 CWM 1.0 7-89

7

7.3.3 Core Associations

7.3.3.1 ClassifierFeature Protected

The ClassifierFeature association provides a composite aggregation containment
relationship between Classifiers and the Features they own. The feature end of the
association is ordered allowing preservation of the ordering of Features within their
owning Classifier. A Feature can be owned by at most one Classifier. The optional
character of ownership is intended as a convenience to tools, allowing them to create
Features prior to linking them to their owning Classifier.

Ends

owner

feature

7.3.3.2 DependencyClient Protected

The DependencyClient association links Dependency instances with ModelElements
that act as clients in the represented dependency relationship.

Ends

defined by: StereotypeTaggedValues

multiplicity: zero or one

inverse: Stereotype::requiredTag

Identifies the Classifier instance that owns the Feature.

class: Classifier

multiplicity: zero or one

aggregation: composite

Identifies the Features owned by a Classifier instance and provides their ordering.

class: Feature

multiplicity: zero or more; ordered

7-90 CWM 1.0 2 February 2001

7

client

clientDependency

7.3.3.3 DependencySupplier

The DependencySupplier association links Dependency instances with ModelElements
that act as suppliers in the represented dependency relationship.

Ends

supplier

supplierDependency

7.3.3.4 ElementConstraint Protected

The ElementConstraint association provides linkages between ModelElements and the
Constraint instances that constrain their state. Note that a Constraint instance may not
simultaneously participate in both the ElementConstraint and the StereotypeConstraint
associations.

Ends

Identifies the ModelElements that are clients of the Dependency instance.

class: ModelElement

multiplicity: one or more

Identifies Dependency instances in which the ModelElement acts as a client.

class: Dependency

multiplicity: zero or more

Identifies the ModelElements that are suppliers of the Dependency instance.

class: ModelElement

multiplicity: one or more

The DependencySupplier association links Dependency instances with
ModelElements that act as suppliers in the represented dependency relationship.

class: Dependency

multiplicity: zero or more

2 February 2001 CWM 1.0 7-91

7

constrainedElement

constraint

7.3.3.5 ElementOwnership Protected

The ElementOwnership association identifies ModelElements owned by Namespaces.
ModelElements may be owned by at most one Namespace. Refer to the above
discussion of the Namespace class for more information on the nature of the ownership
relationship between Namespaces and ModelElements.

Ends

ownedElement

namespace

7.3.3.6 ImportedElements Protected

The ImportedElements association identifies ModelElements that a Package instance
imports from other Namespaces. Although any ModelElement may be imported by a
Package, imported ModelElements are typically other Packages or aggregate
Classifiers, such as Class instances.

Identifies the ModelElements whose state is constrained by the Constraint
instance.

class: ModelElement

multiplicity: zero or more; ordered

Identifies the Constraint instances that restrict the possible states that a
ModelElement may take.

class: Constraint

multiplicity: zero or more

Identifies the ModelElements owned by a Namespace.

class: ModelElement

multiplicity: zero or more

Identifies the Namespace, if any, that owns the ModelElement.

class: Namespace

multiplicity: zero or one

aggregation: composite

7-92 CWM 1.0 2 February 2001

7

Ends

importedElement

importer

7.3.3.7 RangeMultiplicity Protected

The RangeMultiplicity association identifies the set of MultiplicityRange instances that
specify the lower and upper bounds of individual cardinality ranges defined by a
Multiplicity instance. A MultiplicityRange instance must be owned by a single
Multiplicity instance.

Ends

multiplicity

range

7.3.3.8 StereotypeConstraints

The StereotypeConstraints association links Stereotypes with Constraints that further
restrict the states that a stereotyped ModelElement may assume. A Constraint instance
may not simultaneously participate in both the StereotypeContraints association and
the ElementConstraint association.

Identifies ModelElements imported by a Package.

class: ModelElement

multiplicity: zero or more

Identifies the Packages that import a ModelElement.

class: Package

multiplicity: zero or more

Identifies the Multiplicity instance that owns the MultiplicityRange.

class: Multiplicity

multiplicity: exactly one

aggregation: composite

Identifies the set of MultiplicityRange instances owned by a Multiplicity.

class: MultiplicityRange

multiplicity: one or more

2 February 2001 CWM 1.0 7-93

7

Ends

stereotypeConstraint

constrainedStereotype

7.3.3.9 StereotypedElement

The StereotypedElement association links Stereotypes with the ModelElements to
which they apply.

Ends

extendedElement

stereotype

7.3.3.10 StereotypeTaggedValues Protected

The StereotypeTaggedValues association links Stereotypes with the set of
TaggedValues they require.

TaggedValues cannot simultaneously participate in both the TaggedElement and
StereotypeTaggedValues associations.

Identifies the set of Constraint instances defined for the Stereotype instance.

class: Constraint

multiplicity: zero or more

Identifies the Stereotype owning a Constraint instance.

class: Stereotype

multiplicity: zero or one

aggregation: composite

Identifies the set of ModelElements to which the Stereotype instance applies.

class: ModelElement

multiplicity: zero or more

Identifies the Stereotype instance that further defines the semantics of the
ModelElement.

class: Stereotype

multiplicity: zero or one

7-94 CWM 1.0 2 February 2001

7

Ends

requiredTag

stereotype

7.3.3.11 StructuralFeatureType

The StructuralFeatureType association identifies the Classifier instance that defines the
type of particular StructuralFeatures. A StructuralFeature instance must have a
Classifier instance that defines its type.

Ends

structuralFeature

type

7.3.3.12 TaggedElement

The TaggedElement association links TaggedValues with the ModelElements that own
them.

Specifies a set of TaggedValues, each of which specifies a tag that an element
classified by the Stereotype is required to have.

class: TaggedValue

multiplicity: zero or more

Identifies a Stereotype instance that owns the TaggedValue instance.

class: Stereotype

multiplicity: zero or one

aggregation: composite

Identifies the set of StructuralFeatures for which the Classifier defines the type.

class: StructuralFeature

multiplicity: zero or more

Identifies the Classifier defining the type of a StructuralFeature.

class: Classifier

multiplicity: exactly one

2 February 2001 CWM 1.0 7-95

7

TaggedValues cannot simultaneously participate in both the TaggedElement and
StereotypeTaggedValues associations.

Ends

modelElement

taggedValue

7.3.4 OCL Representation of Core Constraints

Operations

Identifies the ModelElement instance that owns the TaggedValue instance.

class: ModelElement

multiplicity: zero or one

aggregation: composite

Identifies the set of TaggedValue instances that extend a ModelElement.

class: TaggedValue

multiplicity: zero or more

The operation allFeatures results in a Set containing all Features of the Classifier
itself and all its inherited Features.

allFeatures : Set(Feature);
allFeatures = self.feature->union(self.parent.oclAsType(Classifier).allFeatures)

The operation allAttributes results in a Set containing all Attributes of the
Classifier itself and all its inherited Attributes.

allAttributes : set(Attribute);
allAttributes = self.allFeatures->select(f | f.oclIsKindOf(Attribute))

The operation specification yields the set of Classifiers that the current Classifier
realizes.

specification: Set(Classifier)
specification = self.clientDependency->
select(d | d.stereotype.name = "realization"
 and d.supplier.oclIsKindOf(Classifier)).supplier.oclAsType(Classifier)

7-96 CWM 1.0 2 February 2001

7

The operation parent returns a Set containing all direct parents of a Classifier.

parent : Set(Classifier);
parent = self.generalization.parent

The operation allParents returns a Set containing all the Classifiers inherited by this
Classifier (the transitive closure), excluding the Classifier itself.

allParents : Set(Classifier);
allParents = self.parent->union(self.parent.allParents)

The operation allContents returns a Set containing all ModelElements contained
in the Classifier together with the contents inherited from its parents.

allContents : Set(ModelElement);
allContents = self.contents->union(self.parent.allContents->
 select(e | e.elementOwnership.visibility = #public or
 e.elementOwnership.visibility = #protected))

The operation supplier results in a Set containing all direct suppliers of the
ModelElement.

supplier : Set(ModelElement);
supplier = self.clientDependency.supplier

The operation allSuppliers results in a Set containing all the ModelElements that
are suppliers of this ModelElement, including the suppliers of these Model
Elements. This is the transitive closure.

allSuppliers : Set(ModelElement);
allSuppliers = self.supplier->union(self.supplier.allSuppliers)

The operation contents results in a Set containing all ModelElements contained by
the Namespace.

contents : Set(ModelElement)
contents = self.ownedElement -> union(self.namespace.contents)

The operation allContents results in a Set containing all ModelElements contained
by the Namespace.

allContents : Set(ModelElement);
allContents = self.contents

2 February 2001 CWM 1.0 7-97

7

Constraints

The operation allVisibleElements results in a Set containing all ModelElements
visible outside of the Namespace.

allVisibleElements : Set(ModelElement)
allVisibleElements = self.allContents -> select(e |
 e.elementOwnership.visibility = #public)

The operation allSurroundingNamespaces results in a Set containing all
surrounding Namespaces.

allSurroundingNamespaces : Set(Namespace)
allSurroundingNamespaces =
self.namespace->union(self.namespace.allSurroundingNamespaces)

The operation contents results in a Set containing the ModelElements owned by or
imported by the Package.

contents : Set(ModelElement)
contents = self.ownedElement->union(self.importedElement)

The operation allImportedElements results in a Set containing the ModelElements
imported by the Package.

allImportedElements : Set(ModelElement)
allImportedElements = self.importedElement

The operation allContents results in a Set containing the ModelElements owned by
or imported by the Package.

allContents : Set(ModelElement)
allContents = self.contents

[C-3-1] A Constraint cannot be applied to itself.

context Constraint inv:

not self.constrainedElement->includes (self)

[C-3-2] A DataType cannot contain any other ModelElements.

context DataType inv:

self.ownedElement->isEmpty

7-98 CWM 1.0 2 February 2001

7

[C-3-3] Tags associated with a model element (directly via a property list or
indirectly via a stereotype) must not clash with any meta attributes associated with
the model element.

context ModelElement inv:

 -- cannot be specified with OCL

[C-3-4] A model element must have at most one tagged value with a given tag name.

context ModelElement inv:

self.taggedValue->forAll(t1, t2 : TaggedValue |
t1.tag = t2.tag implies t1 = t2)

[C-3-5] A stereotype cannot extend itself.

context ModelElement inv:

self.stereotype->excludes(self)

[C-3-6] The base class name must be provided.

context Stereotype inv:

Set {self.baseClass}->notEmpty

2 February 2001 CWM 1.0 7-99

7

7.4 Behavioral Metamodel

The Behavioral metamodel depends on the following package:

• org.omg::CWM::ObjectModel::Core

The Behavioral metamodel collects together classes and associations that describe the
behavior of CWM types and provides a foundation for recording the invocations of
defined behaviors. The elements of the Behavioral metamodel are shown in the
following figure.

Figure 7-4-1 Behavioral metamodel.

7.4.1 Behavioral Data Types

The Behavioral package provides the following enumerated type:

• ParameterDirectionKind

In the metamodel ParameterDirectionKind defines an enumeration that denotes if a
Parameter is used for supplying an argument and/or for returning a value. The
enumeration values are:

ModelElement
(from Core)

Interface

Argument

value : Expression
/ callAction : CallAction

Method

body : ProcedureExpression
/ specification : Operation

CallAction

/ operation : Operation
/ actualArgument : Argument

*

0..1

actualArgument *
{ordered}

0..1

Operation

isAbstract : Boolean
/ method : Method* 1*

specification

1
*1 *1

Feature
(from Core)

Event

/ parameter : Parameter

BehavioralFeature

isQuery : Boolean
/ parameter : Parameter Classifier

(from Core)

Parameter

defaultValue : Expression
kind : ParameterDirectionKind
/ behavioralFeature : BehavioralFeature
/ event : Event
/ type : Classifier

*0..1 *

{ordered}

0..1

*

0..1

*

{ordered}

0..1 1
*

type 1
*

7-100 CWM 1.0 2 February 2001

7

pdk_in: An input Parameter (may not be modified).

pdk_out: An output Parameter (may be modified to communicate information to the
caller).

pdk_inout: An input Parameter that may be modified.

pdk_return: A return value of a call.

The default value is pdk_in.

7.4.2 Behavioral Classes

7.4.2.1 Argument

Argument is an expression describing how to determine an actual value passed in a
CallAction.

In the metamodel an Argument is a composite part of a CallAction and contains a
meta-attribute, value, of type Expression. It states how the actual argument is
determined when the owning CallAction is executed.

Superclasses

ModelElement

Attributes

value

References

callAction

An expression determining the actual Argument instance when executed.

type: Expression

multiplicity: exactly one

Identifies the CallAction which uses the Argument.

class: CallAction

defined by: CallArguments::action

multiplicity: zero or one

inverse: CallAction::actualArgument

2 February 2001 CWM 1.0 7-101

7

7.4.2.2 BehavioralFeature Abstract

A behavioral feature refers to a dynamic feature of a model element, such as an
operation or method. In the metamodel, BehavioralFeature specifies a behavioral
aspect of a Classifier. All different kinds of behavioral aspects of a Classifier, such as
Operation and Method, are subclasses of BehavioralFeature.

BehavioralFeature is an abstract metaclass.

Superclasses

Feature

Contained Elements

Parameter

Attributes

isQuery

References

parameter

Constraints

All Parameters should have a unique name. [C-4-1]

Specifies whether an execution of the BehavioralFeature leaves the state of the
system unchanged. True indicates that the state is unchanged; false indicates that
side-effects may occur.

type: Boolean

multiplicity: exactly one

An ordered list of Parameters for the BehavioralFeature. To call the
BehavioralFeature, the caller must supply a list of values compatible with the
types of the Parameters.

class: Parameter

defined by: BehavioralFeatureParameter::parameter

multiplicity: zero or more; ordered

inverse: Parameter::behavioralFeature

7-102 CWM 1.0 2 February 2001

7

The type of the Parameters should be included in the Namespace of the Classifier.
[C-4-2]

7.4.2.3 CallAction

A call action is an action resulting in an invocation of an operation.

The purpose of a CallAction is to identify the actual Arguments used in a specific
invocation of an Operation.

Superclasses

ModelElement

References

operation

actualArgument

Constraints

The number of arguments must be the same as the number of the Operation. [C-4-3]

7.4.2.4 Event

Event is a specification of an observable occurrence. The occurrence that generates an
event instance is assumed to take place at an instant in time.

Superclasses

ModelElement

The Operation which will be invoked when the CallAction is executed.

class: Operation

defined by: CalledOperation::operation

multiplicity: exactly one

The Argument(s) supplied to the CallAction.

class: Argument

defined by: CallArguments::actualArgument

multiplicity: zero or more; ordered

inverse: Argument::callAction

2 February 2001 CWM 1.0 7-103

7

Contained Elements

Parameter

References

parameter

7.4.2.5 Interface

Interface is a named set of operations that specify the behavior of an element.

In the metamodel, an Interface contains a set of Operations that together define a
service offered by a Classifier realizing the Interface. A Classifier may offer several
services, which means that it may realize several Interfaces, and several Classifiers
may realize the same Interface.

Superclasses

Classifier

Constraints

An Interface can only contain Operations. [C-4-4]

An Interface cannot contain any ModelElements. [C-4-5]

All Features defined in an Interface are public. [C-4-6]

7.4.2.6 Method

Method is the implementation of an Operation. It specifies the algorithm or procedure
that effects the results of an Operation.

Superclasses

BehavioralFeature

References the set of ordered Parameter instances that comprise the signature of
the Event.

class: Parameter

defined by: EventParameter::parameter

multiplicity: zero or more; ordered

inverse: Parameter::event

7-104 CWM 1.0 2 February 2001

7

Attributes

body

References

specification

Constraints

If the realized Operation is a query, then so is the Method. [C-4-7]

The signature of the Method should be the same as the signature of the realized
Operation. [C-4-8]

The visibility of the Method should be the same as for the realized Operation. [C-4-9]

The realized Operation must be a feature (possibly inherited) of the same Classifier as
the Method. [C-4-10]

If the realized Operation has been overridden one or more times in the ancestors of the
owner of the Method, then the Method must realize the latest overriding (that is, all
other Operations with the same signature must be owned by ancestors of the owner of
the realized Operation). [C-4-11]

There may be at most one Method for a given Classifier (as owner of the Method) and
Operation (as specification of the Method) pair. [C-4-12]

7.4.2.7 Operation

Operation is a service that can be requested from an object to effect behavior. An
Operation has a signature, which describes the parameters that are possible (including
possible return values).

A specification of the Method in some appropriate form (such as a programming
language). The exact form of a Method’s specification and knowledge of the
language in which it is described is outside the scope of the CWM.

type: ProcedureExpression

multiplicity: exactly one

References the Operation that the Method implements.

class: Operation

defined by: OperationMethod::specification

multiplicity: exactly one

inverse: Operation::method

2 February 2001 CWM 1.0 7-105

7

In the metamodel, an Operation is a BehavioralFeature that can be applied to instances
of the Classifier that contains the Operation.

Operation is the specification, while Method is the implementation.

 Superclasses

BehavioralFeature

Attributes

isAbstract

References

method

7.4.2.8 Parameter

Parameters are used in the specification of operations, methods and events. A
Parameter may include a name, type, and direction of communication.

Superclasses

ModelElement

Attributes

If true, then the Operation does not have an implementation, and one must be
supplied by a descendant. If false, the Operation must have an implementation in
the class or inherited from an ancestor.

type: Boolean

multiplicity: exactly one

References the set of Method instances defined for the Operation.

class: Method

defined by: OperationMethod::method

multiplicity: zero or more

inverse: Method::specification

7-106 CWM 1.0 2 February 2001

7

defaultValue

kind

References

behavioralFeature

event

type

An Expression whose evaluation yields a value to be used when no argument is
supplied for the Parameter.

type: Expression

multiplicity: zero or one

Specifies what kind of a Parameter is required.

type: ParameterDirectionKind

multiplicity: exactly one

References the BehavioralFeature instance for which the Parameter instance
describes a parameter.

class: BehavioralFeature

defined by: BehavioralFeatureParameter::behavioralFeature

multiplicity: zero or one

inverse: BehavioralFeature::parameter

References the Event instance for which the Parameter instance describes a
parameter.

class: Event

defined by: EventParameter::event

multiplicity: zero or one

inverse: Event::parameter

Designates a Classifier to which an argument value must conform.

class: Classifier

defined by: ParameterType::type

multiplicity: exactly one

2 February 2001 CWM 1.0 7-107

7

7.4.3 Behaviorial Associations

7.4.3.1 BehavioralFeatureParameter Protected

The BehavioralFeatureParameter association identifies and orders Parameter instances
describing the parameters of a BehavioralFeature. Parameters may be owned by at
most one BehavioralFeature instance. The set of parameters of a BehavioralFeature,
together with its name and return value, are said to constitute the BehavioralFeature’s
"signature".

Ends

behavioralFeature

parameter

7.4.3.2 CallArguments Protected

Identifies the Argument instances representing the actual argument values passed to an
Operation during the particular invocation indicated by the CallAction instance. The
ordering of actual argument values is assumed to correspond to the ordering of the
Operation’s parameters as represented by the ordering of the
BehavioralFeatureParameter association.

Ends

actualArgument

Identifies the BehavioralFeature instance owner of a Parameter instance.

class: BehavioralFeature

multiplicity: zero or one

aggregation: composite

Identifies the Parameter instances that describe the parameters of the
BehavioralFeature.

class: Parameter

multiplicity: zero or more; ordered

Identifies the Argument instances representing the actual arguments passed during
Operation invocation.

class: Argument

multiplicity: zero or more; ordered

7-108 CWM 1.0 2 February 2001

7

callAction

7.4.3.3 CalledOperation

The CalledOperation association identifies the CallAction instance representing a
particular invocation of an Operation.

Ends

callAction

operation

7.4.3.4 EventParameter Protected

The EventParameter association identifies the set of Parameter instances owned by an
Event instance.

Ends

event

Identifies the CallAction instance representing a particular invocation of an
Operation.

class: CallAction

multiplicity: zero or one

aggregation: composite

Identifies the CallAction instance representing a particular invocation of an
Operation.

class: CallAction

multiplicity: zero or more

Identifies the Operation instance for which the CallAction instance records an
invocation.

class: Operation

multiplicity: exactly one

Identifies the Event owning a set of Parameter instances.

2 February 2001 CWM 1.0 7-109

7

parameter

7.4.3.5 OperationMethod Protected

The OperationMethod association links an Operation with the Method instance(s) that
realize it. The various Method instances represent alternative implementations
(usually in different programming languages or environments) of the Operation.

Ends

specification

method

7.4.3.6 ParameterType

The ParameterType association links a Parameter instance with the Classifier that
defines the parameter’s type.

Ends

class: Event

multiplicity: zero or one

aggregation: composite

Identifies the ordered set of Parameter instances owned by an Event that describe
the Event’s parameters.

class: Parameter

multiplicity: zero or more; ordered

Identifies the Operation that a Method implements.

class: Operation

multiplicity: exactly one

Identifies the set of Methods defined for an Operation.

class: Method

multiplicity: zero or more

7-110 CWM 1.0 2 February 2001

7

parameter

type

7.4.4 OCL Representation of Behavioral Constraints

Operations

Identifies the set of Parameter instances for which a particular Classifier acts as a
type definition.

class: Parameter

multiplicity: zero or more

Identifies the Classifier instance the defines the type of a Parameter.

class: Classifier

multiplicity: exactly one

The operation hasSameSignature checks if the argument has the same signature as
the instance itself.

hasSameSignature (b : BehavioralFeature) : Boolean;
hasSameSignature (b) =
 (self.name = b.name) and
 (self.parameter->size = b.parameter->size) and
 Sequence{ 1..(self.parameter->size) }->forAll(index : Integer |
 b.parameter->at(index).type =
 self.parameter->at(index).type and
 b.parameter->at(index).kind =
 self.parameter->at(index).kind
)

The operation allOperations results in a Set containing all Operations of the
Classifier itself and all its inherited Operations.

allOperations : Set(Operation);
allOperations = self.allFeatures->select(f | f.ockIsKindOf(Operations))

The operation allMethods results in a Set containing all Methods of the Classifier
itself and all its inherited Methods.

allOperations : Set(Method);
allMethods = self.allFeatures->select(f | f.ockIsKindOf(Method))

2 February 2001 CWM 1.0 7-111

7

Constraints

[C-4-1] All Parameters should have a unique name.

context BehavioralFeature inv:

self.parameter->forAll(p1, p2 | p1.name = p2.name implies p1 = p2)

[C-4-2] The type of the Parameters should be included in the Namespace of the
Classifier.

context BehavioralFeature inv:

self.parameter->forAll(p | self.owner.namespace.allContents->includes (p.type))

[C-4-3] The number of arguments must be the same as the number of parameters of
the Operation.

context CallAction inv:

self.actualArgument->size = self.operation.parameter->size

[C-4-4] An Interface can only contain Operations.

context Interface inv:

self.allFeatures->forAll(f | f.oclIsKindOf(Operation))

[C-4-5] An Interface cannot contain any ModelElements.

context Interface inv:

self.allContents->isEmpty

[C-4-6] All Features defined in an Interface are public.

context Interface inv:

self.allFeatures->forAll(f | f.visibility = #public)

[C-4-7] If the realized Operation is a query, then so is the Method.

context Method inv:

self.specification->isQuery implies self.isQuery

[C-4-8] The signature of the Method should be the same as the signature of the
realized Operation.

context Method inv:

self.hasSameSignature(self.specification)

7-112 CWM 1.0 2 February 2001

7

[C-4-9] The visibility of the Method should be the same as for the realized
Operation.

context Method inv:

self.visibility = self.specification.visibility

[C-4-10] The realized Operation must be a feature (possibly inherited) of the same
Classifier as the Method.

context Method inv:

self.owner.allOperations->includes(self.specification)

[C-4-11] If the realized Operation has been overridden one or more times in the
ancestors of the owner of the Method, then the Method must realize the latest
overriding (that is, all other operations with the same signature must be owned by
ancestors of the owner of the realized Operation).

context Method inv:

self.specification.owner.allOperations->includesAll(

(self.owner.allOperations->select(op |
self.hasSameSignature(op)))

[C-4-12] There may be at most one method for a given classifier (as owner of the
method) and operation (as specification of the method) pair.

context Method inv:

self.owner.allMethods->select(operation = self.operation)->size = 1

2 February 2001 CWM 1.0 7-113

7

7.5 Relationships Metamodel

The Relationships metamodel depends on the following package:

• org.omg::CWM::ObjectModel::Core

The Relationships metamodel collects together classes and associations that describe
the relationships between object within a CWM information store. The Relationships
metamodel describes to types of relationships: association and generalization.

 Association relationships record linkages between model elements. These linkages
may represent simple linkages between model elements or aggregation ("is part of")
relationships between model elements; aggregation relationships come in two forms --
shared and composite. Associations have two or more named ends that link them to
instances of the classes connected by the association.

Generalization relationships record arrangements of model elements into type
hierarchies in a parent/child (or "is type of") fashion. Child types are said to
"specialize", "subclass" or "subtype" their parental types, represent a subset of parental
instances that fulfill the definition of the child type, and inherit the structural features
(Attributes, AssociationEnd) and behavioral features (Operations, Methods) of their
parents. Parental types are said to "generalize" their child types or to be "superclasses"
or "supertypes" of their children.

CWM generalization hierarchies support multiple inheritance; that is, child types may
have more than one parental type and inherit the union of the features of all their
parental types. Although called "hierarchies", multiple inheritance actually represents
a directed acyclic graph of parental and child types.

The classes and associations of the Relationships metamodel are shown in the
following figure.

7-114 CWM 1.0 2 February 2001

7

Figure 7-5-1 Relationship metamodel.

7.5.1 Relationships Data Types

The Relationships metamodel contains the following enumerated type:

• AggregationKind

An enumeration that denotes what kind of aggregation an Association defines.
When placed on a target end, specifies the relationship of the target end to the
source end. AggregationKind defines an enumeration whose values are:

ak_none The end is not an aggregate.

ak_aggregate The end is an aggregate; therefore, the other end is a part and must have the
aggregation value of none. The part may be contained in other aggregates.

ModelElement
(from Core)

AssociationEnd
aggregation : AggregationKind
isNavigable : Boolean

Associat ion

* 0..1

/feature

*
{ordered}

/owner

0..1

Class
(f rom C ore)

Generalization

/ child : Classifier
/ parent : Classifier

Classifier
(from Core)

1* child 1general ization*

1

* parent
1

specialization*

StructuralFeature
(from Core)

1

*

type
1

structuralFeature*

2 February 2001 CWM 1.0 7-115

7

ak_composite The end is a composite; therefore, the other end is a part and must have the
aggregation value of none. The part is strongly owned by the composite and may
not be part of any other composite.

The default value is ak_none.

7.5.2 Relationships Classes

7.5.2.1 Association

An association defines a semantic relationship between classifiers. Associations have
two or more named ends. Associations with two or more ends are called "n-ary"
whereas associations with exactly two ends are called "binary". Each end, depending
upon its multiplicity, connects to zero or more instances of some classifier.

In the metamodel, an Association is a declaration of a semantic relationship between
Classifiers, such as Classes. Associations must have two, and may have more,
association ends. Each end is connected to a Classifier; the same Classifier may be
connected to more than one association end in the same association. (Refer to the
ObjectModel’s Instance package, below, for a description of how Associations are
instantiated.)

Because Associations are classifiers, they own and order their association ends (which
are Attributes) via the ClassifierFeature association. In addition, because Associations
are Classes, they can also own more traditional StructuralFeatures such as Attributes.
Consequently, they may act in a manner similar to "association classes" described by
some other object models.

An association may represent an aggregation (i.e., a whole/part relationship). In this
case, the association end attached to the whole element is designated, and the other
association end represents the parts of the aggregation.

Associations can be of three different kinds: (1) ordinary association, (2) composite
aggregate, and (3) shareable aggregate. Since the aggregate construct can have several
different meanings depending on the application area, CWM gives a more precise
meaning to two of these constructs (i.e., association and composite aggregate) and
leaves the shareable aggregate more loosely defined in between. Only binary
Associations can have composite or sharable aggregation semantics.

Composite aggregation is a strong form of aggregation which requires that a part
instance be included in at most one composite at a time and that the composite object
has sole responsibility for the disposition of its parts. This means that the composite
object is responsible for the creation and destruction of the parts. In implementation
terms, it is responsible for their memory allocation. If a composite object is destroyed,
it must destroy all of its parts. It may remove a part and give it to another composite
object, which then assumes responsibility for it. If the multiplicity from a part to
composite is zero-to-one, the composite may remove the part and the part may assume
responsibility for itself, otherwise it may not live apart from a composite.

A consequence of these rules is that a composite aggregation implies propagation
semantics (i.e., some of the dynamic semantics of the whole is propagated to its parts).

7-116 CWM 1.0 2 February 2001

7

For example, if the whole is copied or destroyed, then so are the parts as well (because
a part may belong to at most one composite).

A classifier on the composite end of an association may have parts that are classifiers
and associations. At the instance level, an instance of a part element is considered “part
of” the instance of a composite element. If an association is part of a composite and it
connects two classes that are also part of the same composite, then an instance of the
association will connect objects that are part of the same composite object of which the
instance is part.

A shareable aggregation denotes weak ownership (i.e., the part may be included in
several aggregates) and its owner may also change over time. However, the semantics
of a shareable aggregation does not imply deletion of the parts when an aggregate
referencing it is deleted. Both kinds of aggregations define a transitive, antisymmetric
relationship (i.e., the instances form a directed, non-cyclic graph). Composition
instances form a strict tree (or rather a forest).

Superclasses

Class

Constraints

An Association must have at least two AssociationEnds. [C-5-1]

The AssociationEnds must have a unique name within the association. [C-5-2]

At most one AssociationEnd may be an aggregation or composition. [C-5-3]

If an Association has three or more AssociationEnds, then no AssociationEnd may be
an aggregation or composition. [C-5-4]

The connected Classifiers of the AssociationEnds should be included in the Namespace
of the Association, or be Classifiers with public visibility in other Namespaces to
which the Association has access. [C-5-5]

7.5.2.2 AssociationEnd

An association end is an endpoint of an association, which connects the association to
a classifier. Each association end is part of one association. The association ends of
each association are ordered.

In the metamodel, an AssociationEnd is part of an Association and specifies the
connection of an Association to some other Classifier. Because AssociationEnds are a
kind of StructuralFeature, they are owned and ordered by Association instances via the
ClassifierFeature association. The StructuralFeatureType association is used to
identify the Classifier to which the AssociationEnd is attached. Each AssociationEnd
has a name and defines a set of properties of the connection.

The multiplicity property of an association end specifies how many instances of the
classifier at a given end (the one bearing the multiplicity value) may be associated with

2 February 2001 CWM 1.0 7-117

7

a single instance of the classifier at the other end. The association end also states
whether or not the connection may be traversed towards the instance playing that role
in the connection (the isNavigable attribute), that is, if the instance is directly
reachable via the association.

Superclasses

StructuralFeature

Attributes

aggregation

isNavigable

Constraints

An AssociationEnd must have an owning Association. [C-5-6]

The Classifier of an AssociationEnd cannot be an Interface or a DataType if the
association is navigable away from that end. [C-5-7]

An Instance may not belong by composition to more than one composite Instance.
[C-5-8]

An AssociationEnd with composite or shared aggregation semantics must be owned by
an Association. [C-5-9]

When placed on one end (the “target” end), specifies whether the class on the
target end is an aggregation with respect to the class on the other end (the
“source”end). Only one end of an association can be an aggregation.

type: AggregationKind

multiplicity: exactly one

When placed on a target end, specifies whether traversal from a source instance to
its associated target instances is possible. A value of true means that the
association can be navigated by the source class and the target rolename can be
used in navigation expressions. Specification of navigability for each direction is
defined independently.

type: Boolean

multiplicity: exactly one

7-118 CWM 1.0 2 February 2001

7

7.5.2.3 Generalization

A generalization is a taxonomic relationship between a more general element and a
more specific element. The more specific element is fully consistent with the more
general element (it has all of its properties, members, and relationships) and may
contain additional information.

In the metamodel, a Generalization is a directed inheritance relationship, uniting a
Classifier with a more general Classifier in a hierarchy. Generalization is a subtyping
relationship; that is, an instance of the more general ("parent") Classifier may be
substituted by an instance of the more specific ("child") Classifier.

To understand inheritance fully, it is necessary to understand the concept of a full
descriptor and a segment descriptor. A full descriptor is the full description needed to
describe an instance of a metamodel object. It contains a description of all of the
attributes, associations, and operations that the object contains.

In a pre-object-oriented language, the full descriptor of a data structure was declared
directly in its entirety. In an object-oriented language, the description of an object is
built out of incremental segments that are combined using inheritance to produce a full
descriptor for an object. The segments are the modeling elements that are actually
declared in a model. Each classifier contains a list of features and other relationships
that it adds to what it inherits from its ancestors. The mechanism of inheritance defines
how full descriptors are produced from a set of segments connected by generalization.
The full descriptors are implicit, but they define the structure of actual instances.
Features of a classifier that have private visibility are not visible to descendants of the
classifier.

If a classifier has no parent, then its full descriptor is the same as its segment
descriptor. If a classifier has one or more parents, then its full descriptor contains the
union of the features from its own segment descriptor and the segment descriptors of
all of its ancestors. No attribute, operation, or association end with the same signature
may be declared in more than one of the segments (in other words, they may not be
redefined). A method may be declared in more than one segment. A method declared
in any segment supersedes and replaces a method with the same signature declared in
any ancestor. If two or more methods nevertheless remain, then they conflict and the
model is ill-formed. The constraints on the full descriptor are the union of the
constraints on the segment itself and all of its ancestors. If any of them are
inconsistent, then the model is ill-formed.

In any full descriptor for a classifier, each method must have a corresponding
operation. In a concrete classifier, each operation in its full descriptor must have a
corresponding method in the full descriptor.

Superclasses

ModelElement

References

2 February 2001 CWM 1.0 7-119

7

child

parent

7.5.3 Relationships Associations

7.5.3.1 ChildElement

The ChildElement association links Classifiers with the Generalization instances that
describe where they participate as children in the inheritance hierarchy.

Ends

child

generalization

Designates a Classifier that occupies the child or specialization position of the
Generalization relationship.

class: Classifier

defined by: ChildElement::child

multiplicity: exactly one

Designates a Classifier that occupies the parent or generalization position of the
Generalization relationship.

class: Classifier

defined by: ParentElement::parent

multiplicity: exactly one

Identifies the Classifier instance that acts as a child in the Generalization
relationship.

class: Classifier

multiplicity: exactly one

Identifies the set of Generalization instances in which the Classifier acts as a child
in the inheritance hierarchy.

class: Generalization

multiplicity: zero or more

7-120 CWM 1.0 2 February 2001

7

7.5.3.2 ParentElement

The ParentElement association links Classifiers with the Generalization instances that
describe where the Classifiers participate as parents in the inheritance hierarchy.

Ends

parent

specialization

7.5.4 OCL Representation of Relationships Constraints

7.5.4.1 Association

Operations

Constraints

Identifies the Classifier instance that acts as a parent in an inheritance hierarchy.

class: Classifier

multiplicity: exactly one

Identifies the set of Generalization instances in which the Classifier acts a parent
in the inheritance hierarchy.

class: Generalization

multiplicity: zero or more

The operation allConnections results in the set of all AssociationEnds of the
Association.

allConnections : Set(AssociationEnd);
allConnections = self.feature.oclIsKindOf(AssociationEnd)

[C-5-1] An Association must have at least 2 AssociationEnds.

context Association inv:

self.allConnections->size > 1

2 February 2001 CWM 1.0 7-121

7

7.5.4.2 AssociationEnd

Constraints

[C-5-2] The AssociationEnds must have a unique name within the association.

context Association inv:

self.allConnections->forAll(r1, r2 | r1.name = r2.name implies r1 = r2)

[C-5-3] At most one AssociationEnd may be an aggregation or composition.

context Association inv:

self.allConnections->select(aggregation <> #ak_none)->size <= 1

[C-5-4] If an Association has three or more AssociationEnds, then no
AssociationEnd may be an aggregation or composition.

context Association inv:

self.allConnections->size >=3 implies
self.allConnections->forall(aggregation = #ak_none)

[C-5-5] The connected Classifiers of the AssociationEnds should be included in the
Namespace of the Association, or be Classifiers with public visibility in other
Namespaces to which the Association has access.

context Association inv:

self.allConnections->forAll(r | self.namespace.allContents->includes (r.type)) or
self.allConnections->forAll(r | self.namespace.allContents->excludes (r.type))
 implies
self.namespace.clientDependency->exists (d |
 d.supplier.oclAsType(Namespace).ownedElement->select (e |
 e.elementOwnership.visibility = #ak_public)->includes (r.type) or
 d.supplier.oclAsType(Classifier).allParents.
 oclAsType(Namespace).ownedElement->select (e |
 e.elementOwnership.visibility = #ak_public)->includes (r.type) or
 d.supplier.oclAsType(Package).allImportedElements->select (e |
 e.elementImport.visibility = #ak_public) ->includes (r.type)))

[C-5-6] An AssociationEnd must have an owning Association.

context AssociationEnd inv:

self.owner.oclIsKindOf(Association)

7-122 CWM 1.0 2 February 2001

7

[C-5-7] The Classifier of an AssociationEnd cannot be an Interface or a DataType
if the association is navigable away from that end.

context AssociationEnd inv:

(self.type.oclIsKindOf (Interface) or
self.type.oclIsKindOf (DataType)) implies
self.owner->select (ae | ae <self)->forAll(ae | ae.isNavigable = #false)

[C-5-8] An instance may not belong by composition to more than one composite
Instance.

context AssociationEnd inv:

self.aggregation = #ak_composite implies self.multiplicity.max <= 1

[C-5-9] An AssociationEnd with composite or shared aggregation semantics must
be owned by an Association.

context AssociationEnd inv:

self.aggregation = #ak_composite or self.aggregation = #ak_shared implies
self.owner.oclIsKindOf(Association)

2 February 2001 CWM 1.0 7-123

7

7.6 Instance Metamodel

The Instance metamodel depends on the following package:

• org.omg::CWM::ObjectModel::Core

In addition to the metadata normally interchanged with CWM, it is sometimes useful to
interchange specific data instances as well. The ObjectModel’s Instance metamodel
allows the inclusion of data instances with the metadata.

The Instance metamodel is shown in Figure 7-6-1.

Figure 7-6-1 Instance metamodel.

To aid understanding of the appropriate use of Instance metamodel classes and
associations, a full example is presented in Figure 7-6-3, below, showing how Instance
metamodel objects are used to represent the model, shown in Figure 7-6-2, and its
instances.

Figure 7-6-2 Instance metamodel example model

The example model describes people and their marital relationships to other people.
Marital relationships are represented by the reflective Marriage association between
two separate people. The Marriage association has two association ends named
"person" and "spouse". Notice that each instance of the Marriage association has a

D a t a V a lu e

va lu e : S tr in g

C la s s i f ie r
(f r o m C o r e) S t ru c tu r a lF e a tu r e

(f ro m C o re)

S l ot
/ o b j e c t : O b je c t
/ va lu e : In s ta n c e
/ fe a tu re : S tru c tu r a l F e a tu re

1*
fe a t u re

1*

M o d e lE le m e n t
(f ro m C o re)

P a c k a g e
(f ro m C o re)

I n s t a n c e

/ c la s s i f ie r : C l a s s i fi e r1 *1 * 1 *

v a lu e

1

va lu e S lo t

*

E x t en t
O b j ec t

/ s lo t : S lo t

0 . . 1

*

0 . . 1

*

*

0 . . 1

/ n a m e s p a c e*

0 . . 1/o w n e d E l e m e n t

Person

Name : String

*

*

Marriage (MaritalStatus : String)

spouse

*

*

7-124 CWM 1.0 2 February 2001

7

string-valued attribute describing the current status of the marital relationship it
represents. Valid values for the MaritalStatus attribute are "Married", "Divorced", and
"Widowed". People who have never been married have no instances of the Marriage
association.

Figure 7-6-3 shows how the example model is represented as instances of the CWM
ObjectModel metaclasses Class, Attribute, DataType, Association, and
AssociationEnd. In addition, Instance metamodel classes are used to capture two kinds
of data values that might be exchange using the CWM DTDs: valid values of the
MaritalStatus attribute, and the marital relationship between the people George and
Martha Custis Washington. In the figure, instances of the Instance metamodel are
shown with a shaded background and labelled with an uppercase letter near their upper
right corner to facilitate discussion. Lines in the figure represent ObjectModel
associations that capture relationships between instances and are labelled with the
asociation’s name.

George is represented by Object A, and Martha, by Object B. These person objects
own Slots C and D, respectively. Slot C holds DataValue E whose value attribute
records George’s name. Similarly, Slot D holds Martha’s name in DataValue F.

The valid values of the MaritalStatus attribute are recorded by DataValue instances K,
L, and M.

The marital relationship between George and Martha is represented, from George’s
perspective, by Object H which is an instance of the Marriage association. Object H
owns Slots G, J, and I. Slot G holds the person association end and references Object
A (George), whereas Slot I holds the spouse association end, referencing Object B
(Martha). Slot J holds a DataValue instance describing the current value ("Married")
of the MaritalStatus attribute for Object H.

2 February 2001 CWM 1.0 7-125

7

Figure 7-6-3 Instance metamodel example instances

7.6.1 Instance Classes

S tring :
D ataTy pe

P er son :
C l as s

N am e :
A t tribute

 : O bjec t

 : S lo t

 : O bjec t

 : S lo t

 : D ataV alue : D ataV alue

valu e = "G eor ge
W as h ington " : S t ring

va lue = "M artha Cus t is
W as hington" : S tring

M arri age :
A s s oc ia t ion

pers o n :
A s s oc ia t ionE nd

s pous e :
A s s oc ia t ionE nd

Ma rita lS tat us
: A t tr ibu te

 : D ataV alue va lue = "M a rr ied" :
S t ri ng

value = "D ivorc ed" :
S t ri ng

value = "W idowed" :
S t ring

 : DataV alue

 : D ataV alue

 : O bjec t

 : S lo t

 : S lo t : S lo t

A B

C D

E F

G H I

J

K

L

S tri ng :
D ataTy pe

C l as s i fie rF e ature

O bjec tS lo t b j ec t S lo t

C las s ifierF eature

S t ruc tura lF eatur eTy pe

Ins tanc eC las s ifier

Ob jec t S lo t

F eatureS lot

S lotV alue

In s tanc eC lass ifie r

b j ec t S lot

F eatur eS lo t

S l otV a lue

In s tanc eC lass ifie r

S t ruc tura lF eatu reTy pe

C las s ifierF eature

S t ruc tura lF eatu reTy pe

S t ruc tura lF eatu reTy pe

Ins t anc eC l ass i fier

b j ec t S lo t

F eatureS lot

Sl ot V alue

F eature Slot

S lotV alue

F eatureS lot

S lo tV alue

7-126 CWM 1.0 2 February 2001

7

7.6.1.1 DataValue

A data value is an instance with no identity. In the metamodel, DataValue is a child of
Instance that cannot change its state, i.e. all operations that are applicable to it are pure
functions or queries that do not cause any side effects. DataValues are typically used
as attribute values.

Since it is not possible to differentiate between two data values that appear to be the
same, it becomes more of a philosophical issue whether there are several data values
representing the same value or just one for each value. In addition, a data value cannot
change its data type and it does not have contained instances.

Superclasses

Instance

Attributes

value

Constraints

A DataValue originates from a Classifier that is a DataType. [C-6-1]

A DataValue has no Slots. [C-6-2]

7.6.1.2 Extent

Each instance of Extent owns a collection of instances and is used to link such
collections to their structural and behavioral definitions in CWM Resource packages.
Because Extent is a subclass of package, it owns member instances via the
ElementOwnership associaton.

Superclasses

Package

Contained Elements

Object

A string representation of the value.

type: String

multiplicity: exactly one

2 February 2001 CWM 1.0 7-127

7

7.6.1.3 Instance Abstract

The instance construct defines an entity to which a set of operations can be applied and
which has a state that stores the effects of the operations. In the metamodel Instance is
connected to a Classifier that declares its structure and behavior. It has a set of
attribute values matching the definition of its Classifier. The set of attribute values
implements the current state of the Instance.

Because Instance is an abstract class, all Instances are either Object or DataValue
instances.

The data content of an Instance comprises one value for each attribute in its full
descriptor (and nothing more). The value must be consistent with the type of the
attribute. An instance must obey any constraints on the full descriptor of the Classifier
of which it is an instance (including both explicit constraints and built-in constraints
such as multiplicity).

Superclasses

ModelElement

References

classifier

7.6.1.4 Object

An object is an instance that originates from a class.

In the metamodel, Object is a subclass of Instance originating from a Class. The Class
may be modified dynamically, which means that the set of features of the Object may
change during its life-time.

An object is an instance that originates from a class; it is structured and behaves
according to its class. All objects originating from the same class are structured in the
same way, although each of them has its own set of attribute slots. Each attribute slot
references an instance, usually a data value or possibly, another object. The number of
attribute slots with the same name fulfills the multiplicity of the corresponding
attribute in the class. The set may be modified according to the specification in the
corresponding attribute, e.g. each referenced instance must originate from (a
specialization of) the type of the attribute, and attribute slots may be added or removed
according to the changeable property of the attribute.

The Classifier that declares the structure of the Instance.

class: Classifier

defined by: InstanceClassifier::classifier

multiplicity: exactly one

7-128 CWM 1.0 2 February 2001

7

An Object instance’s slots may contain either DataValue instances or other Object
instances. Owned Object instances occur as side-effects of either of two metamodel
situations: First, the Classifier of the owning instance contains features (via the
ClassifierFeature association) whose types are non-DataType Classifiers. Second, the
StructuralFeature describing the attribute slot is an AssociationEnd.

An Object instance may own other Object instances. This occurs when the Classifier
describing the owning Object contains the Classifier(s) describing the owned object
through namespace containment via the ElementOwnership association. Namespace
rules imply that an Object instance contained in another Object instance has access to
all names that are accessible to its container instance.

Superclasses

Instance

Contained Elements

Slot

References

slot

Constraints

An Object may only own Objects and DataValues. [C-6-3]

If an Object represents an association, at least two of its ends must be not be empty.
[C-6-4]

7.6.1.5 Slot

A slot is a named location in an Object instance that holds the current value of the
StructuralFeature associated with the Slot instance. Normally, the StructuralFeature
associated with the slot will be either an Attribute instance or an AssociationEnd
instance. Slots are owned by Objects; DataValues do not have slots.

Superclasses

The set of Slot instances owned by the Object.

class: Slot

defined by: ObjectSlot::slot

multiplicity: zero or more

inverse: Slot::object

2 February 2001 CWM 1.0 7-129

7

ModelElement

References

feature

object

value

Constraints

If the StructuralFeature describing a Slot is an AssociationEnd, the Classifier
associated with the Object owning the Slot must be an Association. [C-6-5]

7.6.2 Instance Associations

7.6.2.1 FeatureSlot

The FeatureSlot association connects Slot instances with the StructuralFeature instance
(usually either an Attribute or AssociationEnd instance) describing the structure of the
value held by the Slot.

References the StructuralFeature instance that describes the value held by the Slot
instance.

class: StructuralFeature

defined by: FeatureSlot::feature

multiplicity: exactly one

References the Object instance that owns the Slot.

class: Object

defined by: ObjectSlot::object

multiplicity: zero or one

inverse: Object::slot

References the DataValue or Object instance that contains the current value held by the Slot.

class: Instance

defined by: SlotValue::value

multiplicity: exactly one

7-130 CWM 1.0 2 February 2001

7

Ends

feature

slot

7.6.2.2 InstanceClassifier

The InstanceClassifier association links Instances with Classifiers that describe them.

Ends

instance

classifier

7.6.2.3 ObjectSlot Protected

The ObjectSlot association connects Slot instances with their owning Object instances.

Ends

Identifies the StructuralFeature instance for which the Slot instance contains the
current value.

class: StructuralFeature

multiplicity: exactly one

Identifies the set of Slot instances containing values of the which the
StructuralFeature instance.

class: Slot

multiplicity: zero or more

Identifies the set of Instances described by the Classifier.

class: Instance

multiplicity: zero or more

Identifies the Classifier that describes the structure of the Instance.

class: Classifier

multiplicity: exactly one

2 February 2001 CWM 1.0 7-131

7

object

slot

7.6.2.4 SlotValue

The SlotValue association connects slot instances with the DataValue or Object
instance that contains the current value held by the slot.

Ends

value

valueSlot

7.6.3 OCL Representation of Instance Constraints

Identifies the Object instance that owns the Slot instance.

class: Object

multiplicity: exactly one

aggregation: composition

Identifies the set of Slot instances owned by the Object instance.

class: Slot

multiplicity: zero or more

Identifies the Instance subtype (either a DataValue or an Object) that holds the
current value represented by the Slot instance.

class: Instance

multiplicity: zero or one

aggregation: composite

Identifies the set of Slot instances for which the DataValue or Object instance
contains the current value.

class: Slot

multiplicity: zero or more

7-132 CWM 1.0 2 February 2001

7

Constraints

[C-6-1] A DataValue originates from a Classifier that is a DataType.

context DataValue inv:

self.classifier.oclIsKindOf(DataType)

[C-6-2] A DataValue has no Slots.

context DataValue inv:

self.valueSlot->isEmpty

[C-6-3] An Object may only own Objects and DataValues.

context Object inv:

self.contents->forAll(c | c.oclIsKindOf(Object) or c.oclIsKindOf(DataValue))

[C-6-4] If an Object represents an association, at least two of its ends must be not
be empty.

context Object inv:

self.classifier.oclIsKindOf(Association) implies
self.slot.feature->iterate(ae ; cnt : Integer = 0 |
 if ae.oclIsKindOf(AssociationEnd) and ae.value.notEmpty then
 cnt + 1
 else
 cnt
 end if) > 1

[C-6-5] If the StructuralFeature describing a Slot is an AssociationEnd, the
Classifier associated with the Object owning the Slot must be an Association.

context Slot inv:

self.feature.oclIsKindOf(AssociationEnd) implies
self.value.classifier.oclIsKindOf(Association)

2 February 2001 CWM 1.0 8-133

Foundation 8

8.1 Overview

The Foundation is a collection of metamodel packages that contain model elements
representing concepts and structures that are shared by other CWM packages.
Consequently, Foundation model elements often have a more general-purpose nature
than model elements found in packages at higher CWM organizational levels.

Foundation model elements in a particular metamodel package are not necessarily
intended to describe fully all aspects of concepts and structures they represent. Rather,
they are meant to provide a common foundation which other packages can extend as
necessary to meet their specific needs.

Foundation model elements differ from ObjectModel elements because they are
specific to the goals and purposes of CWM. ObjectModel elements, in contrast, are of
a general purpose nature and applicable in diverse areas.

8.2 Organization of the Foundation

The CWM uses packages to control complexity and create groupings of logically
interrelated classes. The Foundation is a collection of packages that are described
together because they all provide metamodel services to other CWM packages. A
subsection of this chapter is devoted to each of the Foundation packages, presented in
alphabetical order. The relationship between the Foundation and each of its constituent
packages is shown diagrammatically in .

Organizing the Foundation in this fashion allows the individual metamodel packages to
be understood and used independently of each other without sacrificing their common
purpose. For example, a CWM extension package supporting a programming language
might need the DataTypes, Expressions, TypeMapping and SoftwareDeployment
packages but not need the KeysIndexes or BusinessInformation packages.

8-134 CWM 1.0 2 February 2001

8

Figure 8-2-1 Foundation Top Level Packages.

Foundation

(from CWM)

DataTypes
<<metamodel>>

TypeMapping
<<metamodel>>

KeysIndexes
<<metamodel>>

Expressions
<<metamodel>>

Business
Information

<<metamodel>>

Software
Deployment

<<metamodel>>

2 February 2001 CWM 1.0 8-135

8

8.3 Business Information Metamodel

The Business Information package depends on the following package:

• org.omg::CWM::ObjectModel::Core

The Business Information Metamodel provides general purpose services available to
all CWM packages for defining business-oriented information about model elements.
The business-oriented services described here are designed to support the needs of data
warehousing and business intelligence systems; they are not intended as a complete
representation of general purpose business intelligence metamodel.

Business Information Metamodel services support the notions of responsible parties
and information about how to contact them, identification of off-line documentation
and support for general-purpose descriptive information. Three CWM classes “anchor”
these services: ResponsibleParty, Document and Description, respectively.

The metamodel is shown in .

Figure 8-3-1 BusinessInformation metamodel.

To aid in representing the diversity of organizational structures and documentation
relationships that may be encountered in a business intelligence system, the metamodel
provides robust relationships between the anchor classes and every model element in
the CWM metamodel. The necessary robustness is achieved in several ways.

Namespace
(from Core)

Email
emailAddress : String
emailType : String
/ contact : Contact

Location
locationType : String
address : String
city : String
postCode : String
area : String
country : String
/ contact : Contact

ResourceLocator

url : String
/ contact : Contact

Telephone
phoneNumber : String
phoneType : String
/ contact : Contact

Contact

/ email : Email
/ location : Location
/ responsibleParty : ResponsibleParty
/ telephone : Telephone
/ url : ResourceLocator

*

*

* {ordered}

*

*

*

*
{ordered}

*

** url *

{ordered}

*

*
*

*
{ordered}*

Document
reference : String
type : String
/ modelElem ent : ModelElement

ResponsibleParty
responsibility : String
/ contact : Contact
/ modelElement : ModelElement

*

*

*{ordered}

*

ModelElement
(f rom Core)

*

*

*

*

*

*

*

*

Description

body : String
language : Name
type : String
/ modelElement : ModelElement

*

*

*

*

8-136 CWM 1.0 2 February 2001

8

First, every CWM model element may have zero or more instances of each anchor
class associated with it. This means, for example, that a single Description instance can
be used to describe many different model elements. Conversely, a single model
element may be described by many different Description instances. Likewise,
Document and ResponsibleParty instances can be associated in completely ad hoc
ways with any model element. Extending this idea means, for example, that
Description instances could be used to further describe ResponsibleParty and
Document instance, if needed.

Second, because they are Namespaces, the anchor classes can be organized into
hierarchies using the ElementOwnership association. For instance, an organizational
structure can be represented by a hierarchy of ResponsibleParty instances. Also, the
internal structure of a document (i.e., its chapters, sections, subsections, etc.) might be
represented by a hierarchy of Document instances.

Finally, instances of the three anchor classes can be associated with any model element
(via their individual associations to ModelElement) and referenced by multiple
instances of any of the three anchor classes. Because of the strong containment of the
ElementOwnership association in the ObjectModel, anchor class instances can only
participate in one hierarchy, but there are no restrictions preventing anchor class
instances embedded in a hierarchy from referencing, or being referenced by, other
model elements (even other members of the same hierarchy).

To illustrate some of the ways that the metamodel can be used, the following figure
shows a simple document hierarchy with responsibility assignments and descriptive
comments (boxes represent instances of metamodel classes and labelled lines represent
metamodel associations connecting instances). In the example, the product plan
document for the Widget product is composed of three subplans: a marketing plan, an
engineering plan, and a resource plan. The relationships between the subplans
documents is shown as a hierarchy with the product plan owning the three subordinate
plans via the ElementOwnership association. Each part of the plan is assigned to a
reponsible party using the ModelElementResponsibility association. Finally,
Description instances are used to record roles for the responsible parties.

2 February 2001 CWM 1.0 8-137

8

Figure 8-3-2 Document hierarchy with assigned ResponsibleParties

Similar robustness is provided for structuring relationships between ResponsibleParty
instances and the means of contacting them. Each ResponsibleParty can have multiple,
ordered sets of contact information (the Contact class) and a single set of contact
information can service multiple ResponsibleParties. Also, because they are not owned
by any particular Contact instance, Telephone, Email, Location, and ResourceLocator
instances can be reused elsewhere in the CWM metamodel. An example of the use of
Business Information classes to find the ChiefEngineer at three times (Weekday,
Weekend, Emergency) is shown in the following figure.

Product Plan :
Document

Marketing Plan :
Document

Engineering Plan :
Document

Resources Plan :
Document

Product Manager :
ResponsibleParty

VP Marketing :
ResponsibleParty

Architect :
ResponsibleParty

CFO :
ResponsibleParty

 :
Description

 :
Description

 :
Description

 :
Description

Product :
Class

"Widget" :
Name

body = "Ensures subplans are
written" : String

body = "Approves
marketing plan" : String

body = "Builds financial
model" : String

body = "Develops
engineering plan" : String

ModelElementDescription

DocumentDescribes

ElementOwnership

ModelElementResponsibility

ModelElementResponsibility ModelElementResponsibility ModelElementResponsibility

ModelElementDescription ModelElementDescription ModelElementDescription

8-138 CWM 1.0 2 February 2001

8

Figure 8-3-3 Using Contact information to find the ChiefEngineer.

8.3.1 BusinessInformation Classes

8.3.1.1 Contact

Each Contact instance collects together the various types of related contact
information. Each Contact instance can be associated with multiple Email, Location
and Telephone instances. Conversely, each Email, Location, ResourceLocator and
Telephone instance can be associated with many Contact instances. The ordering
constraints on the associations between these classes and the Contact class can be used
to represent a prioritized sequence in which the various types of contact information
should be used.

A particular ResponsibleParty instance may have multiple instances of Contact
associated with it via the ResponsiblePartyContact association. This association is
ordered to support representation of the sequence in which Contact instances should be
used. For example, a ResponsibleParty instance representing an employee might be
associated with Contact instances representing their office, home, and mobile contact
information with an indication that the employee should be contacted first at the office,
then at home, and finally via their mobile phone.

Chief Engineer :
ResponsibleParty

Office Phone :
Telephone

W eekday :
Contact

Beeper :
Telephone

HomePhone :
Telephone

MobilePhone :
Telephone

Emergency :
Contact

Office :
Location

W eekend :
Contact

Home :
Location

HomeE mail :
Em ai l

OfficeEm ail
: Em ail

ResponsiblePartyContact

ContactTelephone

ContactTelephone

Co ntact Telephone

ContactLocation

Contac tLoc ati on ContactEm ail

ContactEm ail

2 February 2001 CWM 1.0 8-139

8

To maximize flexibility of the metamodel, Contact instances may provide contact
information for multiple ResponsibleParty instances.

Superclasses

ModelElement

References

email

location

responsibleParty

Identifies the Email instances associated with this Contact instance. The ordered
constraint may be used to identify the order in which Email instances should be
contacted.

class: Email

defined by: ContactEmail::email

multiplicity: zero or more; ordered

inverse: Email::contact

Identifies the Location instances associated with this Contact instance. The
ordered constraint may be used to identify the order in which Location instances
should be contacted.

class: Location

defined by: ContactLocation::location

multiplicity: zero or more; ordered

inverse: Location::contact

Identifies the ResponsibleParty instances associated with this Contact instance.

class: ResponsibleParty

defined by: ResponsiblePartyContact::responsibleParty

multiplicity: zero or more

inverse: ResponsibleParty::contact

8-140 CWM 1.0 2 February 2001

8

telephone

url

8.3.1.2 Description

Instances of the Description class contain arbitrary textual information relevant to a
particular ModelElement. While Description instances may contain any desired textual
information, they will typically contain documentation or references to external
reference information about the owning ModelElement.

Any ModelElement may have multiple Description instances associated with it.
Indeed, a ModelElement instance that is a Description instance may itself have
multiple Description instances linked to it. Also, a hierarchies of Description instances
can be constructed.

Description instances are meant to hold descriptive textual information that will be
stored in the metamodel itself. In contrast, Document instances are meant to describe
the location documentary information stored outside the metamodel.

Superclasses

Namespace

Attributes

Identifies the Telephone instance associated with this Contact instance. The
ordered constraint may be used to identify the order in which Telephone instances
should be contacted.

class: Telephone

defined by: ContactTelephone::telephone

multiplicity: zero or more; ordered

inverse: Telephone::contact

Identifies the ResourceLocator instances associated with this Contact instance.
The ordered constraint on the ResourceLocator association may by be used to
identify the order in which ResourceLocator instances should be contacted.

class: ResourceLocator

defined by: ContactResourceLocator::url

multiplicity: zero or more; ordered

inverse: ResourceLocator::contact

2 February 2001 CWM 1.0 8-141

8

body

language

type

References

modelElement

Constraints

A Description instance may not describe itself [C-3-1].

8.3.1.3 Document

The Document class represents externally stored descriptive information about some
aspect of the modeled system. An instance of Document might be associated with one
or more ModelElements. The name of a Document instance is derived from its
superclasses.

Contains a textual description of information pertaining to the owning
ModelElement.

type: String

multiplicity: exactly one

Contains an identification of the language in which the content of the body
attribute is specified. If desired, the language specification may be applied to the
name attribute derived from ModelElement as well.

type: Name

multiplicity: exactly one

Contains a textual description of the type of information the Description
represents. Specific contents are usage defined.

type: String

multiplicity: exactly one

Identifies the ModelElement for which this Description instance is relevant.

class: ModelElement

defined by: ModelElementDescription::modelElement

multiplicity: zero or more

8-142 CWM 1.0 2 February 2001

8

Although the purposes of the Description and Document types may overlap somewhat,
their chief distinction is that Description instances are stored with the CWM metadata
whereas Documentation instances are stored externally to the CWM metadata.
Although there is an implication here that Documentation instances might represent
more voluminous information than Description instances, there is no particular
requirement that this be so.

Because Documentation instances are themselves Namespace instances, hierarchical
relationships between various externally stored documents can be represented.

Superclasses

Namespace

Attributes

reference

type

References

modelElement

Constraints

A Document instance may not describe itself [C-3-2].

Contains a textual representation of the identification, and perhaps the physical
location, of externally maintained documentary information about some aspect of
the ModelElement(s) with which the Document instance is associated.

type: String

multiplicity: exactly one

Contains a textual description of the type of information the Document represents.
Specific contents are usage defined.

type: String

multiplicity: exactly one

Identifies the ModelElement(s) for which this Document instance is relevant.

class: ModelElement

defined by: DocumentDescribes::modelElement

multiplicity: zero or more

2 February 2001 CWM 1.0 8-143

8

8.3.1.4 Email

An Email instance identifies a single email address. Via a Contact instance, an email
address can be associated with one or more ResponsibleParty instances. Email
instances might, for example, be used by an automated tool to send an automatically
generated email message to a ResponsibleParty instance responsible about some
change of state for a particular ModelElement. Multiple Email instances may be
associated with a single Contact instance and the ordering of the association between
them may be used to represent the sequence in which the Email instances should be
contacted.

Because email addresses are first class objects within the CWM, they can be used for
purposes beyond those associated with the CWMFoundation’s Business Information
concepts.

Superclasses

ModelElement

Attributes

eMailAddress

eMailType

References

contact

A textual representation of an email address.

type: String

multiplicity: exactly one

Contains a textual representation of the type of the email address. Interesting
values might include location information such as “home” or “work”, or perhaps
an indication of the type of email system for which the eMailAddress is formatted,
such as “SMTP” or “X.400”.

type: String

multiplicity: exactly one

Identifies the Contact instance(s) for which this Email instance is relevant.

class: Contact

8-144 CWM 1.0 2 February 2001

8

8.3.1.5 Location

Instances of the Location class represent physical locations. Note that the name of a
Location is derived from its superclass, ModelElement.

Because Locations are first class objects within the CWM, they can be used for
purposes beyond those associated with the CWM Foundation’s Business Information
concepts. If additional attributes about Location instances are required, they should be
added by creating subtypes of the Location class and placing the additional attributes
therein.

Superclasses

ModelElement

Attributes

locationType

address

city

defined by: ContactEmail::contact

multiplicity: zero or more

inverse: Contact::email

Descriptive information about the character or identity of the Location instance.

type: String

multiplicity: exactly one

The address of the Location instance. The precise content of this string is usage-
defined.

type: String

multiplicity: exactly one

The name of the city in which the Location instance is found. The precise content
of this string is usage-defined.

type: String

multiplicity: exactly one.

2 February 2001 CWM 1.0 8-145

8

postCode

area

country

References

contact

8.3.1.6 ResourceLocator

Instances of the ResourceLocator class provide a general means for describing the
resources whose location is not defined by a traditional mailing address. For example,
a ResourceLocator instance could refer to anything from a location within a building
(“Room 317, third file cabinet, 2nd drawer”) to a web location (“www.omg.org”).

Because they are first class objects in the CWM, ResourceLocator instances may also
be used for purposes beyond those associated with the CWM Foundation's Business
Information concepts.

The postal code of the Location instance. The precise content of this string is
usage-defined.

type: String

multiplicity: exactly one

The area in which the Location instance is found. The precise content of this
string is usage-defined, but a common usage would be to refer to a geographical
subdivision such as a state or province.

type: String

multiplicity: exactly one

The name of the country in which the Location instance is found. The precise
content of this string is usage-defined.

type: String

multiplicity: exactly one

Identifies the Contact instance(s) with which this Location instance is associated.

class: Contact

defined by: ContactLocation::contact

multiplicity: zero or more

inverse: Contact::location

8-146 CWM 1.0 2 February 2001

8

Superclasses

ModelElement

Attributes

url

References

contact

8.3.1.7 ResponsibleParty

The ResponsibleParty class allows representation of entities within an information
system that are in some way interested in receiving information about, or are otherwise
responsible for, particular ModelElements. Each ResponsibleParty may own multiple
sets of contact information, and a single ResponsibleParty may be associated with
many ModelElements.

ResponsibleParty instances may represent any entity appropriate to the system being
modeled and need not be limited to people. For example, a ResponsibleParty instance
might represent an individual such as "George Washington", a role (the "President"),
or an organization ("Congress"), depending upon the needs of the system being
modeled. Similarly, the precise semantics of the responsibility attribute are open to
intrepretation and may be adapted on a system-by-system basis.

Because ResponsibleParty instances are Namespaces, they can be organized into
hierarchies of ResponsibleParty instances, capturing organizational structures or
similar relationships.

Contains the text of the resource location. For Internet locations, this will be a
web URL (Uniform Resource Locator) but there is no requirement that this be so.
In fact, the string can contain any text meaningful to its intended use in a
particular environment.

type: String

multiplicity: exactly one

Identifies the Contact instance(s) for which the ResourceLocator instance is
relevant.

class: Contact

defined by: ContactResourceLocator::contact

multiplicity: zero or more

inverse: Contact::url

2 February 2001 CWM 1.0 8-147

8

Superclasses

Namespace

Attributes

responsibility

References

contact

modelElement

Constraints

A ResponsibleParty instance may not be responsible for itself. [C-3-3]

8.3.1.8 Telephone

Instances of the Telephone class represent telephone contact information.

Textual identification or description of the ResponsibleParty in a usage-dependent
format.

type: String

multiplicity: exactly one

Identifies the Contact instance(s) associated with a ResponsibleParty instance. The
ordered constraint on this reference allows retention of the sequence in which
multiple Contact should be employed.

class: Contact

defined by: ResponsiblePartyContact::contact

multiplicity: zero or more; ordered

inverse: Contact::responsibleParty

Identifies the model elements for which this ResponsibleParty instance has some
interest or responsibility.

class: ModelElement

defined by: ModelElementResponsibility::modelElement

multiplicity: zero or more

8-148 CWM 1.0 2 February 2001

8

Because telephones are first class objects within the CWM, they can be used for
purposes beyond those associated with the CWM Foundation’s Business Information
concepts.

Superclasses

ModelElement

Attributes

phoneNumber

phoneType

References

contact

8.3.2 BusinessInformation Associations

8.3.2.1 ContactEmail Protected

The ContactEmail association indicates the Email instances relevant used by Contact
instances.

Ends

A textual representation of the telephone’s number.

type: String

multiplicity: exactly one

A textual representation of the telephone’s type, such as “multi-line”, or its usage,
such as “home”, “work”, “fax”, or “mobile”.

type: String

multiplicity: exactly one

Identifies the Contact instance(s) for which the Telephone instance is relevant.

class: Contact

defined by: ContactTelephone::contact

multiplicity: zero or more

inverse: Contact::telephone

2 February 2001 CWM 1.0 8-149

8

contact

email

8.3.2.2 ContactLocation Protected

The ContactLocation association relates Contact instances to relevant Location
instances.

Ends

contact

location

8.3.2.3 ContactResourceLocator Protected

The ContactResourceLocator association relates ResourceLocator instances to the
Contact instances in which they participate.

Ends

Identifies the Contact instance(s) for which this Email instance is relevant.

class: Contact

multiplicity: zero or more

Identifies the Email instances associated with this Contact instance. The ordered
constraint may be used to identify the order in which Email instances should be
contacted.

class: Email

multiplicity: zero or more; ordered

Identifies the Contact instance(s) with which this Location instance is associated.

class: Contact

multiplicity: zero or more

Identifies the Location instances associated with this Contact instance. The
ordered constraint may be used to identify the order in which Location instances
should be contacted.

class: Location

multiplicity: zero or more; ordered

8-150 CWM 1.0 2 February 2001

8

contact

url

8.3.2.4 ContactTelephone Protected

The ContactTelephone association relates telephones to the Contact instances that
reference them.

Ends

contact

telephone

8.3.2.5 DocumentDescribes

The DocumentDescribes association connects a Document instance with the
ModelElement instances to which it pertains.

Ends

Identifies the Contact instances for which a ResourceLocator instance is relevant.

class: Contact

multiplicity: zero or more

Identifies the ResourceLocator instances related to this ContactInfo instance. Note
that the ordered constraint on this role can be used to indicate the sequence in
which ResourceLocator should be contacted.

class: Telephone

multiplicity: zero or more; ordered

Identifies the Contact instance(s) for which the Telephone instance is relevant.

class: Contact

multiplicity: zero or more

Identifies the Telephone instance associated with this Contact instance. The
ordered constraint may be used to identify the order in which Telephone instances
should be contacted.

class: Telephone

multiplicity: zero or more; ordered

2 February 2001 CWM 1.0 8-151

8

modelElement

document

8.3.2.6 ModelElementDescription

The ModelElementDescription association connects a Description instance with the
ModelElement instances to which it applies.

Ends

modelElement

description

8.3.2.7 ModelElementResponsibility

The ModelElement Responsibility association identifies the ResponsibleParty
instances for each ModelElement and allows determination of the ModelElements for
which a ResponsibleParty instance is responsible.

Ends

Identifies the ModelElement instances for which this Document instance is
relevant.

class: ModelElement

multiplicity: zero or more

Identifies the Document instances relevant to a particular ModelElement.

class: Document

multiplicity: zero or more

Identifies the ModelElement instances for which this Description instance is
relevant.

class: ModelElement

multiplicity: zero or more

Identifies the Description instances relevant for a particular ModelElement
instance.

class: Description

multiplicity: zero or more

8-152 CWM 1.0 2 February 2001

8

modelElement

responsibleParty

8.3.2.8 ResponsiblePartyContact Protected

The ResponsiblePartyContact association allows a ResponsibleParty to have multiple
sets of contact information. The ordered constraint can be used to determine the
sequence in which the sets of contact information should be used.

Ends

contact

responsibleParty

8.3.3 OCL Representation of BusinessInformation Constraints

Identifies the model elements for which this ResponsibleParty instance has some
interest or responsibility.

class: ModelElement

multiplicity: zero or more

Identifies the ResponsibleParty instances relevant for a particular ModelElement
instance.

class: ResponsibleParty

multiplicity: zero or more

Identifies the Contact instance(s) associated with a ResponsibleParty instance. The
ordered constraint on this reference allows retention of the sequence in which
multiple Contact should be employed.

class: Contact

multiplicity: zero or more; ordered

Identifies the ResponsibleParty instances associated with this Contact instance.

class: ResponsibleParty

multiplicity: zero or more

[C-3-1] A Description may not describe itself.

context Description inv:

self.modelElement->forAll(p | p <> self)

2 February 2001 CWM 1.0 8-153

8

[C-3-2] A Document may not describe itself.

context Document inv:

self.modelElement->forAll(p | p <> self)

[C-3-3] A ResponsibleParty may not describe itself.

context ResponsibleParty inv:

self.modelElement->forAll(p | p <> self)

8-154 CWM 1.0 2 February 2001

8

8.4 DataTypes Metamodel

The DataTypes package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

The CWM DataTypes metamodel supports definition of metamodel constructs that
modelers can use to create the specific data types they need. Although the CWM
Foundation itself does not contain specific data type definitions, a number of data type
definitions for widely used environments are provided (in the CWM Data Types
chapter) as examples of the appropriate usage of CWM Foundation classes for creating
data type definitions.

Figure 8-4-1 DataTypes metamodel.

8.4.1 DataTypes Classes

8.4.1.1 Enumeration

The Enumeration class is intended as a starting point from which enumerated data
types can be created. An enumerated data type is a collection of identifiers often used
as the permitted states that some other attribute or property of the enumerated type
may take.

ModelElement
(from Core)

Enumeration
isOrdered : Boolean
/ literal : EnumerationLiteral

EnumerationLiteral

value : Expression
/ enumeration : Enumeration

1

1..*

1

literal 1..*

StructuralFeature
(from Core)

Union
/ discriminator : StructuralFeature0..1

*discriminator

0..1

*

UnionMember

memberCase : Expression
isDefault : Boolean

DataType
(from Core)

Classifier
(f rom Core)

TypeAlias

/ type : Classifier

1

*

type

1

*

Attribute
(from Core)

ProcedureExpression
(from Core)

QueryExpression

2 February 2001 CWM 1.0 8-155

8

The isOrdered attribute of an Enumeration instance is used to determine if the ordered
constraint on the EnumerationLiterals association is relevant for the enumeration. The
particular ordering of EnumerationLiteral instances is obtained from the ordered
constraint on the association even if the value attributes of the EnumerationLiteral
instances contain non-null values that might be used to determine ordering. This is
done to provide more flexible ordering semantics.

An instance of Enumeration is also required to create a range data type. Refer to the
EnumerationLiteral class for details.

Superclasses

DataType

Contained Elements

EnumerationLiteral

Attributes

isOrdered

References

literal

If True, the ordered constraint on the EnumerationLiterals association is relevant.
Otherwise, the ordering of EnumerationLiteral instances is considered unspecified.

type: Boolean

multiplicity: exactly one

Identifies the EnumerationLiteral instances relevant for a particular Enumeration
instance. If the Enumeration’s isOrdered attribute is True, the ordering constraint
on this reference end can be used to determine a logical ordering for the
EnumerationLiteral instances. Otherwise, ordering is ignored.

class: EnumerationLiteral

defined by: EnumerationLiterals::literal

multiplicity: one or more; ordered

inverse: EnumerationLiteral::enumeration

8-156 CWM 1.0 2 February 2001

8

8.4.1.2 EnumerationLiteral

EnumerationLiteral instances describe the enumeration identifiers, and possibly the
values, associated with an enumerated data type. Enumeration identifiers are contained
in the name attribute derived from the EnumerationLiteral instance’s ModelElement
superclass.

EnumerationLiteral instances may also be used to define expression-based values such
as ranges. To do so, simply state the membership expression in the instance’s value.
For example, a range literal can be created by setting the value attribute to “m..n”,
where m represents the lower bound of the range, and n, the upper bound. In this way,
ranges and other more complicated expressions can be intermixed with simple
enumeration literals. For example, an enumeration might contain the literals “1”, “2”,
“4..7”, and “> 10“.

Consequently, a simple range data type can be created with an Enumeration instance
that owns a single EnumerationLiteral instance. For example, a data type for positive
integers could be created as shown in the following instance diagram. A model
attribute of this data type might then be declared as “posInt : PositiveInteger".

Figure 8-4-2 Using Enumeration and EnumerationLiteral instances to create range data types.

Superclasses

ModelElement

Attributes

PositiveInteger :
Enumeration

PosIntRange :
EnumerationLiteral

Value =
">= 0"

2 February 2001 CWM 1.0 8-157

8

value

References

enumeration

8.4.1.3 QueryExpression

QueryExpression instances contain query statements in language-dependent form.

Superclasses

ProcedureExpression

8.4.1.4 TypeAlias

The TypeAlias class is intended to provide a renaming capability for Classifier
instances. This class is required to support situations in which creation of an alias for a
class effectively creates a new class. For example, CORBA IDL type aliases have
different typeCodes than their base types and are therefore treated as distinct types.

Superclasses

DataType

References

The value associated with an enumeration identifier can be stored here. The
attribute is optional because enumeration literals are not required to have a
specific, displayable value. This is indicated by either an empty value attribute or
a value attribute value whose expression body attribute is a zero-length string.

type: Expression

multiplicity: zero or more

Identifies the Enumeration instance for which this enumeration literal is relevant.

class: Enumeration

defined by: EnumerationLiterals::enumeration

multiplicity: exactly one

inverse: Enumeration::literal

8-158 CWM 1.0 2 February 2001

8

type

Constraints

A TypeAlias instance cannot alias itself. [C-4-1]

8.4.1.5 Union

The Union class represents programming language unions and similarly structured data
types. Because of the diversity of union semantics found across software systems, the
Union and UnionMember classes are likely candidates for specialization to better
capture union semantics in specific language extension packages.

A discriminated Union has a collection of UnionMembers that determine the sets of
contents that the Union may contain. Such Unions have an attribute called the
discriminator that identifies the memberCase value of the UnionMember that the
Union currently contains. The discriminator is found via the UnionDiscriminator
association to StructuralFeature. The discriminator may be embedded within
UnionMembers or may be located outside the discriminator. If it is located within
UnionMembers, the discriminator should occur in every UnionMember at the same
location (often, the first).

Undiscriminated unions (for example, a C language union) are also supported, but have
an empty discriminator reference, and the memberCase attribute of the UnionMembers
it contains is ignored.

Undiscriminated Unions are often used to represent alternate views of a single physical
storage area. A fine degree of control over this aspect of Unions may be obtained by
creating a class that derives from both UnionMember and FixedOffsetField (in the
CWM Record package) and setting the offset attribute instances of that class
accordingly.

Superclasses

Classifier

Contained Elements

UnionMember

References

Identifies the Classifier instance for which this TypeAlias instance acts as an alias.

class: Classifier

defined by: ClassifierAlias::type

multiplicity: exactly one

2 February 2001 CWM 1.0 8-159

8

discriminator

Constraints

A Union can have at most one default UnionMember instance. [C-4-2]

8.4.1.6 UnionMember

UnionMembers are described as features of a Union and each represents one of the
members of a Union. Note, however, that multiple case values can map to a single
UnionMember. If isDefault is true, the union member is the default member.
UnionMember instances are allowed to have a memberCase and be the default case.

UnionMember instances often represent structured storage areas. A particular
UnionMember may be associated with a Classifier that describes its internal structure
via the StructuralFeatureType association (defined in the ObjectModel::Core package).
For example, the Record::Group class, itself a Classifier, can be used as the type of a
UnionMember in a manner completely analogous to how it is used to describe the type
of a structured field (see the instance diagrams in the Record metamodel chapter for
details).

Superclasses

Attribute

Attributes

memberCase

Identifies the StructuralFeature instance that serves as the discriminator for the
Union.

class: StructuralFeature

defined by: UnionDiscriminator::discriminator

multiplicity: zero or more

Contains the value of the Union’s discriminator for this UnionMember.

type: Expression

multiplicity: exactly one

8-160 CWM 1.0 2 February 2001

8

isDefault

8.4.2 DataTypes Associations

8.4.2.1 ClassifierAlias

The ClassifierAlias association connects TypeAlias instances with the Classifier
instances which they rename.

Ends

type

alias

8.4.2.2 EnumerationLiterals Protected

The EnumerationLiterals association links enumeration literals to the Enumeration
instances that contain them.

If the Enumeration’s isOrdered attribute is True, the ordering constraint on the
association is relevant. Otherwise, it is ignored.

Ends

Indicates if this UnionMember is the default member of the Union (implying that
when unstated, the Union’s discriminator would assume this instance’s
memberCase value).

type: Boolean

multiplicity: exactly one

Identifies the Classifier instance for which this TypeAlias instance acts as an alias.

class: Classifier

multiplicity: exactly one

Identifies the TypeAliases that have be defined for a particular Classifier instance.

class: TypeAlias

multiplicity: zero or more

2 February 2001 CWM 1.0 8-161

8

enumeration

literal

8.4.2.3 UnionDiscriminator

The UnionDiscriminator association connects a Union instance with the
StructuralFeature instance that can be used to determine which UnionMember instance
is currently present in the Union instance. This “discriminating” attribute may be a
feature of the UnionMembers themselves or may be a feature of some Classifier that
contains the Union instance as one of its Features. In the former case, the
discriminating feature will usually be present at the same offset in each UnionMember
instance. If the discriminator reference is empty for a particular Union instance, it is
considered to be an “undiscriminated” Union and determination of the current
UnionMember residing in the Union is usage-defined.

Ends

discriminator

Identifies the Enumeration instance for which this enumeration literal is relevant.

class: Enumeration

multiplicity: exactly one

Identifies the EnumerationLiteral instances relevant for a particular Enumeration
instance. If the Enumeration’s isOrdered attribute is True, the ordering constraint
on this association end can be used to determine a logical ordering for the
EnumerationLiteral instances. Otherwise, ordering is ignored.

class: EnumerationLiteral

multiplicity: one or more; ordered

aggregation: composite

Identifies the StructuralFeature instance that serves as the discriminator for the
Union.

class: StructuralFeature

multiplicity: zero or one

8-162 CWM 1.0 2 February 2001

8

discriminatedUnion

8.4.3 OCL Representation of DataTypes Constraints

Identifies the Union instances in which a particular StructuralFeature acts as the
discriminator.

class: Union

multiplicity: zero or more

[C-4-1] A TypeAlias instance cannot alias itself.

context TypeAlias inv:

self.type <> self

[C-4-2] A Union can have at most one default UnionMember instance.

context Union inv:

self.allFeatures->select(isDefault)->size <= 1

2 February 2001 CWM 1.0 8-163

8

8.5 Expressions Metamodel

The Expressions package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

The CWM Expressions metamodel provides basic support for the definition of
expression trees within the CWM. The intent of the Expressions metamodel is to
provide a place for other CWM packages (such as Transformation) and CWM
compliant tools to record shared expressions in a common form that can be used for
interchange and lineage tracking.

Figure 8-5-1 Expressions metamodel.

The expression concept in the CWM Foundation takes a functional view of expression
trees, resulting in the ability of relatively few expression types to represent a broad
range of expressions. Every function or traditional mathematical operator that appears
in an expression hierarchy is represented as a FeatureNode. For example, the
arithmetic plus operation “a + b” can be thought of as the function “sum(a, b).” The
semantics of a particular function or operation are left to specific tool implementations
and are not captured by the CWM.

The hierarchical nature of the CWM’s representation of expressions is achieved by the
recursive nature of the OperationArgument association. This association allows the
sub-hierarchies within an expression to be treated as actual parameters of their parent
nodes.

By way of example, the following instance diagram shows one representation of a
CWM expression tree for the well-known Einstein equation E = mc2. To better

ConstantNode

value : Any Feature
(from Core)

Classifier
(from Core)

FeatureNode
/ argument : ExpressionNode
/ feature : Feature

1* 1*

ExpressionNode
expression : Expression
/ featureNode : FeatureNode
/ type : Classifier0..1 *

type

0..1 *

0..1

*

0..1

argument

* {ordered}

ModelElement
(from Core)

ElementNode
/ modelElement : ModelElement

1

*

1

*

Element
(from Core)

8-164 CWM 1.0 2 February 2001

8

understand how the equation is mapped into the expression tree, the formula can be
rewritten in a functional notation as

Assign(E, Multiply(m, Power(c, 2))).

This functional form of the equation is then mapped into a set of expression tree
instances as shown in the following figure.

Alternatively, if sharing and lineage tracking of elements within the expression are not
required, the expression could be stored using an Attribute of type ExpressionNode by
assigning the string "E = mc2" as the Attribute’s expression::body value. For
flexibility, use of the expression attribute within an expression hierarcy is allowed, but
the precise semantics of such situations are not defined by CWM.

Figure 8-5-2 A CWM expression tree for the formula E = mc2.

8.5.1 Expressions Classes

8.5.1.1 ConstantNode

Instances of the ConstantNode class are ExpressionNodes that represent constant
values within expressions. Appropriate uses of the ConstantNode class place the values
of constants in the value attribute, rather than in the expression::body attribute
inherited from ExpressionNode. The latter attribute is intended for a different purpose;
see the description of the ExpressionNode class for details.

 : FeatureNode

 : FeatureNode

Assign :
Operation

leftSide :
Parameter

rightSide :
Parameter

E :
Attribute

 : FeatureNode

 : FeatureNode m :
Attribute

 : FeatureNode

 : FeatureNode

value = 2 :
Integer

Multiply :
Operation

multiplicand :
Parameter

multiplier :
Parameter

Power :
Operation

base :
Parameter

exponent :
Parameter :

ConstantNode

NodeFeature

NodeFeature

NodeFeature c :
Attribute

NodeFeature

NodeFeature

NodeFeature

OperationArgument

OperationArgument

OperationArgument

BehavioralFeatureParameter

BehavioralFeatureParameter

BehavioralFeatureParameter

2 February 2001 CWM 1.0 8-165

8

Superclasses

ExpressionNode

Attributes

value

8.5.1.2 ElementNode

An ElementNode is a node in an expression that references some ModelElement
instance. This subclass of ExpressionNode allows an expression to reference any
CWM model element that is not a Feature and cannot, therefore, be represented as a
FeatureNode.

Typically, use of this subclass of ExpressionNode implies that a tool attempting to
evaluate the expression will be able to determine if the referenced ModelElement
instance is also an instance of some interesting subclass of ModelElement that contains
a value of interest in the expression.

Superclasses

ExpressionNode

References

modelElement

8.5.1.3 ExpressionNode

All node types within an expression are derived from the ExpressionNode type.

The value of a constant in an expression tree.

type: Any

multiplicity: exactly one

Identifies the ModelElement instance which this ElementNode references.

class: ModelElement

defined by: ReferencedElement::modelElement

multiplicity: exactly one

8-166 CWM 1.0 2 February 2001

8

An expression is stored as a collection of instances of the subtypes of ExpressionNode
arranged in a hierarchical fashion. The ExpressionNode instance at the top (or “root”)
of the hierarchy represents the value of the expression and serves as a starting point for
expression evaluation. Refer to the descriptions of the subtypes of ExpressionNode
(ElementNode, ConstantNode, and FeatureNode) for additional information about the
representation of expressions.

One important purpose for providing storage of expressions as a general feature of the
CWM is to promote sharing them between tools and to provide a means for recording
lineage relationships between components within expressions. Specific details of the
implementation of expression operators are left to the implementing tools.

When ExpressionNode is used as the type of an Attribute, an instance of the Attribute
can contain either an expression tree as described here or a textual representation of the
expression in body and language values of in an attribute of type Expression (defined
ObjectModel). The expression attribute is provided for the latter usage. To obtain
CWM’s sharing and lineage tracking features for elements within an expression, the
expression must be represented as an expression hierarcy.

Superclasses

Element

Attributes

expression

References

featureNode

Contains a textual representation of the expression relevant for this
ExpressionNode instance.

type: Expression

multiplicity: zero or one

Identifies the FeatureNode for which this ExpressionNode instance represents the
value of an argument. Because arguments can themselves represent entire
expression sub-trees, this reference is used to create hierarchies of expression
nodes, permitting representation of entire expression trees within the CWM.

class: FeatureNode

defined by: OperationArgument::featureNode

multiplicity: zero or one

inverse: FeatureNode::argument

2 February 2001 CWM 1.0 8-167

8

type

8.5.1.4 FeatureNode

The FeatureNode class represents ExpressionNode instances that are features (i.e.,
attributes or operations) of some Classifier instance within the CWM.

A FeatureNode with a null OperationArgument association represents either a
parameter-less operation or an attribute value obtained from some StructuralFeature
instance.

Superclasses

ExpressionNode

Contained Elements

ExpressionNode

References

argument

Identifies the Classifier instance that represents the type of the expression at this
level in the expression hierarchy. Although, formally, each node within an
expression tree is capable of having a value and therefore, a data type, this
reference is optional because modeling the data type of intermediate nodes in an
expression tree is not always interesting, thereby reducing the effort required to
create expression trees.

class: Classifier

defined by: ExpressionNodeClassifier::type

multiplicity: zero or one

Identifies the ExpressionNode instances that represent the actual arguments for
this FeatureNode. By convention, the first actual argument is a reference to the
object itself. If the argument reference is null, the FeatureNode is an attribute or
parameter-less function or operation.

class: ExpressionNode

defined by: OperationArgument::argument

multiplicity: zero or more; ordered

inverse: ExpressionNode::featureNode

8-168 CWM 1.0 2 February 2001

8

feature

Constraints

A FeatureNode that has parameters other than the “this” parameter represents a Feature
that is also an Operation. [C-5-1]

If the FeatureNode represents an instance-scope feature, the first argument is a “this”
or “self” argument; that is, the object invoking the feature. The convention is enforced
by checking that the type of the first argument is the same as the type of the feature.
[C-5-2]

If the FeatureNode represents a BehavioralFeature, the number of arguments must be
equal to the number of the BehavioralFeature’s parameters, plus one for the “this”
parameter if the BehavioralFeature is of instance scope. [C-5-3]

If the FeatureNode represents a BehavioralFeature, the types of the arguments must
match, in order, the types of the parameters, allowing for the optional presence of a
leading “this” parameter. [C-5-4]

8.5.2 Expressions Associations

8.5.2.1 ExpressionNodeClassifier

The ExpressionNodeClassifier association identifies the type of an ExpressionNode
instance.

Ends

expressionNode

Identifies the Feature (attribute or operation) which this FeatureNode instance
represents.

class: Feature

defined by: NodeFeature::feature

multiplicity: exactly one

Identifies the ExpressionNode instances for which this Classifier acts as the type.

class: ExpressionNode

multiplicity: zero or more

2 February 2001 CWM 1.0 8-169

8

type

8.5.2.2 NodeFeature

The NodeFeature association identifies the Feature (usually, an Attribute or Operation
subtype) that FeatureNode represents.

Ends

feature

featureNode

8.5.2.3 OperationArgument Protected

The OperationArgument association identifies and orders the actual arguments of an
Operation indicated by the FeatureNode end of the association. This association is
meaningful only if the FeatureNode references, via the NodeFeature association, a
Feature that is also an Operation. The association is not meaningful under other
circumstances.

Ends

Identifies the Classifier instance that represents the type of the expression at this
level in the expression hierarchy. Although, formally, each node within an
expression tree is capable of having a value and therefore, a data type, this
reference is optional because modeling the data type of intermediate nodes in an
expression tree is not always interesting, thereby reducing the effort required to
create expression trees.

class: Classifier

multiplicity: zero or one

Identifies the Feature (attribute or operation) which this FeatureNode instance
represents.

class: Feature

multiplicity: exactly one

Identifies the FeatureNode instances that use a particular Feature.

class: FeatureNode

multiplicity: zero or more

8-170 CWM 1.0 2 February 2001

8

argument

featureNode

8.5.2.4 ReferencedElement

The ReferencedElement association links the ElementNode instances of an expression
with the ModelElement instances to which they refer.

Ends

elementNode

modelElement

Identifies the ExpressionNode instances that represent the actual arguments for
this FeatureNode. If the argument reference is null, the FeatureNode is an
attribute or parameter-less function or operation.

class: ExpressionNode

multiplicity: zero or more; ordered

Identifies the FeatureNode for which this ExpressionNode instance represents the
value of an argument. Because arguments can themselves represent entire
expression sub-trees, this reference is used to create hierarchies of expression
nodes, permitting representation of entire expression trees within the CWM.

class: FeatureNode

multiplicity: zero or one

aggregation: composite

Identifies the ElementNode instances that represent a particular ModelElement in
expressions.

class: ElementNode

multiplicity: zero or more

Identifies the ModelElement instance which this ElementNode references.

class: ModelElement

multiplicity: exactly one

2 February 2001 CWM 1.0 8-171

8

8.5.3 OCL Representation of Expressions Constraints

[C-5-1] A FeatureNode that has parameters other than the “this” parameter
represents a Feature that is also an Operation.

context FeatureNode inv:

if self.feature.ownerScope = #instance
 then self.argument->size > 1 implies
 self.feature.oclIsKindOf(Operation)
 else self.argument->size > 0 implies
 self.feature.oclIsKindOf(Operation)
endif

[C-5-2] If the FeatureNode represents an instance-scope feature, the first argument is
a “this” or “self” argument; that is, the object invoking the feature. The convention
is enforced by checking that the type of the first argument is the same as the type of
the feature.

context FeatureNode inv:

self.feature.ownerScope = #instance implies
self.argument->first.type.allFeatures->includes(self.feature)

[C-5-3] If the FeatureNode represents a BehavioralFeature, the number of arguments
must be equal to the number of the BehavioralFeature’s parameters, plus one for the
“this” parameter if the BehavioralFeature is of instance scope.

context FeatureNode inv:

self.feature.oclIsKindOf(BehavioralFeature) implies
(if self.feature.ownerScope = #instance
 then self.argument->size =
 self.feature.oclAsType(BehavioralFeature).parameters->size + 1
 else self.argument->size =
 self.feature.oclAsType(BehavioralFeature).parameters->size
endif)

8-172 CWM 1.0 2 February 2001

8

[C-5-4] If the FeatureNode represents a BehavioralFeature, the types of the
arguments must match, in order, the types of the parameters, allowing for the
optional presence of a leading “this” parameter.

context FeatureNode inv:

self.feature.oclIsKindOf(BehavioralFeature) implies
(if self.feature.ownerScope = #instance
 then self.argument->forAll(arg : Integer |
 self.argument->at(arg + 1)
 .allSuperTypes.union(self.argument.oclType)->
 includes(self.feature.oclAsType(BehavioralFeature)
 .parameters->at(arg))
 else self.argument->forAll(arg : Integer |
 self.argument->at(arg)
 .allSuperTypes.union(self.argument.oclType)->
 includes(self.feature.oclAsType(BehavioralFeature)
 .parameters->at(arg))
endif)

2 February 2001 CWM 1.0 8-173

8

8.6 KeysIndexes Metamodel

The KeysIndexes package depends on the following package:

• org.omg::CWM::ObjectModel::Core

Keys and indexes as means for specifying instances and for identifying alternate
sortings of instances are represented in the CWMFoundation so that they can be shared
among the various data models that employ them. The CWM Foundation defines the
base concepts (uniqueness and relationships implemented as keys) upon which more
specific key structures can be built by other CWM and tool-specific packages.

Figure 8-6-1 KeysIndexes metamodel.

The concepts of key and index have been placed in the CWM Foundation because they
are available in many types of data resources. In the CWM Foundation class and
association descriptions that follow, relational model examples are frequently used
when discussing the definition and usage of key and index types. This is done because
of the wide-spread availability of relational systems and is thought to promote an
understanding of the underlying concepts. These concepts, however, are no less
applicable to other data models as well.

The two central classes for representing the concept of keys are UniqueKey and
KeyRelationship. UniqueKey instances correspond to the notion that keys represent the
identity of instances -- similar to the relational model’s concept of a primary key or an
object model’s concept of an object identity. In contrast, KeyRelationship instances

ModelElement
(from Core)

IndexedFeature
isAscending : Boolean
/ feature : StructuralFeature
/ index : Index

StructuralFeature
(from Core)

1

*

feature 1

*

Index

isPar titioning : Boolean
isSor ted : Boo lean
isUnique : Boolean
/ indexedFeature : Inde xedFea ture
/ spannedClass : Cla ss

1

*

1

*

{ordered}

UniqueKey

/ feature : StructuralFeature
/ keyRelationship : KeyRelationship

1..*

*

feature 1..*
{ordered}

*

KeyRelationship

/ feature : Struc turalFeature
/ uniqueKey : UniqueKey*1 *1

1.. *

*

feature
1.. *

{ordered}

*

Class
(f rom Core)

1

*

spannedClass 1

*

*

0..1

/ownedElem ent*

/nam espace 0..1

*

0.. 1

/owne dElem ent *

/namespace

0.. 1

8-174 CWM 1.0 2 February 2001

8

correspond to the notion that keys embedded in an instance can be used to determine
the identity of other related instances -- similar to the relational model concept of
foreign key and the object model concept of a reference. Consequently, UniqueKey
and KeyRelationship are best thought of as representing roles that collections of
Features of Classifiers play rather than Classifiers describing the internal structure of
keys. Representing keys as roles rather than structural entities provides greater
flexibility and allows the reuse of Features in multiple keys and in differing
relationships to each other. Associations within the KeysIndexes package describe how
UniqueKey and KeyRelationship instances describe the roles they play for various
Class instances and the StructuralFeature instances they contain.

An example of the usage of Index, KeyRelationship and UniqueKey instances to
implement a simple foreign key relationship between stars and the constellations in
which they are found can be seen in the following figure. Also, Indexes are used to
implement the ordering of constellation and star IDs.

Figure 8-6-2 Star and constellation keys and index example.

8.6.1 KeysIndexes Classes

8.6.1.1 Index

Instances of the Index class represent the ordering of the instances of some other Class,
and the Index is said to “span” the Class. Indexes normally have an ordered set of
attributes of the Class instance they span that make up the “key” of the index; this set

Constellation :
Class

ID :
Attribute

Name :
Attribute

ConstellationKey :
UniqueKey

Constel lationID :
At tribute

Star :
Class

ID :
Attribute

Name :
Attribute

Constel lationMap :
Key Relat ions hip

Constel lationIndex :
Index

ConstellationIndexItem :
IndexedFeature

StarIndex :
Index

StarIndexItem :
IndexedFeature

2 February 2001 CWM 1.0 8-175

8

of relationships is represented by the IndexedFeature class that indicates how the
attributes are used by the Index instance.

The Index class is intended primarily as a starting point for tools that require the notion
of an index.

Superclasses

ModelElement

Contained Elements

IndexedFeature

Attributes

isUnique

isSorted

isPartitioning

References

The isUnique attribute is True if the Index instance guarantees all of its instances
have a unique key value.

type: Boolean

multiplicity: exactly one

If True, the Index instance is maintained in a sorted order.

type: Boolean

multiplicity: exactly one

If True, this Index instance is used as a partitioning index.

type: Boolean

multiplicity: exactly one

8-176 CWM 1.0 2 February 2001

8

indexedFeature

spannedClass

8.6.1.2 IndexedFeature

Instances of the IndexedFeature class map StructuralFeature instances of the spanned
Class instance to the Index instances that employ them as (part of) their key. Attributes
of IndexedFeature instances indicate how specific StructuralFeature instance are used
in Index keys.

Superclasses

ModelElement

Attributes

isAscending

References

Identifies the IndexedFeature instance that associates this Index with one of the
StructuralFeature elements of the Index’s key. The ordered constraint on this
reference can be used to represent the sequential order of elements of the Index’s
key.

class: IndexedFeature

defined by: IndexedFeatureInfo::indexedFeature

multiplicity: one or more; ordered

inverse: IndexedFeature::index

Identifies the Class instance spanned by the Index instance.

class: Class

defined by: IndexSpansClass::spannedClass

multiplicity: exactly one

The isAscending attribute is true if the feature is sorted in ascending order and
false, if descending order.

type: Boolean

multiplicity: Zero or one

2 February 2001 CWM 1.0 8-177

8

index

feature

Constraints

The isAscending attribute is valid only if the isSorted attribute is True. [C-6-1]

8.6.1.3 KeyRelationship

KeyRelationship instances represent relationships between UniqueKey instances and
the Class(es) that reference them. This class is intended as a starting point for the
creation of “foreign key” and other associative relationships.

Superclasses

ModelElement

References

feature

Identifies the Index instance for which this IndexedFeature instance is relevant.

class: Index

defined by: IndexedFeatureInfo::index

multiplicity: exactly one

inverse: Index::indexedFeature

Identifies the StructuralFeature instance for which this IndexedFeature instance is
relevant.

class: StructuralFeature

defined by: IndexedFeatures::feature

multiplicity: exactly one

Identifies StructuralFeature instances that participate as (part of) the key of this
KeyRelationship instance.

class: StructuralFeature

defined by: KeyRelationshipFeatures::feature

multiplicity: one or more; ordered

8-178 CWM 1.0 2 February 2001

8

uniqueKey

Constraints

A KeyRelationship instance must be owned by one and only one Class instance
[C-6-2].

8.6.1.4 UniqueKey

A UniqueKey represents a collection of features of some Class that, taken together,
uniquely identify instances of the Class. Instances of UniqueKey for which all features
are required to have non-null values are candidates for use as primary keys such as
those defined by relational DBMSs.

Superclasses

ModelElement

References

feature

keyRelationship

Identifies the UniqueKey instance that serves as the “primary key” for this
KeyRelationship instance.

class: UniqueKey

defined by: UniqueKeyRelationship::uniqueKey

multiplicity: exactly one

inverse: UniqueKey::keyRelationship

Identifies the StructuralFeature instances that make up the unique key. The
ordered constraint is used to represent the sequence of StructuralFeature instances
that make up the UniqueKey instance’s key.

class: StructuralFeature

defined by: UniqueFeature::feature

multiplicity: one or more; ordered

Identifies the KeyRelationship instances that reference this UniqueKey instance.

class: KeyRelationship

2 February 2001 CWM 1.0 8-179

8

Constraints

An UniqueKey instance must be owned by one and only one Class instance. [C-6-3]

8.6.2 KeysIndexes Associations

8.6.2.1 IndexedFeatureInfo Protected

The IndexedFeatureInfo association connects an Index instance to information about
how the StructuralFeature instances that are constituents of the Index’s key are used by
the Index.

Ends

index

indexedFeature

8.6.2.2 IndexedFeatures

The IndexedFeatures association links StructuralFeature instances to information about
how they participate in the keys of Index instances.

Ends

defined by: UniqueKeyRelationship::keyRelationship

multiplicity: zero or more

inverse: KeyRelationship::uniqueKey

Identifies the Index instance for which this IndexedFeature instance is relevant.

class: Index

multiplicity: exactly one

Identifies the IndexedFeature instance that associates this Index with one of the
StructuralFeature elements of the Index’s key. The ordered constraint on this
reference can be used to represent the sequential order of elements of the Index’s
key.

class: IndexedFeature

multiplicity: zero or more; ordered

aggregation: composite

8-180 CWM 1.0 2 February 2001

8

feature

indexedFeature

8.6.2.3 IndexSpansClass

Associates indexes with the classes they span. This relationship is separate from the
ownership of indexes, to allow modeling of systems where an index is NOT owned by
the object it spans. In most situations, however, the spanned and owning Class
instances will be the same.

Ends

index

spannedClass

8.6.2.4 KeyRelationshipFeatures

The KeyRelationshipFeatures association links KeyRelationship instances with the
StructuralFeature instances that comprise their key.

Ends

Identifies the StructuralFeature instance for which this IndexedFeature instance is
relevant.

class: StructuralFeature

multiplicity: exactly one

Identifies the IndexedFeature instances that describe how a particular
StructuralFeature is used by the keys of Index instances.

class: IndexedFeature

multiplicity: zero or more

Identifies Index instances that span this Class instance.

class: Index

multiplicity: zero or more

Identifies the Class instance the Index instance spans.

class: Class

multiplicity: exactly one

2 February 2001 CWM 1.0 8-181

8

feature

keyRelationship

8.6.2.5 UniqueFeature

The UniqueFeature association identifies the Feature instances of a Class instance that
confer uniqueness. The ordered constraint is used to determine the order of
StructuralFeature instances in the UniqueKey instance.

Ends

feature

uniqueKey

Identifies StructuralFeature instances that participate as (part of) the key of this
KeyRelationship instance. In the relational case, this reference indicates the
columns that make up the foreign key.

class: StructuralFeature

multiplicity: one or more; ordered

Identifies the KeyRelationship instances that employ a particular StructuralFeature
as part of their key.

class: KeyRelationship

multiplicity: zero or more

Identifies the StructuralFeature instances that make up the unique key. The
ordered constraint is used to represent the sequence of StructuralFeature instances
that make up the UniqueKey instance’s key. In the relational model case, these
StructuralFeature instances identify the columns that make up a table’s primary
key.

class: StructuralFeature

multiplicity: one or more; ordered

Identifies the UniqueKey instances in which a particular StructuralFeature
participates.

class: UniqueKey

multiplicity: zero or more

8-182 CWM 1.0 2 February 2001

8

8.6.2.6 UniqueKeyRelationship Protected

The UniqueKeyRelationship association links a KeyRelationship with the UniqueKey
with which it is paired. For example, in relational model terms, this association links a
foreign key -- the KeyRelationship instance -- with the primary key -- the UniqueKey
instance -- with which it is paired.

Ends

keyRelationship

uniqueKey

8.6.3 OCL Representation of KeysIndexes Constraints

Identifies the KeyRelationship instances with which a particular UniqueKey
instance is paired.

class: KeyRelationship

multiplicity: zero or more

Identifies the KeyRelationship instances that reference this UniqueKey instance.
In the relational case, this reference identifies the foreign keys that reference this
primary key.

class: UniqueKey

multiplicity: exactly one

[C-6-1]The isAscending attribute is valid only if the isSorted attribute is True.

context IndexedFeature inv:

self.isAscending->notEmpty implies self.index.isSorted

[C-6-2] A KeyRelationship instance must be owned by one and only one Class
instance.

context KeyRelationship inv:

(self.namespace->size = 1) and self.namespace.oclIsKindOf(Class)

[C-6-3] An UniqueKey instance must be owned by one and only one Class instance.

context UniqueKey inv:

(self.namespace->size = 1) and self.namespace.oclIsKindOf(Class)

2 February 2001 CWM 1.0 8-183

8

8.7 SoftwareDeployment Metamodel

The Software Deployment package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::Foundation::BusinessInformation

• org.omg::CWM::Foundation::TypeMapping

The Software Deployment package contains classes to record how the software in a
data warehouse is used.

A software package is represented as a SoftwareSystem object, which is a subtype of
Subsystem. A SoftwareSystem may reference one or more TypeSystems that define the
datatypes supported by the SoftwareSystem. The mappings between datatypes in
different TypeSystems may be recorded as TypeMappings, as described in section 8.8,
TypeMapping metamodel.

The separate components of a software package are each represented as Components
that are either owned or imported by the SoftwareSystem. When a SoftwareSystem is
installed, the deployment is recorded as a DeployedSoftwareSystem and a set of
DeployedComponents.

A DeployedComponent represents the deployment of a specific Component on a
specific computer. Dependencies between DeployedComponents on the same computer
may be documented as Usage dependencies between them.

Individual computers are represented as Machine objects, located at a Site. A Site
represents a geographical location, which may be recorded at any relevant level of
granularity, e.g. a country, a building, or a room in a building. Hierarchical links
between Sites at different levels of granularity may be documented.

A DataManager is a DeployedComponent such as a DBMS or file management system
that provides access to data. It may be associated with one or more data Packages
identifying the Schema, Relational Catalog, Files or other data containers that it
provides access to.

A DataProvider is a DeployedComponent that acts as a client to provide access to data
held by a DataManager. For example, an ODBC or JDBC client on a specific Machine
would be represented as a DataProvider. A DataProvider may have several
ProviderConnections, each identifying a DataManager that may be accessed using the
DataProvider.

If a DataProvider uses a name for a data Package that is different from the actual name
used by the DataManager, a PackageUsage object can be added to record this.

As a DataProvider is a subtype of DataManager, it is possible for a DataProvider to
access data from a DataManager which is actually a DataProvider acting as a client to
yet another DataManager.

The model for the Software Deployment package is shown in three diagrams. The first
diagram shows the objects related to software deployment, while the second diagram
displays the DataManager and DataProvider area of the model. The third diagram
shows the inheritance structure for all the classes in the Software Deployment package.

8-184 CWM 1.0 2 February 2001

8

Figure 8-7-1 Software Deployment

The Components of a
SoftwareSystem may
be owned or imported

Site

/ containingSite : Site
*

*

containingSite

*

containedSite

*

Machine

ipAddress : String
hostName : String
machineID : String
/ site : Site
/ deployedComponent : DeployedComponent

0..1

*

0..1

*

eployedSoftwareSystem

/ softwareSystem : SoftwareSystem

DeployedComponent

pathname : String
/ component : Component
/ machine : Machine

11

*

*

*

*

SoftwareSystem

type : String
subtype : String
supplier : String
version : String
/ typespace : TypeSystem

*1

deployment

*1

Component

*1

deployment

*1

0..1

*

/namespace 0..1

/ownedElement *

*

*

/importer*

/importedElement*

Subsystem
(from Core)

Package
(from Core)

Location
(from BusinessInformation)

2 February 2001 CWM 1.0 8-185

8

Figure 8-7-2 DataManager and DataProvider

DataProvider

/ resourceConnection : ProviderConnection

Machine

ipAddress : String
hostNam e : String
machineID : String
/ s ite : Site
/ deployedCom ponent : DeployedCom ponent

DeployedComponent

pathnam e : String
/ com ponent : Component
/ m achine : Machine

1

*

1

*
Component

*1

deploym ent

*1

TypeSystem
(f rom Ty peMapping)

SoftwareSystem

type : String
subtype : String
supplier : String
vers ion : String
/ typespace : TypeSystem

0..1

*

/namespace0..1

/ownedElem ent*

**

typespace

*

supportingSystem

*

Package
(f rom Core)

DataManager

isCaseSensitive : Boolean
/ dataPackage : Package

ProviderConnection

isReadOnly : Boolean
/ dataProvider : DataProvider
/ dataManager : DataManager

1

*

1

resourceConnection

*

1

*

1

clientConnection*

Package
(f rom Core)**

dataPackage

**

PackageUsage

packageAlias : Nam e

1..* *

/c lient

1..*

/clientDependency

*

1..*

*

/supplier 1..*

/supplierD ependency *

8-186 CWM 1.0 2 February 2001

8

Figure 8-7-3 Software Deployment Inheritances

M achine

ipAddress : String
hostNam e : String
m achineID : String
/ si te : Si te
/ deployedCom ponent : DeployedCom ponent

Si te

/ containingSi te : Si te

DataProvider

/ resourceConnection : ProviderConnection

DataM anager

isCaseSensitive : Boolean
/ dataPackage : Package

ProviderConnection

isReadOnly : Boolean
/ dataProvider : DataProvider
/ dataM anager : DataManager

DeployedSoftwareSystem

/ softwareSystem : SoftwareSystem

DeployedCom ponent

pathnam e : String
/ com ponent : Com ponent
/ m achine : M achine

SoftwareSystem

type : String
subtype : String
suppl ier : String
version : String
/ typespace : T ypeSystem

Com ponent

PackageUsage

packageAl ias : Nam e

Location
(f r om Bu sine ssI nf or matio n)

Classi fier
(from Core)

Subsyst em
(f rom Core)

Package
(f rom Core)

Namesp ace
(from Core)

Dependency
(f rom Core)

ModelElement
(f rom Core)

2 February 2001 CWM 1.0 8-187

8

8.7.1 SoftwareDeployment Classes

8.7.1.1 Component

A Component represents a physical piece of implementation of a system, including
software code (source, binary or executable) or equivalents such as scripts or command
files. A Component is a subtype of Classifier, and so may have its own Features, such as
Attributes and Operations.

Deployment of a Component on a specific Machine is represented as a
DeployedComponent.

Superclasses

Classifier

8.7.1.2 DataManager

A DataManager represents a DeployedComponent that manages access to data. For
example, a deployed DBMS or File Management System would be represented as a
DataManager.

The DataManager may be associated with one or more data Packages identifying the
Schema, Relational Catalog, Files, or other data container that it provides access to.

Superclasses

DeployedComponent

Attributes

isCaseSensitive

References

Indicates whether or not the DataManager treats lower case letters within object
names as being different from the corresponding upper case letters.

type: Boolean

multiplicity: exactly one

8-188 CWM 1.0 2 February 2001

8

dataPackage

8.7.1.3 DataProvider

A DataProvider is a deployed software Component that acts as a client to provide
access to data that is managed by another product. For instance, a DataProvider might
represent a deployed ODBC or JDBC product.

The DataProvider may have resourceConnection references to ProviderConnections
identifying the DataManagers to which it provides access.

Superclasses

DataManager

Contained Elements

ProviderConnection

References

resourceConnection

8.7.1.4 DeployedComponent

A DeployedComponent represents the deployment of a Component on a specific
Machine.

It may represent the deployment of any type of Component. However, if the
Component is part of a SoftwareSystem, the DeployedComponent should be part of a
DeployedSoftwareSystem.

Identifies the Package(s) containing the definition of the data made available by
the DataManager.

class: Package

defined by: DataManagerDataPackage::dataPackage

multiplicity: zero or more

Identifies the ProviderConnections that the DataProvider may use to access data
resources.

class: ProviderConnection

defined by: DataProviderConnections::resourceConnection

multiplicity: zero or more

inverse: ProviderConnection::dataProvider

2 February 2001 CWM 1.0 8-189

8

Usage dependencies may be used to document that one DeployedComponent uses
another DeployedComponent.

Superclasses

Package

Attributes

pathname

References

component

machine

8.7.1.5 DeployedSoftwareSystem

A DeployedSoftwareSystem represents a deployment of a SoftwareSystem.

Its associated DeployedComponents identify the individual Component deployments
that constitute the DeployedSoftwareSystem. These DeployedComponents are not
necessarily all deployed on the same Machine.

Superclasses

A pathname for the DeployedComponent within the Machine’s file system.

type: String

multiplicity: exactly one

Identifies the Component deployed.

class: Component

defined by: ComponentDeployments::component

multiplicity: exactly one

Identifies the Machine on which the DeployedComponent is deployed.

class: Machine

defined by: ComponentsOnMachine::machine

multiplicity: exactly one

inverse: Machine::deployedComponent

8-190 CWM 1.0 2 February 2001

8

Package

References

softwareSystem

8.7.1.6 Machine

A Machine represents a computer. The Site at which the Machine is located and the
Components deployed on the Machine may be recorded.

Superclasses

Namespace

Contained Elements

DeployedComponent

Attributes

ipAddress

hostName

Identifies the SoftwareSystem deployed.

class: SoftwareSystem

defined by: SoftwareSystemDeployments::softwareSystem

multiplicity: exactly one

A fixed IP address for the Machine.

type: String

multiplicity: zero or more; ordered

A Host Name for the Machine. This may be used to identify the Machine on the
network when IP addresses are dynamically allocated.

type: String

multiplicity: zero or more; ordered

2 February 2001 CWM 1.0 8-191

8

machineID

References

site

deployedComponent

8.7.1.7 PackageUsage

A PackageUsage represents a usage of a Package. It is particularly relevant in
situations where a specific usage uses an alternative name for the Package, as this
alternative name can be recorded using the packageAlias attribute.

For example, if a DataProvider representing an ODBC or JDBC client uses a name for
a relational database that is different from the dataPackage name used by the RDBMS
server, a PackageUsage that has the relevant ProviderConnection as client and the
server’s data Package as supplier can be added. Its packageAlias attribute can be used
to record the name by which the data Package is known to the DataProvider.

Superclasses

Dependency

Attributes

An identification code for the Machine.

type: String

multiplicity: zero or one

Identifies the Site at which the Machine is located.

class: Site

defined by: SiteMachines::site

multiplicity: zero or one

Identifies the DeployedComponents on the Machine.

class: DeployedComponent

defined by: ComponentsOnMachine::deployedComponent

multiplicity: zero or more

inverse: DeployedComponent::machine

8-192 CWM 1.0 2 February 2001

8

packageAlias

Constraints

A PackageUsage must have a single Package (or subtype of Package) as its supplier.
[C-8-1]

8.7.1.8 ProviderConnection

A ProviderConnection represents a connection that allows a DataProvider acting as a
client to access data from a specific DataManager. For example a ProviderConnection
could represent a connection from an ODBC or JDBC client to a DBMS.

Superclasses

ModelElement

Attributes

isReadOnly

References

dataProvider

If this attribute is present, it identifies the name by which the Package is known to
the client.

type: Name

multiplicity: zero or one

Indicates whether the ProviderConnection only allows read access to the
DataManager.

type: Boolean

multiplicity: exactly one

Identifies the DataProvider that is the client of the ProviderConnection.

class: DataProvider

defined by: DataProviderConnections::dataProvider

multiplicity: exactly one

inverse: DataProvider::resourceConnection

2 February 2001 CWM 1.0 8-193

8

dataManager

Constraints

A ProviderConnection must not associate a DataProvider with itself. [C-8-2]

8.7.1.9 Site

A Site represents a geographical location. It provides a grouping mechanism for a
group of machines at the same location.

Sites may be documented at different levels of granularity; containment links may be
used to record hierarchical relationships between Sites.

Superclasses

Location

References

containingSite

Constraints

A Site must not have a containingSite reference that refers to itself. [C-8-3]

8.7.1.10 SoftwareSystem

A SoftwareSystem represents a specific release of a software product. It consists of a
set of software Components.

Superclasses

Identifies the DataManager that is accessed by the ProviderConnection.

class: DataManager

defined by: DataManagerConnections::dataManager

multiplicity: exactly one

Identifies a Site of which the current Site forms a part.

class: Site

defined by: RelatedSites::containingSite

multiplicity: zero or more

8-194 CWM 1.0 2 February 2001

8

Subsystem

Contained Elements

Component

Attributes

type

subtype

supplier

version

Identifies the type of the software product. One of the following predefined
values should be used if appropriate:
OS, DBMS, MDDB, FileSystem, ODBC, JDBC or Application.

type: String

multiplicity: zero or one

This is used in conjunction with the type attribute to provide additional
information about the type of the software product.
For some of the predefined types, suggested subtype values are listed below:
 For an Operating System product (type OS):
 AIX, Linux, MVS, NT, Solaris, SunOS, VMS or Windows.
 For a Database Management System product (type DBMS):
 DB2, DMS II, IMS, Informix, Oracle, SQLServer or Sybase.
 For a Multidimensional Database product (type MDDB):
 Essbase or Express.

type: String

multiplicity: zero or one

The supplier of the software product.

type: String

multiplicity: exactly one

The version identification for the software product.

type: String

multiplicity: exactly one

2 February 2001 CWM 1.0 8-195

8

References

typespace

8.7.2 SoftwareDeployment Associations

8.7.2.1 ComponentDeployments

This association identifies the deployments of a Component.

Ends

component

deployment

8.7.2.2 ComponentsOnMachine Protected

Identifies the Machine on which a DeployedComponent is deployed.

Ends

Identifies the TypeSystem(s) containing the datatypes supported by the
SoftwareSystem.

class: TypeSystem

defined by: SystemTypespace::typespace

multiplicity: zero or more

Identifies the Component deployed.

class: Component

multiplicity: exactly one

Identifies the DeployedComponent.

class: DeployedComponent

multiplicity: zero or more

8-196 CWM 1.0 2 February 2001

8

deployedComponent

machine

8.7.2.3 DataManagerConnections

Identifies the DataManager that is accessed by a ProviderConnection.

Ends

DataManager

clientConnection

8.7.2.4 DataManagerDataPackage

This associates the Package(s) containing the definition of the data with the
DataManager that is used to access it.

For example, it may be used to associate a Schema, Relational Catalog or File with the
DataManager that manages access to it.

Identifies the DeployedComponents on the Machine.

class: DeployedComponent

multiplicity: zero or more

Identifies the Machine on which a DeployedComponent is deployed.

class: Machine

multiplicity: exactly one

aggregation: composite

Identifies the DataManager accessed by the ProviderConnection.

class: DataManager

multiplicity: exactly one

Identifies the ProviderConnections that may be used by clients to access the data
provided by this DataManager.

class: ProviderConnection

multiplicity: zero or more

2 February 2001 CWM 1.0 8-197

8

Ends

dataPackage

dataManager

8.7.2.5 DataProviderConnections Protected

Identifies the ProviderConnections that a DataProvider acting as a client may use.

Ends

dataProvider

resourceConnection

Identifies a Package containing the definition of the data made available by the
DataManager.

class: Package

multiplicity: zero or more

Identifies a DataManager that provides access to the data defined in the Package.

class: DataManager

multiplicity: zero or more

Identifies the DataProvider that uses the ProviderConnection.

class: DataProvider

multiplicity: exactly one

aggregation: composite

Identifies the ProviderConnections that the DataProvider may use to access
DataManagers.

class: ProviderConnection

multiplicity: zero or more

8-198 CWM 1.0 2 February 2001

8

8.7.2.6 DeployedSoftwareSystemComponents

This association identifies the DeployedComponents that constitute a
DeployedSoftwareSystem.

Ends

deployedSoftwareSystem

deployedComponent

8.7.2.7 RelatedSites

This may be used to record hierarchical relationships between Sites.

Ends

containingSite

containedSite

Identifies the DeployedSoftwareSystem.

class: DeployedSoftwareSystem

multiplicity: zero or more

Identifies the DeployedComponent.

class: DeployedComponent

multiplicity: zero or more

Identifies other Sites of which the current Site forms a part.

class: Site

multiplicity: zero or more

Identifies other Sites that are part of the current Site.

class: Site

multiplicity: zero or more

2 February 2001 CWM 1.0 8-199

8

8.7.2.8 SiteMachines

Identifies the Site on which a Machine is located.

Ends

site

machine

8.7.2.9 SoftwareSystemDeployments

Identifies the deployments of a SoftwareSystem.

Ends

softwareSystem

deployment

Identifies the Site on which the Machine is located.

class: Site

multiplicity: zero or one

Identifies the Machines located at the Site.

class: Machine

multiplicity: zero or more

Identifies the SoftwareSystem deployed.

class: SoftwareSystem

multiplicity: exactly one

Identifies the deployments of the SoftwareSystem.

class: DeployedSoftwareSystem

multiplicity: zero or more

8-200 CWM 1.0 2 February 2001

8

8.7.2.10 SystemTypespace

A SoftwareSystem’s typespace identifies the TypeSystem(s) containing the datatypes
supported by the SoftwareSystem.

Ends

supportingSystem

typespace

8.7.3 OCL Representation of SoftwareDeployment Constraints

Identifies a SoftwareSystem that supports the datatypes defined by the
TypeSystem.

class: SoftwareSystem

multiplicity: zero or more

Identifies a TypeSystem containing datatypes supported by the SoftwareSystem.

class: TypeSystem

multiplicity: zero or more

[C-8-1] A PackageUsage must have a single Package (or subtype of Package) as its
supplier

context PackageUsage inv:

self.supplier->size=1 and
self.supplier->at(1).oclIsKindOf(Package)

[C-8-2] A ProviderConnection must not associate a DataProvider with itself

context ProviderConnection inv:

self.dataManager <> self.dataProvider

[C-8-3] A Site must not have a containingSite reference that refers to itself.

context Site inv:

self.containingSite -> forAll (c | c <> self)

2 February 2001 CWM 1.0 8-201

8

8.8 TypeMapping Metamodel

The TypeMapping package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

The TypeMapping package supports the mapping of data types between different
systems. The purpose of these mappings is to indicate data types in different systems
that are sufficiently compatible that data values can be interchanged between them.
Multiple mappings are allowed between any pair of types and a means of identifying
the preferred mapping is provided.

Figure 8-8-1 TypeMapping metamodel.

The following instance diagram provides a simple example of the use of the
TypeMapping package to map the CORBA IDL v2.2 long data type and the Java 2 int
data type to each other.

TypeM app ing

isBestMatch : Boolean
isLossy : Boolean
/ sourceTy pe : Classif ier
/ targetTy pe : Classif ier

Cl assi fi er
(from Core)

1

*

sourceTy pe 1

mappingFrom *

1

*

targetTy pe1

mappingTo*

TypeSystem

v ersion : String
*0..1

/ownedElem ent

*

/namespace

0..1

*

0..1

/ownedElement *

/namespace 0..1

ModelElement

(from Core)

Package
(from Core)

8-202 CWM 1.0 2 February 2001

8

Figure 8-8-2 Mapping the CORBA IDL long and Java int data types.

8.8.1 TypeMapping Classes

8.8.1.1 TypeMapping

TypeMapping instances permit the creation of mappings between data types defined
within different environments and are used to indicate data type compatibilities that
permit direct assignment of values from one environment (the “source” type) into
equivalent values in another environment (the “target” type). For example, an integer
field data type in a record-oriented DBMS (the source type) might be mapped to a
compatible integer data type in a relational DBMS (the target type).

Whereas the actual transfer of data values between environments is accomplished
using the CWM’s Transformation package, TypeMapping instances can be used the
identify both the permissible and preferred mappings between data types. Value
interchange between a pair of data types is considered permissible if a TypeMapping
instance is defined for the pair. A TypeMapping instance is considered the preferred
mapping if the instance’s isBestMatch attribute has the value true.

Typically, there will be one TypeMapping Instance between a pair of data types that is
considered the preferred mapping. To promote flexible use of this feature, there is no
requirement that a preferred TypeMapping instance must be identified between a pair
of data types nor are multiple preferred instances prohibited. In these latter cases,
however, the precise semantics are usage-defined.

CORBAIDLv2.2 :
TypeSystem

Java2 :
TypeSystem

int :
DataType

long :
DataType

 :
TypeMapping

 :
TypeMapping

MappingTarget

MappingSource MappingTarget

isBestMatch = true :
Boolean

isLossy = false :
Boolean

isBestMatch = true :
Boolean

isLossy = false :
Boolean

ElementOwnership

ElementOwnershipElementOwnership

ElementOwnership

MappingSource

2 February 2001 CWM 1.0 8-203

8

Interchange between data types defined by non-preferred mappings may often function
as intended. However, the isLossy boolean may be set to indicate that such
interchanges may be subject to validity restrictions in certain circumstances. For
example, it may be valid to move data values from a 32-bit integer data type to a 16-
bit integer data type as long as the actual values in the 32-bit underlying data type do
not exceed the range permitted for 16-bit integers. The CWM Foundation leaves the
understanding and handling of such differences to individual tools. If such differences
must be modeled, consider using the CWM Transformation package to filter data
values during interchange.

TypeMapping instances are unidirectional, so two instances are required to show that a
data type pair can be mutually interchanged between environments.

Superclasses

ModelElement

Attributes

isBestMatch

isLossy

References

sourceType

True if this TypeMapping instance represents the best available mapping between
a pair of data types in different software systems.

type: Boolean

multiplicity: exactly one

True if this TypeMapping instance may result in a data conversion error if the
source data is within certain ranges. For example, storing a 32-bit unsigned integer
value into a 16-bit unsigned integer container will result in a data conversion error
only when the source data has a value greater than 65535.

type: Boolean

multiplicity: exactly one

Identifies the Classifier instance that is the source of information exchange.

class: Classifier

defined by: MappingSource::sourceType

multiplicity: exactly one

8-204 CWM 1.0 2 February 2001

8

targetType

Constraints

The targetType and sourceType references may not refer to the same Classifier
instance. [C-8-1]

8.8.1.2 TypeSystem

Instances of the TypeSystem class collect together the data types (subclasses of
Classifier) defined by a software system and the TypeMapping instances defining how
they are mapped to data types in other TypeSystems. TypeMapping instances collected
by a TypeSystem instance include both those in which the software system’s data types
act as sources and as targets of mappings. Classifiers and TapeMappings are
maintained in a single collection via the ElementOwnership association but can be
distinguished by their respective types.

Because it is a Package, a TypeSystem can also serve to collect together the Classifier
instances for a particular software system.

Superclasses

Package

Contained Elements

TypeMapping

Attributes

version

Constraints

A TypeSystem may own only Classifiers and TypeMappings. [C-8-2]

Identifies the Classifier instance that is the target of information exchange.

class: Classifier

defined by: MappingTarget::targetType

multiplicity: exactly one

A string describing the version of the TypeSystem represented.

type: String

multiplicity: exactly one

2 February 2001 CWM 1.0 8-205

8

8.8.2 TypeMapping Associations

8.8.2.1 MappingSource

The MappingSource association indicates the underlying Classifier instance of a
particular TypeMapping.

Ends

sourceType

mappingFrom

8.8.2.2 MappingTarget

The MappingTarget association indicates the exposed data type for a particular
TypeMapping instance.

Ends

targetType

mappingTo

Identifies the Classifier instance that is the source of information exchange.

class: Classifier

multiplicity: exactly one

Identifies the TypeMapping instances in which a particular Classifier participates.

class: TypeMapping

multiplicity: zero or more

Identifies the Classifier instance that is the target of information exchange.

class: Classifier

multiplicity: exactly one

Identifies the TypeMapping instance of a particular Classifier instance.

class: TypeMapping

multiplicity: zero or more

8-206 CWM 1.0 2 February 2001

8

8.8.3 OCL Representation of TypeMapping Constraints

[C-8-1] The sourceType and targetType references may not refer to the same
Classifier instance.

context TypeMapping inv:

self.sourceType <> self.targetType

[C-8-2] A TypeSystem may own only Classifiers and TypeMappings.

context TypeSystem inv:

self.ownedElement->forAll(e | e.oclIsKindOf(Classifier) or e.oclIsKindOf(TypeMapping))

2 February 2001 CWM 1.0 9-207

Relational 9

9.1 Overview

The Relational package describes data accessible through a relational interface such as
a native RDBMS, ODBC, or JDBC. The Relational package is based on the [SQL]
standard section concerning RDBMS catalogs.

The scope of the top level container, Catalog, is intended to cover all the tables a user
can use in a single statement. A catalog is also the unit which is managed by a data
resource. A catalog contains schemas which themselves contain tables. Tables are
made of columns which have an associated data type.

The Relational package uses constructs in the ObjectModel package to describe the
object extensions added to SQL by the [SQL] standards.

The Relational package also addresses the issues of indexing, primary keys and foreign
keys by extending the corresponding concepts from the Foundation packages.

9.2 Organization of the Relational package

9.2.1 Inheritance

The Relational package depends on the following packages:

• org.omg::CWM::ObjectModel::Behavioral

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::ObjectModel::Instance

• org.omg::CWM::Foundation::DataTypes

• org.omg::CWM::Foundation::KeysIndexes

The Relational package references the ObjectModel and Foundation packages.

9-208 CWM 1.0 2 February 2001

9

Figure 9-1 shows the Relational package classes and their inheritance from the
ObjectModel and Foundation classes. The Relational package, as do the other data
packages, define top-level containers (Catalog, Schema) that extend the ObjectModel
Package class. ColumnSet and SQLStructuredType extend Class. The Columns
contained in the ColumnSet are extensions of the ObjectModel Attribute. The data type
of a column (SQLDataType) inherits from ObjectModel Classifier. This structuring of
the classes will be particularly useful to describe the object extensions of SQL.

Figure 9-1 Relational Package Inheritances

Package
(from Core)

Schema

View

ColumnSet

Query Colu
mnSet

SQLDat aType

SQLDistinctTypeSQLSimpleType

SQLStructuredTy peNamedCol
umnSet

ForeignKeyTrigger

ethod
fr om Behavioral)

UniqueConstraint

Catalog

Class
(from Core)

UniqueKey
(from KeysIndexes)

Key Relationship
(from KeysIndexes)

Attribute
(from Core)

PrimaryKey

odelElement
(from Core)

onstraint
(from Core)

Table

CheckConstraint QLIndex

Column

SQLIndexColumn

Index
(from Keys Index es)

IndexedFeature
(from KeysIndexes)

DataType
(from Core)

Ty peAlias
(from DataTypes)

SQLParameter

Procedure

Parameter
(from Behavioral)

Class ifier
(from Core)

2 February 2001 CWM 1.0 9-209

9

9.2.2 Containers

In addition to owning Tables and/or Views, Schemas also own Procedures and
Triggers.

Figure 9-2 Schemas and owned objects

9.2.3 Tables, columns and data types

A ColumnSet represents any form of relational data. A NamedColumnSet is a
cataloged version of a ColumnSet, which is owned by a Schema. A NamedColumnSet
can be a logical View or a physical Table. Instead of being a NamedColumnSet, a
ColumnSet can be a QueryColumnSet, which is the result of an SQL query.

Columns are associated with an SQLDataType, using the type association from
StructuralFeature to Classifier inherited from ObjectModel Core.

The following figure shows the original two data types: simple type and distinct type.
Simple types are defined by the [SQL] standards, however, some RDBMS
implementations use additional types. An SQL distinct type is defined from a simple
type.

Package
(from Core)

DataManager
(from Softwa reDeploymen t)

Catalog

defaultCharacterSetName : String
defaultCollationName : String

*

*

/dataPackage

*

*

SQLIndex

filterCondition : String
isNullable : Boolean
autoUpdate : Boolean

Procedure

type : ProcedureType

NamedColumnSet

/ optionScopeColumn : Column
/ type : SQLStructuredType
/ usingTrigger : Trigger

Trigger

eventManipulat ion : EventManipulat ionType
actionCondition : BooleanExpression
actionStatement : ProcedureExpression
actionOrientation : ActionOrientationType
conditionTiming : Condit ionTimingType
conditionReferenceNewTable : String
conditionReferenceOldTable : St ring
/ table : Table
/ usedColumnSet : NamedColumnSet

Schema
*

0..1 /ownedElement

*/namespace

0..1

0..1

*

/namespace

0..1

/ownedElement

*

0..1

*

/namespace

0..1

/ownedElement*

0..1

*

/namespace

0..1

/ownedElement

*
/ownedElement

/namespace

0..1
*

0..1
*

9-210 CWM 1.0 2 February 2001

9

Figure 9-3 Tables, columns and data types

9.2.4 Structured types and object extensions

The [SQL] standard adds object-oriented notions to SQL with structured types.

A structured type is defined in term of columns, as illustrated in the following
example: CREATE TYPE person_t AS(name varchar(20), birthyear integer). Since a
SQLStructuredType is a Classifier which owns Attributes, it is natural to associate a
SQLStructuredType to a set of Columns. Similarly, to represent a type created by
CREATE TYPE emp_t UNDER person_t AS(salary integer). we use the ObjectModel
Generalization to associate the two types. As a result, the following instances are
created to represent the above two examples:

V ie w

isRea d O nly : B o o le a n
ch eckO p tio n : B o o le an
q u e ryE xp re ssio n : Q u e ryE xp ressio n

Q u e ryC olu m n S e t

q ue ry : Q u e ryE xp re ssio n

Na m e d Co lu m n S e t

/ o p tio nS co p e Co lu m n : Co lu m n
/ typ e : S Q L S tru ctu re dT yp e
/ u sin g T rig g er : T rig g e r

S Q L S im ple T yp e

cha ra cte rM a xim u m L e ng th : In teg e r
cha ra cte rO cte tL e n gth : In te ge r
n u m eri cP re cisio n : In teg e r
n u m eri cP re cisio n Ra d ix : In te g er
n u m eri cS ca le : In teg e r
d a te T im e P re cisio n : In te g e r

S QL D istin ctT y p e

le n g th : In te g e r
p re cisio n : In te g er
sca le : In te g e r
/ sq lS im p le T ype : S Q L S im p le T yp e

1

*

sq lS im p leT yp e

1

sq lDisti n ctT yp e *

{o rde re d }

{o rde re d }

{o rd e red }

T a b le

i sT e m po ra ry : B oo le a n
tem p orar yS co p e : S tri ng
/ tri g ge r : Trig g e r
i sS yste m : B o o le a n

Ch e ckCo n stra in t

d e fe rra b i l i ty : De fe rra b i l i tyT yp e

*

*

/co n stra in e d E le m e n t

*

/co n stra n t*

Co lu m nS et

S Q L Da ta Typ e

typ e Nu m b e r : In teg e r

Co lu m n

p re cision : In te g er
sca le : In te g e r
i sNu l la b le : Nu l lab le T yp e
le n g th : In te g e r
co l l a ti o n Na m e : S tri n g
ch a racte rS e tNa m e : S tri n g
/ o p tio nS co p e Co lu m n S e t : Na m e dColu m n S e t
/ re fe re nce d T a b le T yp e : S Q L S tru ctu re d T ype

**

/co n stra in e d E lem e n t

*

/co n stra in t

*

*

0 ..1 /fea tu re

*/o wn e r

0 ..1
1

*
/typ e

1/structu ra lFea tu re

*

2 February 2001 CWM 1.0 9-211

9

Figure 9-4 Instance diagram for two structured types

An association between Column and SQLStructuredType (ColumnRefStructuredType)
has been added to represent structured type attributes which reference another type, as
in CREATE TYPE dept_t AS (name varchar(40), mgr REF (emp_t). This leads to the
following instance diagram:

Figure 9-5 Instance diagram for a structured type containing a REF clause.

P erson_t :
S QLS truc turedType

 :
Generalization

parent

nam e : Co lum n

xa mpl e 1 : CREA TE TYP E P erson_t AS (nam e varcha r(20), bi rt hyear i nte ger)
 CR EA TE TYP E E m p_t UNDE R p erson_ t AS (salary i nte ger)

birthyear :
Colum n

va rchar :
SQLS im pleType

E m p_t :
S QLS truc turedType

salary : Colum n

chil d

int eger :
S QLS im pleType

name : Column

Example 2: CREATE TYPE Dept_t AS (name varchar(40), mgr REF Emp_t)
 See Example 1 for details on Emp_t.

mgr : Column

varchar :
SQLSimpleType

Dept_t :
SQLS tructuredType

Emp_t :
SQLStructuredType

9-212 CWM 1.0 2 February 2001

9

A structured type can be used as the data type of a column, but also as a template for
a table, as in CREATE TABLE person OF person_t(ref is oid user generated) or
CREATE TABLE emp OF emp_t UNDER person. In these cases, the table will be
created with columns which copy the content of the structured type, as described in the
[SQL] standard. This allows programs which do not understand the object extensions
to still work with the table, both at the data and metadata level. However, an
association between the Table (this applies to views as well) and the
SQLStructuredType allows the user of the model to remember which template was
used to create the table. It is the responsibility of the application using the model to
keep the SQLStructuredType and the Table list of columns synchronized. The
following instance diagram represents the examples above:

Figure 9-6 Instance diagram for typed tables.

Finally, when a table (or a column) uses a structured type with a reference to another
structured type, the reference is mapped to a table or view of the corresponding
structured type, using the options scope clause. This represent an association between
the column of the table or view with another table or view. This is modeled by the
ColumnOptionsTable between a Column and a NamedColumnSet in CWM. For
example, the statement CREATE TABLE dept OF dept_t (ref is oid user generated,
mgr WITH OPTIONS SCOPE emp) would be represented by the following:

 :
Generalization

parent

salary : Column

Example 3: CREATE TABLE Person OF Person_t (ref is oid user generated)
 CREATE TABLE Emp OF Emp_t UNDER Person
 See Example 1 for details on Person_t and Emp_t.

birthyear :
Column

child

 :
Generalization

parent

salary : Column

birthyear :
Column

child

salary : Column

oid : Column

salary : Column

Person_t :
SQLStructuredType

Emp_t :
SQLStructuredType

Person : Table

Emp : Table

ColumnSetOfStructuredType

ColumnSetOfStructuredType

2 February 2001 CWM 1.0 9-213

9

Figure 9-7 Instance diagram showing the use of Options Scope clause.

In summary, the SQLStructuredType has the following associations:

Figure 9-8 SQLStructuredType and its associations

9.2.5 Keys

The concept of a key, a set of attributes which defines uniqueness among the instances
of a class, is already introduced in the Foundation Keys&Indexes package by the
UniqueKey class. The Relational model extends the UniqueKey class to

Example 4: CREATETABLE Dept OF Dept_t (ref is oid user generated,
 mgr WITH OPTIONS SCOPE Emp)
 See Example 2 for details on Dept_t and Example 3 on Emp.

name : Column

mgr : Column

Dept_t :
SQLStructuredType

Emp_t :
SQLStructuredType

name : Column

mgr : Column

Dept : Table

oid : Column

Emp : Table

ColumnSetOfStructuredType

ColumnSetOfStructuredType

ColumOptionsTable

NamedColumnSet

/ optionScopeColumn : Column
/ type : SQLStructuredType
/ usingTrigger : Trigger

Column

precision : Integer
scale : Integer
isNullable : NullableType
length : Integer
collationName : String
characterSetName : String
/ optionScopeColumnSet : NamedColumnSet
/ referencedTableType : SQLStructuredType

0..1

* optionScopeColumnSet

0.. 1optionScopeColumn

*

SQLStructuredType

/ referencingColumn : Column
/ columnSet : NamedColumnSet

*

0..1

columnSet *

type

0..1

*

0..1

ref erencingColumn*

ref erencedTableType

0..1

*

0..1

/ feature

*

/owner
0..1

{ordered}

9-214 CWM 1.0 2 February 2001

9

UniqueConstraint. Similarly, the Relational package uses KeyRelationship from the
Foundation package as the basis of a ForeignKey. The generic associations of the
Foundation’s UniqueKey and KeyRelationship between themselves, Class and
StructuralFeatures are inherited by associations between UniqueConstraint,
ForeignKey, Table and Columns in the Relational package.

Figure 9-9 UniqueConstraint and ForeignKey

9.2.6 Index

Similarly to the keys, indexing is part of the Foundation and is extended in the
Relational package.

Attribute
(from Core)

StructuralFeature

(from Core)

UniqueKey
(from KeysIndexes)

*

1..*

*

feature

1..*

KeyRelationship
(from KeysIndexes)

*

1..*

* feature

1..*

{ordered}

1

*

1

*

{ordered}

{ordered}

PrimaryKey

NamedColumnSet

/ optionScopeColumn : Column
/ type : SQLStructuredType
/ usingTrigger : Trigger

ColumnSet
UniqueConstraint

deferrability : DeferrabilityType

able

isTemporary : Boolean
temporaryScope : String
/ trigger : Trigger
isSystem : Boolean

0..1

0..1

/ownedElement0..1/namespace

0..1

*

0..1

/ownedElement

*

/namespace

0..1

Column

precision : Integer
scale : Integer
isNullable : NullableType
length : Integer
collationName : String
characterSetName : String
/ optionScopeColumnSet : NamedColumnSet
/ referencedTableType : SQLStructuredType

0..1

*

optionScopeColumnSet

0..1

optionScopeColumn

*
*

0..1

/feature

*

/owner

0..1
*

1..*

/uniqueKey

*

/feature

1..*

ForeignKey

deleteRule : ReferentialRuleType
updateRule : ReferentialRuleType
deferrability : DeferrabilityType

*

0..1

/ownedElement

*

/namespace

0..1

1..*

* /feature

1..*/keyRelaitonship

*

{ordered}

2 February 2001 CWM 1.0 9-215

9

Figure 9-10 Indexing

9.2.7 Triggers

Triggers represent an action performed by the RDBMS when a certain table is
changed. Triggers are associated to the Table they monitor and are owned by a
Schema, which may or may not be the same as the Schema owning the table. In
addition, Triggers that use tables in their expressions are associated with them.

Attribute

StructuralFeature

IndexedFeature

(from KeysIndexes)

*

1

*

feature

1

Index
(from KeysIndexes)

*

1 indexedFeature

*index

1

{ordered}

Table

isTemporary : Boolean
temporaryScope : String
/ trigger : Trigger
isSystem : Boolean

SQLIndex

fi lterCondi ti on : Stri ng
isNul lable : Boolean
autoUpdate : Boolean

*

1
/index

*/spannedClass

1
IndexSpansClass

NamedColumnSet

/ optionScopeColumn : Column
/ type : SQLStructuredType
/ usingTrigger : Trigger

ColumnSet

SQLIndexColumn

*

1
/indexedFeature

*

/index 1 IndexedFeatureInfo

Column

precision : Integer
scale : Integer
isNullable : NullableType
length : Integer
collationName : String
characterSetName : String
/ optionScopeColumnSet : NamedColumnSet
/ referencedTableType : SQLStructuredType

0..1

*
opti onScopeColumnSet

0..1 optionScopeColumn

*

*

0..1

/feature

*

/owner

0..1

*

1

/i ndexedFeature *

/feature 1

{ordered}

9-216 CWM 1.0 2 February 2001

9

Figure 9-11 Triggers

9.2.8 Procedures

Procedures extend the ObjectModel Method class and are owned by a Schema (see
Figure 9-2). The parameter and other information about the Procedure are illustrated in
Figure 9-12.

Figure 9-12 Stored Procedures

N a m e d C o l u m n S e t
T a b l e

T r ig g e r

e ve n t M a n ip u l a t i o n : E ve n t M a n ip u la t i o n T y p e
a c t i o n C o n d i t i o n : B o o le a n E x p r e s s io n
a c t i o n S t a t e m e n t : P r o c e d u r e E x p r e s s io n
a c t i o n O r ie n t a t i o n : A c t i o n O r ie n t a t i o n T y p e
c o n d i t i o n T im in g : C o n d i t i o n T im i n g T y p e
c o n d i t i o n R e fe r e n c e N e w T a b le : S t r i n g
c o n d i t i o n R e fe r e n c e O ld T a b le : S t r i n g
/ t a b le : T a b le
/ u s e d C o lu m n S e t : N a m e d C o lu m n S e t

*

*

u s e d C o lu m n S e t *

u s in g T r ig g e r

*

1

*

t a b l e 1

t r i g g e r
*

{ o r d e r e d }

S c h e m a

*

0 . . 1

/ o w n e d E l e m e n t *

/ n a m e s p a c e 0 . . 1

Mo d e lE le m e n t
(f ro m C ore)

Me t h od
(fro m B eh avio ra l)

F ea ture
(f rom Co re)

B eh avio ra lF e a tu re
(f ro m B eh avio ra l)

C l as s i fie r
(f ro m C ore)

a r am e te r
(from B e h a vio ra l)

n

.. 1 p aram e ter

n

{o rde re d}
be ha vio ra lF ea tu re

.. 1 1

* ty pe

1pa ra m e te r

*

Q L P a r a me te rP roc ed u re *

0 . .1 /p ara m eter

*
/b eh avio ra lF ea tu re

0 . .1

{o rde re d}

2 February 2001 CWM 1.0 9-217

9

9.2.9 Instances

It is sometimes necessary to provide either a copy or a sample of the data as part of the
metadata. For example, one may want to specify during the design phase what will be
the content of a Gender table. This is similar to the use of Collaboration diagrams in
UML.

Figure 9-13 shows how a Rowset inherits from Extent, from the Foundation package.
It represents all the data comprised in a ColumnSet. A RowSet can only be owned by
a ColumnSet or any derived class. A RowSet contains Rows. Row inherits from
Object. Its structure is defined by the corresponding ColumnSet and its Columns. Each
Row is divided into ColumnValues, which match the value of a relational table, at the
intersection of a row and a column. ColumnValue inherits from DataValue from
ObjectModel.

Figure 9-14 shows a collaboration diagram, we show how the instances for the two
column, two row Gender table are represented, and how they are associated with the
Gender table definition. Two kinds of Instances are instantiated: Row and
ColumnValue. The Row is associated with the AttributeLink through the instance/slot
association. The ColumnValue is associated with the AttributeLink through the value
association. While not shown on the diagram to keep it readable, each Instance is
associated with a Class: the Row would be associated with the ColumnSet, and the
ColumnValue with the SQLType of the corresponding Column.

Figure 9-13 Relational Instance classes

a t aV a lu e
(f rom Ins tanc e)

Ro wCo l u m n V a l u e

P a cka g e
(f rom C ore)

Ro wS e t

Co l u m n S e t

*

0 ..1

o w ne d E le mn t *

/n a m e sp a ce 0 ..1

S tru ctu ra lFe a tu re
(fro m Co re)

E xte n t
(f rom Ins tanc e)

Cla ssi f ie r
(fro m Co re)

1 n

ty p e

1 n

In sta n ce
(f rom Ins tanc e)

*

0 ..1 /o wne d E le m e n t

*/n a m e sp a ce

0 ..1

1

* cla ssi f i e r

1i n sta n ce

*

O b j e ct
(f rom Ins tanc e)

A ttri b u te
(f rom C ore)

1

*

/typ e1

*

S lo t
(f rom Ins tanc e)

1

*

va lu e
1

va l u eS lo t
*

*
0 ..1

slo t

*

in stan ce

0 ..1

1

*

/fe a tu re

1

/slo t

*

9-218 CWM 1.0 2 February 2001

9

Figure 9-14 Collaboration diagram showing use of instance classes

9.3 Relational Classes

9.3.1 Catalog

A Catalog is the unit of logon and identification. It also identifies the scope of SQL
statements: the tables contained in a catalog can be used in a single SQL statement.

Superclasses

 Package

Contained Elements

Schema

Attributes

Gender : Table

Code : Column

Name : Column

 : Slot

 : Slot

 : Slot

 : Slot

 : RowSet

 : Row

 : Row

M : ColumnValue

Male : ColumnValue

F : ColumnValue

Female : ColumnValue

2 February 2001 CWM 1.0 9-219

9

defaultCharacterSetName

defaultCollationName

9.3.2 CheckConstraint

A rule that specifies the values allowed in one or more columns of every row of a
table.

Superclasses

Constraint

Attributes

deferrability

9.3.3 Column

A column in a result set, a view, a table, or an SQLStructuredType.

Superclasses

Attribute

Attributes

The name of the default character set used for the values in the column.
This field applies only to columns whose datatype is a character string.

type: String

multiplicity: exactly one

The name of the default collation sequence used to sort the data values in the
column.
This applies only to columns whose datatype is a form of character string.

type: String

multiplicity: exactly one

Indicates the timing of the constraint enforcement during multiple-user updates.

type: DeferrabilityType (initiallyDeferred |
initiallyImmediate | notDeferrable)

multiplicity: exactly one

9-220 CWM 1.0 2 February 2001

9

characterSetName

collationName

isNullable

length

precision

scale

The name of the character set used for the values in the column.
This field applies only to columns whose datatype is a character string.

type: String

multiplicity: exactly one

The name of the collation sequence used to sort the data values in the column.
This applies only to columns whose datatype is a form of character string.

type: String

multiplicity: exactly one

Indicates if null values are valid in this column.

type: NullableType (columnNoNulls | columnNullable |
columnNullableUnknown)

multiplicity: exactly one

The length of fixed length character or byte strings. Maximum length if length is
variable.

type: Integer

multiplicity: zero or one

The total number of digits in the field

type: Integer

multiplicity: zero or one

constraints: Scale must be specified when precision is specified

The number of digits on the right of the decimal separator.

type: Integer

multiplicity: zero or one

2 February 2001 CWM 1.0 9-221

9

References

referencedTableType

optionScopeColumnSet

Constraints

The scale attribute is valid only if the precision attribute is specified. [C-3]

9.3.4 ColumnSet

A set of columns, representing either the result of a query, a view or a physical table.

Superclasses

Class

Contained Elements

Column

9.3.5 ColumnValue

The value in a column instance.

The column, used in an SQLStructuredType is a REF to a type. This reference the
REF’ed SQLStructuredType.

class: SQLStructuredType

defined by: ColumnRefStructuredType::referencedTableType

multiplicity: zero or one

inverse: SQLStructuredType::referencingColumn

Reference to the NamedColumnSet (Table or View) indicated in the SCOPE
clause of the Column definition.

class: NamedColumnSet

defined by: ColumnOptionsColumnSet::optionScopeColumnSet

multiplicity: zero or one

inverse: NamedColumnSet::optionScopeColumn

9-222 CWM 1.0 2 February 2001

9

Superclasses

DataValue

9.3.6 ForeignKey

A Foreign Key associates columns from one table with columns of another table.

Superclasses

KeyRelationship

Attributes

deleteRule

updateRule

deferrability

9.3.7 NamedColumnSet

A catalogued set of columns, which may be Table or View.

An enumerated type. Indicates the disposition of the data records containing the
foreign key value when the record of the matching primary key is deleted.

type: ReferentialRuleType (importedKeyNoAction |
importedKeyCascade | importedKeySetNull |
importedKeyRestrict | importedKeySetDefault)

multiplicity: exactly one

Same as deleteRule for updates of the primary key data record

type: ReferentialRuleType (importedKeyNoAction |
importedKeyCascade | importedKeySetNull |
importedKeyRestrict | importedKeySetDefault)

multiplicity: exactly one

Indicates if the validity of the ForeignKey is to be tested at each statement or at
the end of a transaction.

type: DeferrabilityType (initiallyDeferred |
initiallyImmediate | notDeferrable)

multiplicity: exactly one

2 February 2001 CWM 1.0 9-223

9

Note for typed tables: It is assumed that the typed table will own a set of columns
conforming to the type they are OF. This set of columns allows the manipulation of the
table by products which ignore this [SQL] extension. It also allows the columns of
type REF, to be copied to a column with a SCOPE reference.

Superclasses

ColumnSet

References

usingTrigger

type

optionScopeColumn

9.3.8 PrimaryKey

There is only one UniqueConstraint of type PrimaryKey per Table. It is implemented
specifically by each RDBMS.

A Trigger which references this NamedColumnSet in its expression

class: Trigger

defined by: TriggerUsingColumnSet::usingTrigger

multiplicity: zero or more

inverse: Trigger::usedColumnSet

For typed Tables and Views, reference the base SQLStructuredType.

class: SQLStructuredType

defined by: ColumnSetOfStructuredType::type

multiplicity: zero or one

inverse: SQLStructuredType::columnSet

This NamedColumnSet is referenced in a SCOPE clause of the referenced
Column.

class: Column

defined by: ColumnOptionsColumnSet::optionScopeColumn

multiplicity: zero or more

inverse: Column::optionScopeColumnSet

9-224 CWM 1.0 2 February 2001

9

Superclasses

UniqueConstraint

9.3.9 Procedure

This class describes Relational DBMS Stored procedures and functions.

Superclasses

Method

Attributes

type

9.3.10 QueryColumnSet

The result set of a query.

Superclasses

ColumnSet

Attributes

query

9.3.11 Row

An instance of a ColumnSet.

A Procedure can be either a Function or a true Procedure. This indicates whether
this object returns a value or not.

type: ProcedureType (procedure | function)

multiplicity: exactly one

The query expression generating this result. The language attribute of the
expression should generally begin with "SQL"

type: QueryExpression

multiplicity: exactly one

2 February 2001 CWM 1.0 9-225

9

Superclasses

Object

9.3.12 RowSet

Each instance of RowSet owns a collection of Row instances. The inherited association
between Namespace (a superclass of Package) and ModelElement is used to contain
Instances.

Superclasses

Extent

Contained Elements

Row

9.3.13 Schema

A schema is a named collection of tables

Superclasses

Package

Contained Elements

NamedColumnSet

Trigger

Procedure

SQLIndex

CheckConstraint

9.3.14 SQLDataType abstract

A SQLDataType is used to reference any datatype associated with a column

Superclasses

Classifier

9-226 CWM 1.0 2 February 2001

9

Attributes

typeNumber

9.3.15 SQLDistinctType

A datatype defined as a Distinct Type, per [SQL] standard.

Superclasses

SQLDataType

TypeAlias

The number assigned to the datatype by the owning RDBMS

type: Integer

multiplicity: zero or one

2 February 2001 CWM 1.0 9-227

9

Attributes

length

precision

scale

References

sqlSimpleType

9.3.16 SQLIndex

An Index on a table.

Superclasses

Index

Contained Elements

SQLIndexColumn

The length of fixed length character or byte strings. Maximum length if length is
variable.

type: Integer

multiplicity: zero or one

The total number of digits in the field

type: Integer

multiplicity: zero or one

The number of digits on the right of the decimal separator.

type: Integer

multiplicity: zero or one

The SQLSimpleType used to define the SQLDstinctType.

class: SQLSimpleType

definedBy: SQLDistinctTypeWithSQLSimpleType

multiplicity: exactly one

9-228 CWM 1.0 2 February 2001

9

Attributes

filterCondition

isNullable

autoUpdate

9.3.17 SQLIndexColumn

Associates an index with its columns.

This is really an association (link) class. It is associated with one index and one
column.

Superclasses

IndexedFeature

9.3.18 SQLParameter

Parameters of stored procedures.

Superclasses

Parameter

Which subset of the table is indexed

type: String

multiplicity: exactly one

Entries in this index can be null

type: Boolean

multiplicity: exactly one

The index is updated automatically

type: Boolean

multiplicity: exactly one

2 February 2001 CWM 1.0 9-229

9

9.3.19 SQLSimpleType

A simple datatype used with an SQL column. Examples are Integer, Varchar, LOB,
CLOB, etc...

Superclasses

DataType

SQLDataType

9-230 CWM 1.0 2 February 2001

9

Attributes

characterMaximumLength

characterOctetLength

numericPrecision

numericPrecisionRadix

numericScale

dateTimePrecision

9.3.20 SQLStructuredType

See [SQL], corresponding field in DATA_TYPE_DESCRIPTOR

type: Integer

multiplicity: zero or one

See [SQL], corresponding field in DATA_TYPE_DESCRIPTOR

type: Integer

multiplicity: zero or one

See [SQL], corresponding field in DATA_TYPE_DESCRIPTOR

type: Integer

multiplicity: zero or one

See [SQL], corresponding field in DATA_TYPE_DESCRIPTOR

type: Integer

multiplicity: zero or one

See [SQL], corresponding field in DATA_TYPE_DESCRIPTOR

type: Integer

multiplicity: zero or one

See [SQL], corresponding field in DATA_TYPE_DESCRIPTOR

type: Integer

multiplicity: zero or one

2 February 2001 CWM 1.0 9-231

9

A Datatype defined as Structured Type, per [SQL] standard.

Superclasses

Class

SQLDataType

Contained Elements

Column

References

columnSet

referencingColumn

9.3.21 Table

A materialized NamedColumnSet.

Superclasses

NamedColumnSet

A NamedColumnSet created as of this type.

class: NamedColumnSet

defined by: ColumnSetOfStructuredType::columnSet

multiplicity: zero or more

inverse: NamedColumnSet::type

Reference a column of an SQLStructuredType (otherType) which is created with a
REF clause referencing this SQLStructuredType (thisType). Note that in general,
otherType and thisType are two different instances of SQLStructuredType.

class: Column

defined by: ColumnRefStructuredType::referencingColumn

multiplicity: zero or more

inverse: Column::referencedTableType

9-232 CWM 1.0 2 February 2001

9

Contained Elements

UniqueConstraint

ForeignKey

2 February 2001 CWM 1.0 9-233

9

Attributes

isSystem

isTemporary

temporaryScope

References

trigger

Constraints

Indicates that the Table is a System Table (generally part of or view on the system
catalog).

type: Boolean

multiplicity: exactly one

Indicates that the table content is temporary. SQL92 standards provide two types
of temporary tables (local Temporary and Global Temporary). However, RDBMS
products have implemented variations on this theme. It is recommended that the
product manufacturers provide specific temporary information (besides the
temporaryScope attribute) in their extensions.

type: Boolean

multiplicity: exactly one

This attribute is meaningful only when the isTemporary flag is True [C-1]. The
scope indicates when the data of this table are available. "SESSION",
"APPLICATION" are examples of possible values. Look at the Scope attribute for
Global Temporary tables in the SQL standards for more details.

type: String

multiplicity: zero or one

constraints: May not be specified if isTemporary is set to false

Associates triggers executed during changes to the table.

class: Trigger

defined by: TableOwningTrigger::trigger

multiplicity: zero or more; ordered

inverse: Trigger::table

9-234 CWM 1.0 2 February 2001

9

Attribute temporaryScope is meaningful only when the isTemporary flag is True [C-1]

9.3.22 Trigger

An action run by the DBMS when specified events occur on the table owning the
Trigger

Superclasses

ModelElement

2 February 2001 CWM 1.0 9-235

9

Attributes

eventManipulation

actionCondition

actionStatement

actionOrientation

conditionTiming

conditionReferenceNewTable

Indicates what types of events are using the current Trigger.

type: EventManipulationType (insert | delete | update)

multiplicity: exactly one

A boolean expression which defines when the trigger has to be executed

class: BooleanExpression

multiplicity: exactly one

The Trigger action itself

class: ProcedureExpression

multiplicity: exactly one

It indicates if the trigger is called once per statement execution or before or after
each row of the table is modified.

class: ActionOrientationType (row | statement)

multiplicity: exactly one

It indicates if the trigger activity is run before or after the statement or row is
modified.

class: ConditionTimingType (before | after)

multiplicity: exactly one

The alias for the owning table name, used in the actionStatement, to represent the
state of the table after the insert/delete/update

class: String

multiplicity: exactly one

9-236 CWM 1.0 2 February 2001

9

conditionReferenceOldTable

References

usedColumnSet

table

9.3.23 UniqueConstraint

A condition to define uniqueness of rows in a table. An example of UniqueConstraint
is a primary key

Superclasses

UniqueKey

The alias for the name of the owning table, used in the actionStatement, to
represent the state of the table before the update/delete/insert.

class: String

multiplicity: exactly one

Tables referenced by the actionStatement or the actionCondition.

class: NamedColumnSet

defined by: TriggerUsingColumnSet::usedColumnSet

multiplicity: zero or more

inverse: NamedColumnSet::usingTrigger

The table which owns the Trigger

class: Table

defined by: TableOwningTrigger::table

multiplicity: exactly one

inverse: Table::trigger

2 February 2001 CWM 1.0 9-237

9

Attributes

deferrability

9.3.24 View

A view is a non-materialized set of rows, defined by the associated query.

Superclasses

NamedColumnSet

Contained Elements

QueryExpression

Indicates if the validity of the UniqueConstraint is to be tested at each statement
or at the end of a transaction.

type: DeferrabilityType (initiallyDeferred |
initiallyImmediate | notDeferrable)

multiplicity: exactly one

9-238 CWM 1.0 2 February 2001

9

Attributes

isReadOnly

queryExpression

checkOption

Constraints

checkOption is valid only if isReadOnly is False. [C-2]

9.4 Relational Associations

9.4.1 ColumnOptionsColumnSet protected

Associates Columns with NamedColumnSets they reference in their OPTIONS clause.

Indicates whether the underlying tables can be updated through an update to this
View.

type: Boolean

multiplicity: exactly one

The query associated with the View. -
The query result must match the set of Columns associated with the View (in
parent class ColumnSet)

type: QueryExpression

multiplicity: exactly one

This field is meaningful only if the view is not ReadOnly. CheckOption indicates
that the RDBMS will validate that changes made to the data verify the view
filtering condition and belong to the view result set.

type: Boolean

multiplicity: exactly one

constraints: only used when isReadOnly=false

2 February 2001 CWM 1.0 9-239

9

Ends

optionScopeColumn

optionScopeColumnSet

Reference to the Column which contains theSCOPE clause.

class: Column

multiplicity: zero or more

Reference to the NamedColumnSet indicated in the SCOPE clause of the Column
definition.

class: NamedColumnSet

multiplicity: zero or one

9-240 CWM 1.0 2 February 2001

9

9.4.2 ColumnRefStructuredType protected

Associates Columns of a StructuredType with the Type they reference in the REF
clause

Ends

referencedTableType

referencingColumn

9.4.3 ColumnSetOfStructuredType protected

Associates structured types with NamedColumnSets defined of this type.

The column, used in an SQLStructuredType is a REF to a type. This references
the REF’ed SQLStructuredType.

class: SQLStructuredType

multiplicity: zero or one

Reference to a column of an SQLStructuredType (otherType) which is created
with a REF clause referencing this SQLStructuredType (thisType). Note that in
general, otherType and thisType are two different instances of
SQLStructuredType.

class: Column

multiplicity: zero or more

2 February 2001 CWM 1.0 9-241

9

Ends

type

columnSet

9.4.4 DistinctTypeHasSimpleType

Ends

sqlDistinctType

sqlSimpleType

9.4.5 TableOwningTrigger protected

Associates a Table with its Triggers. The Trigger will be activated when an action is
performed on the Table.

For typed Tables and Views, reference to the base SQLStructuredType.

class: SQLStructuredType

multiplicity: zero or one

A NamedColumnSet created as of this type.

class: NamedColumnSet

multiplicity: zero or more

Distinct types that use this simple type.

class: SQLDistinctType

multiplicity: zero or more

The Simple type used to define the distinct class.

class: SQLSimpleType

multiplicity: exactly one

9-242 CWM 1.0 2 February 2001

9

Ends

table

trigger

9.4.6 TriggerUsingColumnSet protected

This associates a Trigger with the NamedColumnSets it uses in its expressions.

Ends

usedColumnSet

usingTrigger

The table which owns the Trigger

class: Table

multiplicity: exactly one

Associates triggers executed during changes to the table.

class: Trigger

multiplicity: zero or more; ordered

NamedColumnSets referenced by the actionStatement or the actionCondition.

class: NamedColumnSet

multiplicity: zero or more

A Trigger which references this table in its expression

class: Trigger

multiplicity: zero or more

2 February 2001 CWM 1.0 9-243

9

9.5 OCL Representation of Relational Constraints
[C-1] temporaryScope is valid only if the isTemporary is True.
context Table inv:
self.temporaryScope.notEmpty implies self.isTemporary=True

[C-2] checkOption is valid only if isReadOnly is False.
context View inv:
self.checkOption implies self.isReadOnly=False

[C-3] scale is valid only if precision is specified.
context Column inv:
self.scale.nonEmpty implies self.precision.notEmpty

9-244 CWM 1.0 2 February 2001

9

2 February 2001 CWM 1.0 10-245

Record 10

10.1 Overview

The Record package covers the basic concept of a record and its structure. The
package takes a broad view of the notion of record, including both traditional data
records such as those stored in files and databases, as well as programming language
structured data types. In fact, the concepts described here can be used as a foundation
for extension packages describing any information structure that is fundamentally
hierarchical, or "nested," in nature such as documents, questionnaires, and
organizational structures.

10.2 Organization of the Record Package

The Record package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::ObjectModel::Instance

Because of the antiquity of many record-based models, individual system
implementations employing record models may have unusual features (such as occurs-
depending arrays, various COBOL rename/remapping semantics, etc.) that are not
shared with other implementations. When such features are limited to single
implementations or languages, they have been purposefully left out of the Record
metamodel. Rather, unusual features of this sort should be placed into extension
packages designed to meet the needs of those implementations or languages. For
example, record structuring features endemic to the COBOL language have been
placed in the COBOLData metamodel in the CWMX package described in Volume 2
and do not appear here. In this way, COBOL-only features do not burden other record
oriented implementations unnecessarily.

10-246 CWM 1.0 2 February 2001

10

The Record metamodel appears in Figure 10-2-1.

Figure 10-2-1 Record Package

The instance diagram in Figure 10-2-2 shows how a record description is represented
in this model. The record contains three fields, one of which is a group item that itself
has embedded fields. The main RecordDef is named Customer. It contains three Fields
– account, custName and custAddress.

FixedOffsetField

of f set : I nteger
of f setUnitBits : Integer

Package
(from Core)

RecordFile

isSelf Describing : Boolean
recordD elim iter : Integer
skipRecords : Int eger
/ record : RecordDef

RecordDef

f ieldDelimiter : String
isF ixedWidth : Boolean
t extD elim it er : String
/ file : RecordFile

* *

f i le

*

record

*

{ordered}

Group Class
(from Core)

Field

length : Integer
precision : Integer
scale : Integer

Classifier

(from Core)

*

1

/fea ture *

{ordered}

/owner1

Attribute
(from Core)

1 */type1 *

2 February 2001 CWM 1.0 10-247

10

Figure 10-2-2 Record metamodel instance example

The account is a numeric field with a type of long, which is an instance of DataType.
Size information about the field -- its length, precision, and scale -- are not relevant
for the long data type.

The field custName has a type of char, which is another instance of DataType. The
field is 50 characters in length but needs no precision or scale information.

Field custAddress is a single field; its internal structure is determined from its type
Address, an instance of Group containing six fields. address1 and address2 have type
of char and are 80 characters long. city is also of type of char but is 30 characters
long. state, postcode and country are of the type char as well but are 3, 11 and 20
characters long, respectively.

Table 10-0 shows how the example RecordDef would be described in three widely
used programming languages.

Customer :
RecordDef

account :
Field

long :
DataType

custAddress :
Field

Address :
Group

address1 :
Field

address2 :
Field

state :
Field

postcode :
Field

middleNam
e : Field

char :
DataType

StructuralFeatureType

StructuralFeatureType

StructuralFeatureType

StructuralFeatureType

country :
Field

length = 80 :
Integer

length = 30 :
Integer

length = 3 :
Integer

length = 11 :
Integer

length = 20 :
Integer

length = 50 :
Integer

custName :
Field

ClassifierFeature

ClassifierFeature

10-248 CWM 1.0 2 February 2001

10

10.2.1 Instances

Instances of records are created by extending the ObjectModel’s Instance package as
shown in Figure 10-2-3.

Figure 10-2-3 Record metamodel instances

Figure 10-2-4 shows an example of how record instances are created using the Record,
FieldValue, and RecordSet classes. The example uses the metamodel instances in
Figure 10-2-2 to store the address of the President of the United States.

Table 10-0 Language representations of Record metamodel example

C COBOL PL/I

typedef struct Address {
 char address1[80];
 char address2[80];
 char city[30];
 char state[3];
 char postcode[11];
 char country[20];
} Address;
typedef struct Customer {
 long account;
 char custName[50];
 Address custAddress;
} Customer;
Customer cust;

01 Customer.
 05 account PIC 999999
 USAGE BINARY.
 05 custName PIC X(50).
 05 custAddress.
 10 address1 PIC X(80).
 10 address2 PIC X(80).
 10 city PIC X(30).
 10 state PIC X(3).
 10 postcode PIC X(11).
 10 country PIC X(20).

DECLARE
 1 CUSTOMER ,
 2 ACCOUNT FIXED BIN(31,0),
 2 CUSTNAME CHAR(50),
 2 CUSTADDRESS,
 3 ADDRESS1 CHAR(80),
 3 ADDRESS2 CHAR(80),
 3 CITY CHAR(30),
 3 STATE CHAR(3),
 3 POSTCODE CHAR(11),
 3 COUNTRY CHAR(20);

DataValue
(f rom Instance)

Object
(f rom Instance)

FieldValue Record RecordSet

Extent
(f rom Instance)

Instance
(f rom Instance)

2 February 2001 CWM 1.0 10-249

10

Figure 10-2-4 Record instance example

10.3 Record Classes

10.3.1 Field

A Field is the fundamental information container within a RecordDef. It holds one
piece of information, which may itself have structure. The inherited associations
StructuralFeatureType and ElementOwnership provide access to a Field instance’s type
and owning classifier, respectively.

 : RecordFile Customer :
RecordDef

 :
Record

 : RecordSet

 : Slot

 : Slot

 : Slot

 :
FieldValue

 :
FieldValue

value = "The
President" : String

value = "123475" :
String

account :
Field

custName :
Field

 : Object

 : Slot

address :
Group

 : Slot

 : Slot

 : Slot

 : Slot

 : Slot

 :
FieldValue

 :
FieldValue

 :
FieldValue

 :
FieldValue

 :
FieldValue

 :
FieldValue

value = "The White
House" : String

value = "1600 Pennsylvania
Avenue NW" : String

value = "Washington" :
String

value = "DC" :
String

value = "20500" :
String

value = "USA" :
St ring

address1 :
Field

address2 :
Field

city :
Field

state :
Field

postcode :
Field

country :
Field

FeatureSlot

FeatureSlot

FeatureSlot

FeatureSlot

FeatureSlot

FeatureSlot

SlotValue

SlotValue

SlotValue

SlotValue

SlotValue

SlotValue

ElementOwnership

ElementOwnership

SlotValue

SlotValue

InstanceClassifier

ObjectSlot

FeatureSlot

FeatureSlot

InstanceClassifier

ObjectSlot

Classi fierFeature

10-250 CWM 1.0 2 February 2001

10

Superclasses

Attribute

Attributes

length

precision

scale

Constraints

Owner and type cannot refer to the same Classifier. [C-1]

The scale attribute is valid only if the precision attribute is specified. [C-2]

The precision attribute is valid only if the length attribute is not specified. [C-3]

10.3.2 FieldValue

The value currently held in a Field instance.

Superclasses

DataValue

10.3.3 FixedOffsetField

Instances of FixeOffsetField represent fields that have a fixed location in a record.

The length of a fixed length character or byte string field.

type: Integer

multiplicity: zero or one

The total number of digits in a numeric field.

type: Integer

multiplicity: zero or one

The number of digits on the right of the decimal separator in a numeric field.

type: Integer

multiplicity: zero or one

2 February 2001 CWM 1.0 10-251

10

FixedOffsetFields can be used as a foundation for recording details of physical record
layouts and as a means of representing the internal structure of undiscriminated (ie, C-
type) unions.

Superclasses

Field

Attributes

offset

offsetUnitBits

10.3.4 Group

A Group is a structured data type and is used to collect together Field instances within
a Record. Groups can be used in RecordDef instances as shown in the foregoing
example.

Superclasses

Classifier

10.3.5 Record

A Record, a subclass of Object, represents a single data record. Each Record is
described by a RecordDef instance found via the Object’s InstanceClassifier
association.

Superclasses

Object

Specifies the offset of the field within its container in units of the number of bits
indicated in the offsetUnitBits attribute.

type: Integer

multiplicity: exactly one

The number of bits making up one record offset unit. For example, for a byte-
relative offset, the value of this attribute would typically be 8.

type: Integer

multiplicity: exactly one

10-252 CWM 1.0 2 February 2001

10

10.3.6 RecordDef

A RecordDef is an ordered collection of Fields representing the structure of a Record.
Examples of RecordDefs include definitions of

• language-specific data structures

• database records

• IMS segments

The internal structure of a RecordDef instance is constructed by adding Field instances
as features (using the ElementOwnership association) and pointing each Field
instance’s inherited type reference to the Classifier instance representing the Field’s
data type. The referenced instance can be either a primitive data type (an instance of
DataType, such as "integer") or a structured data type (such as a Group instance).

Refer to the foregoing example for more details of the relationships between
RecordDefs, Fields, Records, and their values.

Superclasses

 Class

Contained Elements

Field

Attributes

fieldDelimiter

isFixedWidth

The value of a fieldDelimiter used to separate field values in an input stream.

type: String

multiplicity: zero or one

True if the record is fixed length. Otherwise, the record can be of variable length.

type: Boolean

multiplicity: exactly one

2 February 2001 CWM 1.0 10-253

10

textDelimiter

References

file

10.3.7 RecordFile

A RecordFile is the definition of a file. It may have one or more RecordDefs, defining
the structure of the records in the file. Each of these RecordDefs defines a valid
structure for records in the file. Subclasses of RecordFile in extensions to support
specific languages and systems may be used to represent specific types of files such as
COBOL CopyLib files and C-language header files.

Physical deployments of a RecordFile can be found via the DataManagerDataPackage
association in the SoftwareDeployment package .

Superclasses

Package

Attributes

isSelfDescribing

The delimiter of a text string in the record, such as a quote.

type: String

multiplicity: zero or one

Identifies files containing Records described by the RecordDef.

class: RecordFile

defined by: RecordToFile::file

multiplicity: zero or more

inverse: RecordFile::record

True if the contents of fields in the first record of the file contain field names
applicable to subsequent records.

type: Boolean

multiplicity: exactly one

10-254 CWM 1.0 2 February 2001

10

recordDelimiter

skipRecords

References

record

10.3.8 RecordSet

A RecordSet represents a collection of Record instances.

Superclasses

Extent

Contained Elements

Record

Contains the value that serves as a logical end-of-record indication in a stream-
oriented file. A common examples include the usage of carriage-return characters
and carriage-return/line-feed character pairs as new-line characters in ASCII text
files.

type: String

multiplicity: zero or one

The number of records to ignore at the beginning of a file. The specific semantics
of records that are skipped may be beyond the scope of CWM.

type: Integer

multiplicity: zero or one

The record definitions used to describe the layout of individual record instances
stored in the file. The ordering of these RecordDefs may be used to indicate the
physical sequence in which records of various types are expected.

class: RecordDef

defined by: RecordToFile::record

multiplicity: zero or more; ordered

inverse: RecordDef::file

2 February 2001 CWM 1.0 10-255

10

10.4 Record Associations

10.4.1 RecordToFile Protected

A Record definition can appy to records stored in a RecordFile.

Ends

file

record

10.5 OCL Representation of Record Constraints

Identifies the set of files in which a record is stored.

class: RecordFile

multiplicity: zero or more

Identifies the set of records stored in the file. The ordering may indicate the
physical ordering of records with different layouts.

class: RecordDef

multiplicity: zero or more; ordered

[C-1] The owner of a Field and the type of a Field may not refer to the same
Classifier instance.

context Field inv:

self.owner <> self.type

[C-2] The scale attribute is valid only if the precision attribute is specified.

context Field inv:

self.scale->notEmpty implies self.precision->notEmpty

[C-3] The precision attribute is valid only if the length attribute is not specified.

context Field inv:

self.precision->notEmpty implies self.length->isEmpty

10-256 CWM 1.0 2 February 2001

10

2 February 2001 CWM 1.0 11-257

Multidimensional 11

11.1 Overview

The CWM Multidimensional metamodel is a generic representation of a
multidimensional database.

Multidimensional databases are OLAP databases that are directly implemented by
multidimensional database systems. In a multidimensional database, key OLAP
constructs (dimensions, hierarchies, etc.) are represented by the internal data structures
of a multidimensional database server, and common OLAP operations (consolidation,
drill-down, etc.) are performed by the server acting on those data structures.
Multidimensional databases are often classified as “physical OLAP” or “MOLAP"
(memory-based OLAP) databases.

Multidimensional databases offer enhanced performance and flexibility over OLAP
systems that simulate multidimensional functionality using other technologies (e.g.,
relational database or spreadsheet):

• Performance: Multidimensional databases provide rapid consolidation times and
formula calculations, and consistent query response times regardless of query
complexity. This is accomplished, in part, through the use of efficient cell storage
techniques and highly-optimized index paths.

• Flexibility: The specification and use of multidimensional schemas and queries
(including the design of cubes, dimensions, hierarchies, member formulas, the
manipulation of query result sets, etc.) can be accomplished in a relatively straight-
forward manner, since the server directly supports (and exposes) the
multidimensional paradigm.

The CWM Multidimensional metamodel does not attempt to provide a complete
representation of all aspects of commercially available, multidimensional databases.
Unlike relational database management systems, multidimensional databases tend to be
proprietary in structure, and there are no published, widely agreed upon, standard
representations of the logical schema of a multidimensional database. Therefore, the
CWM Multidimensional Database metamodel is oriented toward complete generality

11-258 CWM 1.0 2 February 2001

11

of specification. Tool-specific extensions to the metamodel are relatively easy to
formulate, and several examples are provided in Volume 2, Extensions, of the CWM
Specification.

11.2 Organization of the Multidimensional Package

11.2.1 Dependencies

The Multidimensional package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::ObjectModel::Instance

11.2.2 Major Classes and Associations

The major classes and associations of the Multidimensional metamodel are shown in
Figure 11-1.

Figure 11-1 Multidimensional Metamodel: Classes and Associations

MemberValue

Object
(from Instance)

DataValue
(from Instance)

Member

Instance
(f rom Instan ce)

Extent
(f rom Instance)

*

0..1

/ownedElement

* /namespace

0..1

DimensionedObject
/ dimension : Dimension
/ schema : Schema

Schema
/ dimensionedObject : DimensionedObject
/ dimension : Dimension

*

1

*

1

MemberSet

/ dimension : Dimension

Dimension
/ dimensionedObject : DimensionedObject
/ component : Dimension
/ composite : Dimension
/ memberSet : MemberSet
/ schema : Schema

** **

{ordered}
*

*

composite*

component

**

1

*

1

*

1

*

1

2 February 2001 CWM 1.0 11-259

11

Schema is the container of all elements comprising a Multidimensional model. It also
represents the logical unit of deployment of a Multidimensional database instance.

Dimension represents a physical dimension in a Multidimensional database. Whereas
the OLAP metamodel defines “dimension” as a purely conceptual entity, this
Dimension represents the dimension object exposed by the programming model of a
Multidimensional database.

A Dimension may reference other instances of Dimension to form arbitrarily complex
dimensional structures (e.g., hierarchies with varying levels of detail).

DimensionedObject represents an attribute of Dimension. Examples of
DimensionedObjects include measures (variables), formulas, consolidation functions,
member alias names, etc. DimensionedObjects are contained by the Schema and
referenced by the Dimensions that use them.

MemberSet represents the collection of Members associated with an instance of
Dimension, and MemberValue represents an instance value of a Member. MemberSet,
Member and MemberValue enable the specification and interchange of both M1-level
Multidimensional models and associated M0-level data values.

11.2.3 Inheritance from the ObjectModel

Figure 11-2 illustrates the inheritance of the Multidimensional classes from
metaclasses of the Object Model.

Figure 11-2 Multidimensional Metamodel: Inheritance from Object Model

11.3 Multidimensional Classes

11.3.1 Dimension

Dimension represents physical dimension in a multidimensional database (e.g., a
dimension object defined by the programming model/API of an OLAP database
server). Tool-specific extensions to the Multidimensional package will generally
contain classes that derive from Dimension.

DimensionedObject Schema

Package
(from Core)

Class
(from Core)

MemberValueMember

Attribute
(from Core)

Dimension

DataValue
(from Instance)

MemberSet

Extent
(from Instance)

Object
(from Instance)

11-260 CWM 1.0 2 February 2001

11

Superclasses

Class

Contained Elements

MemberSet

References

dimensionedObject

component

composite

References the collection of DimensionedObjects associated with a Dimension.

class: DimensionedObject

defined by: DimensionsReferenceDimensionedObjects
::dimensionedObject

multiplicity: zero or more; ordered

inverse: DimensionedObject::dimension

References "component" Dimensions comprising this Dimension.

class: Dimension

defined by: CompositesReferenceComponents::component

multiplicity: zero or more

inverse: Dimension::composite

References "composite" Dimensions comprised (in part) from this Dimension.

class: Dimension

defined by: CompositesReferenceComponents::composite

multiplicity: zero or more

inverse: Dimension::component

2 February 2001 CWM 1.0 11-261

11

memberSet

schema

Constraints

A Dimension may not reference itself as a component, nor as a composite. [C-1]

The transitive closure of components of an instance of Dimension must not include the
Dimension instance.

The transitive closure of composites of an instance of Dimension must not include the
Dimension instance.

11.3.2 DimensionedObject

DimensionedObject represents an attribute of Dimension.

Superclasses

Attribute

References the collection of MemberSets owned by a Dimension.

class: MemberSet

defined by: DimensionOwnsMemberSets::memberSet

multiplicity: zero or more

inverse: MemberSet::dimension

References the Schema owning a Dimension.

class: Schema

defined by: MDSchemaOwnsDimensions::schema

multiplicity: exactly one

inverse: Schema::dimension

11-262 CWM 1.0 2 February 2001

11

References

dimension

schema

11.3.3 Member

Member represents a member of a Dimension.

Superclasses

Object

11.3.4 MemberSet

MemberSet represents the collection of Members associated with an instance of
Dimension.

Superclasses

Extent

Contained Elements

• Member

• MemberValue

References the collection of Dimensions associated with this DimensionedObject.

class: Dimension

defined by: DimensionsReferenceDimensionedObjects::dimension

multiplicity: zero or more

inverse: Dimension::dimensionedObject

References the Schema owning a DimensionedObject.

class: Schema

defined by: MDSchemaOwnsDimensionedObjects::schema

multiplicity: exactly one

inverse: Schema::dimensionedObject

2 February 2001 CWM 1.0 11-263

11

References

dimension

11.3.5 MemberValue

MemberValue represents an instance value of a Member.

Superclasses

DataValue

11.3.6 Schema

Schema contains all elements comprising a Multidimensional database.

Superclasses

Package

Contained Elements

• Dimension

• DimensionedObject

References the Dimension owning a MemberSet.

class: Dimension

defined by: DimensionOwnsMemberSets::dimension

multiplicity: exactly one

inverse: Dimension::memberSet

11-264 CWM 1.0 2 February 2001

11

References

dimensionedObject

dimension

11.4 Multidimensional Associations

11.4.1 CompositesReferenceComponents

A Dimension may reference other instances of Dimension in order to derive more
complex dimensional structures.

Ends

composite

References the collection of DimensionedObjects owned by a Schema.

class: DimensionedObject

defined by: MDSchemaOwnsDimensionedObjects::
dimensionedObject

multiplicity: zero or more

inverse: DimensionedObject::Schema

References the collection of Dimensions owned by a Schema.

class: Dimension

defined by: MDSchemaOwnsDimensions::dimension

multiplicity: zero or more

inverse: Dimension::Schema

"Composite" Dimensions referencing "Component" Dimensions.

class: Dimension

multiplicity: zero or more

2 February 2001 CWM 1.0 11-265

11

component

11.4.2 DimensionOwnsMemberSets

A Dimension may own any number of MemberSets.

Ends

dimension

memberSet

11.4.3 DimensionsReferenceDimensionedObjects

A Dimension may reference several instances of DimensionedObject. A
DimensionedObject may be referenced by several Dimensions.

Ends

dimension

"Component" Dimensions referenced by "Composite" Dimensions.

class: Dimension

multiplicity: zero or more

Dimension owning MemberSets.

class: Dimension

multiplicity: exactly one

aggregation: composite

MemberSets owned by a Dimension.

class: MemberSet

multiplicity: zero or more

Dimensions referencing DimensionedObjects.

class: Dimension

multiplicity: zero or more

11-266 CWM 1.0 2 February 2001

11

dimensionedObject

11.4.4 MDSchemaOwnsDimensionedObjects

A Multidimensional Schema may own any number of DimensionedObjects.

Ends

schema

dimensionedObject

11.4.5 MDSchemaOwnsDimensions

A Multidimensional Schema may own any number of Dimensions.

Ends

schema

DimensionedObjects referenced by Dimensions.

class: DimensionedObject

multiplicity: zero or more; ordered

Schema owning DimensionedObjects.

class: schema

multiplicity: exactly one

aggregation: composite

DimensionedObjects owned by a Schema.

class: DimensionedObject

multiplicity: zero or more

Schema owning Dimensions.

class: schema

multiplicity: exactly one

aggregation: composite

2 February 2001 CWM 1.0 11-267

11

dimension

11.5 OCL Representation of Multidimensional Constraints

[C-1] A Dimension may not reference itself as a component, nor as a composite.

context Dimension

inv: self.component->excludes(self)

inv: self.composite->excludes(self)

Dimensions owned by a Schema.

class: Dimension

multiplicity: zero or more

11-268 CWM 1.0 2 February 2001

11

2 February 2001 CWM 1.0 12-269

XML 12

12.1 Overview

XML is rapidly becoming a very important type of data resource, especially in the
Internet environment. On the one hand, HTML is evolving to be XML-compliant; in
the near future, all HTML documents can be expected to become valid XML
documents. On the other hand, XML is quickly becoming the standard format for
interchange of data and/or metadata (e.g., XMI). Therefore, XML documents (or
streams) representing data and/or metadata can be expected to appear everywhere.

The XML package contains classes and associations that represent common metadata
describing XML data resources. It is based on XML 1.0 [XML]. XML Schema is an
ongoing activity in the W3C. As future standards are adopted by the W3C on XML
Schema, this package will be revised and extended accordingly.

12.1.1 Semantics

This section provides a description of the main features of the XML package.

An XML schema contains a set of definitions and declarations, in the form of XML
element type definitions. An XML element type may contain a set of XML attributes
and/or a content model. An attribute can have one of the following defaults: required,
implied, default, or fixed. The content model can be one of the following types: empty,
any, mixed, or element. Except for the empty content model, a content model consists
of constituent parts, particularly element type references. The allowed occurrence of
the constituents can be one of the following types: one, zero or one, zero or more, or
one or more.

An any content model consists of any element types. A mixed content model consists
of character data and specified element type references. An element content model
consists of specified element type references and/or element content models. An
element content model can be one of the following types: choice or sequence.

12-270 CWM 1.0 2 February 2001

12

12.2 Organization of the XML Package

The XML package depends on the following packages:

• omg.org::CWM::ObjectModel::Core

• omg.org::CWM::ObjectModel::Instance

• omg.org::CWM::Foundation::DataTypes

The metamodel diagram for the XML package is split into two parts. The first diagram
shows the XML classes and associations, while the second shows the inheritance
hierarchy.

2 February 2001 CWM 1.0 12-271

12

Figure 12-1 XML Package: Relationships

lementContent

order : ElementOrderType
/ ownedContent : ElementContent
/ ownerContent : ElementContent

*

*

ownedContent*

ownerContent

*

ElementTypeReference

ccurrence : OccurrenceType
 ownerContent : Content

Content

type : ContentType
occurrence : OccurrenceType
/ elementType : ElementType
/ ownedElementType : ElementTypeReference

*

* ownedElementType

*ownerContent

*

Text

/ ownerContent : MixedContent
MixedContent

/ text : Text 1..11..1

text

1..1

ownerContent

1..1

Content

type : ContentType
occurrence : OccurrenceType
/ elementType : ElementType
/ ownedElementType : ElementTypeReference

Schema

version : String
xmlNamespace : String
/ elementType : ModelElement

Attribute

defaultKind : AttributeDefault
/ elementType : Classifier

ElementType

/ schema : Namespace
/ attribute : Feature
/ content : Content

0..1

*

+content0..1

+elementType*

*

0..1 modelElement

*/namespace

0..1

*

0..1

/feature
*

/owner
0..1

ElementDocument *

0..1 /ownedElement

*/namespace

0..1

12-272 CWM 1.0 2 February 2001

12

Figure 12-2 XML Package: Hierarchy

S c h e m a

ve r s i o n : S t r i n g
x m l N a m e s p a c e : S t r i n g
/ e l e m e n t T y p e : M o d e l E l e m e n t

E l e m e n t T y p e

/ s c h e m a : N a m e s p a c e
/ a t t r i b u t e : F e a t u r e
/ c o n t e n t : C o n t e n t

P a c k a g e
(fr o m C o r e)

C l a s s
(f r o m C o r e)

C o n te n t

t y p e : C o n t e n t Ty p e
o c c u r r e n c e : O c c u r r e n c e T y p e
/ e l e m e n t T y p e : E l e m e n t T y p e
/ o w n e d E l e m e n t T y p e : E l e m e n t T y p e R e fe r e n c e

E l e m e n t C o n t e n t

o rd e r : E l e m e n tO r d e r Ty p e
/ o w n e d C o n t e n t : E l e m e n tC o n t e n t
/ o w n e rC o n t e n t : E le m e n t C o n te n t

M i x e d C o n t e n t

/ t e x t : T e x t

T e x t

/ o w n e r C o n t e n t : M i x e d C o n t e n t

M o d e l E l e m e n t
(f r o m C o r e)

E x t e n t
(fr o m In s t a n c e)

E l e m e n t

O b j e c t
(fr o m I n s t a n c e)

D o c u m e n t

A t t r i b u t e

d e fa u lt K in d : A tt ri b u t e D e fa u l t
/ e le m e n t T y p e : C l a s s i f i e r

E l e m e n t T y p e R e fe r e n c e

o c c u r r e n c e : O c c u r r e n c e T y p e
/ o w n e r C o n t e n t : C o n t e n t

A t t r i b u te
(fr o m C o r e)

2 February 2001 CWM 1.0 12-273

12

12.3 XML Classes

The XML package contains the following classes, in alphabetical order:
• Attribute
• Content
• Document
• Element
• ElementContent
• ElementType
• ElementTypeReference
• MixedContent
• Schema
• Text

12.3.1 Attribute

This represents an XML attribute declaration. In XML, attributes are used to associate
name-value pairs with elements. Each attribute declaration specifies the name, data
type, and default value (if any) of each attribute associated with a given element type.

Superclasses

org.omg::CWM::ObjectModel::Core::Attribute

12-274 CWM 1.0 2 February 2001

12

Attributes

defaultKind

References

elementType

12.3.2 Content

This represents the content model of an ElementType. In XML, each document
contains one or more elements, the boundaries of which are normally delimited by
start-tags and end-tags. The body between the start-tag and end-tag is called the
element’s content. An element type declaration constrains the element’s content.

Identifies the kind of attribute default.

type: AttributeDefault (xml_required | xml_implied |
xml_default | xml_fixed)

multiplicity: exactly one

Identifies the ElementType that owns the Attribute.

class: Classifier

defined by: Classifier-Feature::owner

multiplicity: zero or one

inverse: ElementType::attribute

2 February 2001 CWM 1.0 12-275

12

Superclasses

ModelElement

Attributes

type

occurrence

References

elementType

ownedElementType

Identifies the type of the content model.

type: ContentType (xml_empty | xml_any | xml_mixed |
xml_element)

multiplicity: exactly one

Identifies the allowed occurrence of the content constituents.

type: OccurrenceType (xml_one | xml_zeroOrOne |
xml_zeroOrMore, | xml_oneOrMore)

multiplicity: exactly one

Identifies the ElementType which owns the Content.

class: ElementType

defined by: ElementTypeContent::elementType

multiplicity: zero or more

inverse: ElementType::content

Identifies the ElementTypeReferences owned by the Content.

class: ElementTypeReference

defined by: ContentElementTypeReference::ownedElementType

multiplicity: zero or more

inverse: ElementTypeReference::ownerContent

12-276 CWM 1.0 2 February 2001

12

12.3.3 Document

This represents an XML document, which is a collection of XML Elements.

Superclasses

Extent

Contained Elements

Element

12.3.4 Element

This represents an instance of an ElementType.

Superclasses

Object

12.3.5 ElementContent

This represents an element content which contains only ElementTypeReferences. In
XML, an element type has element content when elements of that type must contain
only child elements (no character data), optionally separated by white space. In this
case, the constraint includes a content model that governs the allowed types of the
child elements and the order in which they are allowed to appear.

Superclasses

Content

2 February 2001 CWM 1.0 12-277

12

Attributes

order

References

ownedContent

ownerContent

Constraints

An ElementContent may not be its own owner content or owned content, transitive
closure.

12.3.6 ElementType

This represents an XML element type definition. In XML, each document contains one
or more elements. The element structure may, for validation purposes, be constrained
using element type and attribute declarations. An element type declaration constrains
the element’s content.

Superclasses

Class

Identifies the order type of the element content.

type: ElementOrderType (xml_choice | xml_sequence)

multiplicity: exactly one

Identifies the content owned by the ElementContent.

class: ElementContent

defined by: OwnedElementContent::ownedContent

multiplicity: zero or more

inverse: ElementContent::ownerContent

Identifies the content that owns the ElementContent.

class: ElementContent

defined by: OwnedElementContent::ownerContent

multiplicity: zero or more

inverse: ElementContent::ownerElement

12-278 CWM 1.0 2 February 2001

12

Contained Elements

Attribute

References

schema

attribute

content

12.3.7 ElementTypeReference

This represents an XML element type reference. In XML, an element content or a
mixed content of an element type may contain references to element type definitions.

Superclasses

org.omg::CWM::ObjectModel::Core::Attribute

Identifies the Schema that owns the ElementType.

class: Namespace

defined by: Namespace-ModelElement::namespace

multiplicity: zero or one

inverse: Schema::elementType

Identifies the Attributes owned by the ElementType.

class: Feature

defined by: Classifier-Feature::feature

multiplicity: zero or more

inverse: Attribute::elementType

Identifies the content of the ElementType.

class: Content

defined by: ElementTypeContent::content

multiplicity: zero or one

inverse: Content::elementType

2 February 2001 CWM 1.0 12-279

12

Attributes

occurrence

References

ownerContent

12.3.8 MixedContent

This represents a mixed content of character data and ElementTypeReferences. In
XML, an element type has mixed content when elements of that type may contain
character data, optionally interspersed with child elements. In this case, the types of the
child elements may be constrained, but not their order or their number of occurrences.

Superclasses

Content

Contained Elements

Text

Identifies the allowed occurrence of the ElementTypeReference.

type: OccurrenceType (xml_one | xml_zeroOrOne |
xml_zeroOrMore | xml_oneOrMore)

multiplicity: exactly one

Identifies the Content that owns the ElementTypeReference.

class: Content

defined by: ContentElementTypeReference::owner

multiplicity: zero or more

inverse: Content::ownedElementType

12-280 CWM 1.0 2 February 2001

12

References

text

12.3.9 Schema

This represents an XML schema which contains a set of definitions and declarations.
In XML, this is known as document type definition, or DTD, which provides a
grammar for a class of documents.

Superclasses

Package

Contained Elements

ElementType

Identifies the Text owned by the MixedContent.

class: Text

defined by: MixedContentText::text

multiplicity: exactly one

inverse: Text::ownerContent

2 February 2001 CWM 1.0 12-281

12

Attributes

version

xmlNamespace

References

elementType

12.3.10 Text

This represents character data. In XML, a mixed content of an element type may
contain text.

Superclasses

org.omg::CWM::ObjectModel::Core::Attribute

Identifies the version of the XML.

type: String

multiplicity: exactly one

Identifies the XML namespace of the Schema.

type: String

multiplicity: exactly one

Identifies the ElementTypes owned by the Schema.

class: ModelElement

defined by: Namespace-ModelElement::ownedElement

multiplicity: zero or more

inverse: Element::schema

12-282 CWM 1.0 2 February 2001

12

References

ownerContent

12.4 XML Associations

The XML package contains the following associations, in alphabetical order:
• ContentElementTypeReference
• ElementTypeContent
• MixedContentText
• OwnedElementContent

12.4.1 ContentElementTypeReference protected

This association relates a Content with its constituent ElementTypeReferences.

Ends

ownerContent

ownedElementType

12.4.2 ElementTypeContent protected

This association relates an ElementType with its Content.

Identifies the Content that owns the Text.

class: MixedContent

defined by: MixedContentText::ownerContent

multiplicity: exactly one

inverse: MixedContent::text

Identifies the owner Content.

class: Content

multiplicity: zero or more

aggregation: shared

Identifies the owned ElementTypeReferences.

class: ElementTypeReference

multiplicity: zero or more

2 February 2001 CWM 1.0 12-283

12

Ends

elementType

content

12.4.3 MixedContentText protected

This association relates a MixedContent with its Text.

Ends

ownerContent

text

12.4.4 OwnedElementContent protected

This association relates an ElementContent with its constituent ElementContents.

Identifies the ElementType.

class: ElementType

multiplicity: zero or more

aggregation: shared

Identifies the Content of the ElementType.

class: Content

multiplicity: zero or one

Identifies the owner MixedContent.

class: MixedContent

multiplicity: exactly one

aggregation: composite

Identifies the Text of the MixedContent.

class: Text

multiplicity: exactly one

12-284 CWM 1.0 2 February 2001

12

Ends

ownerContent

ownedContent

12.5 OCL Representation of XML Constraints

None

Identifies the owner ElementContent.

class: ElementContent

multiplicity: zero or more

aggregation: shared

Identifies the owned ElementContents.

class: ElementContent

multiplicity: zero or more

2 February 2001 CWM 1.0 13-285

Transformation 13

13.1 Overview

A key aspect of data warehousing is to extract, transform, and load data from
operational resources to a data warehouse or data mart for analysis. Extraction,
transformation, and loading can all be characterized as transformations. In fact,
whenever data needs to be converted from one form to another in data warehousing,
whether for storage, retrieval, or presentation purposes, transformations are involved.
Transformation, therefore, is central to data warehousing.

The Transformation package contains classes and associations that represent common
transformation metadata used in data warehousing. It covers basic transformations
among all types of data sources and targets: object-oriented, relational, record,
multidimensional, XML, OLAP, and data mining.

The Transformation package is designed to enable interchange of common metadata
about transformation tools and activities. Specifically it is designed to:

• Relate a transformation with its data sources and targets. These data sources and
targets can be of any type (e.g., object-oriented, relational) or granularity (e.g.,
class, attribute, table, column). They can be persistent (e.g., stored in a relational
database) or transient.

• Accommodate both "black box" and "white box" transformations. In the case of
"black box" transformations, data sources and targets are related to a transformation
and to each other at a coarse-grain level. We know the data sources and targets are
related through the transformation, but we don’t know how a specific piece of a
data source is related to a specific piece of a data target. In the case of "white box"
transformations, however, data sources and targets are related to a transformation
and to each other at a fine-grain level. We know exactly how a specific piece of a
data source is related to a specific piece of a data target through a specific part of
the transformation.

13-286 CWM 1.0 2 February 2001

13

• Allow grouping of transformations into logical units. At the functional level, a
logical unit defines a single unit of work, within which all transformations must be
executed and completed together. At the execution level, logical units can be used
to define the execution grouping and sequencing (either explicitly through
precedence constraints or implicitly through data dependencies). A key
consideration here is that both parallel and sequential executions (or a combination
of both) can be accommodated.

The Transformation package assumes the existence of the following packages that
represent types of potential data sources or targets: ObjectModel (object-oriented),
Relational, Record, Multidimensional, XML, OLAP, and Data Mining. The
Transformation package is an integral part of the following packages: OLAP, Data
Mining, Warehouse Process, and Warehouse Operation. In particular, the
Transformation and Warehouse Process packages together provide metamodel
constructs that facilitate scheduling and execution in data warehousing, and the
Transformation and Warehouse Operation packages together provide metamodel
constructs that enable data lineage in data warehousing.

13.1.1 Semantics

This section provides a description of the main features of the Transformation package,
as illustrated in Figure 13-1 on page 287:

2 February 2001 CWM 1.0 13-287

13

Figure 13-1 A sample Transformation package.

A transformation transforms a set of source objects into a set of target objects. The
elements of a data object set can be any ObjectModel model elements, but typically are
tables, columns, or model elements that represent transient, in memory, objects. Data
object sets can be both sources and targets for different transformations. In particular,
a given data object set can be the target of one transformation and the source of one or
more transformations within the same logical unit. This is often the case with
transformation that produce and consume temporary objects.

Transformations allow a wide range of types (and granularity) to be defined for their
data sources and targets. For example, the source type of a transformation can be an
XML schema while the target type is a column, if the transformation deals with storing
an XML document in a column of a relational database. More typically, the source
types of a transformation are classes and attributes while the target types are tables and
columns, or vice versa, if the transformation deals with converting object data into
relational data, or vice versa.

Transformation
Step 1

Transformation
Step 2

Source Transformation Data
Object

Set

Source Transformation Target

Source Transformation Target

Transformation
Activity

TransformationTask A

TransformationTask B

...
Program/Query/Rule

DataObjectSet

Target Transformation

DataObjectSetDataObjectSet

TransformationMap/
TransformationTree

13-288 CWM 1.0 2 February 2001

13

Existing programs, queries, or rules (in fact, any ObjectModel operations) can be used
to perform a transformation by associating them with the transformation using the
transformation use dependency.

Transformations can be grouped into logical units. At the functional level, they are
grouped into transformation tasks, each of which defines a set of transformations that
must be executed and completed together - a logical unit of work. At the execution
level, transformation steps are used to coordinate the flow of control between
transformation tasks, with each transformation step executing a single transformation
task. The transformation steps are further grouped into transformation activities.
Within each transformation activity, the execution sequence of its transformation steps
are defined either explicitly by using the step precedence dependency or precedence
constraint, or implicitly through data dependency.

There are certain "white-box" transformations which are commonly used and which
can relate data sources and targets to a transformation and to each other at a detailed
level. These transformations are convenient to use and they provide data lineage at a
fine-grain level. One such transformation is the transformation map which consists of
a set of classifier maps that in turn consists of a set of feature maps or classifier-
feature maps. The other is the transformation tree, which represents a transformation
as an unary or binary expression tree. For an example usage of the transformation map,
please see Figure 13-4 on page 294.

13.2 Organization of the Transformation Package

The Transformation package depends on the following packages:

• omg.org::CWM::ObjectModel::Behavioral

• omg.org::CWM::ObjectModel::Core

• omg.org::CWM::Foundation::Expressions

• omg.org::CWM::Foundation::SoftwareDeployment

The CWM uses packages to control complexity and create groupings of logically
interrelated classes and associations. The Transformation package is one such package.
Within the Transformation package itself, however, the definition of subpackages is
purposefully left out to reduce the length and complexity of the fully qualified names
of Transformation classes and associations. There are, however, several groupings of
classes and associations that form related sets of functionality within the
Transformation package. Although separate subpackages have not been created for
these functional areas, their identification improves the understandability of the
Transformation package.

The Transformation package contains metamodel elements that support the following
functions:

• Transformation and data lineage. These classes and associations deal with
transformations and their sources, targets, constraints, and operations.

• Transformation grouping and execution. These classes and associations deal with
grouping of transformations to form logical units and to define execution sequences.

2 February 2001 CWM 1.0 13-289

13

• Specialized transformations. These classes and associations define specialized,
"white box", transformations that are commonly used in data warehousing.

The specific Transformation classes and associations supporting each functional area
are delineated in Table 13-1.

The metamodel diagram for the Transformation package is split into four parts. The
first two diagrams show the Transformation classes and associations, while the last two
show the inheritance hierarchy.

Table 13-1 Functional areas within the Transformation package.

Functional Area Classes Associations

Transformation and data
lineage

Transformation

DataObjectSet
TransformationUse

TransformationSource
TransformationTarget
DataObjectSetElement

Transformation grouping
and execution

TransformationTask

TransformationStep
TransformationActivity
PrecedenceConstraint
StepPrecedence

TransformationTaskElement
InverseTransformationTask
TransformationStepTask

Specialized transformations TransformationMap
ClassifierMap

FeatureMap

ClassifierFeatureMap

TransformationTree

ClassifierMapSource
ClassifierMapTarget
FeatureMapSource
FeatureMapTarget
CFMapClassifier
CFMapFeature

13-290 CWM 1.0 2 February 2001

13

Figure 13-2 Transformation Package: Relationships - 1

Mo d e l E l e me n t

(from C o re)

D a ta O b j e ctS e t

/ e l e m e n t : M o d e l E l e m e n t
/ so u rce T ra n sfo rm a ti o n : T ra n sfo rm a ti o n
/ ta rg e tT ra n sfo rm a ti o n : T ra n sfo rm a ti o n

1 ..*

*

e l e m e n t
1 ..*

se t *

T ra n sfo rm a t i o n

fu n c ti o n : P ro ce d u re E xp re ssi o n
fu n c ti o n De scri p t i o n : S tri n g
i sP ri m a ry : B o o l e a n
/ so u rce : Da ta O b j e c tS e t
/ ta rg e t : Da ta O b j e ctS e t
/ u se : D e p e n d e n cy

* *

so u rce T ra n sfo rm a ti o n

*

so u rce

*

* *

ta rg e tT ra n sfo rm a t i o n

*

ta rg e t

*

ra nsfo rma t i o n T a sk

/ tra n sfo rm a ti o n : T ra n sfo rm a ti o n
/ i n ve rse T a sk : T ra n sfo rm a ti o n T a sk
/ o ri g i n a l T a sk : T ra n sfo rm a ti o n T a sk

*

*

o ri g i n a l T a sk

*

i n ve rseT a sk

*
*

1 ..*

ta sk *

tra n sfo rm a ti o n1 ..*

T ra n sfo rm a ti o n A cti v i ty

cre a ti o n Da te : S tri n g
/ ste p : M o d e l E l e m e n t

T ra n sfo rm a t i o n S te p

/ ta sk : T ra n sfo rm a ti o n T a sk
/ a cti v i ty : Na m e sp a ce
/ p re ce d e n ce : Co n stra i n t
/ p re ce d i n g S te p : De p e n d e n cy
/ su cce e d i n g S te p : De p e n d e n cy

*

1

ste p*

ta sk1

0 . .1

* /n a m e sp a ce

0 . .1/o wn e d E l e m e n t

*

P re ce d e n ce Co n stra i n t

S te p P re ce d e n ce

/ p re ce d i n g S te p : M o d e l E l e m e n t
/ su cce e d i n g S te p : M o d e l E l e m ...

T ra n s form a ti o n S te p

/ ta sk : T ra n sfo rm a ti o n T a sk
/ a c ti v i ty : N a m e sp a ce
/ p re ce d e n ce : C o n stra i n t
/ p re ce d i n g S te p : D e p e n d e n cy
/ su cce e d i n g S te p : De p e n d e n cy

*

1 . .* /co n stra i n t

*/co n stra i n e d E l e m e n t

1 . .*

*

1 . .*

/su p p l i e rDe p e n d e n cy*

/su p p l i e r1 . .*

*

1 ..*

/c l i e n tD e p e n d e n cy
*

/c l i e n t 1 ..*

T ra n sfo rm a ti o n

fu n cti o n : P ro ce d u re E xp re ss...
fu n cti o n De scri p ti o n : S tri n g
i sP ri m a ry : B o o l e a n
/ so u rce : D a ta O b j e ctS e t
/ ta rg e t : D a ta O b j e ctS e t
/ u se : De p e n d e n cy

O p e ra ti o n

(fro m B e h a v i o ra l)

T ra n sfo rm a ti on U se

typ e : St ri n g
/ tra nsfo rma t i o n : M o d e l E l e m ...
/ o p era ti o n : M o d e l E l e m en t

*

..* /c l i e n tD e p e n d e n cy

*/c l i e n t

.. *

. .*

*

/su p p l i e r . .*

/su p p l i e rD e p e n d e n cy *

2 February 2001 CWM 1.0 13-291

13

Figure 13-3 Transformation Package: Relationships - 2

Feature
(from Core)

Classifier
(from Core)

Feature
(from Core)

Classifier
(from Core)

FeatureMap

function : ProcedureExpression
functionDescript ion : String
/ source : Feature
/ target : Feature
/ classifierMap : ClassifierMap

1..*

target

1..*

featureMap

1..**

source

1..*

featureMap

*

ClassifierFeatureMap

function : ProcedureExpression
functionDescript ion : String
classifierToFeature : Boolean
/ classifier : Class ifier
/ feature : Feature
/ classifierMap : ClassifierMap

1..**

classifier

1..*

cfMap

*

1.. **

feature

1.. *

cfMap

*

ClassifierMap

function : ProcedureExpression
functionDescription : String
/ source : Classifier
/ target : Classifier
/ transformationMap : Namespace
/ featureMap : FeatureMap
/ cfMap : ClassifierFeatureMap

1..**

source

1..*

classifierMap

*

1..**

arget

1..*

classifierMap

*

*

0..1

featureMap*

classifierMap0..1

*

0..1

cfMap *

classifierMap 0..1

TransformationMap

/ classifierMap : ModelElement

*

0..1

/ownedElement *

/namespace 0..1

13-292 CWM 1.0 2 February 2001

13

Figure 13-4 Transformation Package: Hierarchy - 1

Transformation

function : ProcedureExpression
functionDescription : String
isPrimary : Boolean
/ source : DataObjectSet
/ target : DataObjectSet
/ use : Dependency

DataObjectS et

/ element : ModelElement
/ sourceTransformation : Transformation
/ targetTransformation : Transformation

TransformationTask

/ transformation : Transformation
/ inverseTask : TransformationTask
/ originalTask : TransformationTask

TransformationStep

/ tas k : TransformationTask
/ activi ty : Namespace
/ precedence : Constraint
/ precedingSt ep : Dependency
/ succeedingStep : Dependency

ModelElement
(from Core)

ModelE lement
(from Core)

TransformationActivity

creationDate : String
/ step : ModelElement

Dependency
(from Core)

PrecedenceConstraint
Transformat ionUs e

type : String
/ transformation : ModelElement
/ operation : ModelElement

Subsystem
(from Core)

Namespace
(f ro m Core)

StepPrecedence

/ precedingStep : ModelElement
/ succeedingStep : ModelElement

Constraint
(from Core)

Component
(f ro m Sof twareDepl oyme nt)

2 February 2001 CWM 1.0 13-293

13

Figure 13-5 Transformation Package: Hierarchy - 2

Transformation

function : ProcedureExpression
functionDescription : String
isPrimary : Boolean
/ source : DataObjectSet
/ target : DataObjectSet
/ use : Dependency

TransformationMap

/ classifierMap : ModelElement

TransformationTree

type : TreeType
body : ExpressionNode

FeatureMap

function : ProcedureExpression
functionDescription : String
/ source : Feature
/ target : Feature
/ classifierMap : ClassifierMap

Namespace
(from Core)

ModelElement
(from Core)

ClassifierFeatureMap

function : ProcedureExpression
functionDescription : String
classifierToFeature : Boolean
/ classifier : Classifier
/ feature : Feature
/ classifierMap : ClassifierMap

ClassifierMap

function : ProcedureExpression
functionDescription : String
/ source : Classifier
/ target : Classifier
/ transformationMap : Namespace
/ featureMap : FeatureMap
/ cfMap : ClassifierFeatureMap

13-294 CWM 1.0 2 February 2001

13

13.3 Transformation Classes

The Transformation package contains the following classes, in alphabetical order:
• ClassifierFeatureMap
• ClassifierMap
• DataObjectSet
• FeatureMap
• PrecedenceConstraint
• StepPrecedence
• Transformation
• TransformationActivity
• TransformationMap
• TransformationStep
• TransformationTask
• TransformationTree
• TransformationUse

13.3.1 ClassifierFeatureMap

This represents a mapping of Classifiers to Features.

Superclasses

ModelElement

Attributes

function

functionDescription

Any code or script for the FeatureMap.

type: ProcedureExpression

multiplicity: exactly one

A short description for any code or script performed by the FeatureMap.

type: String

multiplicity: exactly one

2 February 2001 CWM 1.0 13-295

13

classifierToFeature

References

classifierMap

classifier

feature

13.3.2 ClassifierMap

This represents a mapping of source Classifiers to target Classifiers. A ClassifierMap
may consists of a group of ClassifierFeatureMaps and/or FeatureMaps.

Superclasses

Namespace

Identifies if the mapping is from Classifiers (source) to Features (target). The
default is true.

type: Boolean

multiplicity: exactly one

Identifies the ClassifierMap owning the ClassifierFeatureMap.

class: ClassifierMap

defined by: ClassifierMapToCFMap::classifierMap

multiplicity: zero or one

inverse: ClassifierMap::cfMap

Identifies the source/target Classifier of the ClassifierFeatureMap

class: Classifier

defined by: CFMapClassifier::classifier

multiplicity: one or more

Identifies the source/target Features of the ClassifierFeatureMap

class: Feature

defined by: CFMapFeature::feature

multiplicity: one or more

13-296 CWM 1.0 2 February 2001

13

Contained Elements

ClassifierFeatureMap, FeatureMap

Attributes

function

functionDescription

References

transformationMap

source

Any code or script for the ClassifierMap.

type: ProcedureExpression

multiplicity: exactly one

A short description for any code or script performed by the ClassifierMap.

type: String

multiplicity: exactly one

Identifies the TransformationMap that owns the ClassifierMap.

class: Namespace

defined by: Namespace-ModelElement::namespace

multiplicity: zero or one

inverse: TransformationMap::classifierMap

Identifies the source Classifiers of the ClassifierMap

class: Classifier

defined by: ClassifierMapSource::source

multiplicity: one or more

2 February 2001 CWM 1.0 13-297

13

target

featureMap

cfMap

13.3.3 DataObjectSet

This represents a set of data objects that can be the source or target of a
Transformation.

Superclasses

ModelElement

References

element

Identifies the target Classifiers of the ClassifierMap

class: Classifier

defined by: ClassifierMapTarget::target

multiplicity: one or more

Identifies the FeatureMaps owned by the ClassifierMap.

class: FeatureMap

defined by: ClassifierMapToFeatureMap::featureMap

multiplicity: zero or more

inverse: FeatureMap::classifierMap

Identifies the ClassifierFeatureMaps owned by the ClassifierMap.

class: ClassifierFeatureMap

defined by: ClassifierMapToCFMap::cfMap

multiplicity: zero or more

inverse: ClassifierFeatureMap::classifierMap

Identifies the elements in the DataObjectSet

13-298 CWM 1.0 2 February 2001

13

sourceTransformation

targetTransformation

13.3.4 FeatureMap

This represents a mapping of source Features to target Features.

Superclasses

ModelElement

Attributes

function

class: ModelElement

defined by: DataObjectSetElement::element

multiplicity: one or more

Identifies the Transformation of the source

class: Transformation

defined by: TransformationSource::sourceTransformation

multiplicity: zero or more

inverse: Transformation::source

Identifies the Transformation of the target

class: Transformation

defined by: TransformationTarget::targetTransformation

multiplicity: zero or more

inverse: Transformation::target

Any code or script for the FeatureMap.

type: ProcedureExpression

multiplicity: exactly one

2 February 2001 CWM 1.0 13-299

13

functionDescription

References

classifierMap

source

target

13.3.5 PrecedenceConstraint

This is used to define order-of-execution constraint among TransformationSteps. It
may be used independent of or in conjunction with StepPrecedence.

Superclasses

Constraint

A short description for any code or script performed by the FeatureMap.

type: String

multiplicity: exactly one

Identifies the ClassifierMap owning the FeatureMap.

class: ClassifierMap

defined by: ClassifierMapToFeatureMap::classifierMap

multiplicity: zero or one

inverse: ClassifierMap::featureMap

Identifies the source Features of the FeatureMap

class: Feature

defined by: FeatureMapSource::source

multiplicity: one or more

Identifies the target Features of the FeatureMap

class: Feature

defined by: FeatureMapTarget::target

multiplicity: one or more

13-300 CWM 1.0 2 February 2001

13

13.3.6 StepPrecedence

This is used to define explicit order-of-execution relationships among
TransformationSteps. It may be used independent of or in conjunction with
PrecedenceConstraint

Superclasses

Dependency

References

precedingStep

succeedingStep

Constraints

The preceding step and succeeding step must not be the same. [C-1]

13.3.7 Transformation

This represents a transformation from a set of sources to a set of targets.

If a model already exists for the object that performs the Transformation, then the
model can be related to the Transformation via a TransformationUse dependency.

Identifies the preceding TransformationStep that the StepPrecedence dependency
is for.

class: ModelElement

defined by: Dependency-ModelElement::supplier

multiplicity: one or more

inverse: TransformationStep::succeedingStep

Identifies the succeeding TransformationStep that the StepPrecedence dependency
is for.

class: ModelElement

defined by: Dependency-ModelElement::client

multiplicity: one or more

inverse: TransformationStep::precedingStep

2 February 2001 CWM 1.0 13-301

13

Superclasses

Namespace

Attributes

function

functionDescription

isPrimary

References

source

target

Any code or script for the Transformation.

type: ProcedureExpression

multiplicity: exactly one

A short description for any code or script performed by the Transformation.

type: String

multiplicity: exactly one

This Transformation is the primary transformation for the associated
TransformationTask.

type: Boolean

multiplicity: exactly one

Identifies the sources of the Transformation.

class: DataObjectSet

defined by: TransformationSource::source

multiplicity: zero or more

inverse: DataObjectSet::sourceTransformation

Identifies the targets of the Transformation.

class: DataObjectSet

13-302 CWM 1.0 2 February 2001

13

use

13.3.8 TransformationActivity

This represents a transformation activity. Each TransformationActivity consists of a set
of TransformationSteps.

Superclasses

Subsystem

Contained Elements

TransformationStep

Attributes

creationDate

defined by: TransformationTarget::target

multiplicity: zero or more

inverse: DataObjectSet::targetTransformation

Identifies the TransformationUse dependency.

class: Dependency

defined by: Dependency-ModelElement::clientDependency

multiplicity: zero or more

inverse: TransformationUse::transformation

When the TransformationActivity was created.

type: String

multiplicity: exactly one

2 February 2001 CWM 1.0 13-303

13

References

step

13.3.9 TransformationMap

This represents a specialized Transformation which consists of a group of
ClassifierMaps.

Superclasses

Transformation

Contained Elements

ClassifierMap

References

classifierMap

13.3.10 TransformationStep

This represents the usage of a TransformationTask in a TransformationActivity. A
TransformationStep relates to one TransformationTask.

Identifies the TransformationSteps owned by the TransformationActivity.

class: ModelElement

defined by: Namespace-ModelElement::ownedElement

multiplicity: zero or more

inverse: TransformationStep::activity

Identifies the ClassifierMaps owned by the TransformationMap.

class: ModelElement

defined by: Namespace-ModelElement::ownedElement

multiplicity: zero or more

inverse: ClassifierMap::transformationMap

13-304 CWM 1.0 2 February 2001

13

TransformationSteps are used to coordinate the flow of control between their
TransformationTasks. Ordering of the TransformationSteps are defined using the
PrecedenceConstrainedBy dependency.

Superclasses

ModelElement

References

task

activity

precedence

Identifies the TransformationTask that the TransformationStep performs.

class: TransformationTask

defined by: TransformationStepTask::task

multiplicity: exactly one

inverse: TransformationTask::step

Identifies the TransformationActivity that owns the TransformationStep.

class: Namespace

defined by: Namespace-ModelElement::namespace

multiplicity: zero or one

inverse: TransformationActivity::step

Identifies the PrecedenceConstraint.

class: Constraint

defined by: Constraint-ModelElement::constraint

multiplicity: zero or more

2 February 2001 CWM 1.0 13-305

13

precedingStep

succeedingStep

13.3.11 TransformationTask

This represents a set of Transformations that must be executed together as a single task
(logical unit).

A TransformationTask may have an inverse task. A transformation task that maps a
source set "A" into a target set "B" can be reversed by the inverse transformation task
that maps "B" into "A".

Superclasses

Component

References

transformation

Identifies the preceding StepPrecedence dependency.

class: Dependency

defined by: Dependency-ModelElement::clientDependency

multiplicity: one or more

inverse: StepPrecedence::succeedingStep

Identifies the succeeding StepPrecedence dependency.

class: Dependency

defined by: Dependency-ModelElement::supplierDependency

multiplicity: one or more

inverse: StepPrecedence::precedingStep

Identifies the Transformations that belong to the TransformationTask.

class: Transformation

defined by: TransformationTaskElement::transformation

multiplicity: one or more

13-306 CWM 1.0 2 February 2001

13

inverseTask

originalTask

Constraints

A TransformationTask may not be its own inverse task [C-2] or original task [C-3].

13.3.12 TransformationTree

This represents a specialized Transformation which can be modeled as an expression
tree.

Superclasses

Transformation

Attributes

type

Identifies the inverse TransformationTask.

class: TransformationTask

defined by: InverseTransformationTask::inverseTask

multiplicity: zero or more

inverse: TransformationTask::originalTask

Identifies the original TransformationTask.

class: TransformationTask

defined by: InverseTransformationTask::originalTask

multiplicity: zero or more

inverse: TransformationTask::inverseTask

Identifies the type of TransformationTree, which can be unary or binary.

type: TreeType (tfm_unary | tfm_binary)

multiplicity: exactly one

2 February 2001 CWM 1.0 13-307

13

body

13.3.13 TransformationUse

This is a specialized dependency used to associate a Transformation to the model of an
existing object (e.g., program, query, or rule) that performs the transformation.

Superclasses

Usage

Attributes

type

References

transformation

operation

Identifies the expression tree that embodies the TransformationTree.

type: ExpressionNode

multiplicity: exactly one

Identifies the type of object that can perform the transformation.

type: String

multiplicity: exactly one

Identifies the Transformation that the TransformationUse dependency is for.

class: ModelElement

defined by: Dependency-ModelElement::client

multiplicity: one or more

inverse: Transformation::use

Identifies the Operation that the TransformationUse dependency is on.

class: ModelElement

defined by: Dependency-ModelElement::supplier

multiplicity: one or more

13-308 CWM 1.0 2 February 2001

13

13.4 Transformation Associations

The Transformation package contains the following associations, in alphabetical order:
• CFMapClassifier
• CFMapFeature
• ClassifierMapSource
• ClassifierMapTarget
• ClassifierMapToCFMap
• ClassifierMapToFeatureMap
• DataObjectSetElement
• FeatureMapSource
• FeatureMapTarget
• InverseTransformationTask
• TransformationSource
• TransformationStepTask
• TransformationTarget
• TransformationTaskElement

13.4.1 CFMapClassifier

This association relates a ClassifierFeatureMap to its source/target Classifiers.

Ends

cfMap

classifier

13.4.2 CFMapFeature

This association relates a ClassifierFeatureMap to its source/target Features.

Identifies the ClassifierFeatureMap

class: ClassifierFeatureMap

multiplicity: zero or more

Identifies the source/target Classifiers of the ClassifierFeatureMap

class: Classifier

multiplicity: one or more

2 February 2001 CWM 1.0 13-309

13

Ends

cfMap

feature

13.4.3 ClassifierMapSource

This association relates a ClassifierMap to its source Classifiers.

Ends

classifierMap

source

13.4.4 ClassifierMapTarget

This association relates a ClassifierMap to its target Classifiers.

Identifies the ClassifierFeatureMap

class: ClassifierFeatureMap

multiplicity: zero or more

Identifies the source/target Features of the ClassifierFeatureMap

class: Feature

multiplicity: one or more

Identifies the ClassifierMap

class: ClassifierMap

multiplicity: zero or more

Identifies the source Classifiers of the ClassifierMap

class: Classifier

multiplicity: one or more

13-310 CWM 1.0 2 February 2001

13

Ends

classifierMap

target

13.4.5 ClassifierMapToCFMap derived protected

This association relates a ClassifierMap to its ClassifierFeatureMaps.

Ends

classifierMap

cfMap

Derivation

This association is derived from the Namespace-ModelElement association. All
ownedElement ends of the association must be ClassifierFeatureMaps. [C-4]

13.4.6 ClassifierMapToFeatureMap derived protected

This association relates a ClassifierMap to its FeatureMaps.

Identifies the ClassifierMap

class: ClassifierMap

multiplicity: zero or more

Identifies the target Classifiers of the ClassifierMap

class: Classifier

multiplicity: one or more

Identifies the owning ClassifierMap

class: ClassifierMap

multiplicity: zero or one

Identifies the owned ClassifierFeatureMaps

class: ClassifierFeatureMap

multiplicity: zero or more

2 February 2001 CWM 1.0 13-311

13

Ends

classifierMap

featureMap

Derivation

This association is derived from the Namespace-ModelElement association. All
ownedElement ends of the association must be FeatureMaps. [C-5]

13.4.7 DataObjectSetElement

This association relates a DataObjectSet to its elements.

Ends

set

element

13.4.8 FeatureMapSource

This association relates an FeatureMap to its source Features.

Identifies the owning ClassifierMap

class: ClassifierMap

multiplicity: zero or one

Identifies the owned FeatureMaps

class: FeatureMap

multiplicity: zero or more

Identifies the DataObjectSet

class: DataObjectSet

multiplicity: zero or more

Identifies the elements in the DataObjectSet

class: ModelElement

multiplicity: one or more

13-312 CWM 1.0 2 February 2001

13

Ends

featureMap

source

13.4.9 FeatureMapTarget

This association relates an FeatureMap to its target Features.

Ends

featureMap

target

13.4.10 InverseTransformationTask protected

This association relates a TransformationTask to its inverse. A transformation task that
maps a source set "A" into a target set "B" can be reversed by the inverse
transformation task that maps "B" into "A"

Identifies the FeatureMap

class: FeatureMap

multiplicity: zero or more

Identifies the source Features of the FeatureMap

class: Feature

multiplicity: one or more

Identifies the FeatureMap

class: FeatureMap

multiplicity: zero or more

Identifies the target Features of the FeatureMap

class: Feature

multiplicity: one or more

2 February 2001 CWM 1.0 13-313

13

Ends

originalTask

inverseTask

13.4.11 TransformationSource protected

This association relates a Transformation to its sources.

Ends

sourceTransformation

source

13.4.12 TransformationStepTask

This association relates a TransformationStep to its TransformationTask.

Identifies the original TransformationTask

class: TransformationTask

multiplicity zero or more

Identifies the inverse TransformationTask

class: TransformationTask

multiplicity zero or more

Identifies the Transformation

class: Transformation

multiplicity: zero or more

Identifies the sources of the Transformation

class: DataObjectSet

multiplicity: zero or more

13-314 CWM 1.0 2 February 2001

13

Ends

step

task

13.4.13 TransformationTarget protected

This association relates a Transformation to its targets.

Ends

targetTransformation

target

13.4.14 TransformationTaskElement

This association relates a TransformationTask to its Transformations.

Identifies the TransformationStep

class: TransformationStep

multiplicity zero or more

Identifies the TransformationTask

class: TransformationTask

multiplicity exactly one

Identifies the Transformation

class: Transformation

multiplicity: zero or more

Identifies the targets of the Transformation

class: DataObjectSet

multiplicity: zero or more

2 February 2001 CWM 1.0 13-315

13

Ends

task

transformation

13.5 OCL Representation of Transformation Constraints

[C-1] The preceding step and succeeding step of StepPrecedence must not be the same.

context StepPrecedence

inv: self.precedingStep->forAll(p | self.succeedingStep->forAll(q | p <> q))

[C-2] A TransformationTask may not be its own inverse task.

context TransformationTask

inv: self.inverseTask->forAll(p | p <> self)

[C-3] A TransformationTask may not be its own original task.

context TransformationTask

inv: self.originalTask->forAll(p | p <> self)

[C-4] The ClassifierMapToCFMap association is derived from the Namespace-
ModelElement association. All ownedElement ends of the association must be
ClassifierFeatureMaps.

context ClassifierMapToCFMap

inv Namespace-ModelElement.allInstances.select(ownedElement.oclIsKindOf(
ClassifierFeatureMap))

[C-5] The ClassifierMapToFeatureMap association is derived from the Namespace-
ModelElement association. All ownedElement ends of the association must be
FeatureMaps.

context ClassifierMapToFeatureMap

Identifies the TransformationTask

class: TransformationTask

multiplicity: zero or more

aggregation: shared

Identifies the Transformations

class: Transformation

multiplicity: one or more

13-316 CWM 1.0 2 February 2001

13

inv Namespace-ModelElement.allInstances.select(ownedElement.oclIsKindOf(
FeatureMap))

2 February 2001 CWM 1.0 14-317

OLAP 14

14.1 Overview

Online Analytical Processing (OLAP) is a class of analytic application software that
exposes business data in a multidimensional format. This multidimensional format
usually includes the consolidation of data drawn from multiple and diverse information
sources. Unlike more traditionally structured representations (e.g., the tabular format
of a relational database), the multidimensional orientation is a more natural expression
of the way business enterprises view their strategic data. For example, an analyst
might use an OLAP application to examine total sales revenue by product and
geographic region over time, or, perhaps, compare sales margins for the same fiscal
periods of two consecutive years. The ultimate objective of OLAP is the efficient
construction of analytical models that transform raw business data into strategic
business insight.

There are many ways to implement OLAP. Most OLAP systems are constructed using
OLAP server tools that enable logical OLAP structures to be built on top of a variety
of physical database systems, such as relational or native multidimensional databases.
The following features are generally found in most OLAP systems:

• Multidimensional representation of business data.

• Upward consolidation of multidimensional data in a hierarchical manner, possibly
with the application of specialized processing rules.

• The ability to navigate a hierarchy from a consolidated value to the lower level
values forming it.

• Support for time-series analysis; i.e., OLAP users are generally concerned with data
and consolidations at specific points in time -- By date, week, quarter, etc.

• Support for modeling and scenario analysis -- A user should be able to apply
arbitrary “what-if” analyses to a result set without affecting the stored information.

• Consistent response times, regardless of how queries are formulated -- This is
critical for effective analysis and modeling.

14-318 CWM 1.0 2 February 2001

14

OLAP applications integrate well into the data warehousing environment, because a
data warehouse provides relatively clean and stable data stores to drive the OLAP
application. These data stores are usually maintained in relational tables that can be
read directly by OLAP tools or loaded into OLAP servers. These relational tables are
often structured in a manner that reveals the inherent dimensionality of the data (such
as the ubiquitous Star and Snowflake schemas). Also, the data transformation and
mapping services provided by a data warehouse can be used to supply OLAP systems
with both metadata and data. Transformation-related metadata can be used to track the
lineage of consolidated OLAP data back to its various sources.

14.2 Objectives of the OLAP Package

The primary objectives of the CWM OLAP package are:

• Define a metamodel of essential OLAP concepts common to most OLAP systems.

• Provide a facility whereby instances of the OLAP metamodel are mapped to
deployment-capable structures (i.e., models of physical data resources, such as the
CWM Relational and Multidimensional packages).

• Ensure that navigation through the logical OLAP model hierarchy and its various
resource models is always performed in a uniform manner (i.e., by defining a
standard usage of the CWM Transformation package as a means of implementing
these mappings).

• Leverage services provided by other CWM packages, where appropriate (e.g., use
the CWM Foundation package to supply a standard representation of expressions).

14.3 Organization of the OLAP Package

14.3.1 Dependencies

The OLAP package depends on the following packages:

org.omg::CWM::ObjectModel::Core

org.omg::CWM::Foundation::Expressions

org.omg::CWM::Analysis::Transformation

2 February 2001 CWM 1.0 14-319

14

14.3.2 Major Classes and Associations

Figure 14-1 OLAP Metamodel: Major Classes and Associations

The major classes and associations of the OLAP metamodel are shown in Figure 14-1.

Schema is the logical container of all elements comprising an OLAP model. It is the
root element of the model hierarchy and marks the entry point for navigating OLAP
models.

A Schema contains Dimensions and Cubes. A Dimension is an ordinate within a
multidimensional structure and consists of a list of unique values (i.e., members) that
share a common semantic meaning within the domain being modeled. Each member
designates a unique position along its ordinate.

A Cube is a collection of analytic values (i.e., measures) that share the same
dimensionality. This dimensionality is specified by a set of unique Dimensions from
the Schema. Each unique combination of members in the Cartesian product of the
Cube’s Dimensions identifies precisely one data cell within a multidimensional
structure.

Cube

isVirtual : Boolean
/ cubeDimens ionAssociation : CubeDimensionAssociation
/ cubeRegion : CubeRegion
/ schema : Schema

CubeDeployment
/ cubeRegion : C ubeRegion
/ deplo ym entGroup : Depl oym entGroup
/ contentMap : ContentMap

Hierarchy
/ dimens ion : D imen sion
/ cubeDime nsio nAssociation : Cube Dim ens ionAssociation
/ defaultedDime nsio n : Dimension

CubeDimensionAssociation

/ dim ension : Dimension
/ cube : Cube
/ calcHierarchy : Hierarchy

0..1

*

calcHierarchy

0..1

*

*1 *1

Schema

/ cube : Cube
/ dimens ion : Dimens ion
/ deploymentGroup : DeploymentGroup

*

1

*

1

CubeRegion
isReadOnly : Boolean
isFullyR eal ized : Bool ean
/ memberSele ctionGroup : Memb erSel ectionGroup
/ cube : Cube
/ cubeDeployment : CubeD eploym ent

*

1

*

1

*

1

*

{ordered}

1

Dimension

isTime : Boolean
isMeasure : Boolean
/ hierarchy : Hierarchy
/ memberSelection : MemberSelection
/ cubeDimensionAssociation : CubeDimens ionAssociation
/ displayDefault : Hierarchy
/ schema : Schema

*

1

*

10..1

0..1

0..1

displa yDefault

0..1

* 1* 1

*

1

*

1

MemberSelectionGroup

/ memberSelection : MemberSelection
/ cubeRegion : CubeRegion*1 *1

MemberSelection

/ dimension : Dimension
/ memberSelectionGroup : MemberSelectionGroup

*

1

*

1

* 1..** 1..*

14-320 CWM 1.0 2 February 2001

14

CubeDimensionAssociation relates a Cube to its defining Dimensions. Features
relevant to Cube-Dimension relationships (e.g., calcHierarchy) are exposed by this
class.

A Dimension has zero or more Hierarchies. A Hierarchy is an organizational structure
that describes a traversal pattern through a Dimension, based on parent/child
relationships between members of a Dimension. Hierarchies are used to define both
navigational and consolidation/computational paths through the Dimension (i.e., a
value associated with a child member is aggregated by one or more parents). For
example, a Time Dimension with a base periodicity of days might have a Hierarchy
specifying the consolidation of days into weeks, weeks into months, months into
quarters, and quarters into years.

A specific Hierarchy may be designated as the default Hierarchy for display purposes
(e.g., a user interface that displays the Dimension as a hierarchical tree of members).
CubeDimensionAssociation can also identify a particular Hierarchy as the default
Hierarchy for consolidation calculations performed on the Cube.

Dimensions and Hierarchies are described further in Section 13.3.3.

MemberSelection models mechanisms capable of partitioning a Dimension’s collection
of members. For example, consider a Geography Dimension with members
representing cities, states, and regions. An OLAP client interested specifically in cities
might define an instance of MemberSelection that extracts the city members.

CubeRegion models a sub-unit of a Cube that is of the same dimensionality as the
Cube itself. Each "dimension" of a CubeRegion is represented by a MemberSelection
of the corresponding Dimension of the Cube. Each MemberSelection may define some
subset of its Dimension’s members.

CubeRegions are used to implement Cubes. A Cube may be realized by a set of
CubeRegions that map portions of the logical Cube to physical data sources. The
MemberSelections defining CubeRegions can also be grouped together via
MemberSelectionGroups, enabling the definition of CubeRegions with specific
semantics. For example, one can specify a CubeRegion containing only the "input
level" data cells of a Cube.

A CubeRegion may own any number of CubeDeployments. CubeDeployment is a
metaclass that represents an implementation strategy for a multidimensional structure.
The ordering of the CubeDeployment classes may optionally be given some
implementation-specific meaning (e.g., desired order of selection of several possible
deployment strategies, based on optimization considerations).

14.3.3 Dimension and Hierarchy

Figure 14-2 shows Dimension and Hierarchy, along with several other classes that
model hierarchical structuring and deployment mappings.

2 February 2001 CWM 1.0 14-321

14

Dimension

The OLAP metamodel defines two special types of Dimension: Time and Measure.

A Time Dimension provides a means of representing time-series data within a
multidimensional structure. The members of a Time Dimension usually define some

Figure 14-2 OLAP Metamodel: Dimension and Hierarchy

base periodicity (e.g., days of the week). The implementation of a Time Dimension
might provide support for advanced "time-intelligent" functionality, such as the ability
to automatically convert between different periodicities and calendars.

The members of a Measure Dimension describe the meaning of the analytic values
stored in each data cell of a multidimensional structure. For example, an OLAP
application may define Sales, Quantity and Weight as its measures. In this case, each
data cell within the Cube stores three values, with each value corresponding to one of
the three measures. A measure may have an associated data type. For example, Sales
might be of a monetary type, Quantity an integer, and Weight a real number.

Hierarchy

/ dimension : Dimension
/ cubeDimensionAssociation : CubeDimensionAssociation
/ defaultedDimension : Dimension

Dimension
isTime : Boolean
isMeasure : Boolean
/ hierarchy : Hierarchy
/ memberSelection : MemberSelection
/ cubeDimensionAssociation : CubeDimensionAssociation
/ displayDefault : Hierarchy
/ schema : Schema

1

*

1

*
0..1

0..1

displayDefault
0..1

defaultedDimension

0..1

LevelBasedHierarchy
/ hierarchyLevelAssociation : HierarchyLevelAssociation

Level
/ hierarchyLevelAssociation : HierarchyLevelAssociation

*

1

/memberSelection *

/dimension

1

HierarchyLevelAssociation
/ levelBasedHierarchy : LevelBasedHierarchy
/ currentLevel : Level
/ dimensionDeployment : DimensionDeployment

*

1

*
{ordered}

1

*

1

*

currentLevel
1

DimensionDeployment
/ hierarchyLevelAssociation : HierarchyLevelAssociation
/ valueBasedHierarchy : ValueBasedHierarchy
/ structureMap : StructureMap
/ listOfValues : StructureMap
/ immediateParent : StructureMap
/ deploymentGroup : DeploymentGroup

*0..1 *
{ordered}

0..1

ValueBasedHierarchy
/ dimensionDeployment : DimensionDeployment

*

0..1

*
{ordered}

0..1

14-322 CWM 1.0 2 February 2001

14

Hierarchy

The OLAP metamodel specifies two subclasses of Hierarchy: LevelBasedHierarchy
and ValueBasedHierarchy.

LevelBasedHierarchy

LevelBasedHierarchy describes hierarchical relationships between specific levels of a
Dimension. LevelBasedHierarchy is used to model both "pure level" hierarchies (e.g.,
dimension-level tables) and "mixed" hierarchies (i.e., levels plus linked nodes).
Dimensional levels are modeled by the Level class, a subclass of MemberSelection
that partitions a Dimension’s members into disjoint subsets, each representing a
distinct level.

For example, the Geography Dimension cited earlier contains members representing
cities, states, and regions, such as “Stamford”, “Connecticut”, and “NorthEast”. It
might also contain a single member called "USA" representing all regions of the
United States. Therefore, the Geography Dimension could have four Levels named
“City”, “State”, “Region”, and “ALL”, respectively. Each Level specifies the subset of
members belonging to it: All cities belong to the “City” Level, all states belong to the
“State” Level, all regions belong to the “Region” Level, and the single “USA” member
belongs to the “ALL” Level.

When used in the definition of a consolidation path, the meaning of “level” is quite
clear: Members occupying a given Level consolidate into the next higher Level (e.g.,
City rolls up into State, State into Region, and Region into ALL).

LevelBasedHierarchy contains an ordered collection of HierarchyLevelAssocations
that defines the natural hierarchy of the Dimension. The ordering defines the
hierarchical structure in top-down fashion (i.e., the "first" HierarchyLevelAssociation
in the ordered collection represents the upper-most level of the dimensional hierarchy).
A HierarchyLevelAssociation may own any number of DimensionDeployments.
DimensionDeployment is a metaclass that represents an implementation strategy for
hierarchical Dimensions. The ordering of the DimensionDeployment classes may
optionally be given an implementation-specific meaning (e.g., desired order of
selection of several possible deployment strategies, based on optimization
considerations).

ValueBasedHierarchy

A ValueBasedHierarchy defines a hierarchical ordering of members in which the
concept of level has little or no significance. Instead, the topological structure of the
hierarchy conveys meaning. ValueBasedHierarchies are often used to model situations
where members are classified or ranked according to their distance from a common
root member (e.g., an organizational chart of a corporation). In this case, each member
of the hierarchy has some specific "metric" or "value" associated it with it.

ValueBasedHierarchy can be used to model pure "linked node" hierarchies (e.g.,
asymmetric hierarchical graphs or parent-child tables).

2 February 2001 CWM 1.0 14-323

14

As with LevelBasedHierarchy, ValueBasedHierarchy also has an ordered collection of
DimensionDeployments, where the ordering semantics are left to implementations to
define.

14.3.4 Inheritance from the Object Model

Figure 14-3 OLAP Metamodel: Inheritance from Object Model

Figure 14-3 illustrates how classes of the OLAP metamodel inherit from the CWM
Object Model. Two classes requiring further explanation are:

• Measure: A subclass of Attribute that describes the meaning of values stored in the
data cells of a multidimensional structure. Different OLAP models often give
different interpretations to the term "measure". In a relational Star Schema,
individual measures might be represented by non-key columns of a Fact table (e.g.,
"Sales" and "Quantity" columns). In this case, measure may be an attribute of a
Cube or CubeRegion that models the Fact table. On the other hand, measures can
also be represented by members of a Measure Dimension. A Fact table supporting
this representation has a single Measure column with column values consisting of
the members "Sales" and "Quantity", and a single "value" column (i.e., an implicit
data dimension) storing the corresponding measure values. A similar notion of
Measure Dimension is used in modeling pure hypercube representations of
multidimensional servers. Thus, the concept of measure can be represented either
as a Dimenson or as an Attribute, depending on the type of OLAP system being
modeled.

• Coded Level: A subclass of Level that assigns a unique encoding, or label, to each
of its members. CodedLevel is not essential to the OLAP metamodel, but is
provided as a helper class for certain applications that might benefit from the ability
of OLAP systems to structure data hierarchically. For example, CodedLevel could
be used to model systems of nomenclature or classification.

Class
(f ro m Core)

Hierarchy

CubeDim ensionAss ociation

Package
(from Core)

CodedLevel
encoding : Express ionNode

TransformationMap
(f rom Transf ormat ion)

Level

Attribute
(from Core)

Measure

HierarchyLevelAssociation

StructureMap

MemberSelectionDimension Cube

MemberSelectionGroup

Schema

DimensionDeplo yment

CubeRegion

CubeDeployment

DeploymentGroup

ContentMap

14-324 CWM 1.0 2 February 2001

14

14.3.5 Deploying OLAP Models

The CWM OLAP metamodel describes logical models of OLAP systems, but does not
directly specify how an OLAP system is physically deployed. Modeling the
deployment of an OLAP system requires mapping instances of OLAP metaclasses to
instances of other CWM metaclasses representing physical resources (e.g., mapping an
OLAP Dimension to a Relational Table). This approach offers several advantages:

• The status of the OLAP metamodel as a conceptual model is preserved by this level
of indirection. When using OLAP, a client may perceive to be working directly
with OLAP objects, but the actual implementation of those objects is hidden from
the client. For example, a client may view a member as a value of a Dimension, but
whether that member value comes from a row of a relational table, or from a cell in
a multidimensional database, is usually not obvious to the client. On the other
hand, if a client needs to determine how a logical OLAP structure is physically
realized, the metadata describing this mapping is fully available (assuming that the
implementation allows the client to drill-down through the metadata).

• The possibility of defining mappings based on expressions means that the amount
of metadata required to describe large models (e.g., Dimensions containing large
collections of members) can be kept within reasonable bounds. It is generally more
efficient to provide expressions that specify where large metadata sets reside, how
to connect to them, and how to map their contents, rather than representing them
directly as part of the metadata content.

All of the OLAP metaclasses are potential candidates for such deployment mappings.
In addition, some OLAP models may also define mappings between several OLAP
metaclass instances, forming a natural hierarchy of logical objects (e.g., Dimension
Attributes are mapped to Level Attributes which, in turn, are mapped to Table
Columns).

The CWM Transformation package is used as the primary means of describing these
mappings. A modeler constructing an OLAP model based on CWM will generally
define instances of the TransformationMap metaclass to link logical OLAP objects
together, and to link those logical objects to other objects representing their physical
data sources.

StructureMap is a subclass of TransformationMap that models structure-oriented
transformation mappings (i.e., member identity and hierarchical structure). This type
of transformation mapping needs to be connected to the OLAP metamodel in a very
specific way (according to Level and Hierarchy), so the StructureMap subclass is
defined to make these associations explicit. Two specific usages of StructureMap are
defined: ListOfValues, which maps attributes identifying members residing at a
specific Level, or at a specific Level within a particular Hierarchy, and
ImmediateParent, which maps attributes identifying the hierarchical parent(s) of the
members.

On the other hand, relatively simple TransformationMaps can be defined within any
OLAP model to represent attribute-oriented transformations (e.g., mapping Dimension
Attributes to Table Columns that store attribute values).

2 February 2001 CWM 1.0 14-325

14

ContentMap is a subclass of TransformationMap that models content-oriented
transformaton mappings (i.e., cell data or measure values). For example, an instance
of ContentMap might be used to map each of a CubeRegion’s Measures to Columns of
an underlying Fact Table.

Note that, in either case (structural mapping or content mapping), the traversal patterns
used by any CWM OLAP implementation are always the same, since both deployment
mappings are based on the same usage of CWM TransformationMaps.

In addition to representing structural mappings, instances of TransformationMap and
its subclasses are also capable of storing implementation-dependent functions or
procedures that yield the instance values associated with mapped model elements. For
example, a "list of values" StructureMap might store an SQL statement such as "select
memberName from Product where productFamily = ’consumerElectronics’ ", as the
value of its formula attribute.

Figure 14-4 illustrates the CWM metaclasses and associations that describe
deployment mappings between logical OLAP models and physical resource models.
Note that it is possible to combine both Cube (content) and Dimension (structure)
deployments together within the context of a single OLAP Schema (via the
DeploymentGroup metaclass). Thus, an OLAP Schema can have several possible
deployments that users may select based on implementation-specific considerations
(e.g., physical optimizations).

Figure 14-4 OLAP Metamodel: Deployment Mapping Structures

ContentMap
/ cubeDeployment : CubeDeployment

Schema
/ cube : Cube
/ dimension : Dimension
/ deploymentGroup : DeploymentGroup

CubeDeployment
/ cubeRegion : CubeRegion
/ deploymentGroup : DeploymentGroup
/ contentMap : ContentMap

*

1

*

1

DeploymentGroup
/ schema : Schema
/ cubeDeployment : CubeDeployment
/ dimensionDeployment : DimensionDeployment

*

1

*

1

*

1

*

1

DimensionDeployment
/ hierarchyLevelAssociation : HierarchyLevelAssociation
/ valueBasedHierarchy : ValueBasedHierarchy
/ structureMap : StructureMap
/ lis tOfValues : StructureMap
/ immediateParent : StructureMap
/ deploymentGroup : DeploymentGroup

*

1

*

1

StructureMap

/ dimensionDeployment : DimensionDeployment
/ dimensionDeploymentLV : DimensionDeployment
/ dimensionDeploymentIP : DimensionDeployment

1

*

1

*

0..1

0..1

0..1

lis tOfValues

0..1

0..1

0..1

0..1

immediateParent

0..1

14-326 CWM 1.0 2 February 2001

14

14.4 OLAP Classes

14.4.1 CodedLevel

CodedLevel is a subclass of Level that assigns a unique encoding, or label, to each of
its Dimension members.

Superclasses

Level

Attributes

encoding

14.4.2 ContentMap

ContentMap is a subclass of TransformationMap that maps CubeRegion attributes to
their physical data sources.

Superclasses

TransformationMap

Encoding is an expression that generates a unique encoding, or label, for each
member of a CodedLevel.

type: ExpressionNode

multiplicity: exactly one

2 February 2001 CWM 1.0 14-327

14

References

cubeDeployment

14.4.3 Cube

A Cube is a collection of analytic values (i.e., measures) that share the same
dimensionality. This dimensionality is specified by a set of unique Dimensions from
the Schema. Each unique combination of members in the Cartesian product of the
Cube’s Dimensions identifies precisely one data cell within a multidimensional
structure.

Synonyms: Multidimensional Array, Hypercube, Hypervolume.

Superclasses

Class

Contained Elements

• CubeDimensionAssociation

• CubeRegion

References the CubeDeployment owning a ContentMap.

class: CubeDeployment

defined by: CubeDeploymentOwnsContentMaps::
cubeDeployment

multiplicity: exactly one

inverse: CubeDeployment::contentMap

14-328 CWM 1.0 2 February 2001

14

Attributes

isVirtual

References

cubeDimensionAssociation

cubeRegion

schema

If true, then this Cube is a Virtual Cube (i.e., it has no physical realization).

type: Boolean

multiplicity: exactly one

References the collection of CubeDimensionAssociations owned by a Cube.

class: CubeDimensionAssociation

defined by: CubeOwnsCubeDimensionAssociations::
cubeDimensionAssociation

multiplicity: zero or more

inverse: CubeDimensionAssociation::cube

References the collection of CubeRegions owned by a Cube.

class: CubeRegion

defined by: CubeOwnsCubeRegions::cubeRegion

multiplicity: zero or more

inverse: CubeRegion::cube

References the Schema owning a Cube.

class: Schema

defined by: SchemaOwnsCubes::schema

multiplicity: exactly one

inverse: Schema::cube

2 February 2001 CWM 1.0 14-329

14

Constraints

Ensure that the Dimensions defining a Cube are unique. [C-1]

A Cube without CubeRegions cannot be mapped to a deployment structure (i.e.,
physical source of data). [C-2]

14.4.4 CubeDeployment

CubeDeployment represents a particular implementation strategy for the data portions
of an OLAP model. It does so by organizing a collection of ContentMaps, which in
turn define a mapping to an implementation model.

Superclasses

Class

Contained Elements

• ContentMap

14-330 CWM 1.0 2 February 2001

14

References

cubeRegion

deploymentGroup

contentMap

References the CubeRegion owning a CubeDeployment.

class: CubeRegion

defined by: CubeRegionOwnsCubeDeployments::cubeRegion

multiplicity: exactly one

inverse: CubeRegion::cubeDeployment

References the DeploymentGroup associated with this CubeDeployment.

class: DeploymentGroup

defined by: DeploymentGroupReferencesCubeDeployments::
cubeDeployment

multiplicity: exactly one

inverse: DeploymentGroup::cubeDeployment

References the ContentMaps owned by a CubeDeployment.

class: ContentMap

defined by: CubeDeploymentOwnsContentMaps::contentMap

multiplicity: zero or more

inverse: ContentMap::cubeDeployment

2 February 2001 CWM 1.0 14-331

14

14.4.5 CubeDimensionAssociation

CubeDimensionAssociation relates a Cube to the Dimensions that define it. Features
relevant to Cube-Dimension relationships (e.g., calcHierarchy) are exposed by this
class.

Superclasses

Class

14-332 CWM 1.0 2 February 2001

14

References

dimension

cube

calcHierarchy

Constraints

If a calcHierarchy is defined, it must be a Hierarchy owned by the Dimension
referenced by the CubeDimensionAssociation. [C-3]

14.4.6 CubeRegion

CubeRegion models a sub-unit of a Cube that is of the same dimensionality as the
Cube itself. Each "dimension" of a CubeRegion is represented by a MemberSelection
of the corresponding Dimension of the Cube. Furthermore, these MemberSelections
may define subsets of their Dimension members.

Synonyms: Sub-Cube, Partition, Slice, Region, Area.

References the Dimension associated with a CubeDimensionAssociation.

class: Dimension

defined by: CubeDimensionAssociationsReferenceDimension::
dimension

multiplicity: exactly one

inverse: Dimension::cubeDimensionAssociation

References the Cube owning a CubeDimensionAssociation.

class: Cube

defined by: CubeOwnsCubeDimensionAssociations::cube

multiplicity: exactly one

inverse: Cube::cubeDimensionAssociation

References the default calculation Hierarchy of the Dimension associated with a
CubeDimensionAssociation.

class: Hierarchy

defined by: CubeDimensionAssociationsReferenceCalcHierarchy
::calcHierarchy

multiplicity: zero or one

2 February 2001 CWM 1.0 14-333

14

Superclasses

Class

Contained Elements

• CubeDeployment
• MemberSelectionGroup

Attributes

isReadOnly

isFullyRealized

If true, then the CubeRegion content is read-only (i.e., may not be written or
updated through the CubeRegion -- e.g., a CubeRegion implemented via an SQL
view may not permit updates to the underlying base table).

type: Boolean

multiplicity: exactly one

If true, then this CubeRegion has a direct physical realization and is not bound by
any MemberSelections.

type: Boolean

multiplicity: exactly one

14-334 CWM 1.0 2 February 2001

14

References

memberSelectionGroup

cube

cubeDeployment

Constraints

A "fully realized" CubeRegion has no MemberSelectionGroups (and hence, no
MemberSelections). [C-4]

A CubeRegion defined by MemberSelections must have, for each Dimension of its
owning Cube, a corresponding MemberSelection within each of its
MemberSelectionGroups. [C-5]

A CubeRegion defined by MemberSelections must have, within each
MemberSelectionGroup, a MemberSelection corresponding to each Dimension of its
owning Cube. [C-6]

References the collection of MemberSelectionGroups owned by a Cube.

class: MemberSelectionGroup

defined by: CubeRegionOwnsMemberSelectionGroups::
memberSelectionGroup

multiplicity: zero or more

inverse: MemberSelectionGroup::cubeRegion

References the Cube owning a CubeRegion.

class: Cube

derived from: CubeOwnsCubeRegions::cube

multiplicity: exactly one

inverse: Cube::cubeRegion

References the CubeDeployments owned by a CubeRegion.

class: CubeDeployment

derived from: CubeRegionOwnsCubeDeployments::
cubeDeployment

multiplicity: zero or more; ordered

inverse: CubeDeployment::CubeRegion

2 February 2001 CWM 1.0 14-335

14

14.4.7 DeploymentGroup

DeploymentGroup represents a logical grouping of model elements defining a single,
complete deployment of an instance of Olap Schema (i.e., CubeDeployments and
DimensionDeployments).

The usage of DeploymentGroup is as follows: A user may specify a particular
DeploymentGroup as the session-wide, default deployment for all metadata queries
performed throughout the session. Alternatively, for queries involving some particular
deployed object (e.g., a Cube or a Dimension), the user may be asked to choose from a
list of deployments. This either becomes the default deployment for the remainder of
the session, or the user may continue to be asked to specify a deployment for each
subsequent query against deployed objects.

Superclasses

Package

14-336 CWM 1.0 2 February 2001

14

References

schema

cubeDeployment

dimensionDeployment

References the Schema owning a DeploymentGroup.

class: Schema

defined by: SchemaOwnsDeploymentGroups::schema

multiplicity: exactly one

inverse: Schema::deploymentGroup

References the collection of CubeDeployments associated with a
DeploymentGroup.

class: CubeDeployment

defined by: DeploymentGroupReferencesCubeDeployments
::cubeDeployment

multiplicity: zero or more

inverse: CubeDeployment::deploymentGroup

References the collection of DimensionDeployments associated with a
DeploymentGroup.

class: DimensionDeployment

defined by: DeploymentGroupReferencesDimensionDeployments
::dimensionDeployment

multiplicity: zero or more

inverse: DimensionDeployment::deploymentGroup

2 February 2001 CWM 1.0 14-337

14

14.4.8 Dimension

A Dimension is an ordinate within a multidimensional structure, and consists of a
unique list of values (i.e., members) that share a common semantic meaning within the
domain being modeled. Each member designates a unique position along its ordinate.

Typical Dimensions are: Time, Product, Geography, Scenario (e.g., actual, budget,
forecast), Measure (e.g., sales, quantity).

Superclasses

Class

Contained Elements

• Hierarchy

• MemberSelection

14-338 CWM 1.0 2 February 2001

14

Attributes

isTime

isMeasure

References

hierarchy

memberSelection

If true, then this Dimension is a Time Dimension (i.e., its members collectively
represent a time series).

type: Boolean

multiplicity: exactly one

If true, then this Dimension is a Measure Dimension (i.e., its members represent
Measures).

type: Boolean

multiplicity: exactly one

References the collection of Hierarchies owned by a Dimension.

class: Hierarchy

defined by: DimensionOwnsHierarchies::hierarchy

multiplicity: zero or more

inverse: Hierarchy::dimension

References the collection of MemberSelections owned by a Dimension.

class: MemberSelection

defined by: DimensionOwnsMemberSelections::memberSelection

multiplicity: zero or more

inverse: MemberSelection::dimension

2 February 2001 CWM 1.0 14-339

14

cubeDimensionAssociation

displayDefault

schema

Constraints

A Dimension may be a Time Dimension, a Measure Dimension, or neither, but never
both types at the same time. [C-7]

The default display Hierarchy (if defined) must be one of the Hierarchies owned by the
Dimension. [C-8]

References the collection of CubeDimensionAssociations referencing this
Dimension.

class: CubeDimensionAssociation

defined by: CubeDimensionAssociationsReferenceDimension::
cubeDimensionAssociation

multiplicity: zero or more

inverse: CubeDimensionAssociation::dimension

References the default display Hierarchy of a Dimension.

class: Hierarchy

defined by: DimensionHasDefaultHierarchy::displayDefault

multiplicity: zero or one

References the Schema owning a Dimension.

class: Schema

defined by: SchemaOwnsDimensions::schema

multiplicity: exactly one

inverse: Schema::dimension

14-340 CWM 1.0 2 February 2001

14

14.4.9 DimensionDeployment

A DimensionDeployment represents a particular implementation strategy for the
dimensional/hierarchical portions of an OLAP model. It does so by organizing a
collection of StructureMaps, which in turn define a mapping to an implementation
model.

Superclasses

Class

Contained Elements

StructureMap

2 February 2001 CWM 1.0 14-341

14

References

hierarchyLevelAssociation

valueBasedHierarchy

structureMap

listOfValues

References the HierarchyLevelAssociation owning a DimensionDeployment.

class: HierarchyLevelAssociation

defined by: HierarchyLevelAssociationOwnsDimension
Deployments::hierarchyLevelAssociation

multiplicity: zero or one

inverse: HierarchyLevelAssociation::dimensionDeployment

References the ValueBasedHierarchy owning a DimensionDeployment.

class: ValueBasedHierarchy

defined by: ValueBasedHierarchyOwnsDimensionDeployments::
valueBasedHierarchy

multiplicity: zero or one

inverse: ValueBasedHierarchy::dimensionDeployment

References the collection of StructureMaps owned by a DimensionDeployment.

class: StructureMap

defined by: DimensionDeploymentOwnsStructureMaps::
structureMap

multiplicity: zero or more

inverse: StructureMap::dimensionDeployment

References the "list of values" StructureMap owned by a DimensionDeployment.

class: StructureMap

defined by: DimensionDeploymentHasListOfValues::listOfValues

multiplicity: zero or one

inverse: StructureMap::dimensionDeploymentLV

14-342 CWM 1.0 2 February 2001

14

immediateParent

deploymentGroup

Constraints

An instance of DimensionDeployment must be referenced exclusively by either a
HierarchyLevelAssociation or a ValueBasedHierarchy. [C-9]

Within a DimensionDeployment, an "immediate parent" StructureMap must always
have an associated and distinct "list of values" StructureMap. [C-10]

A StructureMap referenced as a "list of values" StructureMap must not reside outside
of the DimensionDeployment’s collection of StructureMaps. [C-11]

A StructureMap referenced as an "immediate parent" StructureMap must not reside
outside of the DimensionDeployment’s collection of StructureMaps. [C-12]

References the "immediate parent" StructureMap owned by a
DimensionDeployment.

class: StructureMap

defined by: DimensionDeploymentHasImmediateParent::
immediateParent

multiplicity: zero or one

inverse: StructureMap::DimensionDeploymentIP

References the DeploymentGroup associated with this DimensionDeployment.

class: DeploymentGroup

defined by: DeploymentGroupReferencesDimensionDeployments
::deploymentGroup

multiplicity: exactly one

inverse: DeploymentGroup::dimensionDeployment

2 February 2001 CWM 1.0 14-343

14

14.4.10 Hierarchy abstract

A Hierarchy is an organizational structure that describes a traversal pattern through a
Dimension, based on parent/child relationships between members of the Dimension.
Hierarchies are used to define both navigational and consolidation/computational paths
through the Dimension (i.e., a value associated with a child member is aggregated by
one or more parents).

Superclasses

Class

14-344 CWM 1.0 2 February 2001

14

References

dimension

cubeDimensionAssociation

defaultedDimension

References the Dimension owning a Hierarchy.

class: Dimension

defined by: DimensionOwnsHierarchies::dimension

multiplicity: exactly one

inverse: Dimension::hierarchy

References the collection of CubeDimensionAssociations designating this
Hierarchy as their default calculation Hierarchy.

class: cubeDimensionAssociation

defined by: CubeDimensionAssociationsReferenceCalcHierarchy
::cubeDimensionAssociation

multiplicity: zero or more

inverse: CubeDimensionAssociation::calcHierarchy

References the Dimension for which this Hierarchy is the "display default"
Herarchy.

class: Dimension

defined by: DimensionHasDisplayDefault::defaultedDimension

multiplicity: zero or one

inverse: Dimension::displayDefault

2 February 2001 CWM 1.0 14-345

14

14.4.11 HierarchyLevelAssociation

HierarchyLevelAssociation is a class that orders Levels within a LevelBasedHierarchy,
and provides a means of mapping Level and/or Hierarchy -oriented Dimension
attributes to deployment structures (i.e., physical data sources).

Superclasses

Class

Contained Elements

DimensionDeployment

14-346 CWM 1.0 2 February 2001

14

References

levelBasedHierarchy

currentLevel

dimensionDeployment

References the LevelBasedHierarchy owning this HierarchyLevelAssociation.

class: LevelBasedHierarchy

defined by: LevelBasedHierarchyOwnsHierarchyLevel
Associations::levelBasedHierarchy

multiplicity: exactly one

inverse: LevelBasedHierarchy::hierarchyLevelAssociation

References the "current" Level associated with this HierarchyLevelAssociation.

class: Level

defined by: HierarchyLevelAssociationsReferenceLevel::
currentLevel

multiplicity: exactly one

inverse: Level::hierarchyLevelAssociation

References the collection of DimensionDeployments owned by a
HierarchyLevelAssociation.

class: DimensionDeployment

defined by: HierarchyLevelAssociationOwnsDimension
Deployments::dimensionDeployment

multiplicity: zero or more; ordered

inverse: DimensionDeployment::hierarchyLevelAssociation

2 February 2001 CWM 1.0 14-347

14

14.4.12 Level

Level is a subclass of MemberSelection that assigns each member of a Dimension to a
specific level within the Dimension.

Superclasses

MemberSelection

References

hierarchyLevelAssociation

14.4.13 LevelBasedHierarchy

A LevelBasedHierarchy is a Hierarchy that describes relationships between specific
levels of a Dimension. LevelBasedHierarchy is used to model both "pure level"
hierarchies (e.g., dimension-level tables) and "mixed" hierarchies (i.e., levels plus
linked nodes).

Supertypes

Hierarchy

Contained Elements

HierarchyLevelAssociation

References the HierarchyLevelAssociations denoting this Level as "current level".

class: HierarchyLevelAssociation

defined by: HierarchyLevelAssociationsReferenceLevel::
hierarchyLevelAssociation

multiplicity: zero or more

inverse: HierarchyLevelAssociation::currentLevel

14-348 CWM 1.0 2 February 2001

14

References

hierarchyLevelAssociation

Constraints

The currentLevel of each HierarchyLevelAssociation must refer to a Level owned by
the Dimension of the LevelBasedHierarchy containing the HierarchyLevelAssociation.
[C-13]

No two HierarchyLevelAssociations may designate the same Level instance as their
"current level". [C-14]

14.4.14 Measure

Measure is a subclass of Attribute representing Dimension Measures (e.g., Sales,
Quantity, Weight). Synonym: Variable.

Supertypes

Attribute

14.4.15 MemberSelection

MemberSelection represents an arbitrary subset of the members of a Dimension.

Superclasses

Class

References the collection of HierarchyLevelAssociations owned by a
LevelBasedHierarchy.

class: HierarchyLevelAssociation

defined by: LevelBasedHierarchyOwnsHierarchyLevel
Associations::hierarchyLevelAssociation

multiplicity: zero or more; ordered

inverse: HierarchyLevelAssociation::levelBasedHierarchy

2 February 2001 CWM 1.0 14-349

14

References

dimension

memberSelectionGroup

14.4.16 MemberSelectionGroup

MemberSelectionGroup enables the grouping together of semantically-related
MemberSelections.

Superclasses

Class

References the Dimension owning a MemberSelection.

class: Dimension

defined by: DimensionOwnsMemberSelections::dimension

multiplicity: exactly one

inverse: Dimension::memberSelection

References the collection of MemberSelectGroups associated with a
MemberSelection.

class: MemberSelectionGroup

defined by: MemberSelectionGroupReferencesMemberSelection::
memberSelectionGroup

multiplicity: zero or more

inverse: MemberSelectionGroup::memberSelection

14-350 CWM 1.0 2 February 2001

14

References

memberSelection

cubeRegion

14.4.17 Schema

Schema contains all elements comprising an OLAP model. A Schema may also
contain any number of DeploymentGroups, representing the various physical
deployments of the logical Schema.

Superclasses

Package

Contained Elements

• Cube

• DeploymentGroup

• Dimension

References the collection of MemberSelections associated with a
MemberSelectionGroup.

class: MemberSelection

defined by: MemberSelectionGroupReferencesMemberSelections
::memberSelection

multiplicity: one or more

inverse: MemberSelection::memberSelectionGroup

References the CubeRegion owning a MemberSelectionGroup.

class: CubeRegion

defined by: CubeRegionOwnsMemberSelectionGroups::
cubeRegion

multiplicity: exactly one

inverse: CubeRegion::memberSelectionGroup

2 February 2001 CWM 1.0 14-351

14

References

cube

deploymentGroup

dimension

14.4.18 StructureMap

StructureMap is a subclass of TransformationMap that maps Dimension attributes to
their physical data sources.

Superclasses

TransformationMap

References the collection of Cubes owned by a Schema.

class: Cube

defined by: SchemaOwnsCubes:cube

multiplicity: zero or more

inverse: Cube::schema

References the collection of DeploymentGroups owned by a Schema.

class: DeploymentGroup

defined by: SchemaOwnsDeploymentGroups::deploymentGroup

multiplicity: zero of more

inverse: DeploymentGroup::schema

References the collection of Dimensions owned by a Schema.

class: Dimension

defined by: SchemaOwnsDimensions::dimension

multiplicity: zero or more

inverse: Dimension::schema

14-352 CWM 1.0 2 February 2001

14

References

dimensionDeployment

dimensionDeploymentLV

dimensionDeploymentIP

14.4.19 ValueBasedHierarchy

ValueBasedHierarchy is a subclass of Hierarchy that ranks Dimension members
according to their relative distance from the root. Each member of a
ValueBasedHierarchy has a specific "metric" or "value" associated with it.

ValueBasedHierarchy is used to model pure "linked node" hierarchies (e.g., parent-
child tables).is a subclass of Hierarchy that ranks Dimension members according to
their relative distance from a common root member.

References the DimensionDeployment owning this StructureMap.

class: DimensionDeployment

defined by: DimensionDeploymentOwnsStructureMaps::
dimensionDeployment

multiplicity: exactly one

inverse: DimensionDeployment::structureMap

References the DimensionDeployment designating this StructureMap as a "list of
values" StructureMap.

class: DimensionDeployment

defined by: DimensionDeploymentHasListOfValues::
dimensionDeployment

multiplicity: zero or one

inverse: DimensionDeployment::listOfValues

References the DimensionDeployment designating this StructureMap as an
"immediate parent" StructureMap.

class: DimensionDeployment

defined by: DimensionDeploymentHasImmediateParent::
dimensionDeployment

multiplicity: zero or one

inverse: DimensionDeployment::immediateParent

2 February 2001 CWM 1.0 14-353

14

Superclasses

Hierarchy

Contained Elements

DimensionDeployment

References

dimensionDeployment

14.5 OLAP Associations

14.5.1 CubeDeploymentOwnsContentMaps

A CubeDeployment owns any number of ContentMaps.

Ends

cubeDeployment

References the collection of DimensionDeployments owned by a
ValueBasedHierarchy.

class: DimensionDeployment

defined by: ValueBasedHierarchyOwnsDimensionDeployments::
dimensionDeployment

multiplicity: zero or more; ordered

inverse: DimensionDeployment::valueBasedHierarchy

The CubeDeployment owning a ContentMap.

class: CubeDeployment

multiplicity: exactly one

aggregation: composite

14-354 CWM 1.0 2 February 2001

14

contentMap

14.5.2 CubeDimensionAssociationsReferenceCalcHierarchy

A CubeDimAssociation may designate a default Hierarchy for calculation purposes.

Ends

calcHierarchy

cubeDimensionAssociation

14.5.3 CubeDimensionAssociationsReferenceDimension

Each CubeDimensionAssociation references a single Dimension.

Ends

cubeDimensionAssociation

The collection of ContentMaps owned by a CubeDeployment.

class: ContentMap

multiplicity: zero or more

The Hierarchy designated by a CubeDimensionAssociation as the default
Hierarchy to be used in consolidation calculations performed on the Cube.

class: Hierarchy

multiplicity: zero or one

CubeDimensionAssociations designating the Hierarchy to be used in consolidation
calculations performed on the Cube.

class: CubeDimensionAssociation

multiplicity: zero or more

CubeDimensionAssociations referencing the Dimension.

type: CubeDimensionAssociation

multiplicity: zero or more

2 February 2001 CWM 1.0 14-355

14

dimension

14.5.4 CubeOwnsCubeDimensionAssociations

The dimensionality of a Cube is defined by a collection of unique Dimensions. Each
Dimension is represented by an instance of CubeDimensionAssociation.

Ends

cube

cubeDimensionAssociation

14.5.5 CubeOwnsCubeRegions

A Cube may own any number of CubeRegions.

Ends

cube

The Dimension referenced by CubeDimensionAssociations.

type: Dimension

multiplicity: exactly one

The Cube owning CubeDimensionAssociations.

class: Cube

multiplicity: exactly one

aggregation: composite

CubeDimensionAssociations owned by the Cube.

class: CubeDimensionAssociation

multiplicity: zero or more

The Cube owning CubeRegions.

14-356 CWM 1.0 2 February 2001

14

cubeRegion

14.5.6 CubeRegionOwnsCubeDeployments

A CubeRegion may own any number of CubeDeployments.

Ends

cubeRegion

cubeDeployment

14.5.7 CubeRegionOwnsMemberSelectionGroups

A CubeRegion may own any number of MemberSelectionGroups.

class: Cube

multiplicity: exactly one

aggregation: composite

CubeRegions owned by the Cube.

class: CubeRegion

multiplicity: zero or more

The CubeRegion owning a CubeDeployment.

class: CubeRegion

multiplicity: exactly one

aggregation: composite

The CubeDeployments owned by a CubeRegion.

class: CubeDeployment

multiplicity: zero or more; ordered

2 February 2001 CWM 1.0 14-357

14

Ends

cubeRegion

memberSelectionGroup

14.5.8 DeploymentGroupReferencesCubeDeployments

A DeploymentGroup may reference any number of CubeDeployments.

Ends

deploymentGroup

cubeDeployment

14.5.9 DeploymentGroupReferencesDimensionDeployments

A DeploymentGroup may reference any number of DimensionDeployments.

The CubeRegion owning MemberSelectionGroups.

class: CubeRegion

multiplicity: exactly one

aggregation: composite

MemberSelectionGroups owned by the CubeRegion.

class: MemberSelectionGroup

multiplicity: zero or more

The DeploymentGroups referencing a CubeDeployment.

class: DeploymentGroup

multiplicity: exactly one

The CubeDeployments referenced by a DeploymentGroup.

class: CubeDeployment

multiplicity: zero or more

14-358 CWM 1.0 2 February 2001

14

Ends

deploymentGroup

dimensionDeployment

14.5.10 DimensionDeploymentHasImmediateParent

An instance of DimensionDeployment may reference zero or one StructureMaps as its
"immediate parent" StructureMap.

Ends

immediateParent

dimensionDeploymentIP

14.5.11 DimensionDeploymentHasListOfValues

An instance of DimensionDeployment may reference zero or one StructureMaps as its
"list of values" StructureMap.

The DeploymentGroups referencing a DimensionDeployment.

class: DeploymentGroup

multiplicity: exactly one

The DimensionDeployments referenced by a DeploymentGroup.

class: DimensionDeployment

multiplicity: zero or more

The StructureMap referenced by a DimensionDeployment as its "immediate
parent".

class: StructureMap

multiplicity: zero or one

The DimensionDeployment referencing an "immedate parent" StructureMap.

class: DimensionDeployment

multiplicity: zero or one

2 February 2001 CWM 1.0 14-359

14

Ends

structureMap

dimensionDeploymentLV

14.5.12 DimensionDeploymentOwnsStructureMaps

A DimensionDeployment may own any number of StructureMaps.

Ends

structureMap

dimensionDeployment

The StructureMap referenced by a DimensionDeployment as its "list of values"
StructureMap.

class: StructureMap

multiplicity: zero or one

The DimensionDeployment referencing a "list of values" StructureMap.

class: DimensionDeployment

multiplicity: zero or one

The StructureMaps owned by a DimensionDeployment.

class: StructureMap

multiplicity: zero or more

The DimensionDeployment owning a StructureMap.

class: DimensionDeployment

multiplicity: exactly one

aggregation composite

14-360 CWM 1.0 2 February 2001

14

14.5.13 DimensionHasDefaultHierarchy

A Dimension may designate a default Hierarchy for display purposes.

Ends

displayDefault

defaultedDimension

14.5.14 DimensionOwnsHierarchies

A Dimension may own several Hierarchies.

Ends

dimension

hierarchy

The Hierarchy designated by the Dimension as its default Hierarchy for display
purposes.

class: Hierarchy

multiplicity: zero or one

The Dimension designating the Hierarchy as its default Hierarchy for display
purposes.

class: Dimension

multiplicity: zero or one

The Dimension owning Hierarchies.

class: Dimension

multiplicity: exactly one

aggregation: composite

Hierarchies owned by the Dimension.

class: Hierarchy

multiplicity: zero or more

2 February 2001 CWM 1.0 14-361

14

14.5.15 DimensionOwnsMemberSelections

A Dimension may own several MemberSelections.

Ends

dimension

memberSelection

14.5.16 HierarchyLevelAssociationOwnsDimensionDeployments

A HierarchyLevelAssociation may own any number of DimensionDeployments.

Ends

hierarchyLevelAssociation

dimensionDeployment

The Dimension owning MemberSelections.

class: Dimension

multiplicity: exactly one

aggregation: composite

MemberSelections owned by the Dimension.

class: MemberSelection

multiplicity: zero or more

The HierarchyLevelAssociation owning DimensionDeployments.

class: HierarchyLevelAssociation

multiplicity: zero or one

aggregation: composite

The DimensionDepolyments owned by a HierarchyLevelAssociation.

class: DimensionDeployment

multiplicity: zero or more; ordered

14-362 CWM 1.0 2 February 2001

14

14.5.17 HierarchyLevelAssociationsReferenceLevel

Each HierarchyLevelAssociation references precisely one Level as its current level.

Ends

currentLevel

hierarchyLevelAssociation

14.5.18 LevelBasedHierarchyOwnsHierarchyLevelAssociations

A LevelBasedHierarchy may own any number of HierarchyLevelAssociations.

Ends

levelBasedHierarchy

hierarchyLevelAssociation

The Level designated by a HierarchyLevelAssociation as its current level.

class: Level

multiplicity: exactly one

The HierarchyLevelAssociations designating this Level as their current level.

class: HierarchyLevelAssociation

multiplicity: zero or more

The LevelBasedHierarchy owning HierarchyLevelAssociations.

class: LevelBasedHierarchy

multiplicity: exactly one

aggregation: composite

HierarchyLevelAssociations owned by the LevelBasedHierarchy.

class: HierarchyLevelAssociation

multiplicity: zero or more; ordered

2 February 2001 CWM 1.0 14-363

14

14.5.19 MemberSelectionGroupReferencesMemberSelections

A MemberSelectionGroup references at least one unique MemberSelection.

Ends

memberSelection

memberSelectionGroup

14.5.20 SchemaOwnsCubes

A Schema may own any number of Cubes.

Ends

cube

schema

MemberSelections referenced by MemberSelectionGroups.

class: memberSelection

multiplicity: one or more

MemberSelectionGroups referencing MemberSelections.

class: memberSelectionGroup

multiplicity: zero or more

The Cubes owned by a Schema.

class: Cube

multiplicity: zero or more

The Schema owning a Cube.

class: Schema

multiplicity: exactly one

aggregation composite

14-364 CWM 1.0 2 February 2001

14

14.5.21 SchemaOwnsDeploymentGroups

A Schema may own any number of DeploymentGroups.

Ends

deploymentGroup

schema

14.5.22 SchemaOwnsDimensions

A Schema may own any number of Dimensions.

Ends

dimension

schema

The DeploymentGroups owned by a Schema.

class: DeploymentGroup

multiplicity: zero or more

The Schema owning a DeploymentGroup.

class: Schema

multiplicity: exactly one

aggregation composite

The Dimension owned by a Schema.

class: Dimension

multiplicity: zero or more

The Schema owning a Dimension

class: Schema

multiplicity: exactly one

aggregation composite

2 February 2001 CWM 1.0 14-365

14

14.5.23 ValueBasedHierarchyOwnsDimensionDeployments

A ValueBasedHierarchy may own any number of DimensionDeployments.

Ends

valueBasedHierarchy

dimensionDeployment

14.6 OCL Representation of OLAP Constraints

[C-1] Ensure that the Dimensions defining a Cube are unique.

context Cube inv:
self.cubeDimensionAssociation->forAll(c1, c2 | c1 <> c2 implies
c1.dimension <> c2.dimension)

[C-2] A Cube without CubeRegions cannot be mapped to a deployment structure (i.e.,
physical source of data).

context Cube inv:
self.cubeRegion->isEmpty implies self.isVirtual = true

[C-3] If a calcHierarchy is defined, it must be a Hierarchy owned by the Dimension
referenced by the CubeDimensionAssociation.

context CubeDimensionAssociation inv:
self.calcHierarchy->notEmpty implies self.calcHierarchy.dimension = self.dimension

The ValueBasedHierarchy owning a DimensionDeployment.

class: ValueBasedHierarchy

multiplicity: zero or one

aggregation: composite

The DimensionDepolyments owned by a ValueBasedHierarchy.

class: DimensionDeployment

multiplicity: zero or more; ordered

14-366 CWM 1.0 2 February 2001

14

[C-4] A "fully realized" CubeRegion has no MemberSelectionGroups (and hence, no
MemberSelections).

context CubeRegion inv:
self.isFullyRealized implies self.memberSelectionGroup->isEmpty

[C-5] A CubeRegion defined by MemberSelections must have, for each Dimension of
its owning Cube, a corresponding MemberSelection within each of its
MemberSelectionGroups.

context CubeRegion inv:
self.memberSelectionGroup->notEmpty implies
self.cube.cubeDimensionAssociation->forAll(d |
self.memberSelectionGroup->forAll(g |
g.memberSelection->exists(m | m.dimension = d.dimension)))

[C-6] A CubeRegion defined by MemberSelections must have, within each
MemberSelectionGroup, a MemberSelection corresponding to each Dimension of its
owning Cube.

context CubeRegion inv:
self.memberSelectionGroup->notEmpty implies
self.memberSelectionGroup->forAll(g |
g.memberSelection->forAll(m |
self.cube.cubeDimensionAssociation->exists(d | d.dimension = m.dimension)))

[C-7] A Dimension may be a Time Dimension, a Measure Dimension, or neither, but
never both types at the same time.

context Dimension inv:
not (self.isTime and self.isMeasure)

[C-8] The default display Hierarchy (if defined) must be one of the Hierarchies owned
by the Dimension.

context Dimension inv:
self.displayDefault->notEmpty implies self.hierarchy->includes(self.displayDefault)

[C-9] An instance of DimensionDeployment must be referenced exclusively by either
a HierarchyLevelAssociation or a ValueBasedHierarchy.

context DimensionDeployment inv:
self.hierarchyLevelAssociation->isEmpty xor self.valueBasedHierarchy->isEmpty

2 February 2001 CWM 1.0 14-367

14

[C-10] Within a DimensionDeployment, an "immediate parent" StructureMap must
always have an associated and distinct "list of values" StructureMap.

context DimensionDeployment inv:
self.immediateParent->notEmpty implies
(self.listOfValues->notEmpty and self.listOfValues <> self.immediateParent)

[C-11] A StructureMap referenced as a "list of values" StructureMap must not reside
outside of the DimensionDeployment’s collection of StructureMaps.

context DimensionDeployment inv:
self.listOfValues->notEmpty implies self.structureMap->includes(self.listOfValues)

[C-12] A StructureMap referenced as an "immediate parent" StructureMap must not
reside outside of the DimensionDeployment’s collection of StructureMaps.

context DimensionDeployment inv:
self.immediateParent->notEmpty implies
self.structureMap->includes(self.immediateParent)

[C-13] The currentLevel of each HierarchyLevelAssociation must refer to a Level
owned by the Dimension of the LevelBasedHierarchy containing the
HierarchyLevelAssociation.

context LevelBasedHierarchy inv:
self.hierarchyLevelAssociation->notEmpty implies
self.hierarchyLevelAssociation->forAll(h |
self.dimension.memberSelection
->select(oclType = Olap::Level)->includes(h.currentLevel))

[C-14] No two HierarchyLevelAssociations may designate the same Level instance as
their "current level".

context LevelBasedHierarchy inv:
self.hierarchyLevelAssociation->forAll(h1, h2 | h1 <> h2 implies
h1.currentLevel <> h2.currentLevel)

14-368 CWM 1.0 2 February 2001

14

2 February 2001 CWM 1.0 15-369

Data Mining 15

15.1 Overview

Data mining is the application of mathematical or statistical processes for the purpose
of extracting hidden knowledge from large data sets. This knowledge is subsequently
used as actionable business intelligence.

Data mining techniques provide descriptive information that is manifest in inherent
patterns or relations between the data. This can be achieved, for example, with
algorithms for clustering or association rules detection (link analysis).

They also uncover correlations, often due to causal relationships, between the data and
a specific target property. This information is used to make predictions about unknown
data or future behavior. Techniques generating these models are known as supervised
learning algorithms, and include classification and numeric prediction algorithms.

Whereas most analysis tools support the retrospective analysis of data sets by verifying
a user’s hypotheses, data mining attempts to discover trends and behaviors without the
need for guessing about possible relationships.

Data mining tools are particularly effective in the data warehouse environment,
because data warehouses offer large quantities of cleansed business data for
consumption by data mining tools. Also, the advanced query and analytical
capabilities available in most data warehouses (e.g., relational databases, OLAP
servers, and information visualization tools) can be used to great advantage by data
mining tools in their formulation of models, and in the evaluation of those models by
human users.

15.2 Organization of the Data Mining Metamodel

15.2.1 Dependencies

The Data Mining package depends on the following packages:

15-370 CWM 1.0 2 February 2001

15

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::ObjectModel::Instance

15.2.2 Major Classes and Associations

The CWM Data Mining metamodel represents three conceptual areas: The overall
Model description itself, Settings, and Attributes. Each area is represented by the
diagrams in Figure 15-1, Figure 15-2, and Figure 15-3, respectively.

Figure 15-1 CWM Data Mining Metamodel: Model

The Model conceptual area consists of a generic representation of a data mining model
(that is, a mathematical model produced or generated by the execution of a data mining
algorithm). This consists of MiningModel, a representation of the mining model itself,
MiningSettings, which drive the construction of the model,
ApplicationInputSpecification, which specifies the set of input attributes for the model,
and MiningModelResult, which represents the result set produced by the testing or
application of a generated model.

MiningSettings

function : String
algorithm : String
/ attributeUsage : AttributeUsageRelation
/ dataSpecification : MiningDataSpecification

MiningModelResult

type : String
/ model : MiningModel

MiningModel

function : String
algorithm : String
/ settings : MiningSettings
/ inputSpec : ApplicationInputSpecification

0..1

1

settings 0..1

miningModel
1 1

n

model

1

n

ApplicationInputSpecification

/ m iningModel : MiningModel
/ inputAttribute : ApplicationAttribu te..1 1..n

miningModel

..1

inputSpec

1..n

Application Attribute

usage Type : AttributeUsage
attributeType : Attribute Typ e

1..n

1

inputAttribute 1..n

inputSpec 1

SupervisedMiningModel

/ target : ApplicationAttribute
1n

ta rget

1n

2 February 2001 CWM 1.0 15-371

15

Figure 15-2 CWM Data Mining Metamodel: Settings

The Settings conceptual area elaborates further on the Mining Settings and their usage
relationships to the attributes of the input specification.

Mining Settings has four subclasses representing settings for StatisticsSettings,
ClusteringSettings, SupervisedMiningSettings and AssociationRulesSettings. The
SupervisedMiningSettings are further subclassed as ClassificationSettings and
RegressionSettings, and a CostMatrix is defined for representing cost values associated
with misclassifications.

AttributeUsageRelation consists of attributes that further classify the usage of
MiningAttributes by MiningSettings (e.g., relative weight). Several associations are

Sta tistic sSe tting s

ClusteringSettings

maxNumberOfClusters : Integer
clusterIdAttributeName : String

RegressionSettingsCostM atrix
ClassificationSettings

/ costMatrix : CostMatrix
0..1 *

costMatrix

0..1

settings

*

SupervisedMiningSettings

confidenceAttributeName : String
predictedAttributeName : String
costFunction : String
/ target : M iningAttribute

AssociationRulesSettings

minimumSupport : Float
minimumConfidence : Float
/ i temId : M iningAttribute
/ transactionId : M iningAttribute

Mi ningAtt ri but e

1

*

target

1

settings

*

1

*

itemId

1

settings

*

1

*

transactionId

1

settings

*

AttributeUsageRelation

usageType : AttributeUsage
includeInApplyResul t : Boolean
weight : Float
suppressNormal ization : Boolean
/ attribute : MiningAttribute

1

*

attribute1

a tt ri but eUsage

*

MiningDataSpecification

/ attribute : M iningAttribute
1..*1

attribute

1..*

dataSpeci fication

1

MiningSettings

function : String
algori thm : String
/ attributeUsage : AttributeUsageRelation
/ dataSpecification : M iningDataSpecification

1..*

1

attributeUsage

1..*

settings
1

1*

dataSpecification

1

settings

*

15-372 CWM 1.0 2 February 2001

15

also used to explicitly define requirements placed on attributes by certain subclasses of
settings (e.g., target, transactionId and itemId).

Figure 15-3 CWM Data Mining Metamodel: Attributes

The Attributes conceptual area defines two subclasses of Mining Attribute:
NumericAttribute and CategoricalAttribute. Category represents the category
properties and values that either a CategoricalAttribute or OrdinalAttribute might
possess, while CategoryHierarchy represents any taxonomy that a CategoricalAttribute
might be associated with.

15.2.3 Inheritance from the ObjectModel

The inheritance of the Data Mining metamodel from the CWM ObjectModel is shown
in Figure 15-4 below.

MiningAttribute

NumericAttribute

lowerBound : Float
upperBound : Float
isCyclic : Boolean
isDiscrete : Boolean

CategoryHierarchy

CategoricalAttribute

/ taxonomy : CategoryHierarchy
/ category : Category

0..1

*

taxonomy

0..1

categoricalAttribute

*

OrdinalAttribute
isCyclic : Boolean
orderingType : OrderType

Category

displayValue : Str ing
property : CategoryProperty
value : Any*0..1 *0..1

0..1

*

0..1

*
{ordered}

2 February 2001 CWM 1.0 15-373

15

Figure 15-4 CWM Data Mining Metamodel: Inheritance from UML

15.3 Data Mining Classes

15.3.1 ApplicationAttribute

Attribute used when the model was generated.

Superclasses

Attribute

Attribute
(f rom Co re)

ModelElement
(from Core)

MiningModelResult

MiningSettings

AttributeUsageRelation

MiningDataSpecification ApplicationInputSpecification

Class
(from Core)

MiningModel

ApplicationAttribute

SupervisedMiningModel

Statist ic sSettingsClusteringSettings

ClassificationSettings

CostMatrix

SupervisedMiningSettings

Regress ionSet tings

AssociationRulesSettings

MiningAttribute

OrdinalAttribute

CategoryHierarchy

CategoricalAttribute

Category

NumericAttribute

15-374 CWM 1.0 2 February 2001

15

Attributes

usageType

attributeType

15.3.2 ApplicationInputSpecification

ApplicationInputSpecification is a collection of ApplicationAttributes that drive the
MiningModel.

Superclasses

Class

Contained Elements

ApplicationAttribute

References

inputAttribute

Indicates whether attribute was actively used when the model was generated.

type: AttributeUsage (active | inactive | supplementary)

multiplicity: exactly one

Type of ApplicationAttribute.

type: AttributeType (categorical | numerical)

multiplicity: exactly one

ApplicationAttributes owned by the ApplicationInputSpecification.

class: ApplicationAttribute

defined by: InputSpecOwnsAttributes::inputAttribute

multiplicity: one or more

2 February 2001 CWM 1.0 15-375

15

miningModel

15.3.3 AssociationRulesSettings

Parameters for computing association rules.

Superclasses

MiningSettings

The MiningModel owning an ApplicationInputSpecification.

class: MiningModel

defined by: MiningModelOwnsInputSpecification::miningModel

multiplicity: one or more

inverse: MiningModel::inputSpec

15-376 CWM 1.0 2 February 2001

15

Attributes

minimumSupport

minimumConfidence

References

itemId

transactionId

Constraints

Function must specify “AssociationRules”. [C-1]

15.3.4 AttributeUsageRelation

Parameters for mining activities that are specific for an attribute. Mining attribute
usage is intended as a specification apart from the mining input specification itself to
enable reuse of the mining input specification for different mining settings.

The minimum support required for association rules.

type: Float

multiplicity: exactly one

The minimum confidence required for association rules.

type: Float

multiplicity: exactly one

References MiningAttribute as Item ID.

class: MiningAttribute

defined by: UsesItemId::itemID

multiplicity: exactly one

References MiningAttribute as Transaction ID.

class: MiningAttribute

defined by: UsesTransactionId::transactionID

multiplicity: exactly one

2 February 2001 CWM 1.0 15-377

15

Superclasses

ModelElement

Attributes

usageType

includeInApplyResult

weight

suppressNormalization

References

attribute

Indicates how the attribute is used by the mining function.

type: AttributeUsage(active | inactive | supplementary)

multiplicity: exactly one

Indicates whether the attribute is included in the output.

type: Boolean

multiplicity: exactly one

Relative weight of the attribute.

type: Float

multiplicity: exactly one

Indicates whether normalization is to be suppressed.

type: Boolean

multiplicity: exactly one

Reference to the MiningAttribute.

class: MiningAttribute

defined by: PertainsToAttribute::attribute

multiplicity: exactly one

15-378 CWM 1.0 2 February 2001

15

15.3.5 CategoricalAttribute

An attribute with discrete values upon which performing numeric operations is
typically not meaningful.

Superclasses

MiningAttribute

Contained Elements

Category

References

taxonomy

category

Constraints

Category values must be unique. [C-2]

15.3.6 Category

A potential value of categoricalAttribute. For a given categoricalAttribute, all
categories must be of the same Category subclass.

Superclasses

ModelElement

References the taxonomy.

class: CategoryHierarchy

defined by: UsesAsTaxonomy::taxonomy

multiplicity: zero or one

References the Category.

class: Category

defined by: ContainsCategory::category

multiplicity: zero or more

2 February 2001 CWM 1.0 15-379

15

Attributes

displayValue

property

value

Constraints

An instance of Category must be owned by precisely one instance of
CategoricalAttribute or any of its subclasses. [C-3]

15.3.7 CategoryHierarchy

Defines a hierarchical ordering (aka taxonomy) between groups of items.

Superclasses

Class

15.3.8 ClassificationSettings

Parameters for computing a classification model.

A string used when the category is displayed.

type: String

multiplicity: exactly one

Categories with "missing" property represent that no information is available. If
there are categories with property "invalid" then other categories are valid by
default. If there are categories with property "valid" then other categories are
invalid by default. Positive and negative define allowed values of a binary
attribute.

type: CategoryProperty (missing | invalid | valid | positive |
negative)

multiplicity: exactly one

Value holder for the Category.

type: Any

multiplicity: exactly one

15-380 CWM 1.0 2 February 2001

15

Superclasses

SupervisedMiningSettings

References

costMatrix

Constraints

Function must specify “Classification”. [C-4]

15.3.9 ClusteringSettings

Parameters for computing a clustering model partitioning the input records into
segments.

Superclasses

MiningSettings

References the CostMatrix.

class: CostMatrix

defined by: UsesCostMatrix.costMatrix

multiplicity: zero or one

2 February 2001 CWM 1.0 15-381

15

Attributes

maxNumberOfClusters

clusterIdAttributeName

Constraints

Function must specify “Clustering”. [C-5]

maxNumberOfClusters must be positive. [C-6]

15.3.10 CostMatrix

Defines cost of misclassifications.

Superclasses

Class

15.3.11 MiningAttribute

An attribute (aka field or variable). It carries the following user specifications:

• valid values

• ordering

• taxonomy

• normalization

Superclasses

Attribute

Upper limit for the number of computed clusters.

type: Integer

multiplicity: exactly one

Attribute name for output of cluster id values.

type: String

multiplicity: exactly one

15-382 CWM 1.0 2 February 2001

15

15.3.12 MiningDataSpecification

The collection of mining attributes specifying how to interpret the input data attributes.
A description of the attributes accepted by the model for scoring data.

Superclasses

Class

Contained Elements

MiningAttribute

References

attribute

Constraints

Attributes must have unique names. [C-7]

15.3.13 MiningModel

Description of the data produced by a mining function.

Superclasses

Class

Contained Elements

ApplicationInputSpecification

References the MiningAttributes.

class: MiningAttribute

defined by: HasAttribute::attribute

multiplicity: one or more

2 February 2001 CWM 1.0 15-383

15

Attributes

function

algorithm

References

settings

inputSpec

Constraints

Function and algorithm must be equal to function and algorithm of MiningSettings,
respectively. [C-8]

Names the mining function. The following functions are predefined:
StatisticalAnalysis, FeatureSelection, AssociationRules, Classification, Clustering,
Regression.

type: String

multiplicity: exactly one

Names the algorithm used to perform the mining function. The following
algorithms are predefined: decisionTree, neuralNetwork, naiveBayes,
selfOrganizingMap, centerBasedClustering, distributionBasedClustering,
associationRules, polynomialRegression, radialBasisFunction,
ruleBasedClassification, principalComponentAnalysis, factorAnalysis,
bivariateAnalysis, descriptiveAnalysis, geneticAlgorithm

type: String

multiplicity: exactly one

References the mining model’s settings.

class: MiningSettings

defined by: DerivedFromSettings::settings

multiplicity: zero or one

References the MiningAttributes.

class: ApplicationInputSpecification

defined by: MiningModelOwnsInputSpecification::inputSpec

multiplicity: one or more

15-384 CWM 1.0 2 February 2001

15

15.3.14 MiningModelResult

Describes the result set produced by a run of a MiningModel.

Superclasses

Class

Attributes

type

References

model

15.3.15 MiningSettings

Parameters for mining activities. Mining settings indicate how the model should be or
was built.

Superclasses

Class

Contained Elements

AttributeUsageRelation

Type of information contained in mining result. The following types are
predefined: sensitivityResult, liftResult, classificationEvalResult,
regressionEvalResult

type: String

multiplicity: exactly one

References the MiningModel associated with this instance of MiningModelResult.

class: MiningModel

defined by: ProducedByModel.model

multiplicity: exactly one

2 February 2001 CWM 1.0 15-385

15

Attributes

function

algorithm

References

attributeUsage

dataSpecification

Names the mining function. The following functions are predefined:
StatisticalAnalysis, FeatureSelection, AssociationRules, Classification, Clustering,
Regression

type: String

multiplicity: exactly one

Names the algorithm used to perform the mining function. The following
algorithms are predefined: decisionTree, neuralNetwork, naiveBayes,
selfOrganizingMap, centerBasedClustering, distributionBasedClustering
associationRules, polynomialRegression, radialBasisFunction,
ruleBasedClassification, principalComponentAnalysis, factorAnalysis,
bivariateAnalysis, descriptiveAnalysis, geneticAlgorithm

type: String

multiplicity: exactly one

References the AttributeUsageRelations.

class: AttributeUsageRelation

defined by: ContainsAttributeUsage::attributeUsage

multiplicity: one or more

References the MiningDataSpecification.

class: MiningDataSpecification

defined by: UsesAsInput::dataSpecification

multiplicity: exactly one

15-386 CWM 1.0 2 February 2001

15

15.3.16 NumericAttribute

Attribute containing numbers, for which numeric operations are meaningful.

Superclasses

MiningAttribute

Attributes

lowerBound

upperBound

isCyclic

isDiscrete

Constraints

lowerBound must be less than or equal to upperBound. [C-9]

Least non-outlier value.

type: Float

multiplicity: exactly one

Greatest non-outlier value.

type: Float

multiplicity: exactly one

Indicates attributes with cyclic value range such as angles or numbers representing
the day of the week. If true, lowerBound and upperBound define the base
interval.

type: Boolean

multiplicity: exactly one

Tells the algorithms whether to deal with the numbers as discrete values.

type: Boolean

multiplicity: exactly one

2 February 2001 CWM 1.0 15-387

15

15.3.17 OrdinalAttribute

Subclass of CategoricalAttribute that represents ordinal attributes.

Superclasses

CategoricalAttribute

Attributes

isCyclic

orderingType

15.3.18 RegressionSettings

Parameters for computing a regression model.

Superclasses

SupervisedMiningSettings

Constraints

Function must specify “Regression”. [C-10]

15.3.19 StatisticsSettings

Parameters for computing statistics-based models.

Indicates ordinal attributes with cyclic value ranges, in which case the first and
last attributes in the ordered sequence of attributes define the base interval.

type: Boolean

multiplicity: exactly one

Indicates if categories are ordered. If orderingType is inSequence then the
aggregation of categories defines the ordering relation.

type: OrderType

multiplicity: exactly one

15-388 CWM 1.0 2 February 2001

15

Superclasses

MiningSettings

Constraints

Function must specify “StatisticalAnalysis”. [C-11]

15.3.20 SupervisedMiningModel

Description of data produced by a predictive mining function.

Superclasses

MiningModel

References

target

15.3.21 SupervisedMiningSettings

Parameters for computing a supervised model, i.e., one that requires a target attribute
against which to measure model accuracy.

Superclasses

MiningSettings

References the "target" ApplicationAttribute instance.

class: ApplicationAttribute

defined by: SupervisedMiningModelReferencesTargetAttribute
::target

multiplicity: exactly one

2 February 2001 CWM 1.0 15-389

15

Attributes

confidenceAttributeName

predictedAttributeName

costFunction

References

target

Attribute name for output of confidence values of the prediction.

type: String

multiplicity: exactly one

Attribute name for output of predicted values.

type: String

multiplicity: exactly one

Function specifying the cost of incorrect predictions. Predefined methods are:
entropy, Gini, costMatrix, pnorm, none.

type: String

multiplicity: exactly one

Reference MiningAttribute as Target.

class: MiningAttribute

defined by: UsesAsTarget::target

multiplicity: exactly one

15-390 CWM 1.0 2 February 2001

15

15.4 Data Mining Associations

15.4.1 ContainsAttributeUsage

Settings may have one or more AttributeUsageRelations.

Ends

settings

attributeUsage

15.4.2 ContainsCategory

A CategoricalAttribute may have zero or more Categories.

Ends

categoricalAttribute

The Settings owning AttributeUsageRelations.

class: MiningSettings

multiplicity: exactly one

aggregation: composite

AttributeUsageRelations owned by the Settings.

class: AttributeUsageRelation

multiplicity: one or more

The CategoricalAttribute owning Categories.

class: CategoricalAttribute

multiplicity: zero or one

aggregation: composite

2 February 2001 CWM 1.0 15-391

15

category

15.4.3 DerivedFromSettings

A mining model is derived from its settings.

Ends

miningModel

settings

15.4.4 HasAttribute

MiningDataSpecification owns one or more MiningAttributes.

Ends

dataSpecification

Categories owned by the CategoricalAttribute.

class: Category

multiplicity: zero or more

The mining model derived from its settings.

class: MiningModel

multiplicity: exactly one

The settings used to derive the mining model.

class: MiningSettings

multiplicity: zero or one

The MiningDataSpecification owning MiningAttributes.

class: MiningDataSpecification

multiplicity: exactly one

aggregation: composite

15-392 CWM 1.0 2 February 2001

15

attribute

15.4.5 InputSpecOwnsAttributes

An ApplicationInputSpecification owns one or more ApplicationAttributes.

Ends

inputSpec

inputAttribute

15.4.6 MiningModelOwnsInputSpecification

A MiningModel owns at most one ApplicationInputSpecification.

Ends

miningModel

MiningAttributes owned by the MiningDataSpecification.

class: MiningAttribute

multiplicity: one or more

The ApplicationInputSpecification owning ApplicationAttributes.

class: ApplicationInputSpecification

multiplicity: exactly one

aggregation: composite

ApplicationAttributes owned by the ApplicationInputSpecification.

class: ApplicationAttribute

multiplicity: one or more

The MiningModel owning an ApplicationInputSpecification.

class: MiningModel

multiplicity: zero or one

aggregation: composite

2 February 2001 CWM 1.0 15-393

15

inputSpec

15.4.7 OrdersCategory

An OrdinalAttribute has an ordered collection of zero or more Categories.

Ends

ordinalAttribute

category

15.4.8 PertainsToAttribute

An AttributeUsageRelation references a single MiningAttribute.

Ends

attributeUsage

An ApplicationInputSpecification owned by a MiningModel.

class: ApplicationInputSpecification

multiplicity: one or more

The OrdinalAttribute that orders instances of Category.

class: OrdinalAttribute

multiplicity: zero or one

aggregation: composite

The instances of Category ordered by an instance of OrdinalAttribute

class: Category

multiplicity: zero or more; ordered

AttributeUsageRelations referencing the MiningAttribute.

class: AttributeUsageRelation

multiplicity: zero or more

15-394 CWM 1.0 2 February 2001

15

attribute

15.4.9 ProducedByModel

A mining model has a result set produced by a run of the model.

Ends

miningResult

model

15.4.10 SupervisedMiningModelReferencesTargetAttribute

Each instance of SupervisedMiningModel references a single instance of
ApplicationAttribute as its “target”.

Ends

target

The MiningAttribute referenced by AttributeUsageRelations

class: MiningAttribute

multiplicity: exactly one

The result set produced by the mining model.

class: MiningModelResult

multiplicity: zero or more

The mining model that produced the result set.

class: MiningModel

multiplicity: exactly one

The “target” ApplicationAttribute referenced by SupervisedMiningModels.

class: ApplicationAttribute

multiplicity: exactly one

2 February 2001 CWM 1.0 15-395

15

supervisedMiningModel

15.4.11 UsesAsInput

Settings references one MiningDataSpecification.

Ends

settings

dataSpecification

15.4.12 UsesAsTarget

The attribute that contains the target values for building supervised models.

Ends

settings

SupervisedMiningModels referencing the ApplicationAttribute as their “target”.

class: SupervisedMiningModel

multiplicity: zero or more

MiningSettings referencing the MiningDataSpecification.

class: MiningSettings

multiplicity: zero or more

The MiningDataSpecification referenced by the MiningSettings.

class: MiningData Specification

multiplicity: exactly one

The SupervisedMiningSettings referencing the MiningAttribute as a Target.

class: SupervisedMiningSettings

multiplicity: zero or more

15-396 CWM 1.0 2 February 2001

15

target

15.4.13 UsesAsTaxonomy

CategoricalAttributes may reference a taxonomy.

Ends

categoricalAttribute

taxonomy

15.4.14 UsesCostMatrix

ClassificationSettings may reference a CostMatrix.

Ends

settings

The MiningAttribute referenced by SupervisedMiningSettings as a Target.

class: MiningAttribute

multiplicity: exactly one

The CategoricalAttributes referencing a taxonomy.

class: CategoricalAttribute

multiplicity: zero or more

The taxonomy referenced by CategoricalAttributes

class: CategoryHierarchy

multiplicity: zero or one

ClassificationSettings referencing the CostMatrix

class: ClassificationSettings

multiplicity: zero or more

2 February 2001 CWM 1.0 15-397

15

costMatrix

15.4.15 UsesItemId

The attribute that contains the item identifier needed for building the association rules
model.

Ends

settings

itemID

15.4.16 UsesTransactionId

The attribute that contains the transaction identifier needed for building the association
rules model.

The CostMatrix referenced by ClassificationSettings.

class: CostMatrix

multiplicity: zero or one

The AssociationRulesSettings referencing the MiningAttribute as an Item ID.

class: AssociationRulesSettings

multiplicity: zero or more

The MiningAttribute referenced by AssociationRulesSettings as an Item ID.

class: MiningAttribute

multiplicity: exactly one

15-398 CWM 1.0 2 February 2001

15

Ends

settings

transactionID

15.5 OCL Representation of Data Mining Constraints

[C-1] Function must specify “AssociationRules”.

context AssociationRulesSettings inv:

self.function = “AssociationRules”

[C-2] Category values must be unique.

context CategoricalAttribute inv:

self.category->forAll(c1, c2 | c1.value = c2.value implies c1 = c2)

[C-3] An instance of Category must be owned by precisely one instance of
CategoricalAttribute or any of its subclasses.

context Category inv:

self.categoricalAttribute->isEmpty xor self.ordinalAttribute->isEmpty

[C-4] Function must specify “Classification”.

context ClassificationSettings inv:

self.function = “Classification”

[C-5] Function must specify “Clustering”.

The AssociationRulesSettings referencing the MiningAttribute as a Transaction
ID.

class: AssociationRulesSettings

multiplicity: zero or more

The MiningAttribute referenced by AssociationRulesSettings as a Transaction ID.

class: MiningAttribute

multiplicity: exactly one

2 February 2001 CWM 1.0 15-399

15

context ClusteringSettings inv:

self.function = “Clustering”

[C-6] maxNumberOfClusters must be positive.

context ClusteringSettings inv:

self.maxNumberOfClusters > 0

[C-7] Attributes must have unique names.

context MiningDataSpecification inv:

self.attribute->forAll(a1, a2 | a1.name = a2.name implies a1 = a2)

[C-8] Function and algorithm must be equal to function and algorithm of
MiningSettings, respectively.

context MiningModel inv:

self.settings->isEmpty or (self.function = self.settings.function and

self.algorithm = self.settings.algorithm)

[C-9] lowerBound must be less than or equal to upperBound.

context NumericAttribute inv:

self.lowerBound <= self.upperBound

[C-10] Function must specify “Regression”.

context RegressionSettings inv:

self.function = “Regression”

[C-11] Function must specify “StatisticalAnalysis”.

context StatisticsSettings inv:

self.function = “StatisticalAnalysis”

15-400 CWM 1.0 2 February 2001

15

2 February 2001 CWM 1.0 16-401

Information Visualization 16

16.1 Overview

The CWM Information Visualization metamodel defines metadata supporting the
problem domain of “information publishing” or, more generally, “information
visualization”.

Within the data warehousing environment, data is collected from numerous, diverse
sources and transformed into a unified representation that facilitates the analysis of
data for purposes of gaining business insight. Robust and flexible information
visualization tools are key to the effective analysis of this information. Information
visualization tools must be capable of understanding and preserving the “logical
structure” of data warehouse information, while enabling the user to perform any
number of “rendering transformations” on information content (e.g., displaying the
same query result set in several different formats, such as a printed report, Web page,
pie chart, bar graph, etc.).

Since information visualization is a very broad problem domain, with a diverse set of
possible solutions and many evolving standards, the CWM Information Visualization
metamodel defines very generic, container-like metadata constructs that either contain
or reference more complex visualization mechanisms at the M1-level. These metadata
structures are intended to support the minimal metadata required to interchange more
complex M1 models of visualization mechanisms.

16.2 Organization of the Information Visualization Metamodel

16.2.1 Dependencies

The Information Visualization package depends on the following packages:

org.omg.cwm.objectmodel.core

org.omg.cwm.foundation.expressions

16-402 CWM 1.0 2 February 2001

16

16.2.2 Major Classes and Associations

The major classes and associations of the Information Visualization metamodel are
shown in Figure 16-1.

Figure 16-1 CWM Information Visualization Metamodel

RenderedObject is the logical proxy for an arbitrary ModelElement that is to be
rendered via some rendering transformation or process.

A RenderedObject may be composed of an arbitrary number of other RenderedObjects
(i.e., components), and may have topological relationships to still other
RenderedObjects. The formula attribute allows for the specification of any
implementation-dependent expression that completes the definition of a
RenderedObject. For example, the formula might specify the position of the
RenderedObject within a two-dimensional grid, or in relation to one of its neighbors;
e.g., formula = "neighbor(x, y) + (delta-x, delta-y)".

A RenderedObject generally references one or more Renderings that specify how the
RenderedObject is actually presented. One of these associated Renderings may
optionally be designated as a default Rendering.

A Rendering is semantically equivalent to a transformation, in that it transforms a
source RenderedObject to some target "displayed" (or otherwise "presented" object --
e.g., a displayed image or an audio clip) . An instance of Rendering is fully specified
via its formula attribute, which, like RenderedObject, contains an implementation-
dependent expression.

XSLRendering

ModelElement
(from Core)

RenderedObject
formula : ExpressionNode
action : String
fileName : String
type : String
url : String
/ rendering : Rendering
/ defaultRendering : Rendering
/ component : RenderedObject
/ composite : RenderedObject
/ neighbor : RenderedObject
/ referencingNeighbor : RenderedObject
/ modelElement : ModelElement
/ renderedObjectSet : RenderedObjectSet

*

*

composite
*

c omponent
*

*

0..1

*

0..1

**
neighbor

*

referencingNeighbor

*

Rendering
formula : ExpressionNode
action : String
fileName : Stri ng
type : String
url : String
/ renderedObject : Rendere dObject
/ defau ltedRenderedObject : Ren dered Ob ject
/ renderedObjectSet : Rend eredObjectSet

** **

0..1
*

defaultRendering

0..1
*

RenderedObjectSet
/ renderedObject : RenderedObject
/ rendering : Rendering

*

1

*

1

*

1

*

1

defaultedRenderedObject

2 February 2001 CWM 1.0 16-403

16

Thus, a RenderedObject may be viewed as the "logical description" of an object to be
rendered, independently of how it is actually presented by any of its associated
Renderings, and Renderings may be viewed as transformations that control the
presentation of the RenderedObject while preserving its logical structure.

Note that a RenderedObject may be the target of a complex transformation (i.e.,
utilizing the CWM Transformation package). For example, an N-dimensional OLAP
cube might be transformed into an equivalent, two-dimensional, composite
RenderedObject, with several dimensions mapped to row and column edges,
respectively, and all other dimensions constrained to single member values. Several
Renderings may then be defined and associated with the resultant RenderedObject,
mapping the two-dimensional logical structure to the surface of a display screen in
various different formats (e.g., spreadsheet, pie chart, bar graph, etc.).

Possible types of Renderings include: Screen, paper, voice, Web, HTML documents,
XML/XSL, languages based on extensions to XML, SVG, visual objects, responses to
keying (e.g., keying interception plus rules), etc.

XSLRendering represents a useful subtype of Rendering that’s based on XSL (e.g., this
subtype’s formula might contain a procedure that uses XSL to create an HTML
document).

Finally, RenderedObjectSet represents a simple container of both logical
RenderedObjects and available Renderings.

16.3 Inheritance from the Object Model

The inheritance of the Information Visualization metamodel from the Object Model is
shown in Figure 16-2 below.

Figure 16-2 CWM Information Visualization Metamodel: Inheritance

RenderingRenderedObjectSet RenderedObject

Package
(from Core)

Classifier
(f ro m C or e)

Feature
(f rom Core)

16-404 CWM 1.0 2 February 2001

16

16.4 Information Visualization Classes

16.4.1 RenderedObject

RenderedObject serves as a logical "proxy" for an arbitrary ModelElement that is to be
rendered.

Superclasses

Classifier

Attributes

formula

action

Allows for the specification of any implementation-dependent expression that
completes the definition of a RenderedObject.

type: ExpressionNode

multiplicity: exactly one

Specifies some implementation-dependent action associated with a
RenderedObject.

type: String

multiplicity: exactly one

2 February 2001 CWM 1.0 16-405

16

fileName

type

url

Specifies the name of a file persisting an instance of RenderedObject.

type: String

multiplicity: exactly one

Specifies some implementation-dependent type associated with a RenderedObject

type: String

multiplicity: exactly one

Specifies a URL identifying some instance of RenderedObject.

type: String

multiplicity: exactly one

16-406 CWM 1.0 2 February 2001

16

References

rendering

defaultRendering

component

composite

References the collection of Renderings associated with a RenderedObject.

class: Rendering

defined by: RenderedObjectsReferenceRenderings::rendering

multiplicity: zero or more

inverse: Rendering::renderedObject

References the default Rendering within the collection of Renderings associated
with a RenderedObject.

class: Rendering

defined by: RenderedObjectsReferenceDefaultRendering
::defaultRendering

multiplicity: zero or one

References the collection of “component” RenderedObjects comprising this
“composite” RenderedObject.

class: RenderedObject

defined by: CompositesReferenceComponents::component

multiplicity: zero or more

inverse: RenderedObject::composite

References the collection of "composite" RenderedObjects of which this
RenderedObject is a "component".

class: RenderedObject

defined by: CompositesReferenceComponents::composite

multiplicity: zero or more

inverse: RenderedObject::component

2 February 2001 CWM 1.0 16-407

16

neighbor

referencingNeighbor

modelElement

renderedObjectSet

Constraints

The set of Renderings includes the default Rendering. [C-1]

A RenderedObject may not reference itself as a Neighbor nor as a Component. [C-2]

The transitive closure of Neighbors of an instance of RenderedObject must not include
the RenderedObject instance.

The transitive closure of Components of an instance of RenderedObject must not
include the RenderedObject instance.

References the collection of RenderedObjects that are "neighbors" to this
RenderedObject.

class: RenderedObject

defined by: NeighborsReferenceNeighbors::neighbor

multiplicity: zero or more

References the collection of RenderedObjects that reference this RenderedObject
as a "neighbor".

class: RenderedObject

defined by: NeighborsReferenceNeighbors::referencingNeighbor

multiplicity: zero or more

References the ModelElement that a RenderedObject represents.

class: ModelElement

defined by: RenderedObjectsReferenceModelElement
::modelElement

multiplicity: zero or one

References the RenderedObjectSet owning a RenderedObject.

class: RenderedObjectSet

defined by: RenderedObjectSetOwnsRenderedObjects
::renderedObjectSet

multiplicity: exactly one

16-408 CWM 1.0 2 February 2001

16

A RenderedObject may not reference one of its Neighbors as a Component (and vice
versa). [C-3]

16.4.2 RenderedObjectSet

RenderedObjectSet is a container of RenderedObjects and available Renderings.

Superclasses

Package

Contained Elements

• RenderedObject

• Rendering

References

renderedObject

rendering

References the collection of RenderedObjects owned by a RenderedObjectSet.

class: RenderedObject

defined by: RenderedObjectSetOwnsRenderedObjects::renderedO
bject

multiplicity: zero or more

inverse: RenderedObject::renderedObjectSet

References the collection of Renderings owned by a RenderedObjectSet.

class: Rendering

defined by: RenderedObjectSetOwnsRenderings
::rendering

multiplicity: zero or more

inverse: Rendering::renderedObjectSet

2 February 2001 CWM 1.0 16-409

16

16.4.3 Rendering

Rendering is a specification of how an associated RenderedObject is to be "rendered"
in some medium. This usually consists of a projection of an object of arbitrary
dimensionality onto a two-dimensional surface, but it may also include non-physical
representations as well (such as audio).

Superclasses

Feature

Attributes

formula

action

Implementation-dependent procedure for generating the Rendering (e.g., a usage
of XSL to generate an HTML document). Tracks the transformation lineage of
the Rendering.

type: ExpressionNode

multiplicity: exactly one

Specifies some implementation-dependent action associated with a Rendering.

type: String

multiplicity: exactly one

16-410 CWM 1.0 2 February 2001

16

fileName

type

url

Specifies the name of a file persisting an instance of Rendering.

type: String

multiplicity: exactly one

Specifies some implementation-dependent type associated with a Rendering.

type: String

multiplicity: exactly one

Specifies a URL identifying some instance of Rendering.

type: String

multiplicity: exactly one

2 February 2001 CWM 1.0 16-411

16

References

renderedObject

defaultedRenderedObject

renderedObjectSet

References the collection of RenderedObjects that are associated with this
Rendering.

class: RenderedObject

defined by: RenderedObjectsReferenceRenderings::
renderedObject

multiplicity: zero or more

inverse: RenderedObject::rendering

References the collection of RenderedObjects whose default Renderings are
represented by this Rendering.

class: RenderedObject

defined by: RenderedObjectsReferenceRenderings::
defaultedRenderedObject

multiplicity: zero or more

inverse: RenderedObject::rendering

References the RenderedObjectSet owning a Rendering.

class: RenderedObjectSet

defined by: RenderedObjectSetOwnsRenderings::
renderedObjectSet

multiplicity: exactly one

inverse: RenderedObjectSet::rendering

16-412 CWM 1.0 2 February 2001

16

16.4.4 XSLRendering

XSLRendering represents a useful subclass of Rendering based on XSL (i.e., the
formula of this subclass might contain a procedure that uses XSL to create an HTML
document).

Superclasses

Rendering

16.5 Information Visualization Associations

16.5.1 CompositesReferenceComponents

A RenderedObject may reference one or more "component" RenderedObjects, from
which it is logically composed.

Ends

components

composites

16.5.2 NeighborsReferenceNeighbors

A RenderedObject may reference one or more “neighboring” RenderedObjects.

"Component" RenderedObjects referenced by "composite" RenderedObjects.

class: RenderedObject

multiplicity: zero or more

"Composite" RenderedObjects referencing "component" RenderedObjects.

class: RenderedObject

multiplicity: zero or more

2 February 2001 CWM 1.0 16-413

16

Ends

neighbor

referencingNeighbor

16.5.3 RenderedObjectSetOwnsRenderedObjects

A RenderedObjectSet may own any number of RenderedObjects.

Ends

renderedObject

renderedObjectSet

16.5.4 RenderedObjectSetOwnsRenderings

A RenderedObjectSet may own any number of Renderings.

RenderedObjects referenced by this RenderedObject as its “neighbor” (or
neighboring object).

class: RenderedObject

multiplicity: zero or more

RenderedObjects referencing this RenderedObject as its “neighbor”.

class: RenderedObject

multiplicity: zero or more

RenderedObjects owned by a RenderedObjectSet.

class: RenderedObject

multiplicity: zero or more

RenderedObjectSet owning RenderedObjects.

class: RenderedObjectSet

multiplicity: exactly one

16-414 CWM 1.0 2 February 2001

16

Ends

rendering

renderedObjectSet

16.5.5 RenderedObjectsReferenceDefaultRendering

A RenderedObject may reference a default Rendering.

Ends

defaultRendering

defaultedRenderedObject

16.5.6 RenderedObjectsReferenceModelElement

One or more RenderedObjects may reference an arbitrary ModelElement.

Renderings owned by a RenderedObjectSet.

class: Rendering

multiplicity: zero or more

RenderedObjectSet owning Renderings.

class: RenderedObjectSet

multiplicity: exactly one

The Rendering referenced by one or more RenderedObjects as the default
Rendering.

class: Rendering

multiplicity: zero or one

RenderedObjects referencing this Rendering as the default Rendering.

class: RenderedObject

multiplicity: zero or more

2 February 2001 CWM 1.0 16-415

16

Ends

renderedObject

modelElement

16.5.7 RenderedObjectsReferenceRenderings

A RenderedObject may reference any number of Renderings. A Rendering may be
referenced by any number of RenderedObjects.

Ends

rendering

renderedObject

16.6 OCL Representation of Information Visualization Constraints

[C-1] The set of Renderings includes the default Rendering.

context RenderedObject inv:

RenderedObjects referencing the ModelElement.

class: RenderedObject

multiplicity: zero or more

The ModelElement referenced by the RenderedObjects.

class: ModelElement

multiplicity: zero or one

Renderings referenced by RenderedObjects.

class: Rendering

multiplicity: zero or more

RenderedObjects referencing Renderings.

class: RenderedObject

multiplicity: zero or more

16-416 CWM 1.0 2 February 2001

16

self.defaultRendering->notEmpty implies

self.rendering->includes(self.defaultRendering)

[C-2] A RenderedObject may not reference itself as a Neighbor nor as a Component.

context RenderedObject

inv: self.neighbor->excludes(self)

inv: self.component->excludes(self)

[C-3] A RenderedObject may not reference one of its Neighbors as a Component (and
vice versa).

context RenderedObject inv:

(self.neighbor->notEmpty and self.component->notEmpty) implies

self.neighbor->intersection(self.component)->isEmpty

2 February 2001 CWM 1.0 17-417

Business Nomenclature 17

17.1 Overview

Business users of data warehouses need to have a good understanding of what
information and tools exist in a data warehouse. They need to understand what the
information means from a business perspective, how it is derived, from what data
resources it is derived, and what analysis and reporting tools exist for manipulating and
reporting the information. They may also need to subscribe to analysis and reporting
tools, and have them run with results delivered to them on a regular basis.

The BusinessNomenclature package contains classes and associations that can be used
to represent business metadata. Easy access to this business metadata enables business
users to exploit the value of the information in a data warehouse. It can also aid
technical users in certain tasks. An example is the use of common business terms and
concepts for discussing information requirements with business users. Another
example is accessing business intelligence tools for analyzing the impact of warehouse
design changes.

The scope of the BusinessNomenclature package is restricted to the domain of data
warehousing and business intelligence.

17.1.1 Semantics

This section provides a description of the main features of the BusinessNomenclature
package.

The BusinessNomenclature package provides two main constructs to represent
business terms and concepts and related semantics:

• Taxonomy is a collection of concepts that provide the context for the meaning of a
particular term.

• Glossary is a collection of terms and various related forms of the term.

17-418 CWM 1.0 2 February 2001

17

A taxonomy is a collection of concepts. Concepts represent semantic information and
relationships. Concepts are identified by terms, which in turn are manifested by a word
or phrase. More than one term may describe the same concept and a given term may
describe more than one concept.

A glossary is a collection of terms that are related through explicit or implicit
relationships. Terms may be preferred (the term best representing its concept) and thus
represent the vocabulary of a business domain or user. Terms may be synonyms and
point at the preferred term. A preferred term and its synonyms represent the fact that
several terms describe the same concept although with different shades of meaning.
Terms may be arranged into a hierarchy of more generic and more specific elements.
This relationship allows substituting a narrower term, such as "USA", for a wider
term, such as "country".

17.2 Organization of the Business Nomenclature Package

The BusinessNomenclature package depends on the following packages:

• omg.org::CWM::ObjectModel::Core

The metamodel diagram for the BusinessNomenclature package is split into two parts.
The first diagram shows the BusinessNomenclature classes and associations, while the
second shows the inheritance hierarchy.

2 February 2001 CWM 1.0 17-419

17

Figure 17-1 BusinessNomenclature Package: Relationships

Term

/ glos s ary : Na mes p ace
/ c on c ept : Conc ept
/ rela tedTe rm : Term
/ preferredTerm : Term
/ narro we rTerm : Term

0..1

*

preferredTerm

0..1

s y nony m

*

*

*

widerTerm*

narrowerTerm

*

Mod elE l em ent
(from Core)

V oc abulary E lem ent

definit ion : S tring
ex am ple : S tring
us age : S tring
/ m odelE lem ent : M odelE lem ent

*

*

relatedE lem ent

*

elem ent

*

*

*

m odelE lem ent *

voc abulary E lem ent
*

Nomen c lat ure

0..1

arent

0..1

c hild

0.. 1 /ownedE lem ent

/nam es pac e

0.. 1

B us in es s Dom ain

/ tax onom y : M odelE lem ent

Conc ept

/ tax onom y : Nam es pac e
/ relatedConc ept : Conc ept

*

*

relatedConc ept

*

c onc ept

*
Ta x onom y

/ dom ain : Nam es pac e
/ c onc ept : M odelE lem ent
/ s ubtax onom y : Nom enc lature

*

0.. 1

/ownedE lem ent*

/nam es pac e0.. 1

*

0.. 1 /ow ned Elem ent

*/nam es pac e

0.. 1

Term

/ glos s ary : Nam es pac e
/ c onc ept : Conc ept
/ relatedTerm : Term
/ preferredTerm : Term
/ narrowerTerm : Term

*

*

c onc ept *

term *

*

*

relatedTerm

*

term

*

G los s ary

language : S tring
/ tax onom y : Tax onom y
/ term : M odelE lem ent
/ s ubglos s ary : Nom enc lature

*

*

glos s ary *

tax onom y *

*

0..1 /ownedE lem ent

*/nam es pac e

0..1

17-420 CWM 1.0 2 February 2001

17

Figure 17-2 BusinessNomenclature Package: Hierarchy

ModelE lem ent
(from Core)

Concept

/ taxonom y : Nam espace
/ relatedConcept : Concept

Term

/ glossary : Nam espa ce
/ co ncept : C oncept
/ rel atedTe rm : Term
/ preferredTerm : Term
/ na rrowe rTerm : Term

V ocabularyE lem ent

definition : S tring
exam ple : S tring
usage : S tring
/ m odelE lem ent : M odelE lem ent

Taxo nom y

/ dom ain : Nam espace
/ concept : M odelE lem ent
/ subtaxonom y : Nom enc lature

Glossary

language : S tring
/ taxonom y : Taxonom y
/ term : M odelE lem ent
/ subglossary : Nom enc lature

Nome nc lature

P ackage
(fro m Core)

B us inessDom ain

/ t axonom y : M odelE le ment

2 February 2001 CWM 1.0 17-421

17

17.3 Business Nomenclature Classes

The BusinessNomenclature package contains the following classes, in alphabetical
order:

• BusinessDomain
• Concept
• Glossary
• Nomenclature
• Taxonomy
• Term
• VocabularyElement

17.3.1 BusinessDomain

This represents a business domain.

Superclasses

Package

Contained Elements

Taxonomy

17-422 CWM 1.0 2 February 2001

17

References

taxonomy

17.3.2 Concept

This represents a business idea or notion.

Concepts are represented by Terms. Users use Terms that are familiar to them in their
business environment to refer to Concepts.

Superclasses

VocabularyElement

Identifies the Taxonomies owned by the BusinessDomain.

class: ModelElement

defined by: Namespace-ModelElement::ownedElement

multiplicity: zero or more

inverse: Taxonomy::domain

2 February 2001 CWM 1.0 17-423

17

References

taxonomy

relatedConcept

Constraints

A Concept may not relate to itself. [C-1]

17.3.3 Glossary

This represents a collection of Terms.

Superclasses

Nomenclature

Contained Elements

Term

Attributes

language

Identifies the Taxonomy that owns the Concept.

class: Namespace

defined by: Namespace-ModelElement::namespace

multiplicity: zero or one

inverse: Taxonomy::concept

Identifies the related Concepts.

class: Concept

defined by: RelatedConcepts::relatedConcept

multiplicity: zero or more

Identifies the language that the Glossary is represented in.

type: String

multiplicity: exactly one

17-424 CWM 1.0 2 February 2001

17

References

taxonomy

term

subglossary

Constraints

The parent [C-2] or child [C-3] of a Glossary must be a Glossary.

17.3.4 Nomenclature

This represents a common superclass for Taxonomy and Glossary.

Superclasses

Package

Contained Elements

Nomenclature, VocabularyElement

Identifies the Taxonomies that the Glossary is derived from.

class: Taxonomy

defined by: GlossaryToTaxonomy::taxonomy

multiplicity: zero or more

Identifies the Terms that are owned by the Glossary.

class: ModelElement

defined by: Namespace-ModelElement::ownedElement

multiplicity: zero or more

inverse: Term::glossary

Identifies the child Glossaries.

class: Nomenclature

defined by: NomenclatureHierarchy::child

multiplicity: zero or more

2 February 2001 CWM 1.0 17-425

17

Constraints

A Nomenclature may not be its own parent or child, transitive closure.

17.3.5 Taxonomy

This represents a collection of Concepts that form an ontology.

Superclasses

Nomenclature

Contained Elements

Concept

17-426 CWM 1.0 2 February 2001

17

References

domain

concept

subtaxonomy

Constraints

The parent [C-4] or child [C-5] of a Taxonomy must be a Taxonomy.

17.3.6 Term

This represents words or phrases used by business users to refer to Concepts.

A Term has a definition in a specific context. The context is provided by the referenced
Concept that describes the underlying semantics.

Superclasses

VocabularyElement

Identifies the BusinessDomain that owns the Taxonomy.

class: Namespace

defined by: Namespace-ModelElement::namespace

multiplicity: zero or one

inverse: BusinessDomain::taxonomy

Identifies the Concepts that are owned by the Taxonomy.

class: ModelElement

defined by: Namespace-ModelElement::ownedElement

multiplicity: zero or more

inverse: Concept::taxonomy

Identifies the child Taxonomies.

class: Nomenclature

defined by: NomenclatureHierarchy::child

multiplicity: zero or more

2 February 2001 CWM 1.0 17-427

17

References

glossary

concept

relatedTerm

preferredTerm

narrowerTerm

Identifies the Glossary that owns the Term.

class: Namespace

defined by: Namespace-ModelElement::namespace

multiplicity: zero or one

inverse: Clossary::term

Identifies the Concepts from which the Term is derived.

class: Concept

defined by: TermToConcept::concept

multiplicity: zero or more

Identifies the related Terms.

class: Term

defined by: RelatedTerms::relatedTerm

multiplicity: zero or more

Identifies the preferred Term.

class: Term

defined by: SynonymToPreferredTerm::preferredTerm

multiplicity: zero or one

Identifies the narrower Terms.

class: Term

defined by: WiderToNarrowerTerm::narrowerTerm

multiplicity: zero or more

17-428 CWM 1.0 2 February 2001

17

Constraints

A Term may not relate to itself. [C-6]

A Term may not be its own preferred term or synonym, transitive closure.

A Term may not be its own narrower term or wider term, transitive closure.

17.3.7 VocabularyElement

This represents a common superclass for Concepts and Terms.

Superclasses

ModelElement

Attributes

definition

example

usage

Provides the definition of the VocabularyElement.

type: String

multiplicity: exactly one

Provides examples of the VocabularyElement.

type: String

multiplicity: exactly one

Identifies typical usage of the VocabularyElement.

type: String

multiplicity: exactly one

2 February 2001 CWM 1.0 17-429

17

References

modelElement

Constraints

A VocabularyElement may not relate to itself. [C-7]

17.4 Business Nomenclature Associations

The BusinessNomenclature package contains the following associations, in
alphabetical order:

• GlossaryToTaxonomy
• NomenclatureHierarchy
• RelatedConcepts
• RelatedTerms
• RelatedVocabularyElements
• SynonymToPreferredTerm
• TermToConcept
• VocabularyElementToModelElement
• WiderToNarrowerTerm

17.4.1 GlossaryToTaxonomy

This association relates a Glossary to its Taxonomies.

Identifies the ModelElement (the physical metadata) that represents this
VocabularyElement (the business metadata).

class: ModelElement

defined by: VocabularyElementToModelElement::modelElement

multiplicity: zero or more

17-430 CWM 1.0 2 February 2001

17

Ends

glossary

taxonomy

17.4.2 NomenclatureHierarchy

This aggregation relates a parent Nomenclature to its child Nomenclatures.

Identifies a Glossary.

class: Glossary

multiplicity: zero or more

Identifies the Taxonomies from which the Glossary is derived.

class: Taxonomy

multiplicity: zero or more

2 February 2001 CWM 1.0 17-431

17

Ends

parent

child

17.4.3 RelatedConcepts derived

This association relates a Concept to its related Concepts.

Identifies the parent Nomenclature.

class: Nomenclature

multiplicity: zero or one

aggregation: composite

Identifies the child Nomenclatures.

class: Nomenclature

multiplicity: zero or more

17-432 CWM 1.0 2 February 2001

17

Ends

concept

relatedConcept

Derivation

This association is derived from the RelatedVocabularyElements association. All ends
of the association must be Concepts. [C-8]

17.4.4 RelatedTerms derived

This association relates a Term to its related Terms.

Identifies a Concept.

class: Concept

multiplicity: zero or more

Identifies the related Concepts.

class: Concept

multiplicity: zero or more

2 February 2001 CWM 1.0 17-433

17

Ends

term

relatedTerm

Derivation

This association is derived from the RelatedVocabularyElements association. All ends
of the association must be Terms.[C-9]

17.4.5 RelatedVocabularyElements

This association relates a VocabularyElement to its related VocabularyElements.

Identifies a Term.

class: Term

multiplicity: zero or more

Identifies the related Terms.

class: Term

multiplicity: zero or more

17-434 CWM 1.0 2 February 2001

17

Ends

element

relatedElement

17.4.6 SynonymToPreferredTerm

This association relates a synonym to its preferred terms.

Identifies a VocabularyElement.

class: VocabularyElement

multiplicity: zero or more

Identifies the related VocabularyElements.

class: VocabularyElement

multiplicity: zero or more

2 February 2001 CWM 1.0 17-435

17

Ends

synonym

preferredTerm

17.4.7 TermToConcept

This association relates a Term to its Concepts.

Identifies a Term.

class: Term

multiplicity: zero or more

Identifies the preferred term for the synonym.

class: Term

multiplicity: zero or one

17-436 CWM 1.0 2 February 2001

17

Ends

term

concept

17.4.8 VocabularyElementToModelElement

This association relates a VocabularyElement to the ModelElements for which the
VocabularyElement provides business meaning.

Identifies a Term.

class: Term

multiplicity: zero or more

Identifies the Concepts from which the Term is derived.

class: Concept

multiplicity: zero or more

2 February 2001 CWM 1.0 17-437

17

Ends

vocabularyElement

modelElement

17.4.9 WiderToNarrowerTerm

This association relates a wider term to its narrower terms.

Identifies a VocabularyElement.

class: VocabularyElement

multiplicity: zero or more

Identifies the ModelElements for which the VocabularyElement provides business
meaning.

class: ModelElement

multiplicity: zero or more

17-438 CWM 1.0 2 February 2001

17

Ends

widerTerm

narrowerTerm

17.5 OCL Representation of Business Nomenclature Constraints

[C-1] A Concept may not relate to itself.

context Concept

inv: self.relatedConcept->forAll (p | p <> self)

[C-2] The parent of a Glossary must be a Glossary.

context Glossary

inv: self.parent.oclIsKindOf(Glossary)

[C-3] The child of a Glossary must be a Glossary.

context Glossary

inv: self.child->forAll(p | p.oclIsKindOf(Glossary))

[C-4] The parent of a Taxonomy must be a Taxonomy.

context Taxonomy

inv: self.parent.oclIsKindOf(Taxonomy)

[C-5] The child of a Taxonomy must be a Taxonomy.

context Taxonomy

inv: self.child->forAll(p | p.oclIsKindOf(Taxonomy))

[C-6] A Term may not relate to itself.

context Term

inv: self.relatedTerm->forAll (p | p <> self)

Identifies a Term.

class: Term

multiplicity: zero or more

Identifies the narrower terms for the wider term.

class: Term

multiplicity: zero or more

2 February 2001 CWM 1.0 17-439

17

[C-7] A VocabularyElement may not relate to itself.

context Vocabulary

inv: self.relatedElement->forAll (p | p <> self)

[C-8] The RelatedConcepts association is derived from the
RelatedVocabularyElements association. All ends of the RelatedConcepts association
must be Concepts.

context RelatedConcepts

inv: RelatedVocabularyElements.allInstances.select(element.oclIsKindOf(Concept)
and relatedElement.oclIsKindOf(Concept))

[C-9] The RelatedTerms association is derived from the RelatedVocabularyElements
association. All ends of the RelatedTerms association must beTerms.

context RelatedTerms

inv: RelatedVocabularyElements.allInstances.select(element.oclIsKindOf(Term) and
relatedElement.oclIsKindOf(Term))

17-440 CWM 1.0 2 February 2001

17

2 February 2001 CWM 1.0 18-441

Warehouse Process 18

18.1 Overview

The Warehouse Process package documents the process flows used to execute
transformations. These process flows may be documented at the level of a complete
TransformationActivity or its individual TransformationSteps. A WarehouseProcess
object associates a transformation with a set of events which will be used to trigger the
execution of the transformation.

18.2 Organization of the Warehouse Process Package

The Warehouse Process package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::ObjectModel::Behavioral

• org.omg::CWM::Analysis::Transformation

A WarehouseProcess object represents the processing of a transformation. It is
instantiated as one of its subtypes WarehouseActivity or WarehouseStep, depending on
whether it represents the processing of a TransformationActivity or a Transformation
Step.

A WarehouseProcess may be associated with one or more WarehouseEvents, each
identifying events that cause the processing to be initiated. It may also be associated
with one or more internal events that will be triggered when processing terminates.

A ProcessPackage may be used to group together related WarehouseActivities.

18-442 CWM 1.0 2 February 2001

18

Figure 18-1 Warehouse Process package overview.

WarehouseEvents are divided into three categories: scheduled, external and internal.

Scheduled events can either be defined as a point in time (each Wednesday at 2 pm) or
be defined by intervals (every five minutes). A point in time event can be defined as a
custom calendar which contains a set of calendar dates. This allows a series of dates to
be reused across several WarehouseProcesses.

External events are triggered by something happening outside the data warehouse, for
example by a batch process which is not described as a WarehouseProcess.

Internal events are triggered by the termination of a WarehouseProcess. They can be
either retry events or cascade events. Retry events normally trigger a rerun of the
same WarehouseProcess, whereas cascade events normally trigger a different
WarehouseProcess. An internal event may define a condition that determines whether
or not the event is triggered. This condition can use details of the execution of the
triggering WarehouseProcess recorded in the relevant ActivityExecution and
StepExecution objects.

/namespace

TransformationStep
(from T ransformation)

WarehouseEvent

/ warehouseProcess : WarehouseProcess

InternalEvent

conditio n : B oo leanExpression
/ trigg eringWP : WarehouseProcess

T ransformationActivi ty

(from T ransf orma tio n)

WarehouseStep

/ transformationStep : T ransformationStep
/ warehouseActivi ty : WarehouseActivi ty

1

*

1

*

WarehouseProcess

stat icDefin ition : Boolean
isSeque nti al : Boolean
/ warehouseEvent : Ware houseEvent
/ internalE ve nt : Intern alEven t

*1 *1

*

1..*

*

triggeringWP1..*

ProcessPackage

WarehouseActivi ty

/ transformationActivi ty : T ransformationActivi ty
/ warehouseStep : WarehouseStep

1

*

1

*

1 *1 * orde red}

*

0..1

/ownedElement*

0..1

2 February 2001 CWM 1.0 18-443

18

Figure 18-2 Warehouse Events and Custom Calendars.

In tern alEvent

condition : BooleanExpression
/ triggeringWP : WarehouseProcess

ScheduleEvent

PointInTimeEvent IntervalEvent

duration : Float

ExternalEvent

description : String

CascadeEvent

waitRule : WaitRuleType

RetryEvent

waitDuration : Float
maxCount : Integer

RecurringPointInTimeEvent

recurringType : RecurringType
frequencyFactor : Integer
month : Integer
dayOfMonth : Integer
dayOfWeek : DayOfWeek
hour : Integer
minute : Integer
second : Integer

WarehouseEvent

/ warehouseProcess : WarehouseProcess

WarehouseProcess

staticDefinition : Boolean
isSequential : Boolean
/ warehouseEvent : WarehouseEvent
/ internalEvent : InternalEvent

*1 *1

*

1. .*

*

triggeringWP1. .*

Custo mCa len darEven t

/ customCalendar : CustomCalendar

Cal endarDate

specificDate : Time

CustomCalendar

/ customCa lend arEven t : Cu stom Calen darEve nt

*

1

*

1

* 0. .1

/o wned Element

*

/n ame space

0. .1

18-444 CWM 1.0 2 February 2001

18

Figure 18-3 Warehouse Process package inheritance structure.

The instance diagram below shows how the scheduled (every Wednesday at 2 pm)
unload process cascades with the load process:

ProcessPackage

ScheduleEvent

PointInTimeEvent IntervalEvent

ExternalEvent

CascadeEvent RetryEvent

CalendarDate

CustomCalendarEvent

CustomCalendar

WarehouseEvent

InternalEvent

WarehouseProcess

Package
(f rom Core)

ModelElement
(from Core)

Event
(from Behavioral)

WarehouseStepWarehouseActivity

2 February 2001 CWM 1.0 18-445

18

Figure 18-4 Instance diagram of cascade event.

18.3 Warehouse Process Classes

The Warehouse Process package contains the following classes, in alphabetical order:
• CalendarDate
• CascadeEvent
• CustomCalendar
• CustomCalendarEvent
• ExternalEvent
• InternalEvent
• IntervalEvent
• PointInTimeEvent
• ProcessPackage
• RecurringPointInTimeEvent
• RetryEvent
• ScheduleEvent
• WarehouseActivity
• WarehouseEvent
• WarehouseProcess
• WarehouseStep

18.3.1 CalendarDate

An entry in a CustomCalendar representing a specific date and time.

Superclasses

ModelElement

RecurringPointInTimeEvent
recurringType=everyWeek
dayOfWeek=Wednesday

hour=14

WarehouseProcess
Name=Unload

warehouseEvent

WarehouseProcess
Name=Reload

CascadeEvent
condition=“Unload succeeds”

warehouseEvent

internalEvent

triggeringWP

18-446 CWM 1.0 2 February 2001

18

Attributes

specificDate

18.3.2 CascadeEvent

A CascadeEvent indicates that completion of one or more triggering
WarehouseProcesses triggers another WarehouseProcess.

Superclasses

InternalEvent

Attributes

waitRule

18.3.3 CustomCalendar

A named list of dates and times.

Superclasses

 Package

Contained Elements

CalendarDate

The value of the date.

type: Time (i.e. a date and time)

multiplicity: exactly one

Indicates if the event should be triggered as soon as any of the triggering
WarehouseProcesses has completed that satisfies the condition (inherited from
InternalEvent) or only when all the triggering WarehouseProcesses have
completed (provided the condition is satisfied).

type: WaitRuleType (waitForAll | waitForAny)

multiplicity: exactly one

2 February 2001 CWM 1.0 18-447

18

References

customCalendarEvent

18.3.4 CustomCalendarEvent

This event is controlled by a list of dates and times. To make the list easily shareable
between multiple WarehouseProcesses the calendar itself is in a separate class.

Superclasses

PointInTimeEvent

References

customCalendar

18.3.5 ExternalEvent

An ExternalEvent allows the description of the triggering of a WarehouseProcess by a
task which is not described in the model. This is merely a place holder. The actual
behavior and the connection with the external trigger is left to the implementation of
the scheduler.

Superclasses

WarehouseEvent

Indicates which events use this custom calendar.

class: CustomCalendarEvent

defined by: EventUsesCustomCalendar::customCalendarEvent

multiplicity: zero or more

inverse: CustomCalendarEvent::customCalendar

Indicates which custom calendar is used for this schedule.

class: CustomCalendar

defined by: EventUsesCustomCalendar::customCalendar

multiplicity: exactly one

inverse: CustomCalendar::customCalendarEvent

18-448 CWM 1.0 2 February 2001

18

Attributes

description

18.3.6 InternalEvent

An event which may be triggered, depending on whether or not a condition is satisfied,
by the conclusion of one or more WarehouseProcess runs.

There are two types of InternalEvents, depending whether the event triggers a series of
different WarehouseProcesses, or whether the event triggers the same
WarehouseProcess in an attempt to retry a failed run.

Superclasses

WarehouseEvent

Attributes

condition

A free text description of where the external triggering signal comes from.

type: String

multiplicity: exactly one

Indicates what condition the triggering WarehouseProcess run must meet to be
considered (success, failure, warnings, etc.).
How the condition is expressed, and how the result of a Transform is generated is
left to the implementation of the scheduler and the transformation, respectively.

type: BooleanExpression

multiplicity: exactly one

2 February 2001 CWM 1.0 18-449

18

References

triggeringWP

18.3.7 IntervalEvent

An IntervalEvent controls a continuous run of a WarehouseProcess. The Warehouse
Process will run, then wait for the duration specified in the event, then run again.

An IntervalEvent is not affected by the result of the WarehouseProcess.

Superclasses

ScheduleEvent

Attributes

duration

18.3.8 PointInTimeEvent

A PointInTime event is triggered at a fixed time, independently of any external
context.

The triggering time can be either defined functionally (as in the
RecurringPointInTimeEvent extension of this class), or by an explicit list of times
(CustomCalendarEvent).

Superclasses

 ScheduleEvent

Associates an internal event with the triggering WarehouseProcess.

class: WarehouseProcess

defined by: TriggeringProcess::triggeringWP

multiplicity: one or more

inverse: WarehouseProcess::internalEvent

Indicates the length of time (in seconds) to wait after a run of the
WarehouseProcess before triggering the next one.

type: Float

multiplicity: exactly one

18-450 CWM 1.0 2 February 2001

18

18.3.9 ProcessPackage

A group of related WarehouseActivities.

Superclasses

 Package

Contained Elements

WarehouseActivity

18.3.10 RecurringPointInTimeEvent

This event triggers a WarehouseProcess on a regular basis such as a specific date or
time (for example, the Wednesday of every other week, at 2:30 pm).

Superclasses

PointInTimeEvent

Attributes

recurringType

 frequencyFactor

Indicates how often the event should be triggered (weekly, daily, etc.).

type: RecurringType (everyYear | everyMonth |
everyWeek | everyDay | everyHour | everyMinute)

multiplicity: exactly one

Indicates the repetition of the event. For example, for a weekly recurringType, a
value of 1 will mean that it is to be triggered every week, a value of 2 will mean that
it is to be triggered every other week, etc.

type: Integer

multiplicity: exactly one

2 February 2001 CWM 1.0 18-451

18

month

dayOfMonth

dayOfWeek

hour

minute

Indicates which month of the year (from 1 to 12) an annual event is to be
triggered.

type: Integer

multiplicity: zero or one

Indicates which day of the month (from 1 to 31) a monthly or annual event is to
be triggered. For a monthly event, if the day of the month is greater than the
number of days in the month, it is assumed that the scheduler will run the
WarehouseProcess on the last day of the month.

type: Integer

multiplicity: zero or one

Indicates which day of the week a weekly schedule is running.

type: DayOfWeek (monday | tuesday | wednesday |
thursday | friday | saturday | sunday | workingDay |
nonworkingDay)

multiplicity: zero or one

Indicates at what hour (from 0 to 23) an annual, monthly, weekly, or daily event
is being triggered.

type: Integer

multiplicity: zero or one

Indicates at what minute (from 0 to 59) an event is triggered. Applies to all events
except the "everyMinute" ones.

type: Integer

multiplicity: zero or one

18-452 CWM 1.0 2 February 2001

18

second

Constraints

month must be specified when recurringType is everyYear. [C-1]

month must be between 1 and 12 (inclusive) when specified. [C-2]

dayOfMonth must be specified when recurringType is everyYear or everyMonth.
[C-3]

dayOfMonth must be between 1 and 31 (inclusive) when specified. [C-4]

dayOfWeek must be specified when recurringType is everyWeek. [C-5]

hour must be specified when recurringType is everyYear or everyMonth or
everyWeek or everyDay. [C-6]

hour must be between 0 and 23 (inclusive) when specified. [C-7]

minute must be specified when recurringType is not everyMinute. [C-8]

minute must be between 0 and 59 (inclusive) when specified. [C-9]

second must be between 0 and 59 (inclusive). [C-10]

18.3.11 RetryEvent

Indicates that a WarehouseProcess should be retried upon failure. This type of event is
used for example when a WarehouseProcess relies on sources with uncertain
availability (connection or uptime).

In general, the triggering WarehouseProcess and the triggered WarehouseProcess are
the same, and only one WarehouseProcess is involved. But this is not an imposed
limitation. It is left to the schedulers to decide on the implementation behavior for
complex cases.

Superclasses

InternalEvent

Indicates at what second (from 0 to 59) an event must be run. Applies to all
events.

type: Integer

multiplicity: exactly one

2 February 2001 CWM 1.0 18-453

18

Attributes

waitDuration

maxCount

18.3.12 ScheduleEvent abstract

A ScheduleEvent is an abstract class which covers all the clock based events.

Superclasses

WarehouseEvent

18.3.13 WarehouseActivity

A WarehouseActivity is a subtype of WarehouseProcess that represents the processing
of a TransformationActivity. It may identify WarehouseEvents that trigger the
processing of the TransformationActivity and InternalEvents that are triggered by the
conclusion of this processing. It may contain a set of WarehouseSteps that define in
more detail the processing of the individual TransformationSteps of the
TransformationActivity.

Superclasses

WarehouseProcess

Contained Elements

WarehouseEvent
WarehouseStep

Indicates the length of time (in seconds) to wait before retrying the triggered
WarehouseProcess.

type: Float

multiplicity: exactly one

Indicates how many times the triggered WarehouseProcess should be retried
before being declared failed.

type: Integer

multiplicity: exactly one

18-454 CWM 1.0 2 February 2001

18

References

transformationActivity

warehouseStep

18.3.14 WarehouseEvent abstract

A virtual class to refer to any Event.

A WarehouseEvent (or its derivations) represents what triggers the running of a
WarehouseProcess. An event can be initiated by a clock, by an external trigger, or by
an internal trigger (the conclusion of some WarehouseProcess).

Superclasses

Event

References

warehouseProcess

Associates a WarehouseActivity with the TransformationActivity it performs.

class: TransformationActivity

defined by: WarehouseActivityRunsTransformationActivity
::transformationActivity

multiplicity: exactly one

Identifies WarehouseSteps that are components of the WarehouseActivity.

class: WarehouseStep

defined by: WarehouseActivityStep::warehouseStep

multiplicity: zero or more; ordered

inverse: WarehouseStep::warehouseActivity

Identifies the WarehouseProcess that is triggered by the WarehouseEvent.

class: WarehouseProcess

defined by: Event::warehouseProcess

multiplicity: exactly one

inverse: WarehouseProcess::warehouseEvent

2 February 2001 CWM 1.0 18-455

18

18.3.15 WarehouseProcess abstract

A WarehouseProcess represents the processing of a transformation. It is instantiated as
one of its subtypes WarehouseActivity or WarehouseStep, depending on whether it
represents the processing of a TransformationActivity or a Transformation Step.

A WarehouseProcess may be associated with one or more WarehouseEvents, each
identifying events that cause the processing to be initiated. It may also be associated
with one or more internal events that will be triggered when processing terminates.

Superclasses

ModelElement

Attributes

staticDefinition

 isSequential

When a WarehouseProcess is a constant mapping (such as a Relational View of
legacy data or a continuous data propagation process), this flag indicates that the
mapping does not require to be run for the target to be up-to-date and in sync with
the source.

type: Boolean

multiplicity: exactly one

This flag indicates if more than one instance of this WarehouseProcess may run at
a time. If this flag is true, the scheduler should fail any attempt to trigger this
WarehouseProcess while an instance is already in progress.

type: Boolean

multiplicity: exactly one

18-456 CWM 1.0 2 February 2001

18

References

warehouseEvent

internalEvent

18.3.16 WarehouseStep

A WarehouseStep is a component of a WarehouseActivity. It represents the processing
of an individual TransformationStep. It may be used to identify WarehouseEvents that
trigger the processing of the TransformationStep and/or InternalEvents that are
triggered by the conclusion of the processing of the TransformationStep.

For example, a WarehouseStep may be used to document how a specific
TransformationStep should be retried upon failure.

Superclasses

WarehouseProcess

Contained Elements

WarehouseEvent

Associates a WarehouseProcess with a set of events of various types, which will
be used to trigger the execution of the WarehouseProcess and its associated
transformation.

class: WarehouseEvent

defined by: Event::warehouseEvent

multiplicity: zero or more

inverse: WarehouseEvent::warehouseProcess

Associates a WarehouseProcess with the internal events it may trigger.

class: InternalEvent

defined by: TriggeringProcess::internalEvent

multiplicity: zero or more

inverse: InternalEvent::triggeringWP

2 February 2001 CWM 1.0 18-457

18

References

transformationStep

warehouseActivity

18.4 Warehouse Process Associations

The Warehouse Process package contains the following associations, in alphabetical
order:

• Event
• EventUsesCustomCalendar
• TriggeringProcess
• WarehouseActivityRunsTransformationActivity
• WarehouseActivityStep
• WarehouseStepRunsTransformationStep

Associates a WarehouseStep with the TransformationStep it performs.

class: TransformationStep

defined by: WarehouseStepRunsTransformationStep
::transformationStep

multiplicity: exactly one

Identifies the WarehouseActivity which includes this WarehouseStep.

class: WarehouseActivity

defined by: WarehouseActivityStep::warehouseActivity

multiplicity: exactly one

inverse: WarehouseActivity::warehouseStep

18-458 CWM 1.0 2 February 2001

18

18.4.1 Event protected

Associates a WarehouseProcess with a set of events of various types, which will be
used to trigger the execution of the WarehouseProcess and its associated
transformation.

Ends

warehouseProcess

 warehouseEvent

18.4.2 EventUsesCustomCalendar protected

Indicates which custom calendar is used for this schedule.

Ends

customCalendar

customCalendarEvent

Identifies the WarehouseProcess which will be triggered by the event.

class: WarehouseProcess

multiplicity: exactly one

aggregation: composite

Identifies a set of events of various types, which will be used to trigger the
execution of the WarehouseProcess and its associated transformations.

class: WarehouseEvent

multiplicity: zero or more

Indicates which custom calendar is used for this event.

class: CustomCalendar

multiplicity: exactly one

Indicates which event uses this custom calendar.

class: CustomCalendarEvent

multiplicity: zero or more

2 February 2001 CWM 1.0 18-459

18

18.4.3 TriggeringProcess protected

Associates an internal event with the WarehouseProcess that triggers it when
processing of that WarehouseProcess terminates.

Ends

triggeringWP

internalEvent

18.4.4 WarehouseActivityRunsTransformationActivity

Indicates which TransformationActivity is run by the WarehouseActivity.

Ends

transformationActivity

warehouseActivity

Identifies the triggering WarehouseProcess.

class: WarehouseProcess

multiplicity: one or more

Identifies an internal event triggered by the termination of the WarehouseProcess.

class: InternalEvent

multiplicity: zero or more

Associates a WarehouseActivity with the TransformationActivity it performs.

class: TransformationActivity

multiplicity: exactly one

Identifies WarehouseActivities that perform a TransformationActivity.

class: WarehouseActivity

multiplicity: zero or more

18-460 CWM 1.0 2 February 2001

18

18.4.5 WarehouseActivityStep protected

Associates a WarehouseActivity with its constituent WarehouseSteps.

Ends

warehouseActivity

warehouseStep

18.4.6 WarehouseStepRunsTransformationStep

Identifies a TransformationStep that is run by a WarehouseStep.

Ends

transformationStep

warehouseStep

Identifies the WarehouseActivity of which a WarehouseStep is a component.

class: WarehouseActivity

multiplicity: exactly one

aggregation: composite

Identifies a WarehouseStep that is a component of the WarehouseActivity.

class: WarehouseStep

multiplicity: zero or more; ordered

Associates a WarehouseStep with the TransformationStep it performs.

class: TransformationStep

multiplicity: exactly one

Identifies WarehouseSteps that perform a TransformationStep.

class: WarehouseStep

multiplicity: zero or more

2 February 2001 CWM 1.0 18-461

18

18.5 OCL Representation of Warehouse Process Constraints

[C-1] month must be specified when recurringType is everyYear.

context RecurringPointInTimeEvent inv:

self.recurringType=everyYear implies self.month->notEmpty

[C-2] month must be between 1 and 12 (inclusive) when specified.

context RecurringPointInTimeEvent inv:

self.month->notEmpty implies 1 <= self.month <= 12

[C-3] dayOfMonth must be specified when recurringType is everyYear or
everyMonth.

context RecurringPointInTimeEvent inv:

self.recurringType=everyYear or self.recurringType=everyMonth
implies self.dayOfMonth->notEmpty

[C-4] dayOfMonth must be between 1 and 31 (inclusive) when specified.

context RecurringPointInTimeEvent inv:

self.dayOfMonth->notEmpty implies 1 <= self.dayOfMonth <= 31

[C-5] dayOfWeek must be specified when recurringType is everyWeek.

context RecurringPointInTimeEvent inv:

self.recurringType=everyWeek implies self.dayOfWeek->notEmpty

[C-6] hour must be specified when recurringType is everyYear or everyMonth or
everyWeek or everyDay.

context RecurringPointInTimeEvent inv:

self.recurringType=everyYear or self.recurringType=everyMonth or
self.recurringType=everyWeek or self.recurringType=everyDay
implies self.hour->notEmpty

18-462 CWM 1.0 2 February 2001

18

[C-7] hour must be between 0 and 23 (inclusive) when specified.

context RecurringPointInTimeEvent inv:

self.hour->notEmpty implies 0 <= hour <= 23

[C-8] minute must be specified when recurringType is not everyMinute.

context RecurringPointInTimeEvent inv:

self.recurringType<>everyMinute implies self.minute->notEmpty

[C-9] minute must be between 0 and 59 (inclusive) when specified.

context RecurringPointInTimeEvent inv:

self.minute->notEmpty implies 0 <= self.minute <= 59

[C-10] second must be between 0 and 59 (inclusive).

context RecurringPointInTimeEvent inv:

0 <= self.second <= 59

2 February 2001 CWM 1.0 19-463

Warehouse Operation 19

19.1 Overview

The Warehouse Operation package contains classes recording the day-to-day operation
of the warehouse processes.

The package covers three separate areas:
• Transformation Executions
• Measurements
• Change Requests

19.1.1 Transformation Executions

Details of the most recent executions of transformations can be recorded, identifying
when they ran and whether they completed successfully. This can be used to
determine how complete and up-to-date specific information in the data warehouse is.

An ActivityExecution represents an execution of a whole TransformationActivity, and
a StepExecution object represents an execution of an individual TransformationStep.
If a TransformationStep involves the use of an Operation , an associated StepExecution
may reference a CallAction that records the actual arguments passed to the Operation.

These classes allow the lineage of data in a data warehouse to be preserved, by
recording when and how it was derived, and where it came from.

19.1.2 Measurements

Measurement objects allow metrics to be held for any ModelElement. For example,
they may be used to hold actual, estimated or planned values for the size of a table.

19-464 CWM 1.0 2 February 2001

19

19.1.3 Change Requests

ChangeRequests allow details of proposed changes affecting any ModelElement to be
recorded. They may also be used to keep a historical record of changes implemented
or rejected.

19.2 Organization of the Warehouse Operation Package

The Warehouse Operation package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::ObjectModel::Behavioral

• org.omg::CWM::Analysis::Transformation

Separate model diagrams are shown below for each of the three main areas supported
by the package.

Figure 19-1 Transformation Executions

ModelElement
(from Core)

TransformationActivity
(from Transformation)

TransformationStep
(from Transformation)

Activity Ex ecution

/ transformationActivity : TransformationActivity
/ stepExecution : StepExecution

1

*

1

execution

*

StepExecution

/ transformationStep : TransformationStep
/ activityExecution : ActivityExecution
/ callAction : CallAction

*

1

execution

*

1

0..1 *0..1 *

TransformationExecution

startDate : Tim e
endDate : Time
inProgress : Boolean
succes sful : Boolean
status : Expression

CallAction
(from Behavioral)

0..1

*

0..1

*

2 February 2001 CWM 1.0 19-465

19

Figure 19-2 Measurements

Figure 19-3 Change Requests

ModelElement
(from Core)

Measurement

value : Float
unit : St ring
type : String
creat ionDate : Tim e
effectiveDate : Tim e
/ modelElement : M odelElement

1

*

1

* {ordered}

ModelE lement
from Core)

ChangeRequest

changeDescript ion : String
changeReason : String
stat us : St ring
complet ed : B oolean
requestDate : Time
complet ionDat e : Time
/ modelElement : M odelElement

1..*

*

1..*

* {ordered}

19-466 CWM 1.0 2 February 2001

19

19.3 Warehouse Operation Classes

The Warehouse Operation package contains the following classes, in alphabetical
order:

• ActivityExecution
• ChangeRequest
• Measurement
• StepExecution
• TransformationExecution

19.3.1 ActivityExecution

An ActivityExecution is used to record details of a specific execution of a
TransformationActivity.

Superclasses

TransformationExecution

Contained Elements

StepExecution

References

transformationActivity

stepExecution

Identifies the TransformationActivity of which this is an execution.

class: TransformationActivity

defined by: TransformationActivityExecutions
 ::transformationActivity

multiplicity: exactly one

Identifies the StepExecutions that record the results of executing the individual
TransformationSteps of the TransformationActivity.

class: StepExecution

defined by: ActivityStepExecutions::stepExecution

multiplicity: zero or more

inverse: StepExecution::activityExecution

2 February 2001 CWM 1.0 19-467

19

19.3.2 ChangeRequest

This represents a request for change affecting one or more ModelElements. The change
request may represent a proposed change or one that has been implemented or rejected.

Superclasses

ModelElement

Attributes

changeDescription

changeReason

status

completed

A description of the change.

type: String

multiplicity: exactly one

The reason or justification for the ChangeRequest.

type: String

multiplicity: exactly one

The status of the ChangeRequest. This would normally contain a string such as
proposed, agreed, implemented or rejected.

type: String

multiplicity: exactly one

Indicates that no further action is required for this change request, i.e. it has either
been implemented or been rejected.

type: Boolean

multiplicity: exactly one

19-468 CWM 1.0 2 February 2001

19

requestDate

completionDate

References

modelElement

Constraints

A ChangeRequest instance must not apply to itself. [C-1]

A completionDate may only be provided for a completed ChangeRequest. [C-2]

19.3.3 Measurement

A Measurement object indicates the value of some attribute of an object. It can be the
number of rows in a table, the number of pages in an index, the number of different
values in a column, etc.

The flexibility of this class allows for product specific extensions, without changing
the model.

Superclasses

ModelElement

When the change request was raised.

type: Time

multiplicity: exactly one

The date when all action on the change request was completed (i.e. when
implementation was completed or it was rejected).

type: Time

multiplicity: zero or one

Identifies the ModelElement(s) to which the ChangeRequest applies.

class: ModelElement

defined by: ModelElementChangeRequest::modelElement

multiplicity: one or more

2 February 2001 CWM 1.0 19-469

19

Attributes

value

unit

type

creationDate

effectiveDate

The value of this Measurement.

type: Float

multiplicity: exactly one

The unit of measurement.

type: String

multiplicity: exactly one

Identifies how the value was computed.
The following values have specific meanings:
 measure (measured value)
 estimate (estimated value)
 plan (planned value)
 minimum (minimum value)
 maximum (maximum value)
 average (average value)

type: String

multiplicity: exactly one

When the value has been computed (see also effectiveDate).

type: Time

multiplicity: exactly one

When the value is effective. For measured values, effective and creation dates
should be the same. For estimated actual values, the creation date may be later
than the effective date. For plan values, the effective date is normally later than
the creation date.

type: Time

multiplicity: exactly one

19-470 CWM 1.0 2 February 2001

19

References

modelElement

Constraints

A Measurement instance must not apply to itself. [C-3]

19.3.4 StepExecution

A StepExecution is used to record details of a specific execution of a
TransformationStep.

Superclasses

TransformationExecution

References

transformationStep

activityExecution

Identifies the ModelElement to which the Measurement applies.

class: ModelElement

defined by: ModelElementMeasurement::modelElement

multiplicity: exactly one

Identifies the TransformationStep of which this is an execution.

class: TransformationStep

defined by: TransformationStepExecutions::transformationStep

multiplicity: exactly one

Identifies an ActivityExecution of which this StepExecution is a part.

class: ActivityExecution

defined by: ActivityStepExecutions::activityExecution

multiplicity: zero or one

inverse: ActivityExecution::stepExecution

2 February 2001 CWM 1.0 19-471

19

callAction

19.3.5 TransformationExecution

A TransformationExecution is used to record details of a specific execution.

Superclasses

ModelElement

Attributes

startDate

endDate

inProgress

Where a TransformationStep involves the use of an Operation, a CallAction may
be used to record details of the actual parameters used in the StepExecution.

class: CallAction

defined by: StepExecutionCallAction::callAction

multiplicity: zero or one

The date and time when the execution started.

type: Time

multiplicity: exactly one

The date and time when the execution ended.

type: Time

multiplicity: zero or one

A boolean indicating whether or not the execution is in progress.

type: Boolean

multiplicity: exactly one

19-472 CWM 1.0 2 February 2001

19

successful

 status

Constraints

If the TransformationExecution is not inProgress, the successful, status and endDate
attributes must be present, and endDate must not be earlier than startDate. [C-4]

19.4 Warehouse Operation Associations

The Warehouse Operation package contains the following associations, in alphabetical
order:

• ActivityStepExecutions
• ModelElementChangeRequest
• ModelElementMeasurement
• StepExecutionCallAction
• TransformationActivityExecutions
• TransformationStepExecutions

A boolean indicating whether or not the execution completed successfully.

type: Boolean

multiplicity: zero or one

An expression that may be used to provide status details of the execution. For
example it could provide comments for a successful execution, or details of errors
for an unsuccessful execution.

type: Expression

multiplicity: zero or one

2 February 2001 CWM 1.0 19-473

19

19.4.1 ActivityStepExecutions protected

Identifies all the StepExecutions associated with an ActivityExecution.

Ends

activityExecution

stepExecution

19.4.2 ModelElementChangeRequest

Associates ChangeRequests with the ModelElement(s) which they affect.

Ends

modelElement

changeRequest

Identifies the ActivityExecution of which the StepExecution is a part.

class: ActivityExecution

multiplicity: zero or one

aggregation: composite

Identifies the StepExecutions recording the results of executing the individual
TransformationSteps.

class: StepExecution

multiplicity: zero or more

Identifies a ModelElement affected by a ChangeRequest.

class: ModelElement

multiplicity: one or more

Identifies a ChangeRequest for a ModelElement.

class: ChangeRequest

multiplicity: zero or more; ordered

19-474 CWM 1.0 2 February 2001

19

19.4.3 ModelElementMeasurement

Associates a Measurement object to any ModelElement.

Ends

modelElement

measurement

19.4.4 StepExecutionCallAction

Where a TransformationStep involves the use of an Operation, this association
between StepExecution and CallAction allows the actual parameters used in a specific
execution of the TransformationStep to be recorded.

Ends

stepExecution

callAction

Identifies the ModelElement to which a Measurement relates.

class: ModelElement

multiplicity: exactly one

Identifies a Measurement for a ModelElement.

class: Measurement

multiplicity: zero or more; ordered

Identifies the StepExecution to which the CallAction applies.

class: StepExecution

multiplicity: zero or more

Identifies the CallAction for a StepExecution.

class: CallAction

multiplicity: zero or one

2 February 2001 CWM 1.0 19-475

19

19.4.5 TransformationActivityExecutions

Identifies the ActivityExecutions that record details of each execution of a
TransformationActivity.

Ends

transformationActivity

execution

19.4.6 TransformationStepExecutions

Identifies the StepExecutions that record details of each execution of a
TransformationStep.

Ends

transformationStep

execution

Identifies the TransformationActivity.

class: TransformationActivity

multiplicity: exactly one

Identifies an ActivityExecution recording details of a specific execution of a
TransformationActivity.

class: ActivityExecution

multiplicity: zero or more

Identifies the TransformationStep.

class: TransformationStep

multiplicity: exactly one

Identifies a StepExecution recording details of a specific execution of a
TransformationStep.

class: StepExecution

multiplicity: zero or more

19-476 CWM 1.0 2 February 2001

19

19.5 OCL Representation of Warehouse Operation Constraints

[C-1] A ChangeRequest instance must not apply to itself.

context ChangeRequest

inv: self.modelElement -> forAll (element | element <> self)

[C-2] A completionDate may only be provided for a completed
ChangeRequest.

context ChangeRequest

inv: self.completionDate->notEmpty implies self.completed

[C-3] A Measurement instance must not apply to itself.

context Measurement

inv: self.modelElement <> self

[C-4] If the TransformationExecution is not inProgress, the
successful, status and endDate attributes must be present, and
endDate must not be earlier than startDate.

context TransformationExecution

inv: self.inProgress=false implies (self.successful->notEmpty and
self.status->notEmpty and self.endDate->notEmpty and
self.endDate >= self.startDate)

2 February 2001 CWM 1.0 20-477

Compatibility with Other Standards 20

20.1 Introduction

This section identifies, at a very high level, points of both commonality and divergence
between CWM and the following, existing metadata standards:

• The MetaData Coalition’s MetaData Interchange Specification (MDIS), Version 1.1.

• The Meta Data Coalition’s Open Information Model, Version 1.0.

• The OLAP Council’s Multidimensional API (MDAPI), Version 2.0.

Only major commonalities or differences are emphasized. This section can serve as the
starting point for any alignment effort one may want to undertake between CWM and
any one of the other standards. However, it is not intended to be detailed enough to
specify all possible requirements for alignment.

20.2 Background: Components of the OMG Metamodeling Architecture

The CWM specification addresses the metadata interchange requirement of the OMG
repository architecture specific to the data warehousing domain. The CWM
specification leverages the following standards:

• MOF, the Meta Object Facility, is an OMG metadata interface standard that can be
used to define and manipulate a set of interoperable metamodels and their instances
(models). The MOF also defines a simple meta-metamodel (based on the OMG
UML - Unified Modeling Language) with sufficient semantics to describe
metamodels in various domains starting with the domain of object analysis and
design. CWM uses MOF as its meta-metamodel.

• UML, the Unified Modeling Language, is an OMG standard modeling language for
specification, construction, visualization and documentation of the artifacts of a
software system. CWM uses UML as its graphical notation, and defines a base
metamodel (i.e., the CWM Object Model) that is consistent with the core UML
metamodel.

20-478 CWM 1.0 2 February 2001

20

• XMI, or XML Metadata Interchange, is an OMG standard mechanism for the
stream-based interchange of MOF-compliant metamodels. XMI is essentially a
mapping of the W3C’s eXtensible Markup Language (XML) to the MOF. By being
implicitly MOF-compliant, any CWM model instance can be interchanged by
enabled tools using the facilities of XMI.

In summary, CWM is a domain-specific extension of the OMG’s Metamodeling
Architecture, and as such, implicitly supports the MOF, UML and XMI standards.
Although CWM has certain “compatibilities” with various other standards (as outlined
in subsequent sections), these compatibilities should be regarded as touch points for
mapping or integration; they do not represent dependencies of any kind. CWM is not
dependent upon any standards outside of those of the OMG Metamodeling
Architecture.

20.3 CWM and MDC Meta Data Interchange Specification

20.3.1 Overview

The Meta Data Coalition’s MetaData Interchange Specification (MDIS) is a non-
proprietary and extensible mechanism for the interchange of meta data between MDIS-
aware tools.

MDIS Version 1.1 consists of a metamodel, which defines the syntax and semantics of
the metadata to be exchanged, as well as the specification of a framework for
supporting an actual MDIS implementation. The MDIS Metamodel is a hierarchically-
structured, semantic database model that’s defined by a tag language. The metamodel
consists of a number of generic, semantic constructs, such as Element, Record, View,
Dimension, Level, and Subschema, plus a Relationship entity that can be used in the
specification of associations between arbitrary source and target constructs. The MDIS
metamodel may be extended through the use of named properties that are understood
to be tool-specific and not defined within MDIS. Interchange is accomplished via an
ASCII file representation of an instance of this metamodel. Although support for an
API is mentioned in the specification, no API definition is provided.

The MDIS Access Framework specifies several fairly general mechanisms that support
the interchange of metamodel instances. The Tool and Configuration Profiles define
semaphores that ensure consistent, bidirectional metadata exchange between tools. The
MDIS Profile defines a number of system parameters (environment variables) that
would be necessary in the definition of an MDIS deployment. Finally, Import and
Export functions are exposed by the framework as the primary file interchange
mechanisms for use by tools.

20.3.2 Comparison with CWM

Each of the following bullet items identifies a relevant comparison point between
MDIS and CWM, and describes the degree to which the two standards either converge
or diverge.

2 February 2001 CWM 1.0 20-479

20

• Scope. In general, the overall scope of the MDIS specification is considerably
narrower than that of the CWM. Whereas the CWM defines a metamodel of a
complete data warehouse (including various types of databases and data sources,
specification of warehouse processes and deployment structures, and
transformations between data sources and targets), MDIS is restricted to the
specification and interchange of database schema concepts only. While MDIS is
sufficiently general to specify just about any conceivable database schema, there is
no explicit support for any process-oriented semantics. For example, an MDIS
metamodel could define a mapping (association) between a relational source and
OLAP target, but can not specify the transformation logic at the meta-level (this
would have to be done within tool-specific content areas of the interchange
structure).

• Separation of Metamodels and Instances. MDIS is rather monolithic in that there is
no crisp separation between the MDIS metamodel and its instances. Both are
interchanged in a single ASCII file, with instances realized by values associated
with metamodel tags. There is no provision for a separate definition of the
metamodel itself, apart from an instance. It is not possible for two or more instances
to refer to a single metamodel definition. Instead, the metamodel definition must be
copied into each instance. In comparison, the CWM metamodel, by virtue of XMI,
has a normative expression that’s completely independent of any of its instances.
This normative expression is in the form of an XML Document Type Definition
(DTD), and instances, which are streamed via XML Documents, can simply contain
references to their defining DTDs.

• Visual Modeling Support. The MDIS metamodel has a “text-oriented” definition,
with no obvious support for graphically-oriented expressions. The CWM
metamodel, on the other hand, is an extension of the UML metamodel. This means
that any graphical tool (CASE tool, Web browser, etc.) that understands the UML
metamodel can also be easily enabled to render the CWM metamodel and,
therefore, CWM model instances.

• Tag Language. The tag language used to define the MDIS metamodel is specific to
MDIS only. While non-proprietary in the sense of tool-specific implementations, it
does not enjoy the same level of broad, industry acceptance that XML does today.

• API Support. Since CWM is MOF-compliant, the CWM metamodel has inherent
API support in terms of CORBA IDL. Furthermore, this API support can be
mapped to almost any programming language for which an IDL (or straight MOF)
mapping exists. MDIS, on the other hand, does not appear to support an API. This
is a disadvantage because there is no way to acquire “fine-grained”, programmatic
access to the MDIS metamodel.

• Relative Cost of Entry. Implementing MDIS requires the writing of interpreters of
the ASCII-based, MDIS metamodel to function according to the MDIS
specification. On the other hand, an XMI rendering of CWM can be consumed and
validated by any (relatively inexpensive or free) XML parser. The consuming XML
application can then easily make use of other XML standard facilities (such as
DOM) for browsing or manipulating the metamodel and its instance data.

In conclusion, CWM is more comprehensive in scope than MDIS 1.1. CWM is more
powerful, more flexible, and easier to adopt and use than MDIS, mainly because it

20-480 CWM 1.0 2 February 2001

20

leverages facilities already defined by the OMG Metamodeling Architecture (i.e.,
MOF, UML and XMI), and because there is widespread industry support for these
standards and their attendant implementation technologies (such as XML parsers).
Although CWM is oriented to the data warehousing environment, the degree of
package separation in the CWM metamodel means that submodels can easily be co-
opted for other purposes. Any thing that can be accomplished using MDIS can be
accomplished using CWM.

However, in all fairness, it should be noted that MDIS is a relatively older standard
that was crafted prior to the widespread acceptance of technologies such as UML and
XML, and that it could not have possibly leveraged such technologies at the time it
was drafted. MDIS represents a noble early attempt at defining a metadata interchange
standard and is a baseline against which subsequent standards must be compared. At
the time of this writing, the MDC has decided that MDIS will be superceded by OIM,
which is discussed next.

20.4 CWM and MDC Open Information Model

20.4.1 Overview

The Meta Data Coalition’s Open Information Model (OIM) is a non-proprietary and
technology-neutral, and extensible specification of the core metadata types that are
representative of enterprise-wide information architectures and environments. This
enterprise-wide view includes analysis and design, objects and components, database
and warehousing, and knowledge management, so in this sense, the scope of the OIM
is much broader than that of the CWM, which is focused primarily on the data
warehousing domain.

MDC-OIM was originally developed primarily by Microsoft Corporation and Platinum
Technology. OIM was subsequently transferred to the MDC, under whose auspices it
continues to evolve as a public-domain specification.

MDC-OIM uses UML as its formal specification language. OIM defines common
representations of various types of data sources and targets (record, relational, OLAP)
and transformations between sources and targets. The OIM metamodel derives from
the UML metamodel, and the OIM specification claims that OIM has a repository
orientation, but unlike CWM, is not compliant with the MOF. OIM does not use XMI
as an interchange mechanism. Rather, it uses a specific OIM to XML encoding to
generate interchange files.

The following subsections describe commonalities and differences between CWM and
OIM. In the interests of specificity, these comparisons are limited to the salient
features of the Database Schema, Data Transformation, OLAP Schema and Record-
Oriented Database Schema models. These comparisons can serve as the starting point
for an alignment exercise between CWM and OIM in these model areas, but it should
be noted that not all possible points of convergence and divergence are covered here.

2 February 2001 CWM 1.0 20-481

20

20.4.2 Comparison with CWM: Database Schema

The MDC-OIM Database Schema is a metamodel describing relational data sources.
Just as with CWM, the purpose of the relational metamodel is to provide a means by
which tools may exchange commonly-understood descriptions of relational schemas,
with the possible inclusion of tool-specific extensions. It is modeled largely after the
ANSI SQL-92 standard. Here are the major comparison points between the CWM
Relational Package and the OIM Database Schema:

• Reference standards. OIM is based on the SQL-92 standard, while CWM is based
on the SQL-99 standard and is compatible with JDBC.

• Base metaclasses. Both OIM and CWM have fairly similar base metaclass
structures, centered on the notion of column set and the subsequent derivation of
table, view and query from the column set.

• Keys and indexes. The concepts of keys (unique keys, foreign keys) and indexes are
defined in the CWM as CWM Foundation metaclasses, so they have general
applicability to other data models within the CWM, not just the CWM Relational
Package. OIM confines keys and indexes to its relational schema. Hence, only OIM
data source models that derive from, or are based on, the Database Schema, can
provide these concepts.

• Catalog and schema. Both the CWM and OIM relational models support the basic
structure of catalogs containing schemas and schemas, in turn, containing all other
relational objects.

• Deployment structures. The OIM generally provides Logical and Deployment
subclasses of all of its major semantic classes throughout the OIM Database
Schema. For example, LogicalTable and DeployedTable both derive from the
(semantic) Table metaclass. However, these Logical and Deployed subclasses are
generally not defined much further, except DeployedCatalog is represented as being
owned by a DataSource which in turn has associations with metaclasses
representing Connections and Providers. Note that most of the OIM models derive
from the Database Schema model; hence, the ultimate deployment of any part of the
OIM must be via mappings to the Database Schema (relational) metamodel. The
overall deployment structures of the CWM metamodel, by comparison, are much
more general than this. CWM defines a Software Deployment metamodel which
defines concepts of providers, data managers, and connections. Any logical data
model (whether Relational, Multidimensional, Record) models its own deployment
by mapping to an appropriate metaclass of the CWM Software Deployment
package. For example, the Catalog metaclass of the CWM Relational metamodel is
implicitly owned by the DataManager metaclass of the Software Deployment
metamodel, and this metamodel in turn relates the physical DataManager to its
associated DataProviders, ProviderConnections, Machine, Site, and most
importantly, deployment-specific TypeMappings (which in turn derive from the
CWM Foundation package).

20-482 CWM 1.0 2 February 2001

20

20.4.3 Comparison with CWM: Data Transformations

The MDC-OIM Data Transformations metamodel, like its CWM counterpart, defines
metadata that describes the processes which map and transform the contents of various
source and target data stores. This might include, for example, the transformation of
operational data to a normalized, relational representation or analysis-oriented store.
Both also provide facilities whereby data lineage may be tracked across a series of
transformations.

There are, however, some fundamental differences between the two metamodels. In
particular, the OIM Data Transformation model is specific to the OIM Database
Schema model. In its current form, it can describe relational-to-relational
transformations only, and has certain dependencies on the Database Schema package
(e.g., the CodeDecodeSet derives from Database Schema Columns).

The CWM Transformation package, on the other hand, is more generalized and is not
tied to any one particular data store or schema. This is because the CWM
Transformation package describes transformational mappings in terms of the Object
Model core metaclasses of Classifier and Feature. Hence, transformation mappings
may be defined on any CWM metaclasses that derive from these metaclasses.

For example, under CWM, Relational Tables and Multidimensional Dimensions derive
from Object Model Class, respectively, and CWM Relational Columns and
Multidimensional DimensionedObjects derive from Object Model Attribute,
respectively. So the same Transformation metamodel can be used to describe both
relational-to-relational mappings, as well as relational-to-multidimensional mappings.

The CWM and MDC-OIM metamodels are most similar, however, in their overall
representation of the transformation process. Both metamodels support the
specification of transformations in terms of TransformationSteps,
TransformationTasks, and dependencies or constraints between steps. Both support the
generic specification of Transformation logic based on expressions; however, CWM
Transformations can be specified using either an opaque expression (a textual string)
or a tree-based expression structure (which comes from the CWM Foundation
package’s Expression model). Using structured expressions further facilitates the
tracking of transformation lineage.

The historical records of transformations are modeled in similar ways in CWM and
MDC-OIM. OIM’s StepExecution and ActivityExecution correspond to similar objects
in the CWM Warehouse Operation package.

20.4.4 Comparison with CWM: OLAP Schema

MDC-OIM provides an OLAP Schema metamodel for describing the use of
multidimensional database technology within the enterprise in support of advanced
business analytics and decision support capabilities. OLAP technology has broad
applicability, both within the data warehousing environment, specifically, and across
the enterprise, in general. Hence, both CWM and OIM have a requirement for
representing OLAP and multidimensional metadata.

2 February 2001 CWM 1.0 20-483

20

The CWM and MDC-OIM OLAP metamodels have many similarities, but many
fundamental differences, as well. Perhaps the most fundamental difference is in the
overall orientation of the two metamodels.

The CWM OLAP metamodel is a pure, semantic model of general OLAP concepts,
and does not define any particular logical or physical deployment constructs of its
own. This is done for two reasons:

• OLAP and multidimensional concepts (what the user sees) tend to be rather abstract
in nature and very broad in applicability; for example, notions such as “dimension”
and “dimensioned variable” are concepts that span the enterprise and really aren’t
specific to any particular technology that provides computational support for such
concepts.

• OLAP concepts may be implemented in many different ways, depending on the
objectives of the enterprise and the technologies available. For example, OLAP
applications are often implemented using either relational database technology
(ROLAP), multidimensional database servers (MOLAP), or some hybrid mixture of
the both relational and multidimensional technologies.

So the CWM OLAP metamodel defines generic OLAP concepts only and leverages the
CWM Transformation metamodel to map OLAP metaclasses to metaclasses of other
packages that could be used to describe logical models of implementations (e.g., the
CWM Relational and Multidimensional metamodels). Those logical models, in turn,
rely on the Software Deployment metamodel to describe their actual, physical
deployments.

The MDC-OIM OLAP model, on the other hand, is largely derived from the OIM
Database Schema model (in the same manner that the Data Transformation model is).
For example, Cubes and Partitions are ultimately derived from ColumnSet. This may
have the effect of restricting the usage of the OIM OLAP model to the representation
of relational-OLAP constructs only.

The OIM OLAP model also includes a number of logical and physical deployment
metaclasses, such as OLAPServer, DataSource, and Connection metaclasses, plus
DeployedOLAPDatabase and LogicalOLAPDatabase subclasses, in keeping with the
OIM’s overall dichotomization of the concepts of logical versus deployed subclasses.
As stated earlier in the discussion on the relational Database Schema, there is no need
for the CWM OLAP metamodel to include these kinds of metaclasses, since logical
descriptions are implicitly defined by transformation mappings of OLAP semantics to
more logical constructs (e.g., relational), and the physical deployment metaclasses are
provided within a single, Software Deployment metamodel.

Areas where the CWM OLAP and OIM OLAP metamodels are mostly (though not
completely) similar include the following:

• Cubes and Dimensions. Both metamodels support the concept of Cubes and
Dimensions being separate from one another and both contained within an OLAP
Database (called Schema in CWM). Both support the special designation of a Time
Dimension, although the CWM OLAP metamodel further defines a Measures
Dimension. Both metamodels also support the concepts of virtual versus physical
Cubes, as well as the concept of a Cubes being composed from sub-cubes (called

20-484 CWM 1.0 2 February 2001

20

Cube Regions by CWM and Partitions by OIM). However, OIM includes the notion
of an Aggregation metaclass, which represents pre-calculated aggregations in
relational stores, generally what one might find in a typical, relational Star-schema
deployment of OLAP. CWM provides no such concept, because this is regarded as
being an implementation detail that would be addressed at the model instance level.

• Levels and Hierarchies. Both OLAP metamodels support the concept of Hierarchy
as being a separate entity from its owning Dimension. Both metamodels support the
concept of multiple Hierarchies per Dimension. Both metamodels also support the
concepts of Dimension Levels and the association of Dimension Levels with
Dimension Hierarchies, and both also define mapping constructs that enable
Hierarchies and Levels to be mapped to logical deployment structures. However,
within the OIM OLAP metamodel, these deployment mappings are explicitly
geared toward a relational database (and optionally Star-Schema) deployment,
whereas the CWM OLAP contains mapping constructs that derive from more
general CWM Transformation mapping metaclasses and, hence, can be used to
specify deployment mappings to any conceivable logical structure that might be
supported elsewhere within the CWM metamodel.

20.4.5 Comparison with CWM: Record-Oriented Database Schema

The MDC-OIM Record-Oriented Database Schema is a metamodel describing record-
oriented data sources. Just as with CWM, the purpose of the record-oriented
metamodel is to provide a means by which tools may exchange commonly-understood
descriptions of record-oriented data resources, with the possible inclusion of tool-
specific extensions. Here are the major comparison points between the CWM Record
package and the OIM Record-Oriented Database Schema:

• Scope. OIM limits the scope of its record-oriented model to database schemas.
CWM, in contrast, permits the description of a broader range of record data
resources including both traditional record-oriented resources such as databases,
files, and programmatic data structures and non-traditional, hierarchical data
resources such as documents, reports, and forms.

• Specificity. OIM includes metaclasses supporting a number of language-specific
constructs such as COBOL renaming and data structure overlay capabilities and
source management constructs such as Copylibs. Many of these constructs are not
reusable by other programming languages that support similar notions. CWM, on
the other hand, models such capabilities in a general fashion and relegates
language-specific constructs to the appropriate language extension packages.

20.5 CWM and OLAP Council/MDAPI

20.5.1 Overview

The OLAP Council’s Multidimensional API (MDAPI) is a non-proprietary
specification for an object-oriented API that exposes a full range of OLAP functions
that a given vendor’s implementation of an OLAP product might want to support. This
includes: Server connection and login, Metadata querying functions, multidimensional

2 February 2001 CWM 1.0 20-485

20

data querying functions, generic filtering and sorting capabilities, and error handling
and progress monitoring functions. Vendors implementing the MDAPI may also add
their own extensions whereever necessary, through pass-through capabilities inherent
in the MDAPI.

The MDAPI provides a query-oriented interface to an OLAP metadata/data provider
(such as an OLAP server) that can be used to expose both metadata and data cell
contents of the provider, and supports the incremental modification of queries, as well
as the navigation of result sets and extraction of values from result sets.

20.5.2 Comparison with CWM

There are a number of fundamental differences between the MDAPI and the CWM that
make direct comparisons some what difficult.

First of all, the MDAPI is an implementation model, rather than a metamodel. The
MDAPI primarily defines interfaces that can be used to query metadata from an OLAP
metadata provider, which usually (but not necessarily) means a commercially-available
OLAP server. For example, an OLAP server can utilize both the CWM OLAP
metamodel and the MDAPI in following manner:

The server initially consumes a CWM model instance and sets up its internal,
multidimensional metadata structures accordingly. After the server has been loaded
with data input values and calculations, etc., are performed, clients of the server could
then issue multidimensional queries against the server through the MDAPI. This has
the benefit of providing a unified metadata instance and data querying mechanism. For
example, a user can define several metadata queries to subset Dimension Members and
then issue a data query that uses the metadata query result sets as the basis for forming
and exposing a data result (essentially a cube region or cube view). In this scenario,
CWM is used to define the core OLAP metadata to a CWM-enabled provider, and the
provider exposes the MDAPI as its primary client interface for exposing both metadata
instances and multidimensional data values.

Note that, since a CWM model instance is MOF-compliant, instances of CWM
metaclasses have inherent support for CORBA (or programming language mapped)
interfaces that provide access and navigation of the model itself. However, this is not
necessarily sufficient for integrated multidimensional metadata and data querying,
which requires support for generating and navigating result sets, among other things
(since the CWM OLAP metamodel is a semantic model and not an implementation
model, it defines neither behavioral semantics, nor interfaces). Hence, the MDAPI and
CWM can play rather complementary roles in the deployment of a multidimensional
data server.

The key to integrating the CWM and the MDAPI in the manner described above is
through the alignment of the CWM OLAP metamodel and MDAPI data model, a
conceptual model that defines the semantic underpinnings of the metadata objects and
interfaces. Alignment, in this case, would generally consist of mapping the major
classes of the MDAPI data model to the CWM OLAP metaclasses. The following
paragraphs do not attempt such a detailed mapping/derivation, but rather just point out
some of the major areas of correspondence between the two models:

20-486 CWM 1.0 2 February 2001

20

• Cube. MDAPI, being primarily a query model, does not define the notion of Cube
as a persistent, multidimensional database, but rather defines a Cube View. Cube
View corresponds closely to the CWM OLAP concept of Cube Region, if the Cube
Region’s formula is interpreted as the multidimensional query processed by the
Cube View.

• Dimension. Both the MDAPI data model and CWM OLAP metamodel support
similar concepts of Dimension and Dimension types.

• MemberSelection. Both model support the concept of a member query on a
Dimension. This is called MemberSelection by CWM, and Membership by MDAPI.
In both models, this member query is expression based.

• Hierarchy and Level. Both models support the concepts of Hierarchy and Level and
associations between them. A Dimension can have an arbitrary number of
Hierarchies in either model. In the MDAPI data model, Dimension, Hierarchy, and
Level are all subclasses of Membership, and are all, therefore, expression (query)
based by default. In the CWM OLAP metamodel, only Level derives from
MemberSelection, but the correspondence in this regard is close enough.

• Properties. The MDAPI data model supports user-defined property types and values
as a means of extending the core data model. A client of the metadata and data
query objects (MemberSelection and CubeView) can specify both searches and sorts
based on property types and value or ranges of values. The closest equivalent the
CWM OLAP metamodel has in this regard is the general association to UML
Attributes that’s inherited by any subclasses of the core UML Class. So, at least at
the instance level, there is a close correspondence between both models in this
regard, as well.

2 February 2001 CWM 1.0 21-487

Conformance Points 21

21.1 Introduction

This section describes the required and optional points of compliance with the CWM
specification.

21.2 Required Compliance

21.2.1 CWM Metamodel Compliance

A CWM-compliant warehouse platform is required to implement the following
packages:

• ObjectModel

• Foundation

• Transformation

• Warehouse Process

• Warehouse Operation

A warehouse platform provides generic capabilities for integrating different types of
warehouse tools and for managing warehouse processes and warehouse operations.

21.2.2 CWM XML Compliance

The CWM XML is a normative part of CWM. This definition must be used when
interchanging the CWM metamodel, in accordance with the XMI specification.

21-488 CWM 1.0 2 February 2001

21

21.2.3 CWM IDL Compliance

The CWM IDL is a normative part of CWM. This definition, or equivalent OMG-
compliant language bindings, must be used for programmatic access to warehouse
metadata conforming to the CWM metamodel, in accordance with the MOF
specification.

21.2.4 CWM DTD Compliance

The CWM DTD is a normative part of CWM. This definition must be used when
interchanging warehouse metadata conforming to the CWM metamodel, in accordance
with the XMI specification.

21.3 Optional Compliance Points

A CWM-compliant warehouse platform or warehouse tool that supports relational data
resources is required to implement the following package and its dependencies:

• Relational

A CWM-compliant warehouse platform or warehouse tool that supports record data
resources is required to implement the following package and its dependencies:

• Record

A CWM-compliant warehouse platform or warehouse tool that supports
multidimensional data resources is required to implement the following package and
its dependencies:

• Multidimensional

A CWM-compliant warehouse platform or warehouse tool that supports XML data
resources is required to implement the following package and its dependencies:

• XML

A CWM-compliant warehouse tool that provides data transformation functionality is
required to implement the following package and its dependencies:

• Transformation

A CWM-compliant warehouse platform or warehouse tool that provides OLAP
functionality is required to implement the following package and its dependencies:

• OLAP

A CWM-compliant warehouse platform or warehouse tool that provides data mining
functionality is required to implement the following package and its dependencies:

• Data Mining

A CWM-compliant warehouse platform or warehouse tool that provides information
visualization functionality is required to implement the following package and its
dependencies:

2 February 2001 CWM 1.0 21-489

21

• Information Visualization

A CWM-compliant warehouse platform or warehouse tool that provides or handles
business metadata is required to implement the following package and its
dependencies:

• Business Nomenclature

21-490 CWM 1.0 2 February 2001

21

2 February 2001 CWM 1.0 22-491

CWM Data Types 22

22.1 Overview

The CWM Foundation, in its DataTypes package, provides metamodel types
supporting definition of data types required by data sources, data targets, and tools that
implement transformations between them. Although these metamodel types are
sufficient to permit the definition of most data types, they do not themselves actually
create definitions of data types. This is because the metamodel types are M2 level
types whereas data type definitions are M1 level definitions.

This approach to the creation of data types was chosen because the specific data type
needs of individual transformation tools and source and target data systems are
sufficiently different that their interchange cannot be specified fully in advance.
Unfortunately, data type incompatibility is often true even for systems that claim to
support the same data language (consider, for example, the many variants of “SQL”).
Even though some tools and systems may enjoy compatibility for commonly used data
types (such as integer and string), systems which are compatible across the full range
of their data types are indeed rare.

Data type incompatibilities between systems result from a number of factors including
specific characteristics of hardware implementation platforms, software vendors’
desire to differentiate their products in the marketplace, and other, largely historical,
causes. These factors combine to make definition of a common set of data types
supporting the diverse, and frequently incompatible, needs of existing and future
CWM-compliant tools impossible in any practical way. Consequently, modelers of
software systems in CWM may find it necessary to create both data type definitions
compatible with their tools and to create TypeMapping instances to indicate mappings
between their tools’ data types and the native data types of systems with which they
interchange data.

Nevertheless, the CWM recognizes the importance of shared data types -- especially
those based on industry standards such as CORBA IDL, SQL and Java -- as a means of
promoting data interchange between disparate systems. Consequently, this chapter

22-492 CWM 1.0 2 February 2001

22

provides a set of data type definitions for several widely used industry specifications.
These data type definitions serve two purposes within the CWM:

• Provide a pre-defined basis for data interchange among diverse tools and systems
that support a selection of standard data types.

• Provide examples of the appropriate use of the CWM Foundation’s metamodel
types for creating tool-specific data type definitions.

To further promote understanding of the appropriate use of other CWM Foundation
metamodel types, this chapter also contains examples showing how tool-specific
expressions can be mapped into the CWM Foundation’s expression metamodel types.

In general, the CWM packages only support data type attributes that are considered
necessary for interchange of information between systems; attributes that are thought
to be system specific are left to tool modelers. When such attributes must be
represented, modelers may create model-specific types that derive from supplied CWM
types and house the necessary attributes therein.

The information and definitions in this chapter, while considered important to
accomplishing the overall goals of CWM, are supplementary in nature and are not
considered a normative part of the CWM specification.

22.2 Organization of the CWM Data Types

The CWM DataTypes contains definitions of data types for the CORBA IDL language
[CORBA], the SQL-99 language [SQL], and the Java programming language [Java].
Because they are M1 level entities, data type definitions for these languages are
expressed in a tabular form that indicate the instances of M2 level CWM metaclasses
that can be created in an appropriate CWM metadata store to define the M1 level data
types. The data type definitions might then be used to create M1 level models
appropriate for specific tools and software systems.

The example M1 instances define only primitive data types; structured data types are
not generally defined in these examples. (However, the CORBA IDL metamodel types
required to define M1 structured types are provided as an example of how this might
be done, if needed.) Data types that require no additional information to complete their
definition, such as SQL’s INTEGER type, are completely defined. However, data types
that are in some sense “parameterized,” such as SQL’s CHARACTER(n) and
FIXED(p, s) data types, are incompletely defined because it is not practical to
anticipate all possible parameter values! Tools that need to declare such parameterized
data types should do so as they encounter them. The data type instances in this chapter
define a few parameterized data types, where appropriate, as examples.

As an example of appropriate usage of the CWM Foundation’s TypeMapping
metamodel to indicate preferred and non-preferred mappings between the data types of
different tools and software systems, the last section of the chapter contains some
example mappings between Java and CORBA IDL and between Java and SQL-99.

2 February 2001 CWM 1.0 22-493

22

22.3 CORBA IDL Data Types

The CORBA IDL Data Types package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::Foundation::DataTypes

22.3.1 Overview

A CORBA IDL metamodel extension to the CWM Foundation is required to support
the CORBA IDL data types in the CWM model. It is provided here as an example of
extending the DataTypes metamodel and is not a normative part of the CWM
specification.

The chief motivation for the creation of this metamodel is the need to provide a
typeCode attribute for CORBA IDL data types. These extensions also serve as an
illustration of the use of CWM Foundation metamodel types as superclasses of the
metamodel types for a specific language environment.

22.3.2 Organization of the CORBA IDL Data Types

Because the M1 data type instances are of primary import and because of the length of
the metamodel subsection, the M1 instances are described before the metamodel types.
When reviewing the M1 instances, refer to the appropriate metamodel type definitions
and the following figure for more information about metamodel types.

Figure 22-3-1 CORBA IDL data type metamodel types.

DataT ype
(f rom Core)

Enumeration
(f rom DataTy pes)

Uni on
(f r om D ata Ty pe s)

Excep ti onT yp e WstringT ype

length : Integer

StringT ype

length : Integer

FixedType

digi ts : Integer
scale : Integer

Al ias

St ruct Type

UnionT ypeEnumT ype

TypeAl ias
(f rom DataTy pes)

ArrayT ype

length : Integer
/ elementT ype : IDLType

IDLType

typeCode : T ypeCode

1

*

elementT ype

1

*

Seque nce Type

length : Integer
/ elementT ype : IDLType

1

*

elementType1

*

22-494 CWM 1.0 2 February 2001

22

22.3.3 CORBA IDL Data Type Instances

Data type instances for CORBA IDL non-structured data types are presented in the
following table. The M1 data types instances correspond to those described in the
CORBA IDL language specification.

22.3.4 CORBA IDL Data Types Classes

CORBA IDL metamodel classes are provided to support the definition of CORBA data
types that cannot be represented simply as instances of the IDLType class. This group
of types includes all CORBA structured and array-like data types as well as those that
also derive from the types defined in the CWM Foundation’s Data Types conceptual
area.

22.3.4.1 Alias

The Alias type represents CORBA IDL type aliases. Aliases must be represented by
their own type so that they can have a typeCode attribute as required by the CORBA
IDL definition.

Superclasses

IDLType

TypeAlias

Table 22-3-1 CORBA IDL primitive data type instances.

CORBA IDL
Data Type Instance of Attributes

any IDLType typeCode = tk_any

octet IDLType typeCode = tk_octet

boolean IDLType typeCode = tk_boolean

char IDLType typeCode = tk_char

wchar IDLType typeCode = tk_wchar

short IDLType typeCode = tk_short

long IDLType typeCode = tk_long

long long IDLType typeCode = tk_longlong

unsigned short IDLType typeCode = tk_ushort

unsigned long IDLType typeCode = tk_ulong

unsigned long long IDLType typeCode = tk_ulonglong

float IDLType typeCode = tk_float

double IDLType typeCode = tk_double

long double IDLType typeCode = tk_longdouble

2 February 2001 CWM 1.0 22-495

22

22.3.4.2 ArrayType

The ArrayType class represents CORBA IDL array data types.

Superclasses

IDLType

Attributes

length

References

elementType

22.3.4.3 EnumType

The EnumType class represents the CORBA IDL enumerated data type, enum.

Superclasses

IDLType

Enumeration

22.3.4.4 ExceptionType

The ExceptionType class represents the CORBA IDL exception data type.

Superclasses

IDLType

The number of elements in the array. Multiply dimensioned arrays are treated as
arrays of array in CORBA IDL.

type: Integer

multiplicity: exactly one

The type of elements of an array.

class: IDLType

defined by: ArrayElementType::elementType

multiplicity: exactly one

22-496 CWM 1.0 2 February 2001

22

22.3.4.5 FixedType

The FixedType class represent CORBA IDL fixed data types.

Superclasses

IDLType

Attributes

digits

scale

22.3.4.6 IDLType

The IDLType class is a common superclass for all CORBA IDL data type classes that
require a typeCode.

Superclasses

DataType

Attributes

typeCode

Number of digits of precision.

type: Integer

multiplicity: exactly one

Number of implied decimal places. Scale may be either positive (implied left
decimal places) or negative (implied right decimal places).

type: Integer

multiplicity: zero or more

The type code value identifying a CORBA IDL data type.

type: TypeCode

multiplicity: exactly one

2 February 2001 CWM 1.0 22-497

22

22.3.4.7 SequenceType

The SequenceType class represents CORBA IDL sequence data types. Sequences are
single dimensioned arrays of a user-specified type.

Superclasses

IDLType

Attributes

length

References

elementType

22.3.4.8 StringType

The StringType class represents CORBA IDL string data types.

Superclasses

IDLType

The number of elements in the sequence expressed in type units.

type: Integer

multiplicity: exactly one

The type of elements of a sequence.

class: IDLType

defined by: SequenceElementType::elementType

multiplicity: exactly one

22-498 CWM 1.0 2 February 2001

22

Attributes

length

22.3.4.9 StructType

The StructType class represents CORBA IDL user -defined data types created with the
typedef keyword.

Superclasses

IDLType

22.3.4.10 UnionType

The UnionType class represents CORBA IDL union data types.

Superclasses

IDLType

Union

22.3.4.11 WstringType

The WstringType class represents CORBA IDL wstring data types. A CORBA wstring
is an ordered sequence of wchars, each of which represents a ‘wide’ character from
any character set.

Superclasses

IDLType

The number of characters in the string. If length is zero, the string in considered
unbounded.

type: Integer

multiplicity: exactly one

2 February 2001 CWM 1.0 22-499

22

Attributes

length

22.3.5 CORBAL IDL Data Types Associations

22.3.5.1 ArrayElementType Protected

Associates an ArrayType with the type of its elements.

Ends

arrayType

elementType

22.3.5.2 SequenceElementType Protected

Identifies the type of elements in a sequence.

Ends

elementType

The number of wchars in the string. If length is zero, the string in considered
unbounded.

type: Integer

multiplicity: exactly one

Arrays having elements of this type.

class: ArrayType

multiplicity: zero or more

Identifies the type of an array’s elements.

class: IDLType

multiplicity: exactly one

Identifies the type of elements in a sequence.

class: IDLType

multiplicity: exactly one

22-500 CWM 1.0 2 February 2001

22

sequence

22.4 Java Data Types

Creation of primitive data type instances for the Java language is straightforward
because they are all simple, unparameterized types. These primitive data types are used
for simple declarations and for building more complex data types implemented as Java
classes. Even such common data types as String are implemented as classes in Java.
The CWM ObjectModel provides sufficient support for the description of Java classes
that CWM classes (notably, Class and Attribute) should be used directly to define any
needed Java classes. Consequently, CWM need not provide metamodel classes
supporting the definition of Java classes or primitive data types -- the available CWM
classes are sufficient.

The Java language specification provides additional semantics about the meaning of,
and restrictions on, primitive data types. For example, the int data type is restricted to
integer values in the range -27 to 27 - 1. However, because these restrictions are
constant for all variables of type int, they do not need to be encoded into the
metamodel. Consequently, the DataType class is sufficient as the container of all Java
primitive data types as is shown the following table.

22.5 SQL-99 Data Types

The data types defined by the SQL-99 specification are created within CWM as
instances of the Relational package’s SQLSimpleType metaclass. These data type
instances are a superset of those defined by the SQL-92 specification and follow the
SQL-99 specification’s Data_Type_Descriptor information. Practical implementations
of SQL-based systems will have variations on the types presented here; consult
relevant product information for details.

Sequences of this type.

class: SequenceType

multiplicity: zero or more

Table 22-4-1 Java primitive data types

Data type Instance of Attributes

boolean DataType None

char DataType None

byte DataType None

short DataType None

int DataType None

long DataType None

double DataType None

float DataType None

2 February 2001 CWM 1.0 22-501

22

The SQL-99 data type instances provide a number of examples of the use of
“parameterized” types. Because the CWM Relational package separates the notions of
data type and column, the data type instances do not contain all seemingly relevant
data type parameters. Rather, the Column instances associated with a particular Table
instance contain the values of some parameters. For example, for a Column instance of
declared data type DECIMAL(5, 2), the precision (“5”) and scale (“2”) would be
recorded in the attributes Column::precision and Column::scale, respectively, whereas
the DECIMAL data type instance would have its SQLSimpleType::precisionRadix
attribute set to the value 10, meaning that the precision and scale values are store as
base-10 numeric values. Similarly, a Column instance declared as CHARACTER(80)
would have the Column::length attribute set to 80 while the CHARACTER data type’s
SQLSimpleType::characterOctetLength attribute would be set to value 8 indicating
that the data type contains 8-bit character codes.

Table 22-5-1 SQL-99 data type instances. Data types marked with an asterisk (*) are not part of the
SQL-92 specification.

SQL-99 Data Type Instance of Attributes

BIT SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in
Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

BIT VARYING SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in
Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

BINARY LARGE
OBJECT*

SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in
Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

CHARACTER SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in
Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

22-502 CWM 1.0 2 February 2001

22

CHARACTER
VARYING

SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in
Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

CHARACTER LARGE
OBJECT*

SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in
Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

NATIONAL
CHARACTER

SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in
Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

NATIONAL
CHARACTER
VARYING

SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in
Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

NATIONAL
CHARACTER LARGE
OBJECT*

SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in
Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

NUMERIC SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = null (defined in
Column)
numericPrecisionRadix = 10
numericScale = null (defined in
Column)
dateTimePrecision = null

Table 22-5-1 SQL-99 data type instances. Data types marked with an asterisk (*) are not part of the
SQL-92 specification.

SQL-99 Data Type Instance of Attributes

2 February 2001 CWM 1.0 22-503

22

DECIMAL SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = null (defined in
Column)
numericPrecisionRadix = 10
numericScale = null (defined in
Column)
dateTimePrecision = null

INTEGER SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = 2 or 10 (IDV)
numericScale = 0
dateTimePrecision = null

SMALLINT SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = 2 or 10 (IDV)
numericScale = 0
dateTimePrecision = null

FLOAT SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = 2
numericScale = null
dateTimePrecision = null

REAL SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = 2
numericScale = null
dateTimePrecision = null

DOUBLE PRECISION SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = 2
numericScale = null
dateTimePrecision = null

BOOLEAN* SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

Table 22-5-1 SQL-99 data type instances. Data types marked with an asterisk (*) are not part of the
SQL-92 specification.

SQL-99 Data Type Instance of Attributes

22-504 CWM 1.0 2 February 2001

22

22.6 Type Mapping Examples

To promote understanding of the appropriate use of the CWM Foundation’s
TypeMapping package for recording mappings between data types defined by different
software systems, this section presents example instances illustrating how the CORBA
IDL and Java primitive data types can be mapped to each other and how the Java and
SQL-99 primitive data types can be mapped to each other. These mappings are
obtained from relevant published standards documents: [IDL-Java], [Java-IDL] and

DATE SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = IDV
numericScale = null
dateTimePrecision = IDV

TIME SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = IDV
numericScale = null
dateTimePrecision = IDV

TIME WITH TIMEZONE SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = IDV
numericScale = null
dateTimePrecision = IDV

TIMESTAMP SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = IDV
numericScale = null
dateTimePrecision = IDV

TIMESTAMP WITH
TIMEZONE

SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = IDV
numericScale = null
dateTimePrecision = IDV

INTERVAL SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = IDV
numericScale = null
dateTimePrecision = IDV

Table 22-5-1 SQL-99 data type instances. Data types marked with an asterisk (*) are not part of the
SQL-92 specification.

SQL-99 Data Type Instance of Attributes

2 February 2001 CWM 1.0 22-505

22

[JDBC]. Although the CWM Relational package supports the SQL-99 standard, the
type mappings between Java and SQL are derived from the JDBC specification which
uses X/Open CLI SQL as its SQL language standard rather than SQL-99.
Consequently, the Java/SQL mappings are not exactly equivalent to those that would
be needed to map to SQL-99 but should serve to illustrate the mapping techniques
required. SQL typeNumbers from the java.sql.Types file can be used to uniquely
identify SQL types.

The following tables present sample type mapping instances for CORBA IDL/Java and
Java/SQL-99 mappings. Because TypeMapping instances are unidirectional, two
instances -- one for each direction -- are required to indicate that a pair of data types
can be mutually interchanged. To keep the size of the tables manageable, only type
mapping instances with isBestMatch = True are shown; other, non-preferred mappings
can be added as necessary to support particular implementation needs. Also, values for
the isLossy attribute of TypeMapping instances are omitted because their precise
values are may be implementation dependent.

Table 22-6-1 TypeMapping instances mapping CORBA IDL data types to Java data types.

SourceType (IDL) TargetType (Java)

boolean boolean

char char

wchar char

octet byte

string java.lang.String

wstring java.lang.String

short short

unsigned short unsigned short

long int

unsigned long int

long long long

unsigned long long long

float float

double double

fixed java.math.BigDecimal

22-506 CWM 1.0 2 February 2001

22

Table 22-6-2 TypeMapping instances mapping Java data types to CORBA IDL data types.

Table 22-6-3 TypeMapping instances mapping X/Open CLI SQL data types to Java data types.

SourceType (Java) TargetType (IDL)

void void

boolean boolean

char wchar

byte octet

short short

int long

long long long

float float

double double

SourceType (X/Open CLI SQL) TargetType (Java)

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

2 February 2001 CWM 1.0 22-507

22

Table 22-6-4 TypeMapping instances mapping Java data types to X/Open CLI SQL data types.

SourceType (Java) TargetType (X/Open CLI SQL)

String VARCHAR (or LONGVARCHAR)

java.math.BigDecimal NUMERIC

Boolean BIT

Integer INTEGER

Long BIGINT

Float REAL

Double DOUBLE

byte[] VARBINARY (or LONGVARBINARY)

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

22-508 CWM 1.0 2 February 2001

22

2 February 2001 CWM 1.0 Reference-509

References

Normative

[MOF] MOF, an adopted standard of the OMG. http://www.omg.org

[UML] UML, an adopted standard of the OMG. http://www.omg.org

[XMI] XMI, an adopted standard of the OMG. http://www.omg.org

[XML] XML 1.0, an adopted standard of the W3C. http://www.w3c.org

Non-Normative

[CORBA] CORBA/IIOP 2.3.1 Specification, 99-10-07

[CORBA IDL] CORBA IDL, an adopted standard of the OMG. http://www.omg.org/cgi-bin/doc?formal/99-10-17

[IDL-Java] IDL to Java Mapping, an adopted standard of the OMG. http://www.omg.org/cgi-bin/doc?formal/
99-07-57

[Java] http://java.sun.com/docs/books/jls/html/index.html

[Java-IDL] Java to IDL Mapping, an adopted standard of the OMG. http://www.omg.org/cgi-bin/doc?formal/
99-07-63

[JDBC] JDBC 2.0 API. http://java.sun.com/products/jdbc/

[OIM] MDC Open Information Model, Version 1.0, 1999

[SQL] ISO/IEC 9075-2:1999, Information technology - Database languages - SQL - Part 2: Foundation
(SQL/Foundation), 1999

[WFM] Workflow Management Facility (OMG, bom/98-06-07)

[WfMC] Workflow Management Coalition Standards. http://www.aiim.org/wfmc/

Reference-510 CWM 1.0 2 February 2001

2 February 2001 CWM 1.0 Glossary-511

Glossary

This glossary defines the terms that are used to describe CWM. The glossary includes
concepts from the Meta Object Facility (MOF), the Unified Modeling Language
(UML), and XML Metadata Interchange (XMI) for completeness. The rationale for
including key MOF, UML and XMI terms is to be consistent in the definition and
usage of fundamental object modeling as well as meta modeling constructs. This
glossary builds on the UML 1.3, MOF 1.3 and XMI 1.1 glossaries.

Glossary entries are listed alphabetically. The new glossary entries have been marked
(CWM) and mainly consist of data warehousing related terminology.

Scope

This glossary includes terms from the following sources:

• Meta Object Facility 1.3 specification [MOF]

• UML 1.3 specification [UML]

• XMI 1.1 specification [XMI]

• Object Management Architecture object model [OMA]

• CORBA 2.0 [CORBA]

• W3C XML 1.0 specification [XML]

Notation Conventions

The entries in the glossary usually begin with a lowercase letter. An initial uppercase
letter is used when a word is usually capitalized in standard practice. Acronyms are all
capitalized, unless they traditionally appear in all lowercase.

Glossary-512 CWM 1.0 2 February 2001

When brackets enclose one or more words in a multi-word term, it indicates that those
words are optional when referring to the term. For example, aggregate [class] may be
referred to as simply aggregate.

The following conventions are used in this glossary:

• Contrast: <term>. Refers to a term that has an opposed or substantively different
meaning.

• See: <term>. Refers to a related term that has a similar, but not synonymous
meaning.

• Synonym: <term>. Indicates that the term has the same meaning as another term,
which is referenced.

• Acronym: <term>. This indicates that the term is an acronym. The reader is usually
referred to the spelled-out term for the definition, unless the spelled-out term is
rarely used.

The glossary is extensively cross-referenced to assist in the location of terms that may
be found in multiple places.

Terms

abstract class A class that cannot be instantiated.

abstraction A group of essential characteristics of an entity that distinguish it from other entities.
An abstraction defines a boundary relative to the perspective of the viewer.

abstract language A system of expression for expressing information that is independent of any particular
human readable notation. Contrast: concrete language or notation. (MOF)

actual parameter Synonym: argument.

aggregate [class] A class that represents the "whole" in an aggregation (whole-part) relationship. See:
aggregation. (UML)

aggregation A special form of association that specifies a whole-part relationship between the
aggregate (whole) and a component part. See: composition.

analysis A phase of the software development process whose primary purpose is to formulate a
model of the problem domain. Analysis focuses on what to do, design focuses on how
to do it.

analysis time Refers to something that occurs during an analysis phase of the software development
process.

annotation Synonym: note. (MOF)

any A CORBA primitive data type. A strongly typed “universal union” type that can
contain any value whose type is a CORBA data type. This data type is typically used
in CORBA IDL when it is not possible to choose an appropriate type at the time the

2 February 2001 CWM 1.0 Glossary-513

interface is defined. Use of CORBA anys entails dynamic type checking, and extra
overheads in value transmission. See strong typing, dynamic typing, TypeCode.
(CORBA)

architecture The organizational structure of a system. An architecture can be recursively
decomposed into parts that interact through interfaces, relationships that connect parts,
and constraints on the way that parts can be assembled.

argument A specific value corresponding to a parameter. Synonym: actual parameter.

array 1. A CORBA constructed data type.
2. A collection (1) whose type fixes the number of elements. The ordering and
uniqueness properties of an array are indeterminate. (MOF)

artifact A piece of information that is used or produced by a software development process. An
artifact can be a model, a description or a piece of software.

association 1. A semantic relationship two or more types describes a set of connections between
their respective instances. (UML)
2. An association (1) between classes. (MOF)

Association A model element that defines an association (2) in a MOF metamodel. (MOF)

association end See: association role.

AssociationEnd A model element that defines an association end in a MOF metamodel. (MOF)

association class A modeling element that has both association and class properties. An association class
can be seen as an association that also has class, or as a class that also has association
properties. (UML)

association role The role that a type or class plays in an association. Synonym: association end.

attribute 1. An attribute of an object is an identifiable association between the object and some
other entity or entities. (OMA)
2. An attribute is a named property of a type. (UML)
3. An attribute is a named property of a class. (MOF)

Attribute A model element that defines an attribute in a MOF metamodel. (MOF)

bag An unordered collection in which duplicate members are allowed. (MOF)

base type The base type of a collection (1) is the type (1) of its elements.

behavior The observable effects of an operation, including its results (MOF). Synonym:
behavior (OMA)

binary association An association between two classes. The degenerate case of an n-ary association where
“n” is two.

boolean 1. A UML enumeration type whose values are true and false. (UML)
2. A CORBA primitive data type whose values are true and false. (CORBA)

Glossary-514 CWM 1.0 2 February 2001

builtin type A type in a type system which is available as a predefined type in all instantiations of
the type system; e.g. “short” and “string” are builtin types in CORBA IDL. Contrast:
primitive type.

boolean expression An expression that evaluates to a boolean value.

business metadata Business metadata is used to help end users understand and utilize the data in the
warehouse, in business terms. It describes the business context and meaning of the
warehouse data. (CWM)

CDATA section A part of an XML Document in which any markup (e.g. tags) is not interpreted, but is
passed to the application as is. (W3C)

cardinality The number of elements in a collection. Contrast: multiplicity.

class 1. A type (3) that characterizes objects that share the same attributes, operations,
methods, relationships, and semantics. (UML)
2. An implementation that can be instantiated to create multiple objects with the same
behavior. Types classify objects according to a common interface; classes classify
objects according to a common implementation. (OMA)

Class A model element that defines a class (1) in a MOF metamodel. (MOF)

classifier 1. A category of UML model elements that roughly correspond to types in
programming languages. The category includes association classes, classes (1), data
types (2), interfaces, subsystems and use cases. (UML)
2. The category of MOF model elements analogous to classifier (1):

classifier level In MOF metamodels and UML models, this label indicates that the labelled feature is
common to all instances of its classifier. For example, a classifier level attribute of a
class is common to all instances of the class. Synonym: static. Contrast: instance level.
(UML, MOF)

class diagram A UML diagram that shows a collection of declarative (static) model elements, such as
classes, types, and their contents and relationships. (UML)

class proxy A MOF metaobject that carries the classifier level attributes and operations for an
instance of a MOF class. (MOF)

client A type, class, or component that requests a service from another type, class or
component. (UML)

closure The transitive closure of some object under some relationship or relationships.

collection 1. A group of values or objects. The values in a collection are often refered to as
members or elements of the collection.
2. A collection (1) in which the members are instances of the same base type. The type
of a collection is defined by the base type and a multiplicity. See: array, sequence, bag,
set, list and unique list. (MOF)

compile time Indicates something that occurs during the compilation of a software module.

component An executable software module with an identity and a well-defined interface.

2 February 2001 CWM 1.0 Glossary-515

composite [class] A class that is related to one or more classes by a composition relationship. See:
composition.

composite aggregation Synonym: composition.

composition A form of aggregation with strong ownership and coincident lifetime as part of the
whole. Parts with non-fixed multiplicity may be created after the composite itself, but
once created they live and die with it (i.e. they share lifetimes). Such parts can also be
explicitly removed before the death of the composite. Composition may be recursive.
Synonym: composite aggregation. (UML)

concrete class A class that can be directly instantiated. Contrast: abstract class.

concrete language Synonym: notation.

constraint A semantic condition or restriction. Certain constraints are predefined, others may be
user defined. Constraints may be expressed in natural language or a formal language.
(UML, MOF)

Constraint A model element that defines a constraint on another element in a MOF metamodel.
(MOF)

container 1. An entity that exists to contain other entities. See containment.
2. An entity’s container is the entity that contains it.

containment A form of aggregation that is similar to composition. The fundamental properties of
containment are:

• an entity can have at most one container at any given time, and

• an entity cannot directly or indirectly contain itself.

containment hierarchy A containment hierarchy is a tree-shaped graph of entities, consisting of a root entity
and all other entities that are directly or indirectly contained by it.

containment matrix A set of constraints on a containment relationship (expressible as a matrix of boolean
values) that determine what other kinds of entities a given kind of entity can contain.
For example, the MOF Model definition includes such a matrix to specify which
concrete subclasses of ModelElement can be contained by each concrete subclass of
Namespace. (MOF)

CORBA Acronym: The Common Object Request Broker Architecture.

CORBA IDL Synonym: IDL.

CWM Acronym: Common Warehouse Metamodel. The proposed OMG specification for
representing and managing warehouse metadata. (CWM)

data 1. A representation of information.
2. Items representing facts, text, graphics, images, sound, and video. Data is the raw
material of a system supplied by data producers and is used by information consumers
to create information. (CWM)

data analysis tools Software that provides a logical view of data in a data warehouse. (CWM)

Glossary-516 CWM 1.0 2 February 2001

data element The most elementary unit of data that can be identified and described in a system.
(CWM)

data management Controlling, protecting, and facilitating access to data in order to provide information
consumers with timely access to the data they need. (CWM)

data transformation Creating information from data. This includes decoding operational data and merging
of data from multiple operational data sources. (CWM)

data type A type whose values have no identity. The data types in a type system are typically
into the primitive built-in types, and constructed types such as enumerations and so on.

DataType A model element that defines a data type on another element in a MOF metamodel.
(MOF)

data warehouse An implementation of an informational database used to store sharable data sourced
from an operational database. (CWM)

dependency 1. A relationship between two entities in which a change to an aspect of one entity
affects the other (dependent) entity in some way.
2. A dependency (1) between two modeling elements such that a change to an element
changes the meaning of the dependent element. (UML, MOF)

derived attribute An pseudo-attribute whose value is not stored explicitly as part of an object, but is
calculated from other state when required. Derived attributes can also be updated.
(MOF)

derived association A pseudo-association whose component links are not stored explicity, but are
calculated from other state when queried. Derived associations can also be updated.
(MOF)

derived element 1. A model element whose value can be computed from another element, but that is
shown for clarity or that is included for design purposes even though it adds no
semantic information. (UML)
2. An element in a metamodel that is derived from other metamodel elements, and yet
is visible in the interfaces produced by an object mapping. See derived attribute,
derived association. (MOF)

design The phase of the software development process whose primary purpose is to decide
how the system will be implemented. During the design phase, strategic and tactical
decisions are made to meet the required functional and quality requirements of a
system.

design time Refers to something that occurs during a design phase of the software development
process. Contrast: analysis time.

development process A set of partially ordered steps performed for a given purpose during software
development, such as constructing models or implementing models.

diagram A graphical presentation of a collection of model elements, most often rendered as a
connected graph of arcs (relationships) and vertices (other model elements).

document element See root element. (XML)

2 February 2001 CWM 1.0 Glossary-517

Document Type Definition See DTD (XML)

domain An area of knowledge or activity characterized by a set of concepts and terminology
understood by practitioners in that area.

dynamic typing A category of type safety that can only be enforced by dynamic type checking. Type
systems with dynamic typing are more expressive than those with static typing only. at
the cost of run time overheads and potential type errors. Contrast: static typing.

dynamic type checking A type checking activity that occurs at run time. Contrast: static type checking.

DTD A set of rules governing the element types that are allowed within an XML document
and rules specifying the allowed content and attributes of each element type. The DTD
also declares all the external entities referenced within the document and the notations
that can be used. (XML)

EBNF Acronym: Extended Backus-Naur Form. A widely used notation for expressing
grammars.

element 1. An atomic constituent of a model. Synonym: model element. (MOF, UML)
2. A logical unit of information in a XML document. An XML element consists of a
start tag, an element content and a matching end tag. (XML)

element attributes The name-value pairs that can appear within the start tag of an element (2). (XML)

element content The elements or text that is contained between the start tag and end tag of an element.
(XML)

element type A particular type of element, such as a paragraph in a document or a class in an XMI
encoded metamodel. The element type is indicated by the name that occurs in its start-
tag and end-tag. (XML)

empty string A string with zero characters.

end tag A tag that marks the end of an element, such as </Model>. See start tag. (XML)

entity 1. A “thing”.
2. An item of interest in a system being modelled.

enumeration 1. A type that is defined as a finite list of named values. For example, Color = {Red,
Green, Blue}. (UML)
2. A kind of constructed data type in the CORBA type system. (CORBA)

export 1. To transmit a description of an object to an external entity. (OMA)
2. In the context of packages, to make an element visible outside of its enclosing
namespace. See: visibility, import (2). (UML)

expression A formula in some language that can be evaluated in some context to give a value. For
example, the expression (7 + 5 * 3) evaluates to 22.

extent The set of objects that belong to a MOF package instance, class proxy or association
instance. (MOF)

feature A (meta-)model element that defines part of another (meta-)model element. For
example an UML class has attributes and operations as features. (UML, MOF)

Glossary-518 CWM 1.0 2 February 2001

formal language A language with a specified syntax and meaning.

formal parameter Synonym: parameter.

framework A micro-architecture that provides an extensible template for applications within a
specific domain. (UML)

frozen Synonym: immutable. (MOF)

grammar A formal specification of the syntax of a language.

generalizable element A model element that may participate in a generalization relationship. See:
generalization. (UML)

generalization A taxonomic relationship between a more general element and a more specific
element. The more specific element is fully consistent with the more general element
and contains additional information. An instance of the more specific element may be
used where the more general element is allowed. See: specialization.

generic interface Interfaces that are shared by all MOF metaobjects. See Reflective. Contrast: specific
interfaces. (MOF)

HTML Acronym: Hyper Text Markup Language. A language for associating visual markup
and hyperlinks with textual information that is one of the cornerstones of the World
Wide Web. HTML is a particular application of SGML. (W3C)

identifier A value that denotes an instance with identity. See: name, object reference.

identity “Thingness”. A instance has identity if it can be distinguished from other instances
irrespective of its component values. For example, objects have identity but numbers
do not.

IDL 1. Acronym: Interface Definition Language. The OMG language for specifying
CORBA object interfaces. (OMA)
2. An interface specification in CORBA IDL (1) - colloquial.

IDL mapping 1. A mapping of the design expressed in a model onto CORBA IDL.
2. An IDL mapping (1) defined in the MOF standard that maps a MOF metamodel into
CORBA IDL for metaobjects that represent metadata for the metamodel.

immutable The property of an entity or value that it will never change. For example, the number
42 is immutable. Synonym: frozen. Contrast: read only. (MOF)

implementation 1. An artifact that is the realization of an abstraction in more concrete terms. For
example, a class is an implementation of a type, a method is an implementation of an
operation. (UML)
2. A realization of a design object in engineering technology; e.g. IDL or program
source code.
3. The process of producing an implementation (1)(2).

implementation inheritance The use of inheritance to produce one implementation artifact from another
implementation artifact. Implementation inheritance presupposes interface inheritance.

2 February 2001 CWM 1.0 Glossary-519

import 1. To create an object based on a description of an object transmitted from an external
entity. See import (1). (OMA)
2. In the context of package, a dependency that shows the packages whose classes may
be referenced within a given package (including packages recursively embedded within
it). Contrast: export (2). (UML)
3. A relationship between packages in a MOF metamodel that makes the contents of
the imported package visible within the importing package. (MOF)

Import A model element that in a MOF metamodel that specifies that one package imports
another package. (MOF)

information 1. The conjunction of data and structure. For example, facts.
2. Data that has been processed in such a way that it can increase the knowledge of the
person who receives it. (CWM)

information consumer A person or software service that uses data to create information. (CWM)

information set A domain-specific extension of OLAP that defines logical structures for raw data
collection from mainly human sources (e.g., questionnaire, report form). (CWM)

inheritance The mechanism by which more specific elements incorporate structure and behavior of
more general elements related by behavior. See generalization. (UML, MOF)

instance 1. An instance of a type (1) is some value that satisfies the type predicate. (ODP)
2. An object created by instantiating a class. (OMA)
3. An entity to which a set of operations can be applied and which has a state that
stores the effects of the operation. (UML)

instance level In MOF metamodels and UML models, this label indicates that the labelled feature is
common to all instances of its classifier. For example, a classifier level attribute of a
class is common to all instances of the class. Contrast: classifier level. (UML, MOF)

instantiate The act or process of making an instance of something. See: reify.

interface A type (1) that describes the externally visible behavior common to a set of objects. An
interface includes the signatures of any operations common to all of the objects.

interface inheritance The inheritance of the interface of a more specific element. This does not imply
inheritance of behavior.

introspection A style of programming in which a program is able to examine parts of its own
definition. Contrast: reflection (1).

invariant A constraint on an entity or group of entities that must hold at all times.

link A semantic connection between a tuple of objects. An instance of an association. See:
association.

link role An instance of an association role. See: link, role.

list A collection in which the order of the contents is significant, and duplicates are
allowed. An ordered collection. See: Set, Array, Unique list.

knowledge The conjunction of information with some aspect of understanding.

Glossary-520 CWM 1.0 2 February 2001

language A means of expression. See abstract language, concrete language, natural language.

lumpy cube A jagged multidimensional array. A cube whose dimensionality changes dynamically.

markup Information that is intermingled with the text of an XML document to indicate its
logical and physical structure. (XML)

member Synonym: feature.

meta- A prefix that denotes a Describes relationship. For example, “metadata” describes
“data”. (MOF)

metadata 1. Data that describes other data. A constituent of a model. (MOF)
2. An inclusive term for metadata (1), meta-metadata and meta-meta-metadata. (XMI)
3. Metadata is data about data. Examples of metadata include data element
descriptions, data type descriptions, attribute/property descriptions, range/domain
descriptions, and process/method descriptions. (CWM)

meta-level The level of “meta-”ness of a concept in a metadata framework.

meta-metadata Data that describes metadata. A constituent of a metamodel. (MOF)

meta-meta-metadata Data that describes meta-metadata. A constituent of a meta-metamodel. (MOF)

meta-metamodel A model that defines an abstract language for expressing metamodels. The
relationship between a meta-metamodel and a metamodel is analogous to the
relationship between a metamodel and a model. See: MOF Model, the. (MOF)

metamodel A model that defines an abstract language for expressing other models. An instance of
a meta-metamodel. See: MOF metamodel. (MOF)

metamodel elaboration The process of generating a repository type from a published metamodel. Can includes
the generation of interfaces and repository implementations for the metamodel being
elaborated. (MOF)

metaobject 1. An object that represents metadata (2). (MOF)
2. Often, a MOF metaobject. (MOF)

metaobject protocol A reflection (1) technology in which a program can alter the behavior of the instances
of a class by send a message to its metaclass. This style of reflection is not part of the
MOF specification.

Meta Object Facility, the See: MOF, the.

method The implementation of an operation. The algorithm or procedure that effects the results
of an operation. (UML)

model 1. A semantically closed abstraction of a system. See: system. (UML)
2. A semantically closed collection of metadata described by a single metamodel.
(MOF)

model aspect A dimension of modeling that emphasizes particular qualities of the metamodel. For
example, the structural model aspect emphasizes the structural qualities of the
metamodel. (MOF)

2 February 2001 CWM 1.0 Glossary-521

model element Synonym: element. (MOF, UML)

ModelElement The abstract superclass of all model elements in a MOF metamodel. (MOF)

modeling time Refers to something that occurs during a modeling phase of the software development
process. It includes analysis time and design time. Usage note: When discussing object
systems it is often important to distinguish between modeling-time and run-time
concerns.

module A software unit of storage and manipulation. Modules include source code modules,
binary code modules, and executable code modules. See: component.

MODL Acronym: Meta Object Definition Language. A textual language developed by DSTC
that can be used to define MOF metamodels. (MOF)

MOF, the 1. Acronym: Meta Object Facility. The OMG adopted standard for representing and
managing metadata. (MOF)
2. A metadata service that implements the MOF, the (1) specification. (MOF)

MOF-based model Synonym: MOF model.

MOF-based metamodel Synonym: MOF metamodel.

MOF meta-metamodel Synonym: MOF Model, the.

MOF metamodel A metamodel whose meta-metamodel is the MOF Model. (MOF)

MOF model A model (2) whose metamodel is a MOF metamodel. (MOF)

MOF Model, the The MOF Model is the standard meta-metamodel that is used to describe all MOF
metamodels. It is defined in the MOF specification. (MOF)

multiple inheritance A kind of inheritance in which a type may have more than one supertype.

multiplicity 1. A specification of the range of allowable cardinalities that a set may assume.
Multiplicity specifications may be given for roles within associations, parts within
composites, repetitions, and other purposes. Essentially a multiplicity is a (possibly
infinite) subset of the non-negative integers. (UML)
2. A specification of the allowable cardinalities of the values of an attribute, parameter
or association end, along with its uniqueness and orderedness. In the MOF, the
allowable cardinalities of a multiplicity must form a contiguous subrange of the non-
negative integers. (MOF)

multi-valued A ModelElement with multiplicity said to be multi-valued when the ‘upper’ bound of
its multiplicity is greater than one. The term does not the number of values held by an
attribute, parameter, etc., at any point in time, but rather to the number of values that it
can have at one time. Contrast: single-valued. (MOF)

n-ary association An association involving three or more classes. Each link of the association is an n-
tuple of values from the respective classes.

name 1. A human readable identifier. See: identifier.
2. The name (1) of a model element. (MOF, UML)

Glossary-522 CWM 1.0 2 February 2001

namespace 1. A mapping from names (1) to entities denoted by those names.
2. An element of a metamodel whose primary purpose is to act as a namespace (1) for
element names. (MOF)

Namespace The abstract class in the MOF model that is the supertype of those classes that act as
namespaces (2). The Namespace class also provides element containment in the MOF
Model. (MOF)

natural language A language that has no specification. A language that has evolved for human to human
communication; e.g. English, Sanskrit, Amercan Sign Language.

nested package A package that is defined as contained by another package in a MOF metamodel. An
instances of a nested package can only exist in the context of an instance of its
enclosing package. (MOF)

node 1. A component in a network. A network consists of nodes connected by edges.
2. A run-time physical object that represents a computational resource, generally
having at least a memory and often processing capability as well. Run-time objects and
components may reside on nodes. (UML)

notation A system of human readable (textual or graphical) symbols and constructs for
expressing information.

note A comment attached to an element or a collection of elements. A note has no
semantics. (UML)

object An entity with a well-defined boundary and identity that encapsulates state and
behavior. State is represented by attributes and relationships, behavior is represented
by operations and methods. An object is an instance of a class. (MOF, UML)

object reference An identifier for an object, typcally a CORBA object. (OMA)

OCL Acronym: Object Constraint Language. A pure expression language that is a non-
normative part of the UML specification (ad/99-06-08) that is designed for expressing
constraints. (UML)

OLAP On-Line Analytical Processing. OLAP uses a multidimensional view of aggregate data
to provide quick access to strategic information for further analysis. OLAP and data
warehouses are complementary. A data warehouse stores and manages data. OLAP
transforms this data into strategic information. (CWM)

operation A service that can be requested from an object to effect behavior. An operation has a
signature, which may restrict the actual parameters that are possible. (MOF, UML)

operation database The operational database contains detailed data used to run the day-to-day operations
of a business. It is the source of data for the data warehouse. (CWM)

ordered collection A collection that is ordered. See ordering. (MOF)

ordering A property of collections. A collection is ordered if the sequence in which the elements
appear needs to be preserved. (MOF)

package A mechanism for organizing the elements of a model or metamodel into groups.
Packages may be nested within other packages. (MOF, UML)

2 February 2001 CWM 1.0 Glossary-523

Package The class in the MOF Model that describes a package in a metamodel. (MOF)

package cluster A package that groups together a number of packages so that a set of instances of those
packages can form a single extent. A package composition mechanism. (MOF 1.x)

package consolidation Synonym: package cluster. (MOF 1.x)

package importing See: import (3). A package composition mechanism. (MOF)

package inheritance A generalization relationship between packages. Analogous to interface interface
inheritance for classes. A package composition mechanism. (MOF)

package nesting Defining one package inside another. A package composition mechanism. See: nested
package. (MOF)

parameter 1. A place holder for a value that can be changed, passed or returned by a computation.
A parameter typically consists of a parameter name, a type and attributes that specify
the information passing semantics for actual parameters. Synonym: formal parameter.
Contrast: actual parameter, argument.
2. A parameter (1) of an operation or exception. (CORBA, MOF)
3. A parameter (1) of an operation, message or event. (UML)

postcondition An constraint that must be true at the completion of a computation.

precondition An constraint that must be true at the start of a computation.

primitive type A type from which other types may be constructed, but that is not constructed from
other types. See type system.

product The artifacts of development, such as models, code, documentation, work plans.
(UML)

profile A simplified subset of a language or a metamodel.

projection 1. A primitive operation in relational algebra which produces a relation by “slicing”
one or more columns from another relation.
2. The set of MOF class instances that is visible via the reference operations of a class
instance. For a class X, a n-ary association A(X,Y1, ... Yn-1) and an instance x ∈ X
then the expression

PROJECT [Y1, ... Yn-1] (SELECT A WHERE X = x)

defines the set of links. In the binary case, the set is a set of instances. (MOF)
3. A mapping from a set to a subset. (UML)

property 1. A characteristic of an entity.
2. A property (1) that is represented as a mapping from an entity and a property name
to a value for the property. See tagged value. (UML)

pseudo-code An informal description of an algorithm in a language whose meaning is not fully
defined.

Glossary-524 CWM 1.0 2 February 2001

published (meta-)model A (meta-)model which has been frozen, and made available for use. For example, a
published metamodel can be used to instantiate repositories and can be safely reused in
other metamodels.

quokka A small scrub-wallaby found on Rottnest Island, Western Australia.

read only Describes an object or attribute for which no explicit update operations are provided.
(MOF)

recursive See recursive.

reference 1. An identifier.
2. A use of a model element. (UML, MOF)
3. A feature of a class that allows a client to navigate from one instance to another via
association links. See projection (2). (MOF)

Reference A model element that defines a reference in a MOF metamodel. (MOF)

reflection 1. A style of programming in which a program is able to alter its own execution model.
A reflective program can create new classes and modify existing ones in its own
execution. Examples of reflection technology are metaobject protocols and callable
compilers.
2. In the MOF, reflection characterizes what happens when a client examines and
updates metadata without compile time knowledge of its metamodel. (MOF)

reflective Describes something that uses or supports reflection.

reflective interfaces Synonym: generic interface. (MOF)

Reflective The name of the CORBA IDL module containing the MOF’s reflective interfaces.
(MOF)

reify To produce an object representation of some information.

relation A collection of relationships (1) with the same roles. A relation is typically pictured as
a two dimensional table with the rows representing relationship tuples, and the
columns representing the roles and their values.

relationship 1. A semantic connection between 2 or more entities where each entity fills a distinct
role. A relationship is typically expressed as a tuple.
2. Colloquially, a relation.
3. A relationship (1) between elements of a model. Examples include associations and
generalizations (MOF, UML).

repository 1. A logical container for metadata. (MOF)
2. A distributed service that implements a repository (1). (MOF)

requirement A desired feature, property (1), or behavior of a system.

responsibility A contract or obligation of a type or class. (UML)

reuse The act or process of taking a concept or artifact defined in one context and using it
again in another context.

2 February 2001 CWM 1.0 Glossary-525

role 1. A position in a relationship or column in a relation.
2. The named specific behavior of an entity participating in a particular context. A role
may be static (e.g., an association role) or dynamic (e.g., a collaboration role). (UML)

root element The single outermost element in an XML Document. Synonym: document element.
(XML)

run time The period of time during which a computer program executes.

scope 1. A region of a specification in which a given identifier or entity may be used.
2. An attribute of some features in the UML metamodel and MOF Model that
determines if the feature is instance level or classifier level. (MOF, UML)

sequence 1. A CORBA constructed data type. (CORBA)
2. A collection whose data type does not specify ordering or uniqueness semantics.
Differs from an array in that the number of elements is not fixed. (MOF)

set An unordered collection in which a given entity may appear at most once.

SGML Acronym: Standard Generalized Markup Language. An International Standard (ISO
8879:1986) that describes a generalized markup scheme for representing the logical
structure of documents in a system-independent and platform independent manner.

signature The name and parameters of an operation. Parameters may include an optional returned
parameter. (MOF)

single inheritance A form of generalization in which a type may have only one supertype.

single-valued A ModelElement with a multiplicity is called single-valued when its upper bound is
equal to one. The term single-valued does not pertain to the number of values held by
the corresponding feature of an instance at any point in time. For example, a single-
valued attribute, with a multiplicity lower bound of zero may have no value. Contrast:
multi-valued.

specialization The reverse of a generalization relationship.

specific interfaces An interface for metadata described by a given metamodel that is tailored to the
abstract syntax of that metamodel. Contrast: generic interface.

specification A precise description that can or should be used to produce things.

Standard Generalized Markup
Language See: SGML

start tag A tag that marks the beginning of an element, such as <Model>. Also see end-tag.
(XMI)

state The state of an object is the group of values that constitute its properties at a given
point in time.

static In C++ or Java, a static attribute or a static member function is shared by all instances
of a class. Synonym: classifier level.

static type checking Contrast: dynamic type checking.

static typing Contrast: dynamic typing.

Glossary-526 CWM 1.0 2 February 2001

strong typing A characteristic of a computational system that type failures are guaranteed not to
occur.

stereotype A new type of modeling element that extends the semantics of the metamodel.
Stereotypes must be based on certain existing types or classes in the metamodel.
Stereotypes may extend the semantics, but not the structure of pre-existing types and
classes. Certain stereotypes are predefined in the UML, others may be user defined.
Stereotypes are one of three extendibility mechanisms in UML.

string A sequence of text characters. The details of string representation depends on
implementation, and may include character sets that support international characters
and graphics.

subclass In a generalization relationship the specialization of another class, the superclass. See:
generalization.

subtype In a generalization relationship the specialization of another type, the supertype. See:
generalization.

subsystem A part of a system that it is meaningful to describe in isolation.

superclass In a generalization relationship the generalization of another class, the subclass. See:
generalization.

supertype In a generalization relationship the generalization of another type, the subtype. See:
generalization.

supplier A type, class or component that provides services that can be invoked by others.

system A collection of connected units that are organized to accomplish a specific purpose. A
system can be described by one or more models, possibly from different viewpoints.
(UML)

tagged value A representation of a property as a name-value pair. In a tagged value, the name is
referred as the tag. Certain tags are predefined; others may be user defined. (UML,
MOF)

technical metadata Technical metadata, such as transformation mappings, is used to build and maintain the
data warehouse processes. It describes the data used by various tools to store,
manipulate, or move warehouse data. (CWM)

technology mapping A mapping that transforms a design expressed as a model or metamodel into
implementation artifacts; e.g. CORBA IDL or program source code.

top-level package A package that is not nested in another package. (MOF)

transitive closure 1. The transitive closure of the value v0 in V under the mapping m : V → V is defined
by the following equation:

TC(v0, m) ≅ { v ∈ V : (v = v0) ∨ (∃ vi ∈ TC(v0, m) : m(vi) = v) }

In other words, the set of all V’s that are “reachable” from v0 via the mapping. (Math)
2. The transitive closure of an initial object under an association is the set of objects
reachable from the initial object via extant links in the association. (MOF, XMI)

2 February 2001 CWM 1.0 Glossary-527

type 1. A predicate characterizing a collection of entities. (RM-ODP)
2. A predicate defined over values that can be used to restrict a possible parameter or
characterize a possible result. Synonym: type (1). (OMA)
3. A stereotype of class that is used to specify a domain of instances (objects) together
with the operations applicable to the objects. A type (3) may not contain methods.
(UML)

type checking A process that checks for programs or executions that could lead to type failure.

TypeCode A CORBA primitive data type. The TypeCode type is used in CORBA to pass runtime
descriptions of CORBA types. A CORBA any value contains a TypeCode to describe
the embedded value’s type. See any. (CORBA)

type error An event that is triggered when type checking detects a situation which could lead to
type failure.

type expression An expression that evaluates to a reference to one or more types. (UML)

type failure A type failure occurs when a computation erroneously uses a value thinking it has one
type when it has a different (incompatible) type. The consequences of a type failure are
often completely unpredictable.

type loophole A construct or artifice that allows a program to breach type safety.

type safety A desirable property of a program or computation that type failures are guaranteed not
occur.

type system A language for expressing types (1). A type system is typically defined from a small
set of primitive type and type constructors. See metamodel.

typing Synonym: type checking.

unique list An ordered collection in which no entity may not appear more than once as a
collection member; i.e. a list in which duplicate elements are not allowed. (MOF)

uniqueness A property of collection types that determines whether a given element may appear
more than once in the collection. (MOF)

unordered collection A collection in which the order in which the collection members appear has no
significance. See ordering. (MOF)

UML, the Acronym: The Unified Modeling Language. (UML)

UUID Acronym: Universally Unique IDentifier. An identifier that guaranteed to be unique
across all computer systems and across time, provided certain assumptions hold.

valid XML document An XML Document that conforms to its DTD. (XML)

value 1. An element of a type domain. (UML)
2. An entity that can be a possible actual parameter in a request. (OMA)

view A projection (3) of a model, which is seen from a given perspective or vantage point
and omits entities that are not relevant to this perspective. (UML)

Glossary-528 CWM 1.0 2 February 2001

visibility An attribute of a model element whose value (public, protected, private, or
implementation) determines the extent to which the model element may be seen, and
hence used, outside of the namespace in which it is defined.

W3C, the Acronym: the World Wide Web Consortium. The standards body that takes the lead in
developing standards related to the Web; e.g. HTML, HTTP and XML. (XML)

well-formed XML document An XML document that consists of a single element containing properly nested
subelements. All entity references within the document must refer to entities that have
been declared in the DTD, or be one of a small set of default entities. (XML)

XLink An XML construct for representing links to external documents. See Xpointer. (XML)

XMI Acronym: XML-based Metadata Interchange. The adopted OMG standard for a
metadata interchange format that is based on the W3C’s XML specification. (XMI)

XML Acronym: Extensible Markup Language. A profile of SGML. XML is the W3C
standard for representing structured information; e.g. web metadata. (XML)

XML Declaration A processing instruction at the start of an XML document, which asserts that the
document is an XML Document. (XML)

XML Document An XML document consists of an optional XML Declaration, followed by an optional
DTD, followed by a document element. (XML)

XPointer An XML construct for linking to an element, range of elements, or text region within
the same XML document. (XML-Link 6)

	Preface
	1.1 Co-submitting Companies and Supporters
	1.2 Introduction
	1.3 Specification contact points
	1.4 Status of this Document
	1.5 Guide to the Specification
	1.5.1 Other Parts of the Submission

	Proof of Concept
	2.1 Copyright Waiver
	2.2 Proof of Concept

	Response to RFP Requirements
	3.1 Mandatory Requirements
	3.2 Optional Requirements
	3.3 Issues to be Discussed
	3.4 Evaluation Criteria

	Design Rationale
	4.1 Design Overview
	4.2 CWM and the MOF
	4.2.1 An Overview of the MOF
	4.2.2 The relationship between CWM and MOF

	4.3 CWM and UML
	4.3.1 An Overview of UML
	4.3.2 The relationship between CWM and UML

	4.4 CWM and XMI
	4.4.1 An Overview of XMI
	4.4.2 The relationship between CWM and XMI

	4.5 Major Design Goals and Rationale
	4.5.1 Reuse of UML concepts
	4.5.2 Modularity
	4.5.3 Generic model

	Usage Scenarios
	5.1 Overview
	5.2 Users of CWM
	5.3 Usage Scenarios
	5.3.1 ETL Scenario
	5.3.2 OLAP Scenario
	5.3.3 Questionnaire Scenario
	5.3.4 Warehouse Administration Scenario
	5.3.5 Tool Scenarios

	CWM
	6.1 Overview
	6.1.1 The Roles of UML in CWM

	6.2 Organization of the CWM
	6.2.1 Modeling Conventions

	6.3 How the CWM Metamodel is Described
	6.3.1 Classes
	6.3.2 Associations

	ObjectModel
	7.1 Overview
	7.2 Organization of the ObjectModel Package
	7.3 Core Metamodel
	7.3.1 Core Data Types
	7.3.2 Core Classes
	7.3.3 Core Associations
	7.3.4 OCL Representation of Core Constraints

	7.4 Behavioral Metamodel
	7.4.1 Behavioral Data Types
	7.4.2 Behavioral Classes
	7.4.3 Behaviorial Associations
	7.4.4 OCL Representation of Behavioral Constraints

	7.5 Relationships Metamodel
	7.5.1 Relationships Data Types
	7.5.2 Relationships Classes
	7.5.3 Relationships Associations
	7.5.4 OCL Representation of Relationships Constraints

	7.6 Instance Metamodel
	7.6.1 Instance Classes
	7.6.2 Instance Associations
	7.6.3 OCL Representation of Instance Constraints

	Foundation
	8.1 Overview
	8.2 Organization of the Foundation
	8.3 Business Information Metamodel
	8.3.1 BusinessInformation Classes
	8.3.2 BusinessInformation Associations
	8.3.3 OCL Representation of BusinessInformation Constraints

	8.4 DataTypes Metamodel
	8.4.1 DataTypes Classes
	8.4.2 DataTypes Associations
	8.4.3 OCL Representation of DataTypes Constraints

	8.5 Expressions Metamodel
	8.5.1 Expressions Classes
	8.5.2 Expressions Associations
	8.5.3 OCL Representation of Expressions Constraints

	8.6 KeysIndexes Metamodel
	8.6.1 KeysIndexes Classes
	8.6.2 KeysIndexes Associations
	8.6.3 OCL Representation of KeysIndexes Constraints

	8.7 SoftwareDeployment Metamodel
	8.7.1 SoftwareDeployment Classes
	8.7.2 SoftwareDeployment Associations
	8.7.3 OCL Representation of SoftwareDeployment Constraints

	8.8 TypeMapping Metamodel
	8.8.1 TypeMapping Classes
	8.8.2 TypeMapping Associations
	8.8.3 OCL Representation of TypeMapping Constraints

	Relational
	9.1 Overview
	9.2 Organization of the Relational package
	9.2.1 Inheritance
	9.2.2 Containers
	9.2.3 Tables, columns and data types
	9.2.4 Structured types and object extensions
	9.2.5 Keys
	9.2.6 Index
	9.2.7 Triggers
	9.2.8 Procedures
	9.2.9 Instances

	9.3 Relational Classes
	9.3.1 Catalog
	9.3.2 CheckConstraint
	9.3.3 Column
	9.3.4 ColumnSet
	9.3.5 ColumnValue
	9.3.6 ForeignKey
	9.3.7 NamedColumnSet
	9.3.8 PrimaryKey
	9.3.9 Procedure
	9.3.10 QueryColumnSet
	9.3.11 Row
	9.3.12 RowSet
	9.3.13 Schema
	9.3.14 SQLDataType abstract
	9.3.15 SQLDistinctType
	9.3.16 SQLIndex
	9.3.17 SQLIndexColumn
	9.3.18 SQLParameter
	9.3.19 SQLSimpleType
	9.3.20 SQLStructuredType
	9.3.21 Table
	9.3.22 Trigger
	9.3.23 UniqueConstraint
	9.3.24 View

	9.4 Relational Associations
	9.4.1 ColumnOptionsColumnSet protected
	9.4.2 ColumnRefStructuredType protected
	9.4.3 ColumnSetOfStructuredType protected
	9.4.4 DistinctTypeHasSimpleType
	9.4.5 TableOwningTrigger protected
	9.4.6 TriggerUsingColumnSet protected

	9.5 OCL Representation of Relational Constraints

	Record
	10.1 Overview
	10.2 Organization of the Record Package
	10.2.1 Instances

	10.3 Record Classes
	10.3.1 Field
	10.3.2 FieldValue
	10.3.3 FixedOffsetField
	10.3.4 Group
	10.3.5 Record
	10.3.6 RecordDef
	10.3.7 RecordFile
	10.3.8 RecordSet

	10.4 Record Associations
	10.4.1 RecordToFile Protected

	10.5 OCL Representation of Record Constraints

	Multidimensional
	11.1 Overview
	11.2 Organization of the Multidimensional Package
	11.2.1 Dependencies
	11.2.2 Major Classes and Associations
	11.2.3 Inheritance from the ObjectModel

	11.3 Multidimensional Classes
	11.3.1 Dimension
	11.3.2 DimensionedObject
	11.3.3 Member
	11.3.4 MemberSet
	11.3.5 MemberValue
	11.3.6 Schema

	11.4 Multidimensional Associations
	11.4.1 CompositesReferenceComponents
	11.4.2 DimensionOwnsMemberSets
	11.4.3 DimensionsReferenceDimensionedObjects
	11.4.4 MDSchemaOwnsDimensionedObjects
	11.4.5 MDSchemaOwnsDimensions

	11.5 OCL Representation of Multidimensional Constraints

	XML
	12.1 Overview
	12.1.1 Semantics

	12.2 Organization of the XML Package
	12.3 XML Classes
	12.3.1 Attribute
	12.3.2 Content
	12.3.3 Document
	12.3.4 Element
	12.3.5 ElementContent
	12.3.6 ElementType
	12.3.7 ElementTypeReference
	12.3.8 MixedContent
	12.3.9 Schema
	12.3.10 Text

	12.4 XML Associations
	12.4.1 ContentElementTypeReference protected
	12.4.2 ElementTypeContent protected
	12.4.3 MixedContentText protected
	12.4.4 OwnedElementContent protected

	12.5 OCL Representation of XML Constraints

	Transformation
	13.1 Overview
	13.1.1 Semantics

	13.2 Organization of the Transformation Package
	13.3 Transformation Classes
	13.3.1 ClassifierFeatureMap
	13.3.2 ClassifierMap
	13.3.3 DataObjectSet
	13.3.4 FeatureMap
	13.3.5 PrecedenceConstraint
	13.3.6 StepPrecedence
	13.3.7 Transformation
	13.3.8 TransformationActivity
	13.3.9 TransformationMap
	13.3.10 TransformationStep
	13.3.11 TransformationTask
	13.3.12 TransformationTree
	13.3.13 TransformationUse

	13.4 Transformation Associations
	13.4.1 CFMapClassifier
	13.4.2 CFMapFeature
	13.4.3 ClassifierMapSource
	13.4.4 ClassifierMapTarget
	13.4.5 ClassifierMapToCFMap derived protected
	13.4.6 ClassifierMapToFeatureMap derived protected
	13.4.7 DataObjectSetElement
	13.4.8 FeatureMapSource
	13.4.9 FeatureMapTarget
	13.4.10 InverseTransformationTask protected
	13.4.11 TransformationSource protected
	13.4.12 TransformationStepTask
	13.4.13 TransformationTarget protected
	13.4.14 TransformationTaskElement

	13.5 OCL Representation of Transformation Constraints

	OLAP
	14.1 Overview
	14.2 Objectives of the OLAP Package
	14.3 Organization of the OLAP Package
	14.3.1 Dependencies
	14.3.2 Major Classes and Associations
	14.3.3 Dimension and Hierarchy
	14.3.4 Inheritance from the Object Model
	14.3.5 Deploying OLAP Models

	14.4 OLAP Classes
	14.4.1 CodedLevel
	14.4.2 ContentMap
	14.4.3 Cube
	14.4.4 CubeDeployment
	14.4.5 CubeDimensionAssociation
	14.4.6 CubeRegion
	14.4.7 DeploymentGroup
	14.4.8 Dimension
	14.4.9 DimensionDeployment
	14.4.10 Hierarchy abstract
	14.4.11 HierarchyLevelAssociation
	14.4.12 Level
	14.4.13 LevelBasedHierarchy
	14.4.14 Measure
	14.4.15 MemberSelection
	14.4.16 MemberSelectionGroup
	14.4.17 Schema
	14.4.18 StructureMap
	14.4.19 ValueBasedHierarchy

	14.5 OLAP Associations
	14.5.1 CubeDeploymentOwnsContentMaps
	14.5.2 CubeDimensionAssociationsReferenceCalcHierarchy
	14.5.3 CubeDimensionAssociationsReferenceDimension
	14.5.4 CubeOwnsCubeDimensionAssociations
	14.5.5 CubeOwnsCubeRegions
	14.5.6 CubeRegionOwnsCubeDeployments
	14.5.7 CubeRegionOwnsMemberSelectionGroups
	14.5.8 DeploymentGroupReferencesCubeDeployments
	14.5.9 DeploymentGroupReferencesDimensionDeployments
	14.5.10 DimensionDeploymentHasImmediateParent
	14.5.11 DimensionDeploymentHasListOfValues
	14.5.12 DimensionDeploymentOwnsStructureMaps
	14.5.13 DimensionHasDefaultHierarchy
	14.5.14 DimensionOwnsHierarchies
	14.5.15 DimensionOwnsMemberSelections
	14.5.16 HierarchyLevelAssociationOwnsDimensionDeployments
	14.5.17 HierarchyLevelAssociationsReferenceLevel
	14.5.18 LevelBasedHierarchyOwnsHierarchyLevelAssociations
	14.5.19 MemberSelectionGroupReferencesMemberSelections
	14.5.20 SchemaOwnsCubes
	14.5.21 SchemaOwnsDeploymentGroups
	14.5.22 SchemaOwnsDimensions
	14.5.23 ValueBasedHierarchyOwnsDimensionDeployments

	14.6 OCL Representation of OLAP Constraints

	Data Mining
	15.1 Overview
	15.2 Organization of the Data Mining Metamodel
	15.2.1 Dependencies
	15.2.2 Major Classes and Associations
	15.2.3 Inheritance from the ObjectModel

	15.3 Data Mining Classes
	15.3.1 ApplicationAttribute
	15.3.2 ApplicationInputSpecification
	15.3.3 AssociationRulesSettings
	15.3.4 AttributeUsageRelation
	15.3.5 CategoricalAttribute
	15.3.6 Category
	15.3.7 CategoryHierarchy
	15.3.8 ClassificationSettings
	15.3.9 ClusteringSettings
	15.3.10 CostMatrix
	15.3.11 MiningAttribute
	15.3.12 MiningDataSpecification
	15.3.13 MiningModel
	15.3.14 MiningModelResult
	15.3.15 MiningSettings
	15.3.16 NumericAttribute
	15.3.17 OrdinalAttribute
	15.3.18 RegressionSettings
	15.3.19 StatisticsSettings
	15.3.20 SupervisedMiningModel
	15.3.21 SupervisedMiningSettings

	15.4 Data Mining Associations
	15.4.1 ContainsAttributeUsage
	15.4.2 ContainsCategory
	15.4.3 DerivedFromSettings
	15.4.4 HasAttribute
	15.4.5 InputSpecOwnsAttributes
	15.4.6 MiningModelOwnsInputSpecification
	15.4.7 OrdersCategory
	15.4.8 PertainsToAttribute
	15.4.9 ProducedByModel
	15.4.10 SupervisedMiningModelReferencesTargetAttribute
	15.4.11 UsesAsInput
	15.4.12 UsesAsTarget
	15.4.13 UsesAsTaxonomy
	15.4.14 UsesCostMatrix
	15.4.15 UsesItemId
	15.4.16 UsesTransactionId

	15.5 OCL Representation of Data Mining Constraints

	Information Visualization
	16.1 Overview
	16.2 Organization of the Information Visualization Metamodel
	16.2.1 Dependencies
	16.2.2 Major Classes and Associations

	16.3 Inheritance from the Object Model
	16.4 Information Visualization Classes
	16.4.1 RenderedObject
	16.4.2 RenderedObjectSet
	16.4.3 Rendering
	16.4.4 XSLRendering

	16.5 Information Visualization Associations
	16.5.1 CompositesReferenceComponents
	16.5.2 NeighborsReferenceNeighbors
	16.5.3 RenderedObjectSetOwnsRenderedObjects
	16.5.4 RenderedObjectSetOwnsRenderings
	16.5.5 RenderedObjectsReferenceDefaultRendering
	16.5.6 RenderedObjectsReferenceModelElement
	16.5.7 RenderedObjectsReferenceRenderings

	16.6 OCL Representation of Information Visualization Constraints

	Business Nomenclature
	17.1 Overview
	17.1.1 Semantics

	17.2 Organization of the Business Nomenclature Package
	17.3 Business Nomenclature Classes
	17.3.1 BusinessDomain
	17.3.2 Concept
	17.3.3 Glossary
	17.3.4 Nomenclature
	17.3.5 Taxonomy
	17.3.6 Term
	17.3.7 VocabularyElement

	17.4 Business Nomenclature Associations
	17.4.1 GlossaryToTaxonomy
	17.4.2 NomenclatureHierarchy
	17.4.3 RelatedConcepts derived
	17.4.4 RelatedTerms derived
	17.4.5 RelatedVocabularyElements
	17.4.6 SynonymToPreferredTerm
	17.4.7 TermToConcept
	17.4.8 VocabularyElementToModelElement
	17.4.9 WiderToNarrowerTerm

	17.5 OCL Representation of Business Nomenclature Constraints

	Warehouse Process
	18.1 Overview
	18.2 Organization of the Warehouse Process Package
	18.3 Warehouse Process Classes
	18.3.1 CalendarDate
	18.3.2 CascadeEvent
	18.3.3 CustomCalendar
	18.3.4 CustomCalendarEvent
	18.3.5 ExternalEvent
	18.3.6 InternalEvent
	18.3.7 IntervalEvent
	18.3.8 PointInTimeEvent
	18.3.9 ProcessPackage
	18.3.10 RecurringPointInTimeEvent
	18.3.11 RetryEvent
	18.3.12 ScheduleEvent abstract
	18.3.13 WarehouseActivity
	18.3.14 WarehouseEvent abstract
	18.3.15 WarehouseProcess abstract
	18.3.16 WarehouseStep

	18.4 Warehouse Process Associations
	18.4.1 Event protected
	18.4.2 EventUsesCustomCalendar protected
	18.4.3 TriggeringProcess protected
	18.4.4 WarehouseActivityRunsTransformationActivity
	18.4.5 WarehouseActivityStep protected
	18.4.6 WarehouseStepRunsTransformationStep

	18.5 OCL Representation of Warehouse Process Constraints

	Warehouse Operation
	19.1 Overview
	19.1.1 Transformation Executions
	19.1.2 Measurements
	19.1.3 Change Requests

	19.2 Organization of the Warehouse Operation Package
	19.3 Warehouse Operation Classes
	19.3.1 ActivityExecution
	19.3.2 ChangeRequest
	19.3.3 Measurement
	19.3.4 StepExecution
	19.3.5 TransformationExecution

	19.4 Warehouse Operation Associations
	19.4.1 ActivityStepExecutions protected
	19.4.2 ModelElementChangeRequest
	19.4.3 ModelElementMeasurement
	19.4.4 StepExecutionCallAction
	19.4.5 TransformationActivityExecutions
	19.4.6 TransformationStepExecutions

	19.5 OCL Representation of Warehouse Operation Constraints

	Compatibility with Other Standards
	20.1 Introduction
	20.2 Background: Components of the OMG Metamodeling Architecture
	20.3 CWM and MDC Meta Data Interchange Specification
	20.3.1 Overview
	20.3.2 Comparison with CWM

	20.4 CWM and MDC Open Information Model
	20.4.1 Overview
	20.4.2 Comparison with CWM: Database Schema
	20.4.3 Comparison with CWM: Data Transformations
	20.4.4 Comparison with CWM: OLAP Schema
	20.4.5 Comparison with CWM: Record-Oriented Database Schema

	20.5 CWM and OLAP Council/MDAPI
	20.5.1 Overview
	20.5.2 Comparison with CWM

	Conformance Points
	21.1 Introduction
	21.2 Required Compliance
	21.2.1 CWM Metamodel Compliance
	21.2.2 CWM XML Compliance
	21.2.3 CWM IDL Compliance
	21.2.4 CWM DTD Compliance

	21.3 Optional Compliance Points

	CWM Data Types
	22.1 Overview
	22.2 Organization of the CWM Data Types
	22.3 CORBA IDL Data Types
	22.3.1 Overview
	22.3.2 Organization of the CORBA IDL Data Types
	22.3.3 CORBA IDL Data Type Instances
	22.3.4 CORBA IDL Data Types Classes
	22.3.5 CORBAL IDL Data Types Associations

	22.4 Java Data Types
	22.5 SQL-99 Data Types
	22.6 Type Mapping Examples

	References
	Normative
	Non-Normative

	Glossary
	Scope
	Notation Conventions
	Terms

