
Classification using Hierarchical Näıve Bayes models

Helge Langseth∗ (helgel@math.ntnu.no)
Department of Mathematical Sciences, Norwegian University of Science and

Technology, N-7491 Trondheim, Norway

Thomas D. Nielsen (tdn@cs.auc.dk)
Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7E,

DK-9220 Aalborg Ø, Denmark

Abstract. Classification problems have a long history in the machine learning
literature. One of the simplest, and yet most consistently well-performing set of
classifiers is the Näıve Bayes models. However, an inherent problem with these
classifiers is the assumption that all attributes used to describe an instance are
conditionally independent given the class of that instance. When this assumption
is violated (which is often the case in practice) it can reduce classification accuracy
due to “information double-counting” and interaction omission.

In this paper we focus on a relatively new set of models, termed Hierarchical
Näıve Bayes models. Hierarchical Näıve Bayes models extend the modeling flexibility
of Näıve Bayes models by introducing latent variables to relax some of the inde-
pendence statements in these models. We propose a simple algorithm for learning
Hierarchical Näıve Bayes models in the context of classification. Experimental results
show that the learned models can significantly improve classification accuracy as
compared to other frameworks.

Keywords: Classification, Näıve Bayes models, Hierarchical models.

1. Introduction

Classification is the task of predicting the class of an instance from a
set of attributes describing that instance, i.e., to apply a mapping from
the attribute space into a predefined set of classes. When learning a
classifier we seek to generate such a mapping based on a database of
labeled instances. Classifier learning, which has been an active research
field over the last decades, can therefore be seen as a model selection
process where the task is to find a single model, from some set of models,
with the highest classification accuracy. The set of Näıve Bayes (NB)
models (Duda and Hart, 1973) is a family of particularly simple models
which has shown to offer very good classification accuracy. NB mod-
els assume that all attributes are conditionally independent given the
class. However, this assumption is clearly violated in many real-world
problems; in such situations overlapping information may be given an

∗ Current affiliation: SINTEF Technology and Society, N-7465 Trondheim,
Norway; helge.langseth@sintef.no.

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.1

2

unwarranted weight by the classifier (the information related to de-
pendent attributes are treated as coming from independent sources).
To resolve this problem, methods for handling the conditional depen-
dence between the attributes have become a lively research area; these
methods are typically grouped into three categories: Feature selection
(Kohavi and John, 1997), feature grouping (Kononenko, 1991; Pazzani,
1996a), and correlation modeling (Friedman et al., 1997).

The approach taken in this paper is based on correlation modeling
using Hierarchical Näıve Bayes (HNB) models (Zhang, 2004b; Zhang
et al., 2003), see also Langley (1993), Spirtes et al. (1993), Martin and
VanLehn (1994), and Pazzani (1996b). HNBs are tree-shaped Bayesian
networks, with latent variables between the class node (the root of the
tree) and the attributes (the leaves), see Figure 1. The latent variables
are introduced to relax some of the independence statements of the
NB classifier. For example, in the HNB model shown in Figure 1, the
attributes A1 and A2 are not independent given C because the latent
variable L1 is unobserved. Note that if there are no latent variables in
the HNB, it reduces to an NB model.

C

L1

A1 A2

A3 L3

A4 L2

A5 A6 A7

Figure 1. An HNB designed for classification. The class attribute C is the root, and
the attributes A = {A1, . . . , A7} are leaf nodes. L1, L2 and L3 are latent variables.

The idea to use HNBs for classification was first explored by Zhang
et al. (2003). However, they did not focus on classification accuracy, but
rather on the generation of interesting latent structures. In particular,
Zhang et al. (2003) search for the model maximizing the BIC score (a
form of penalized log likelihood (Schwarz, 1978)), and such a global
score function is not necessarily suitable for learning a classifier.

In this paper we focus on learning HNBs for classification: We pro-
pose a computationally efficient learning algorithm that is significantly
more accurate than the system by Zhang et al. (2003) as well as several

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.2

3

other state-of-the-art classifiers. The proposed algorithm endows the la-
tent variables (including their state spaces) with an explicit semantics,
which may allow the decision maker to inspect the rules that governs
the classification of a particular instance; informally, a latent variable
can be seen as aggregating the information from its children which is
relevant for classification.

The remainder of this paper is organized as follows: In Section 2
we give a brief overview of some approaches to Bayesian classification,
followed by an introduction to HNB models in Section 3. In Section 4 we
present an algorithm for learning HNB classifiers from data, and Section
5 is devoted to empirical results. Finally we make some concluding
remarks in Section 6.

2. Bayesian classifiers

A Bayesian network (BN) (Pearl, 1988; Jensen, 2001) is a powerful tool
for knowledge representation, and it provides a compact representation
of a joint probability distribution over a set of variables. Formally, a BN
over a set of discrete random variables X = {X1, . . . ,Xm} is denoted
by B = (BS ,ΘBS

), where BS is a directed acyclic graph and ΘBS

is the set of conditional probabilities. To describe BS, we let pa (Xi)
denote the parents of Xi in BS , and ch (Xi) is the children of Xi in
BS. We use sp (Xi) to denote the state-space of Xi (i.e., the set of
values the variable Xi can take), and for a set of variables we have
sp (X) = ×

X∈X sp (X). We use the notation Xi⊥⊥Xj to denote that
Xi is independent of Xj and Xi⊥⊥Xj |Xk for conditional independence
of Xi and Xj given Xk. In the context of classification, we shall use
C to denote the class variable (sp (C) is the set of possible classes),
and A = {A1, . . . , An} is the set of attributes describing the possible
instances to be classified.

When doing classification in a probabilistic framework, a new in-
stance (described by a ∈ sp (A)) is classified to class c∗ according
to:

c∗ = arg min
c∈sp(C)

∑

c′∈sp(C)

L(c|c′)P (C = c′ |A = a),

where L(·|·) defines the loss function, i.e., L(c|c′) is the cost of clas-
sifying an instance to class c when the correct class is c′. The most
commonly used loss function is the 0/1-loss, defined s.t. L(c|c′) = 0 if
c′ = c and 1 otherwise. When using the 0/1-loss function, the expression
above can be rewritten as:

c∗ = arg max
c∈sp(C)

P (C = c |A = a),

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.3

4

which implies that an instance a is classified to the most probable class
c∗ given that instance.

Since we rarely have access to P (C = c |A = a), learning a classifier
amounts to estimating this probability distribution from a set of labeled
training samples which we denote by DN = {D1, . . . ,DN}; N is the

number of training instances and Di =
(
c(i), a

(i)
1 , . . . , a

(i)
n

)
is the class

and attributes of instance i, i = 1, . . . , N . Let P (C = c |A = a,DN)
be the a posteriori conditional probability for C = c given A = a after
observing DN . Then an optimal Bayes classifier will classify a new
instance with attributes a to class c∗ according to (see, e.g., Mitchell
(1997)):

c∗ = arg min
c∈sp(C)

∑

c′∈sp(C)

L(c, c′)P (C = c′ |a,DN).

An immediate approach to calculate P (C = c |A = a,DN) is to
use a standard BN learning algorithm, where the training data is used
to give each possible classifier a score which signals its appropriateness
as a classification model. One such scoring function is based on the
minimum description length (MDL) principle (Rissanen, 1978; Lam
and Bacchus, 1994):

MDL(B | DN) =
log N

2

∣∣∣Θ̂BS

∣∣∣−
N∑

i=1

log
(
PB

(
c(i),a(i)

∣∣∣ Θ̂BS

))
.

That is, the best scoring model is the one that minimizes MDL(· | DN),

where Θ̂BS
is the maximum likelihood estimate of the parameters in

the model, and
∣∣∣Θ̂BS

∣∣∣ is the dimension of the parameter space (i.e., the

number of free parameters in the model). However, as pointed out by
Greiner et al. (1997) and Friedman et al. (1997) a “global” criterion
like MDL may not be well suited for learning a classifier, as:

N∑

i=1

log
(
PB

(
c(i),a(i), Θ̂BS

))
=

N∑

i=1

log
(
PB

(
c(i)

∣∣∣a(i), Θ̂BS

))
+

N∑

i=1

log
(
PB

(
a

(i)
1 , . . . , a(i)

n , Θ̂BS

))
.

In the equation above, the first term on the right-hand side measures
how well the classifier performs on DN , whereas the second term mea-
sures how well the classifier estimates the joint distribution over the
attributes. Thus, only the first term is related to the classification task,
and the latter term will therefore merely bias the model search; in fact,

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.4

5

the latter term will dominate the score if n is large. To overcome this
problem, Friedman et al. (1997) propose to replace MDL with predictive
MDL, MDLp, defined as:

MDLp(B | DN) =
log N

2

∣∣∣Θ̂BS

∣∣∣−
N∑

i=1

log
(
PB

(
c(i)

∣∣∣a(i) , Θ̂BS

))
. (1)

However, as also noted by Friedman et al. (1997), MDLp cannot be
calculated efficiently in general.

The argument leading to the use of MDLp as a scoring function rests
upon the asymptotic theory of statistics. That is, model search based
on MDLp is guaranteed to select the best classifier w.r.t. 0/1-loss when
N → ∞. Unfortunately, though, the score may not be successful for
finite data sets (Friedman, 1997). To overcome this potential drawback,
Kohavi and John (1997) describe the wrapper approach. Informally, this
method amounts to estimating the accuracy of a given classifier by cross
validation (based on the training data), and to use this estimate as the
scoring function. The wrapper approach relieves the scoring function
from being based on approximations of the classifier design, but at the
potential cost of higher computational complexity. In order to reduce
this complexity when learning a classifier, one approach is to focus on
a particular sub-class of BNs. Usually, these sub-classes are defined
by the set of independence statements they encode. For instance, one
such restricted set of BNs is the Näıve Bayes models which assume
that Ai⊥⊥Aj |C, i.e., that P (C = c|A = a) ∝ P (C = c)

∏n
i=1 P (Ai =

ai|C = c).
Even though the independence statements of the NB models are

often violated in practice, these models have shown to provide sur-
prisingly good classification results; the ranking of the classes may be
correct even though the posterior conditional probability for the class
variable is inaccurate. For instance, Zhang (2004a) shows that con-
ditional dependences among the attributes do not affect classification
accuracy as long as the dependences distribute evenly among the classes
or if they cancel out. Other research into explaining the merits of the
NB model has emphasized the difference between the 0/1-loss function
and the log-loss, see e.g. Friedman (1997) and Domingos and Pazzani
(1997). Friedman (p. 76, 1997) concludes:

Good probability estimates are not necessary for good classi-
fication; similarly, low classification error does not imply that
the corresponding class probabilities are being estimated (even
remotely) accurately.

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.5

6

The starting point of Friedman (1997) is that a classifier learned for a
particular domain is a function of the training set. As the training set is
considered a random sample from the domain, the classifier generated
by a learner can be seen as a random variable; we shall use P̂ (C =
c |A) to denote the learned classifier. Friedman (1997) characterizes a

(binary) classifier by its bias (i.e., EDN

[
P (C |A)− P̂ (C |A)

]
) and its

variance (i.e., VarDN

(
P̂ (C |A)

)
); the expectations are taken over all

possible training sets of size N . Friedman (1997) shows that in order
to learn classifiers with low 0/1-loss it may not be sufficient to simply
focus on finding a model with negligible classifier bias; robustness in
terms of low classifier variance can be just as important.

An example of a class of models where negligible asymptotic bias
(i.e., fairly high model expressibility) is combined with robustness is
the Tree Augmented Näıve Bayes (TAN) models, see Friedman et al.
(1997). TAN models relax the NB assumption by allowing a more
general correlation structure between the attributes. More specifically,
a Bayesian network model is initially created over the variables in A,
and this model is designed s.t. each variable Ai has at most one parent
(that is, the structure is a directed tree). Afterwards, the class attribute
is included in the model by making it the parent of each attribute.
Friedman et al. (1997) use an adapted version of the algorithm by Chow
and Liu (1968) to learn the classifier, and they prove that the structure
they find is the TAN model which maximizes the likelihood of DN ; the
algorithm has time complexity O

(
n2(N + log(n))

)
. The TAN model

has clearly more expressive power than the NB model (Jaeger, 2003),
however, it can still not represent all correlation structures among the
attributes. As an alternative we consider another class of models (called
Hierarchical Näıve Bayes models) that can in principle model any such
correlation structure.

3. Hierarchical Näıve Bayes models

A special class of Bayesian networks is the so-called Hierarchical Näıve
Bayes (HNB) models (Zhang et al., 2003), see also Kočka and Zhang
(2002), and Zhang (2004b). An HNB is a tree-shaped Bayesian network
with only discrete variables, and where the variables are partitioned
into three disjoint sets: {C} is the class variable, A is the set of at-
tributes, and L is a set of latent (or hidden) variables. In the following
we use A to represent an attribute, whereas L is used to denote a latent
variable; X and Y denote variables that may be either attributes or
latent variables. In an HNB the class variable C is the root of the tree

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.6

7

(pa(C) = ∅) and the attributes are at the leaves (ch(A) = ∅,∀A ∈ A);
the latent variables are all internal (ch (L) 6= ∅, pa (L) 6= ∅, ∀L ∈ L).
The use of latent variables allows conditional dependencies to be en-
coded in the model (as compared to, e.g., the NB model). For instance,
by introducing a latent variable as a parent of the attributes Ai and
Aj, we can represent the (local) dependence statement Ai 6⊥⊥Aj |C (see
for instance A1 and A2 in Figure 1). Being able to model such local
dependencies is particularly important for classification, as overlapping
information would otherwise be double-counted:

Example 1. Consider a domain consisting of two classes (C = 0
or C = 1), and two binary attributes A1 and A2. Assume that A1

and A2 always have the same value, i.e., P (A1 = A2) = 1, and let
P (Ai = k |C = k) = 3/5, for i = 1, 2, k = 0, 1, and P (C = 0) = 2/3.
Consequently, we have:

P (C = 0 |A = 1) =
P (A1 = 1, A2 = 1 |C = 0)P (C = 0)

P (A1 = 1, A2 = 1)

=
2/5 · 2/3

2/5 · 2/3 + 3/5 · 1/3
=

4

7

and therefore P (C = 0 |A1 = 1, A2 = 1) > P (C = 1 |A1 = 1, A2 = 1).
On the other hand, if we were to encode this domain in a Näıve Bayes
structure, we would get:

P (C = 0 |A = 1) =
P (A1 = 1, A2 = 1 |C = 0)P (C = 0)

∑
j P (A1 = 1, A2 = 1 |C = j) · P (C = j)

=
P (A1 = 1 |C = 0)P (A2 = 1 |C = 0)P (C = 0)
∑

j P (A1 = 1|C = j)P (A2 = 1|C = j)P (C = j)

=
2/5 · 2/5 · 2/3

2/5 · 2/5 · 2/3 + 3/5 · 3/5 · 1/3
= 8/17,

hence P (C = 0 |A1 = 1, A2 = 1) < P (C = 1 |A1 = 1, A2 = 1), which
would revert the classification if 0/1-loss is used.

Note that the HNB model reduces to the NB model in the special
case when there are no latent variables.

When learning an HNB we can restrict our attention to the par-
simonious HNB models; we need not consider models which encode
a probability distribution that is also encoded by another model with
fewer parameters. Formally, an HNB model, M = (BS ,ΘBS

), with class
variable C and attribute variables A is said to be parsimonious if there
does not exist another HNB model, M ′ = (B′

S ,Θ′
BS

), with the same
class and attribute variables s.t.:

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.7

8

i) M ′ has fewer parameters than M , i.e., |ΘBS
| > |Θ′

BS
|.

ii) The probability distributions over the class and attribute variables
are the same in the two models, i.e., PM (C,A) = PM ′(C,A).

In order to obtain an operational characterization of these models,
Zhang et al. (2003) define the class of regular HNB models. An HNB
model is said to be regular if for any latent variable L, with neighbors
(parent and children) X1,X2, . . . ,Xn, it holds that:

|sp(L)| ≤

∏n
i=1 |sp(Xi)|

maxi=1,...,n |sp(Xi)|
. (2)

Strict inequality must hold whenever L has only two neighbors and at
least one of them is a latent node.1

Zhang et al. (2003) show that i) any parsimonious HNB model is
regular, and ii) for a given set of class and attribute variables, the
set of regular HNB model structures is finite. Observe that these two
properties ensure that when searching for an HNB model we only need
to consider regular HNB models and we need not deal with infinite
search spaces.2

As opposed to other frameworks, such as NB or TAN models, an
HNB can model any correlation among the attribute variables given
the class by simply choosing the state-spaces of the latent variables
large enough (although this encoding is not necessarily done in a cost-
effective manner in terms of model complexity); note that the indepen-
dence statements are not always represented explicitly in the graphical
structure, but are sometimes only encoded in the conditional probabil-
ity tables. On the other hand, the TAN model, for instance, is partic-
ularly efficient for encoding such statements but may fail to represent
certain types of dependence relations among the attribute variables.

Example 2. Consider the classification rule “C = 1 if and only if
exactly two out of the three binary attributes A1, A2 and A3 are in state
1”. Obviously, a Näıve Bayes model can not represent this statement,
and neither can the TAN model; see Jaeger (2003) for a discussion
regarding the expressibility of probabilistic classifiers.

On the other hand, an HNB can (somewhat expensively) do it as
follows: As the only child of the binary class variable we introduce the
latent variable L, with sp (L) = {0, 1, . . . , 7} and ch (L) = {A1, A2, A3}.
Aj (j = 1, 2, 3) is given deterministically by its parent, and its CPT
is defined s.t. Aj = 1 iff bit j equals 1 when the value of L is given
in binary representation. If, for instance, L = 5 (101 in binary rep-
resentation), then A1 = 1, A2 = 0, and A3 = 1 (with probability 1).
Thus, all information about the attributes are contained in L, and we

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.8

9

can simply use the classification rule C = 1 iff L ∈ {3, 5, 6}, which can
be encoded by insisting that P (L = l|C = 0) is 0 for l ∈ {3, 5, 6} and
strictly positive otherwise, whereas P (L = l|C = 1) is strictly positive
iff l ∈ {3, 5, 6} and 0 otherwise.

More generally, by following the method above we see that any
conditional correlation among the attributes can, in principle, be mod-
eled by an HNB: Simply introduce a single latent variable L hav-
ing all the attributes as children and with the state space defined as
sp (L) = ×n

i=1sp (Ai). Clearly, this structure can encode any conditional
distribution over the attributes.

4. Learning HNB classifiers

Learning an HNB model for classification has previously been explored
by Zhang et al. (2003), with the aim of finding a scientific model with
an interesting latent structure. Their method is based on a hill-climbing
algorithm where the models are scored using the BIC score. However,
a drawback of the algorithm is its high computational complexity, and,
as discussed in Section 2, the type of scoring function being used does
not necessarily facilitate the identification of an accurate classifier. In
particular, Zhang et al. (p. 284, 2003) state that

[...] the primary goal of this paper is to discover interesting latent
variables rather than to improve classification accuracy.

In what follows we take a different approach as we focus on learning
HNB models with the sole aim of obtaining an accurate classifier.3 We
also demonstrate the feasibility of the algorithm in terms of its com-
putational complexity, and we describe an inference procedure which
is tailored for the learned models.

4.1. The main algorithm

Our learning algorithm is based on a greedy search over the space of
HNBs; we initiate the search with an HNB model, H0, and learn a
sequence {Hk}, k = 0, 1, . . . of HNB models. The search is conducted
s.t. at each step k we investigate the search boundary (denoted B (Hk))
of the current model Hk, i.e., the set of models that can be reached from
Hk in a single step. We then score all models H ∈ B (Hk) and pick the
best scoring one. This is repeated until no higher scoring model can be
found.

The search boundary is defined s.t. the HNB structure is grown
incrementally starting from the NB model. More specifically, if Lk is

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.9

10

the set of latent variables in model Hk, then the set of latent variables in
Hk+1, is enlarged s.t. Lk+1 = Lk∪{L}, where L is a new latent variable.
We restrict ourselves to only consider candidate latent variables which
are parents of two variables X and Y where {X,Y } ⊆ ch (C) in Hk.

4

Hence, we define Hk+1 as the HNB which is produced from Hk by
including a latent variable L s.t. pa (L) = {C} and pa (X) = pa (Y) =
{L}; Hk+1 is otherwise structurally identical to Hk. Thus, the search
boundary B(Hk) consists of all models where exactly one latent variable
has been added to Hk; there is one such model in B(Hk) for each
possible definition of the state-space for the new latent variable. Note
that since we use the NB model structure as our starting point (H0)
each Hk is a tree with a binary internal structure, i.e., any latent node
L′ ∈ Lk has exactly two children but the class node C may have up to
n children.

Unfortunately, since B(Hk) contains a model for each possible spec-
ification of the state space of each possible latent variable it is not com-
putationally feasible to evaluate all the models in the search boundary.
To overcome this problem we instead select κ > 1 models (contained in
B(Hk)) to represent the search boundary, and then we evaluate these
models. Specifically, when identifying a particular model in this set we
proceed in two steps:

1) decide where to insert the latent variable;

2) define the state-space of the latent variable.

In order to increase the robustness of the algorithm (e.g., in case of
outliers), we pick the κ > 1 models as follows: Randomly partition the
training data DN into κ partly overlapping subsets, each containing
100(κ− 1)/κ% of the training data, and then use each of these subsets
to approximate the best model in the search boundary (following the
two-step procedure above). This results in a list of up to κ different
candidate models which are used to represent B(Hk). Note that when
using the above two-step procedure for identifying a latent variable,
we cannot use scoring functions such as the wrapper approach, MDL,
or MDLp in the first step since this step does not select a completely
specified HNB.

From the set of models representing the search boundary we then
select a model with a higher score than the current one; if no such model
can be found, then the current model is returned. The score-function is
defined s.t. a high value corresponds to what is thought to be a model
with good classification qualities (as measured by the average loss on
unseen data), i.e., Score(H | DN) measures the “goodness” of H. In
order to apply a score metric that is closely related to what the search

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.10

11

algorithm tries to achieve, we use the wrapper approach by Kohavi
and John (1997). That is, we use cross validation (over the training
set DN) to estimate an HNB’s classification accuracy on unseen data;
notice that the test-set (if specified) is not used by the learner. To
summarize, the structure of the algorithm can be outlined as follows:

Algorithm 1. (Skeleton)

1. Initiate model search with H0.

2. Partition the training-set into κ subsets D(1), . . . , D(κ).

3. For k = 0, 1, . . . , n− 1:5

a) For i = 1, . . . , κ:

i) Select a candidate latent variable L(i) according to D(i).

ii) Select the state-space of L(i).

iii) Define H(i) by “including” L(i) in Hk.

b) H ′ = arg max
i=1,...,κ

Score
(
H(i) | DN

)
.

c) If Score(H ′ | DN) > Score(Hk | DN) then:
Hk+1 ← H ′; k ← k + 1.

else
return Hk.

4. Return Hn.

Before describing Step (i) and Step (ii) in detail, we recall that
the algorithm starts out with an NB model, and that the goal is to
introduce latent variables to improve upon that structure, i.e., to avoid
“double-counting” of information when the independence statements
of the NB model are violated.

4.1.1. Step (i): Finding a candidate latent variable
To facilitate the goal of the algorithm, a latent variable L is proposed
as the parent of {X,Y } ⊆ ch (C) if the data points towards X 6⊥⊥Y |C.
That is, we consider variables that are strongly correlated given the
class variable as indicating a promising position for including a latent
variable; from this perspective there is no reason to introduce a latent
variable as a parent of X and Y if X⊥⊥Y |C. Hence, the variables that
have the highest correlation given the class variable may be regarded
as the most promising candidate-pair. More specifically, we calculate
the conditional mutual information given the class variable, I(·, · |C),
for all (unordered) pairs {X,Y } ⊆ ch (C).6 However, as I(X,Y |C) is

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.11

12

increasing in both |sp (X)| and |sp (Y)| we cannot simply pick the pair
{X,Y } that maximizes I(X,Y |C); this strategy would unintentionally
bias the search towards latent variables with children having large state-
spaces. Instead we utilize that under the assumption that X⊥⊥Y |C we
have:

2N · I(X,Y |C)
L
→ χ2

ν ,

where ν = |sp (C)| (|sp (X)| − 1) (|sp (Y)| − 1), and
L
→ means conver-

gence in distribution as N → ∞, see, e.g., Whittaker (1990). Finally,
we let i(X,Y) be the estimated value of I(X,Y |C), and calculate

Q(X,Y | DN) = P (Z ≥ 2N · i(X,Y)) , (3)

where Z is χ2 distributed with df degrees of freedom, that is, Q(X,Y |
DN) gives the p-value of a hypothesis test of H0: X⊥⊥Y |C. The pairs
{X,Y } are ordered according to these probabilities, s.t. the pair with
the lowest probability is picked out. By selecting the pairs of variables
according to Q(X,Y | DN), the correlations are normalized w.r.t. the
size differences in the state-spaces.

Unfortunately, to greedily select a pair of highly correlated variables
as the children of a new latent variable is not always the same as
improving classification accuracy, as can be seen from the example
below.

Example 3. Consider a classifier with binary attributes A = {A1, A2,
A3} (all with uniform marginal distributions) and target concept C =
1 ⇔ {A1 = 1 ∧ A2 = 1}. Assume that A1 and A2 are marginally
independent but that P (A2 = A3) = 0.99. It then follows that:

P (Q(A2, A3 | DN) < Q(A1, A2 | DN))→ 1

as N grows large (the uncertainty is due to the random nature of
DN). Hence, the heuristic will not pick out {A1, A2} which in a myopic
sense appears to be most beneficial w.r.t. classification accuracy, but
will propose to add a variable L′ with children ch (L′) = {A2, A3}.
Luckily, as we shall see in Example 4, this does not necessarily affect
classification accuracy.

4.1.2. Step (ii): Selecting the state-space
To find the cardinality of a latent variable L, we use an algorithm
similar to the one by Elidan and Friedman (2001): Initially, the latent
variable is defined s.t. |sp (L)| =

∏
X∈ch(L) |sp (X)|, where each state of

L corresponds to exactly one combination of the states of the children
of L. Let the states of the latent variable be labeled l1, . . . , lt. We then

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.12

13

iteratively collapse two states li and lj into a single state l∗ as long as
this is “beneficial”. This approach implies that a latent variable can be
seen as aggregating the information from its children which is relevant
for classification. Moreover, as we shall see later in this section, this
semantic interpretation allows us to infer data for the latent variables
due to the deterministic relations encoded in the model.

Now, ideally we would measure the benefit of collapsing two states
using the wrapper approach, but as this is computationally expensive
we shall instead use the MDLp score to approximate the classification
accuracy. Let H ′ = (B′

S ,ΘB′

S
) be the HNB model obtained from a

model H = (BS ,ΘBS
) by collapsing states li and lj. Then li and lj

should be collapsed if and only if ∆L(li, lj | DN) = MDLp (H | DN) −
MDLp (H ′ | DN) > 0. For each pair (li, lj) of states we therefore com-
pute:

∆L(li, lj | DN) = MDLp(H|DN)−MDLp(H
′|DN)

=
log(N)

2

(
|ΘBS

| −
∣∣∣ΘB′

S

∣∣∣
)

+
N∑

i=1

[
log

(
PH′(c(i)|a(i))

)
− log

(
PH(c(i)|a(i))

)]
.

For the second term we first note that:

N∑

i=1

[
log

(
PH′(c(i)|a(i))

)
− log

(
PH(c(i)|a(i))

)]

=
N∑

i=1

log
PH′(c(i)|a(i))

PH(c(i)|a(i))

=
∑

D∈DN :f(D,li,lj)

log
PH′

(
cD|aD

)

PH (cD|aD)
,

where f(D, li, lj) is true if case D includes either {L = li} or {L = lj};
cases that do not include these states cancel out. This is also referred to
as local decomposability by Elidan and Friedman (2001), i.e., the gain
of collapsing two states li and lj is local to those states and it does not
depend on whether or not other states have been collapsed. Note that
in order to calculate f(·) we exploit that the deterministic relations
between the latent variables and their children allows us to infer actual
values for the latent variables for any configuration over the attributes
(we shall return to this issue later in this section).

In order to avoid considering all possible combinations of the at-
tributes we approximate the difference in predictive MDL as the dif-
ference w.r.t. the relevant subtree. The relevant subtree is defined by

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.13

14

C together with the subtree having L as root:7

∑

D∈DN :f(D,li,lj)

log
PH′

(
cD|aD

)

PH (cD|aD)

≈ log
∏

c∈sp(C)





(
N(c,li)+N(c,lj)

N(li)+N(lj)

)N(c,li)+N(c,lj)

(
N(c,li)
N(li)

)N(c,li)
·
(

N(c,lj)
N(lj)

)N(c,lj)



 , (4)

where N(c, s) and N(s) are the sufficient statistics. I.e., N(c, s) is the
number of cases in the database where C = c and L = s, and N(s) =∑

c∈sp(C) N(c, s) is the number of cases where L = s. We shall return
to the accuracy of the approximation later in this section.

States are collapsed in a greedy manner, i.e., we find the pair of states
with highest ∆L(li, lj | DN) and collapse those two states if ∆L(li, lj | DN)
> 0. This is repeated (making use of local decomposability) until no
states can be collapsed:

Algorithm 2. (Determine state-space of L)

1. Initiate state-space s.t. |sp (L)| =
∏

X∈ch (L) |sp (X)|.

Label the states s.t. each state corresponds to a unique combination
of ch (L).

2. For each li, lj ∈ sp (L) do:
Calculate ∆L(li, lj | DN).

3. Select l′i, l
′
j ∈ sp (L) s.t. ∆L(l′i, l

′
j | DN) is maximized.

4. If ∆L(l′i, l
′
j | DN) > 0 then:

Collapse states l′i and l′j; goto 2.

5. Return state-space of L.

It should be noted that Elidan and Friedman (2001) initialize their
search with one state in L for each combination of the variables in the
Markov blanket of L. However, since we are only interested in regular
HNB models it is sufficient to consider the smaller set of variables
defined by ch (L) (cf. Equation 2). Actually, even with this set of
variables we may still produce irregular HNB models, but as we use
the difference in predictive MDL to guide the refinement of the state
space we are guaranteed to arrive at a regular HNB as N →∞.8

Example 4. (Example 3 cont’d) The state-space of L′ with ch (L′) =
{A2, A3} is collapsed by Algorithm 2 after L′ is introduced. For large N

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.14

15

the penalty term in MDLp ensures that the state-space will be collapsed
to two states mirroring the states of A2 because L′ will not significantly
change the predictive likelihood from what the model previously held
(note that P (C = c |A2, A3,DN) ≈ P (C = c |A2,DN)). Hence, by
introducing L′ we get a more robust classifier, where the classification
noise introduced by A3 is removed; in this sense, the algorithm can be
seen as incorporating a form of feature selection (Langley, 1994). The
latent variable L′′ with children ch (L′′) = {L′, A1} will be introduced in
the next iteration of Algorithm 1, and the target concept can eventually
be learned.

Note that Algorithm 2 will only visit a subset of the HNB-models in
the search boundary, namely those where the latent variables are given
(deterministically) by the value of their children. An important side-
effect of this is that we can give a semantic interpretation to the state-
spaces of the latent variables in the models the algorithm generates:
L ∈ L aggregates the information from its children which is relevant
for classification. If, for example, L is the parent of two binary variables
A1 and A2, then Algorithm 2 is initiated s.t. L’s state-space is sp (L) =
{A1 = 0∧A2 = 0, A1 = 0∧A2 = 1, A1 = 1∧A2 = 0, A1 = 1∧A2 = 1}.
When the algorithm collapses states, we can still maintain an explicit
semantics over the state-space, e.g., if the first and second state is
collapsed we obtain a new state defined as (A1 = 0 ∧A2 = 0) ∨ (A1 =
0∧A2 = 1), i.e., A1 = 0.9 Observe that this interpretation also implies
that if the attributes have been produced by discretizing a collection of
continuous variables (see, e.g., Fayyad and Irani (1993)), then the latent
variables can be seen as encoding a form of hierarchical discretization
of the original variables.

An important aspect of the semantic interpretation, is that it allows
us to infer data for the latent variables due to the deterministic rela-
tions encoded in the model. This fact provides us with a fast calculation
scheme, as we “observe” all the variables in A and L. It therefore
also follows that we can represent the HNB classifier using only the
class variable and its children. Hence, the representation we will uti-
lize is a Näıve Bayes structure where the “attributes” are represented
by the variables which occur as children of the class variable in the
HNB model. It is simple to realize that the number of free parameters
required to represent this structure equals:

|ΘBS
| = (|sp (C)| − 1) + |sp (C)|

∑

X∈ch (C)

(|sp (X)| − 1) ,

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.15

16

see also Kočka and Zhang (2002). Hence, the difference in predictive
MDL (used in Algorithm 2) can be approximated by:

∆L(li, lj) ≈ log2(N)
|sp (C)|

2

−
∑

c∈sp(C)

N(c, li) log2

(
N(c, li)

N(c, li) + N(c, lj)

)

−
∑

c∈sp(C)

N(c, lj) log2

(
N(c, lj)

N(c, li) + N(c, lj)

)

(5)

+ N(li) log

(
N(li)

N(li) + N(lj)

)

+ N(lj) log

(
N(lj)

N(li) + N(lj)

)

.

It can be shown that the approximation of Equation (5) is exact if
P (ch (C) \ {L} |L = li) = P (ch (C) \ {L} |L = lj).

Finally, to summarize the steps discussed above (and formalize Step
(i) and Step (ii) of Algorithm 1) we have the following algorithm:

Algorithm 3. (Learn HNB classifier)

1. Initiate model search with H0.

2. Partition the training-set into κ partly overlapping subsetsD(1), . . . ,
D(κ).

3. For k = 0, 1, . . . , n− 1:

a) For i = 1, . . . , κ:

i) Let {X(i), Y (i)} = arg min
{X,Y }⊆ch (C) Q

(
X,Y | D(i)

)

(i.e.,
{
X(i), Y (i)

}
⊆ ch (C) in Hk), and define the latent

variable L(i) with children ch
(
L(i)

)
=
{
X(i), Y (i)

}
.

ii) Collapse the state-space of L(i) (Algorithm 2 with D(i) used
in place of DN).

iii) Define H(i) by introducing L(i) into Hk.

b) H ′ = arg max
i=1,...,κ

Score
(
H(i) | DN

)
.

c) If Score(H ′ | DN) > Score(Hk | DN) then:
Hk+1 ← H ′; k ← k + 1

else
return Hk.

4. Return Hn.

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.16

17

It is obvious that any conditional distribution P (A1, . . . , AN |C) is in
principle reachable by the search algorithm but, as the score function
is multi-modal over the search space, the search will in general only
converge towards a local optimum.

For the results reported in Section 5 we have used κ = 10. This value
was chosen (somewhat arbitrarily) based on a preliminary analysis,
which suggested that the behavior of the algorithm is rather insensitive
to the particular value of this parameter. In fact, most of the κ can-
didate models examined in Step 3b were identical (in our experiments
there were typically 1 – 2 unique models out of the κ = 10 models that
were generated).

As a last remark we note that one may also consider other ways
of determining the state-space of the latent variables. One immediate
approach is to search for a suitable state-space by fixing the number of
states, and use some learning algorithm, see e.g., Dempster et al. (1977),
Binder et al. (1997), or Wettig et al. (2003). This can be done greed-
ily to maximize some performance criteria, like BIC, MDL or MDLp.
However, to reduce the computational complexity of the algorithm we
have not considered this any further.

4.2. Inference in the learned model

The algorithm for collapsing the state-space of a latent variable is
the source of the semantics for these nodes, and in turn the reason
why we can represent the HNB as a Näıve Bayes model with aggrega-
tions in place of the attributes. This compact representation requires a
“deterministic inference engine” to calculate P (C |a), because the ag-
gregations defined by the semantics of the latent variables can in general
not be encoded by the conditional probability tables for the variables.
Assume, for instance, that we have three binary variables L,X, Y ,
ch (L) = {X,Y }, and “L = 1 if and only if X = Y ”. This relationship
cannot be encoded in the model X ← L→ Y , and to infer the state of
the latent variable L from X and Y we would therefore need to design a
special inference algorithm which explicitly uses the semantics of L. To
alleviate this potential drawback we can simply re-define the network-
structure s.t. standard Bayesian inference algorithms (Lauritzen and
Spiegelhalter, 1988; Shafer and Shenoy, 1990; Madsen and Jensen, 1998)
can be used: Introduce a new latent variable L′, and change the network
structure s.t. ch (L) = pa (X) = pa (Y) = {L′}; L′ is equipped with at
most one state for each possible combination of its children’s states.
This enlarged structure is capable of encoding any relation between
{X,Y } and L using only the conditional probability tables specified
in the network. Hence, the enlarged structure can be handled by any

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.17

18

standard BN propagation algorithm, and since the structure is still an
HNB (although not a parsimonious one) the inference can be performed
extremely fast.

4.3. Time complexity of the learning algorithm

The complexity can be analyzed by considering the three steps that
characterize the algorithm:

1. Find a candidate latent variable.

2. Find the state-space of the candidate latent variable, and check if
it is useful.

3. Iterate until no more candidate latent variables are accepted.

Part 1
Proposing a candidate latent variable corresponds to finding the pair
{X,Y } of variables with the strongest correlation (Equation 3). There
are at most (n2 − n)/2 such pairs, where n is the number of attribute
variables. By calculating the conditional mutual information for a pair
of variables as well as sorting the pairs (for future iterations) according
to this measure we get the time complexity: O(n2 · (N + log(n))) In
the remainder of this analysis we shall consider log(n) to be negligible
compared to N hence, for Part 1 we get O(n2·(N+log(n))) ≈ O(n2 ·N).

Part 2
The time complexity of calculating the gain, ∆L(·, ·), of collapsing two
states is simply O(N), see Equation 5. Due to local decomposability, the
gain of collapsing two states has no effect on collapsing two other states,
and there are therefore at most (|sp (L)|2 − |sp (L)|)/2 such possible
combinations to calculate initially. Next, when two states are collapsed,
∆L(·, ·) must be calculated for |sp (L)| − 1 new state combinations,
and the collapsing is performed at most |sp (L)| − 1 times. The time
complexity of finding the state-space of a candidate latent variable is

therefore O
(
N · |sp (L)|2 + N · |sp (L)| (|sp (L)| − 1)/2

)
= O(|sp (L)|2 ·

N).
Having found the cardinality of a candidate variable, say L, we test

whether it should be included in the model using the wrapper approach.
From the rule-based propagation method it is easy to see that the time
complexity of this task is O(n ·N). Thus, the time complexity of Part
2 is O((n + |sp (L)|2) ·N).

Part 3
Each time a latent variable is introduced we would in principle need to

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.18

19

perform the above steps again, and the time complexity would therefore
be n − 1 times the time complexities above. However, by exploiting
locality some of the previous calculations can be reused.

Moreover, note that after having introduced a latent variable L with
children X and Y , we cannot create another latent variable having
either X or Y as a child (due to the structure of the HNB model). Thus,
after having included a latent variable the cardinality of the resulting
set of candidate pairs is reduced by n − 1. This implies that we will
perform at most n−2 re-initializations, and the overall time complexity
of the algorithm is therefore O(n2 ·N + n · (n ·N + (|sp (L)|2 ·N))) =
O(n2 · |sp (L)|2 ·N).

It is important to emphasize that the computational complexity is
dependent on the cardinality of the latent variables. In the worst case,
if none of the states are collapsed, then the cardinality of a latent
variable L is exponential in the number of leaves in the subtree having
L as root. However, this situation also implies that the leaves are condi-
tionally dependent given the class variable, and that the leaves and the
class variable do not exhibit any type of context-specific independence
(Boutilier et al., 1996).

The time complexity observed in practice during the empirical study
is summarized in Appendix A.

5. Empirical results

In this section we will investigate the merits of the proposed learn-
ing algorithm by using it to learn classifiers for a number of different
datasets taken from the Irvine Machine Learning Repository (Blake and
Merz, 1998). The datasets were selected based on their previous usage
in similar types of analysis, e.g., Friedman et al. (1997) and Grossman
and Domingos (2004); see Table I for a summary of the 22 datasets
used in this empirical study.

5.1. Accuracy results

We have compared the results of the HNB classifier to those of the Näıve
Bayes model (Duda and Hart, 1973), the TAN model (Friedman et al.,
1997), the original HNB algorithm (Zhang et al., 2003), C5.0 (Quinlan,
1998), a standard implementation of logistic regression, and neural net-
works with one hidden layer trained by back-propagation.10 As some of
the learning algorithms (including Algorithm 3) require discrete vari-
ables, the attributes were discretized using the entropy-based method
of Fayyad and Irani (1993). In addition, instances containing missing

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.19

20

Table I. Datasets used in the experiments

Dataset #Att #Cls Size Database #Att #Cls Size

postop 8 3 90 cleve 13 2 296

iris 4 3 150 wine 13 3 178

monks-1 6 2 432 thyroid 5 3 215

car 6 4 1728 ecoli 7 8 336

monks-3 6 2 432 breast 10 2 683

glass 9 7 214 vote 16 2 435

glass2 9 2 163 crx 15 2 653

diabetes 8 2 768 australian 14 2 690

heart 13 2 270 chess 36 2 3199

hepatitis 19 2 155 vehicle 18 4 846

pima 8 2 768 soybean-large 35 19 562

A summary of the 22 databases used in the experiments: #Att indicates the
number of attributes; #Cls is the number of classes; Size is the number of
instances. 5-fold cross validation was used for all datasets. Further details
regarding the datasets can be found at the UCI Machine Learning Repository.

attribute-values were removed; all pre-processing was performed using
MLC++ (Kohavi et al., 1994).

The accuracy-results for the data sets are given in Appendix B
(Table IV) and a summary can be seen in Table II. In this table we
report the number of datasets for which each classifier is the best overall
(#Winner). Note that the sum of these numbers is larger than the
number of datasets because we have several ties. For a specific classifier,
#Draw is the number of datasets where the classifier is not the best
overall, but is not significantly worse than the winner either (at the
10% level). The last three columns give the number of datasets for
which the classifier is significantly poorer than the winner at 10%, 5%,
and 1% level, respectively (see Appendix B for more information). In
particular, we note that the proposed HNB classifier achieves the best
result, among all the classification algorithms, for 12 of the 22 datasets,
and draws with the winner for 8 of the other ones. The HNB algorithm
is significantly poorer than the winner (at 10% level) for only 2 of the 22
datasets. Finally, Figure 2 gives a graphical illustration of the accuracy
results of the proposed algorithm compared to the accuracy results of
the algorithms mentioned above.

To help the interpretation of the results reported in Table II and
Table IV we ran all algorithms with their “basic” configurations, i.e., no

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.20

21

optimization was performed. One notable exception is the TAN model,
which was run both in its basic form and with a damping-factor equal
to 5 virtual counts (this algorithm is denoted TAN-5 in Table II and
Table IV). The computational complexity of the algorithm by Zhang
et al. (2003) prevented us from obtaining results for this algorithm from
the three most complex domains.

Table II. Summary of classification results

Algorithm #Winner #Draw #p < 10% #p < 5% #p < 1%

NB 6 10 6 5 3

TAN 2 12 8 5 1

TAN-5 5 10 7 3 1

C5.0 4 10 8 6 1

NN 0 11 11 8 0

Logistic 2 11 9 4 2

Zhang et al. 1 5 13 12 7

HNB 12 8 2 1 1

5.2. Learning curve

We have analyzed the effect that the size of training data has on the
classification accuracy of our learning algorithm; we shall use α(N) to
denote the accuracy of a learning algorithm when trained on a database
of size N . The relation between N and α(N) (called the learning curve)
can provide important insight into the workings of the algorithms. For
example, it is well known that the Näıve Bayes algorithm learns fast
(relatively “high” accuracy for “small” databases), but because of the
strong learning bias it also has a tendency to converge too quickly s.t.
even for “large” databases, the accuracy does not increase beyond a
certain level, see also Ng and Jordan (2002).

To estimate the learning curve (of a given algorithm) for a specific
data set we first made a random sub-sampling (without replacement)
of N cases from that data set. These cases were then used as training
data for the algorithm in question, and the remaining cases were used
as test data; this was repeated 10 times for each N . As an example,
consider Figure 3, which shows the learning curves for the car database
and the postop database.

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.21

22

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n

er
ro

r

NB classification error

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n

er
ro

r

TAN classification error

a) NB vs. HNB b) TAN vs. HNB

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n

er
ro

r

C5.0 classification error

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 5 10 15 20 25 30 35 40 45
H

N
B

 c
la

ss
ifi

ca
tio

n
er

ro
r

NN classification error

c) C5.0 vs. HNB d) NN vs. HNB

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n

er
ro

r

Log.Reg. classification error

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n

er
ro

r

Zhang et al.’s classification error

e) Logistic regression vs. HNB f) Zhang et al. vs. HNB

Figure 2. Scatter plot of classification error for HNB and a selection of other classi-
fication systems. In each plot, a point represents a dataset. The HNB’s classification
error is given on the y-axis, whereas the other system’s error is given on the x-axis.
Hence, data points below the diagonal corresponds to datasets where the HNB is
superior, whereas points above the diagonal are datasets where the HNB classifier
is inferior to the other system.

For the results shown in Figure 3, we note that the proposed learning
algorithm appears to generate classifiers with the same fast starting
property as the Näıve Bayes classifier, but, at the same time, avoids
the premature convergence problem of these classifiers.

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.22

23

 70

 75

 80

 85

 90

 95

 100

 0 200 400 600 800 1000 1200 1400 1600

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Size of training set

 45

 50

 55

 60

 65

 70

 75

 0 10 20 30 40 50 60 70 80 90

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Size of training set

(a) car (b) postop

Figure 3. The figures show the estimated learning curves for Algorithm 3 (solid
line), TAN (dashed line) and Näıve Bayes (dotted line). Part (a) gives the results
for the car database, and the results for the postop database are shown in part (b).

To examine this further, we generated learning curves for all the
datasets used in the experiments. To be able to compare the learning
curves from, e.g., postop (with only 90 cases) to the results of chess

(with 3199 cases), we first scaled the values on the x-axis to give the
percentage of the full dataset that was used as the training set.11 Next,
in order to compare the accuracy results for the different datasets we
normalized the results s.t. the best accuracy result obtained (for all
data sizes and all classification algorithms) would correspond to 100
“points”, whereas the worst result was given a score of 0 “points”. Fi-
nally, we calculated the score obtained on each dataset when x percent
of the available data was used. The averages of these values are shown
on the y-axis in Figure 4 (a and b) as a function of the percentage of
the data used as training data; the empirical standard deviations are
shown in Figure 4(b) using error bars.

Finally, Figure 5 shows the average number of latent variables in-
serted by the learning algorithm as a function of the size of the training
set. The results are from the car database, and are averaged over 10
runs. We can see that the algorithm has a built-in ability to avoid
overfitting when working with this data-set; only a few latent variables
are inserted when the size of the training set is small, and the algorithm
seems to stabilize around 3 latent variables for N ≥ 1000 training cases.

5.3. Semantic interpretation of latent structures

In some domains the learned HNB models may contain a latent struc-
ture, which is amenable to interpretation. In this subsection we will
consider the car database, a synthetic data-set consisting of 1728 cases
which describe the relationship between certain characteristics of a car

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.23

24

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
ca

le
d

cl
as

si
fic

at
io

n
ac

cu
ra

cy

Part of available dataset

NB
TAN
HNB

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
ca

le
d

cl
as

si
fic

at
io

n
ac

cu
ra

cy

Part of available dataset

NB
TAN
HNB

(a) (b)

Figure 4. The figures show the scaled learning curves for the proposed HNB algo-
rithm (Algorithm 3), TAN, and Näıve Bayes. The x-axis show the percentage of
the database used to obtain the results, and on the y-axis we report the average
scaled efficiency. Figure (a) shows a histogram representation (included for ease of
interpretation) of the average results, whereas figure (b) also shows the empirical
standard deviation using error-bars (an error-bar indicates 1 standard deviation of
the estimate).

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200 1400 1600

N
o.

 la
te

nt
 v

ar
ia

bl
es

Size of training set

Figure 5. The number of latent variables inserted by the proposed HNB algorithm
(Algorithm 3), as a function of the size of the training set (the numbers are from
the car domain).

and whether or not the car is “acceptable”. We have chosen the car

database due to its intuitive interpretation and because its specifica-
tion also covers the gold standard model from which the data was
generated. The states of the class attribute are unacceptable, accept-

able, good and very-good, and the attributes describing the car are:
number of doors (Doors), capacity in term of persons (Persons), size of
luggage boot (Lug boot), estimated safety of the car (Safety), buying

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.24

25

price (Buying), and price of maintenance (Maint). When applying the
algorithm to this database we obtain the model illustrated in Figure 6.

MaintBuying

CostSafety

SafetyPrDollarLug boot

TechValue PersonsDoors

Class

Figure 6. The learned HNB model for the car database with three latent variables.

The nodes TechValue, SafetyPrDollar and Cost correspond to
the latent variables identified by the algorithm; the names of these
variables have manually been deduced from their usage in the model.
For example, the node Cost summarizes the two types of monetary
costs using the four states Cost=very-high, Cost=high, Cost=medium

and Cost=low, where e.g. the state very-high encodes the following
configurations of the attributes Maint and Buying:

[(Maint = very-high) ∧ (Buying = very-high)]

∨

[(Maint = very-high) ∧ (Buying = high)]

∨

[(Maint = high) ∧ (Buying = very-high)].

The node SafetyPrDollar compares the safety level to the cost, and
contains the six states very-high, high, good, medium, low and very-

low. For instance, SafetyPrDollar=very-low specify [Safety = low ∨
Cost = very-high].

We conclude this subsection by reiterating that Algorithm 3 has the
sole purpose of generating HNB models that achieve high classification
accuracy. The semantic interpretation presented above is therefore a
spin-off of the model definition rather than a required feature of our
learning algorithm. Hence, we do not claim that all HNB models will
have interesting latent structures; rather we suggest that it may be
worthwhile to examine an HNB’s latent structure. In some cases, this
will give a decision maker insight into the rules which govern the classifi-
cation of some instance, and may thereby increase the user’s confidence
in the model.

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.25

26

6. Concluding remarks and future work

In this paper we have proposed an algorithm for learning hierarchical
Näıve Bayes models for classification. Experimental results have shown
that the learned classifiers offer results that are significantly better than
those of other commonly used classification methods. Moreover, a num-
ber of existing tools may be able to improve the classification accuracy
even further, e.g., supervised learning of the probability parameters
(Wettig et al., 2003).

As part of future research, we recognize that Step 3a of Algorithm
3 may require further investigation. In this step we pick out κ candi-
date models to represent the search boundary, and then select a single
model from this set. We plan to investigate the way the candidates are
selected. In particular, the structure of a candidate model is determined
by a conditional independence test, which is not necessarily related to
the classification accuracy. Other methods may be considered (e.g.,
exhaustive search), and they should be compared to the effectiveness
of the proposed heuristic. In an initial investigation, where we com-
pared our results with the results of performing an exhaustive search,
the heuristic showed good performance, but this should be examined
more closely before any conclusions can be drawn. The same point can
be made regarding the way state-spaces are selected (Algorithm 2):
Other methods can be envisioned, including exhaustive search as well
as search algorithms based on greedily maximizing some score function
for a fixed number of states.

Acknowledgements

We have benefited from interesting discussions with the members of the
Machine Intelligence group at Aalborg University, in particular Tomás
Kočka, and Jǐŕı Vomlel. We thank Nevin L. Zhang for his valuable
insight and for giving us access to his implementation of the HNB
learning algorithm by Zhang et al. (2003), and the anonymous reviewers
for very helpful comments on an earlier version of the paper. Finally,
we would like to thank Hugin Expert (http://www.hugin.com/) for
giving us access to the Hugin Decision Engine, which forms the basis
of our implementation.

Notes

1 We will not consider regular HNB models with singly connected latent variables.

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.26

27

2 Note that Zhang et al. (2003) do not consider whether a regular model is parsi-
monious or not. When we later search the space of all regular models looking for a
“good” classifier we may therefore not use the smallest search space that define all
parsimonious HNB classifiers.

3 Since HNBs are only defined for discrete variables, all continuous variables
should be discretized before the learning algorithm is deployed.

4 Note that restricting the latent variables to only having two children does not
affect the expressibility of the models.

5 Note that the search procedure ensures that we will at most make n − 1 model
selections (step c).

6 One might also consider other measures for testing for conditional dependences.
7 The relevant subtree can also be seen as the part of the classifier structure that

is directly affected by the potential collapse of the states li and lj .
8 The problem with irregular HNB models appears when there exists a variable

X ∈ ch (L) s.t. |sp (X)| > |sp (C)|.
9 Note that the semantics also allow the decision maker to inspect the “rules” that

form the basis of a given classification. Through this insight she can e.g. consider
whether the classification of the system should be overruled or accepted.

10 We used Clementine (SPSS Inc., 2002) to generate the C5.0, logistic regression
and neural network models.

11 The result obtained using, e.g., 60% of the postop database as training data
should be compared to the result obtained using 60% of chess database as training
data.

References

Binder, J., D. Koller, S. Russell, and K. Kanazawa: 1997, ‘Adaptive probabilistic
networks with hidden variables’. Machine Learning 29(2–3), 213–244.

Blake, C. and C. Merz: 1998, ‘UCI repository of machine learning databases’. http:
//www.ics.uci.edu/∼mlearn/MLRepository.html.

Boutilier, C., N. Friedman, M. Goldszmidt, and D. Koller: 1996, ‘Context-specific
independence in Bayesian networks’. In: Proceedings of the Twelfth Conference

on Uncertainty in Artificial Intelligence. San Fransisco, CA., pp. 115–123.
Chow, C. K. and C. Liu: 1968, ‘Approximating discrete probability distributions with

dependence trees’. IEEE Transactions on Information Theory 14, 462–467.
Dempster, A. P., N. M. Laird, and D. B. Rubin: 1977, ‘Maximum likelihood from

incomplete data via the EM algorithm’. Journal of the Royal Statistical Society,

Series B 39, 1–38.
Domingos, P. and M. Pazzani: 1997, ‘On the optimality of the simple Bayesian

classifier under zero-one loss’. Machine Learning 29(2–3), 103–130.
Duda, R. O. and P. E. Hart: 1973, Pattern Classification and Scene Analysis. New

York: John Wiley & Sons.
Elidan, G. and N. Friedman: 2001, ‘Learning the dimensionality of hidden vari-

ables’. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial

Intelligence. San Francisco, CA., pp. 144–151, Morgan Kaufmann Publishers.
Fayyad, U. M. and K. B. Irani: 1993, ‘Multi-interval discretization of continuous-

valued attributes for classification learning.’. In: Proceedings of the Thirteenth

International Joint Conference on Artificial Intelligence. San Mateo, CA., pp.
1022–1027, Morgan Kaufmann Publishers.

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.27

28

Friedman, J. H.: 1997, ‘On bias, variance, 0/1-loss, and the curse of dimensionality’.
Data Mining and Knowledge Discovery 1(1), 55–77.

Friedman, N., D. Geiger, and M. Goldszmidt: 1997, ‘Bayesian network classifiers’.
Machine Learning 29(2–3), 131–163.

Greiner, R., A. J. Grove, and D. Schuurmans: 1997, ‘Learning Bayesian nets that
perform well’. In: Proceedings of the Thirteenth Conference on Uncertainty

in Artificial Intelligence. San Fransisco, CA., pp. 198–207, Morgan Kaufmann
Publishers.

Grossman, D. and P. Domingos: 2004, ‘Learning Bayesian network classifiers by max-
imizing conditional likelihood’. In: Proceedings of the Twentyfirst International

Conference on Machine Learning. Banff, Canada, pp. 361–368, ACM Press.
Jaeger, M.: 2003, ‘Probabilistic classifiers and the concepts they recognize’. In:

Proceedings of the Twentieth International Conference on Machine Learning.
Menlo Park, pp. 266–273, The AAAI Press.

Jensen, F. V.: 2001, Bayesian Networks and Decision Graphs. New York, NY:
Springer-Verlag.

Kohavi, R.: 1995, ‘A study of cross-validation and bootstrap for accuracy estima-
tion and model selection’. In: Proceedings of the Fourteenth International Joint

Conference on Artificial Intelligence. San Mateo, CA., pp. 1137–1143, Morgan
Kaufmann Publishers.

Kohavi, R., G. John, R. Long, D. Manley, and K. Pfleger: 1994, ‘MLC++: A machine
learning library in C++’. In: Proceedings of the Sixth International Conference

on Tools with Artificial Intelligence. pp. 740–743, IEEE Computer Society Press.
Kohavi, R. and G. H. John: 1997, ‘Wrappers for feature subset selection’. Artificial

Intelligence 97(1–2), 273–324.
Kononenko, I.: 1991, ‘Semi-naive Bayesian classifier’. In: Proceedings of Sixth

European Working Session on Learning. Porto, Portugal, pp. 206–219, Springer-
Verlag.

Kočka, T. and N. L. Zhang: 2002, ‘Dimension correction for hierarchical latent class
models’. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial

Intelligence. San Francisco, CA., pp. 267–274, Morgan Kaufmann Publishers.
Lam, W. and F. Bacchus: 1994, ‘Learning Bayesian belief networks: An approach

based on the MDL principle’. Computational Intelligence 10(4), 269–293.
Langley, P.: 1993, ‘Induction of recursive Bayesian classifiers’. In: Proceedings of the

Fourth European Conference on Machine Learning, Vol. 667 of Lecture Notes in

Artificial Intelligence. pp. 153–164, Springer-Verlag.
Langley, P.: 1994, ‘Selection of relevant features in machine learning’. In: Proceedings

of the AAAI Fall symposium on Relevance. The AAAI Press.
Lauritzen, S. L. and D. J. Spiegelhalter: 1988, ‘Local computations with probabilities

on graphical structures and their application to expert systems’. Journal of the

Royal Statistical Society, Series B 50(2), 157–224.
Madsen, A. L. and F. V. Jensen: 1998, ‘Lazy propagation in junction trees’. In: Pro-

ceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence.
pp. 362–369, Morgan Kaufmann Publishers.

Martin, J. D. and K. VanLehn: 1994, ‘Discrete factor analysis: Learning hidden vari-
ables in Bayesian networks’. Technical Report LRDC-ONR-94-1, Department of
Computer Science, University of Pittsburgh. http://www.pitt.edu/∼vanlehn/

distrib/Papers/Martin.pdf.
Mitchell, T. M.: 1997, Machine Learning. Boston, MA.: McGraw Hill.
Nadeau, C. and Y. Bengio: 2003, ‘Inference for the generalization error’. Machine

Learning 52(3), 239–281.

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.28

29

Ng, A. Y. and M. I. Jordan: 2002, ‘On discriminative vs. generative classifiers:
A comparison of logistic regression and naive Bayes’. In: Advances in Neural

Information Processing Systems 15. Vancouver, British Columbia, Canada, pp.
841–848, The MIT Press.

Pazzani, M.: 1996a, ‘Searching for dependencies in Bayesian classifiers’. In: Learning

from data: Artificial Intelligence and Statistics V. New York, N.Y., pp. 239–248.
Pazzani, M. J.: 1996b, ‘Constructive induction of Cartesian product attributes’. In:

ISIS: Information, Statistics and Induction in Science. Singapore, pp. 66–77,
World Scientific.

Pearl, J.: 1988, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. San Mateo, CA.: Morgan Kaufmann Publishers.
Quinlan, R.: 1998, ‘C5.0: An informal tutorial’. http://www.rulequest.com/

see5-unix.html.
Rissanen, J.: 1978, ‘Modelling by shortest data description’. Automatica 14, 465–

471.
Schwarz, G.: 1978, ‘Estimating the dimension of a model’. The Annals of Statistics

6, 461–464.
Shafer, G. R. and P. P. Shenoy: 1990, ‘Probability propagation’. Annals of

Mathematics and Artificial Intelligence 2, 327–352.
Spirtes, P., C. Glymour, and R. Scheines: 1993, Causation, Prediction, and Search.

New York: Springer-Verlag.
SPSS Inc.: 2002, ‘Clementine v6.5’. http://www.spss.com/spssbi/clementine/.
Wettig, H., P. Grünwald, T. Roos, P. Myllymäki, and H. Tirri: 2003, ‘When dis-

criminative learning of Bayesian network parameters is easy’. In: Proceedings

of the Eighteenth International Joint Conference on Artificial Intelligence. pp.
491–496, Morgan Kaufmann Publishers.

Whittaker, J.: 1990, Graphical models in applied multivariate statistics. Chichester,
UK: John Wiley & Sons.

Zhang, H.: 2004a, ‘The optimality of naive Bayes’. In: Proceedings of the Seventeenth

Florida Artificial Intelligence Research Society Conference. pp. 562–567, The
AAAI Press.

Zhang, N. L.: 2004b, ‘Hierarchical latent class models for cluster analysis’. Journal

of Machine Learning Research 5(6), 697–723.
Zhang, N. L., T. D. Nielsen, and F. V. Jensen: 2003, ‘Latent variable discovery in

classification models’. Artificial Intelligence in Medicine 30(3), 283–299.

Appendix

A. Empirical complexity results

In practice, the main computational effort of our algorithm goes into
calculating the conditional mutual information (CMI) between all pairs
of variables given the class variable (Step 3a of Algorithm 3). To give
an indication of the (relative) run time complexity of the algorithm, we
report on the number of times the algorithm calculates CMI (“CMI;
HNB” in Table III). These numbers are easiest to interpret relative
to the TAN algorithm (Friedman et al., 1997) that also relies on CMI

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.29

30

calculations (“CMI; TAN” in Table III), i.e., the TAN algorithm may be
considered a baseline used for comparison. Finally, the ratio between
these two numbers are listed as the “CMI ratio”. The CMI ratio is
bounded below by κ, the number of candidate models used to rep-
resent the search boundary (recall that κ = 10 in our experiments),
and is also roughly linear in this value. For ease of reference, we have
included information regarding the number of attributes (“#Att”) of
each dataset. We also give the number of latent variables inserted by
the algorithm (“#Latent”), both as a range as well as a mean plus
standard deviation.

In our experiments, Algorithm 3 has running times that are between
6 and 25 times those of the TAN algorithm when κ = 10 is kept fixed;
the running times include both learning and inference w.r.t. the test
dataset. In particular, a ratio below 10 occurs when the average number
of latent variables inserted by the HNB algorithm is close to zero, i.e.,
when we are working with an NB model where the time complexity
for inference is smaller than that of a TAN model. It should be noted
that these run-time ratios should not to be taken literally, but rather
be seen as indications of the run-time complexity: our implementation
of the HNB algorithm is far from optimized and is implemented with
focus on debugging capabilities.

B. Accuracy results

The detailed accuracy-results for all the data sets are shown in Ta-
ble IV. For each dataset we have estimated the accuracy of each classi-
fier (in percentage of instances which are correctly classified). We note
that the true ability of each classifier can only be calculated “correctly”
if we know the probability distribution P (C,A). As we only have data-
sets of limited sizes available, the estimated accuracies are random
variables (the uncertainty stems from the fact that a dataset is only
a sample from this unknown distribution). We therefore give a stan-
dard deviation of the accuracy estimate. The numbers we present are
the theoretical values calculated according to Kohavi (1995), and are
not necessarily the same as the empirical standard deviations observed
during cross validation.

The uncertainty in the estimated accuracies forces us to use a statis-
tical test to decide if one classifier is better than another on a particular
domain. We use Nadeau and Bengio (2003)’s corrected resampled t-test.
This test takes the calculated accuracy on each cross-validation fold
into consideration, and thereby tries to minimize the uncertainty of
the estimate outlined above; the same cross-validation folds were given

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.30

31

Table III. Number of times the HNB and TAN algorithms calculate conditional mutual
information for given datasets; κ = 10

Database #Att #Latent CMI; HNB CMI; TAN CMI ratio

postop 8 [0; 1] 0.2 ± 0.45 1100 105 10.5

iris 4 [0; 1] 0.2 ± 0.45 320 30 10.7

monks-1 6 [2; 2] 2.0 ± 0.00 950 75 12.7

car 6 [2; 3] 2.8 ± 0.45 1180 75 15.7

monks-3 6 [2; 2] 2.0 ± 0.00 950 75 12.7

glass 9 [0; 0] 0.0 ± 0.00 1050 105 10.0

glass2 9 [0; 1] 0.2 ± 0.45 530 50 10.6

diabetes 8 [0; 1] 0.2 ± 0.45 590 56 10.5

heart 13 [0; 3] 1.2 ± 1.30 1790 149 12.0

hepatitis 19 [0; 1] 0.2 ± 0.45 8720 855 10.2

pima 8 [0; 1] 0.4 ± 0.55 1520 140 10.9

cleve 13 [0; 2] 0.6 ± 0.55 2920 265 11.0

wine 13 [0; 1] 0.2 ± 0.45 4010 390 10.3

thyroid 5 [0; 1] 0.4 ± 0.56 560 50 11.2

ecoli 7 [0; 1] 0.2 ± 0.45 740 70 10.6

breast 10 [0; 4] 0.8 ± 1.79 2020 180 11.2

vote 16 [0; 3] 1.4 ± 1.52 6920 600 11.5

crx 15 [0; 1] 0.4 ± 0.56 5510 520 10.6

australian 14 [0; 1] 0.4 ± 0.56 4790 455 10.5

chess 36 [2; 2] 2.0 ± 0.00 34850 3150 11.1

vehicle 18 [0; 4] 1.6 ± 1.52 9150 765 12.0

soybean-large 35 [1; 4] 2.2 ± 1.30 33280 2975 11.2

to all classification algorithms. The best result for each dataset is given
in boldface. Results that are significantly poorer than the best on a
given dataset at 10%-level are marked with ‘?’. Results significant at
5%-level are marked with ‘◦’, and 1%-level with ‘•’.

LangsethNielsen-HNB.tex; 20/10/2005; 8:57; p.31

32T
a
b
le

IV
.

C
la

ssifi
er

a
ccu

ra
cies

Database NB TAN TAN-5 C5.0 NN Logistic Zhang et al. HNB

postop 64.25+/-5.0 63.03+/-5.1 ?62.09+/-5.1 67.31+/-4.9 67.31+/-4.9 66.26+/-5.0 68.94+/-4.9 68.95+/-4.9

iris 94.00+/-2.0 94.00+/-2.0 94.00+/-2.0 93.53+/-2.0 93.51+/-2.0 93.53+/-2.0 ◦86.81+/-2.8 94.00+/-2.0

monks-1 •75.00+/-2.2 100.0+/-0.1 100.0+/-0.1 100.0+/-0.1 ?95.65+/-1.0 •75.28+/-2.1 100.0+/-0.1 100.0+/-0.1

car •87.15+/-0.8 94.97+/-0.5 ?93.86+/-0.6 •92.21+/-0.6 ?93.65+/-0.6 ?94.23+/-0.6 •86.75+/-0.8 95.66+/-0.5

monks-3 ◦97.22+/-0.8 99.30+/-0.4 ?98.84+/-0.5 100.0+/-0.1 99.31+/-0.4 100.0+/-0.1 ◦97.22+/-0.8 100.0+/-0.1

glass 71.04+/-3.1 71.04+/-3.1 72.44+/-3.0 70.78+/-3.1 66.66+/-3.2 71.70+/-3.1 •53.45+/-3.4 71.04+/-3.1

glass2 81.61+/-3.0 81.69+/-3.0 82.29+/-3.0 ?79.18+/-3.2 82.23+/-3.0 81.02+/-3.1 •68.30+/-3.6 84.11+/-2.9

diabetes 75.65+/-1.5 75.25+/-1.6 75.51+/-1.6 73.21+/-1.6 ◦74.25+/-1.6 75.41+/-1.6 •65.83+/-1.7 75.25+/-1.6

heart 83.70+/-2.2 84.07+/-2.2 84.44+/-2.2 ◦80.00+/-2.4 ◦82.54+/-2.3 85.09+/-2.2 ◦81.26+/-2.4 85.93+/-2.3

hepatitis 92.34+/-2.1 87.25+/-2.7 87.27+/-2.7 ◦80.64+/-3.2 ◦81.11+/-3.1 ◦83.01+/-3.0 ?83.49+/-3.0 93.76+/-2.1

pima 76.17+/-1.5 ◦74.74+/-1.6 ◦74.87+/-1.6 ◦73.35+/-1.6 ◦74.13+/-1.6 76.07+/-1.5 •65.81+/-1.7 76.04+/-1.5

cleve 83.46+/-2.1 81.38+/-2.2 82.41+/-2.2 ?79.07+/-2.4 ?78.42+/-2.4 82.38+/-2.2 81.17+/-2.3 83.45+/-2.1

wine 98.30+/-1.0 ◦96.03+/-1.5 ◦96.03+/-1.5 ◦91.28+/-2.1 ◦93.41+/-1.9 ◦93.44+/-1.9 ◦89.19+/-2.3 98.86+/-0.8

thyroid 93.02+/-1.7 93.02+/-1.7 94.42+/-1.6 91.36+/-1.9 92.73+/-1.8 92.27+/-1.8 •80.73+/-2.7 93.02+/-1.7

ecoli 80.95+/-2.1 ?79.76+/-2.2 ?80.06+/-2.2 82.41+/-2.1 ◦77.14+/-2.3 ?78.89+/-2.2 •66.20+/-2.6 82.74+/-2.1

breast 97.36+/-0.6 ?96.19+/-0.7 96.78+/-0.7 ◦94.92+/-0.8 ◦95.64+/-0.8 ?96.08+/-0.7 ◦94.20+/-0.9 97.36+/-0.6

vote ?90.11+/-1.4 ?92.64+/-1.3 94.48+/-1.1 94.77+/-1.1 93.86+/-1.2 ?92.27+/-1.3 94.30 +/- 1.1 93.39+/-1.3

crx 86.22+/-1.3 ◦83.78+/-1.4 85.30+/-1.3 86.17+/-1.4 85.25+/-1.4 86.33+/-1.3 85.41 +/- 1.4 86.51+/-1.3

australian 85.80+/-1.3 ◦82.32+/-1.5 84.78+/-1.4 85.61+/-1.3 83.88+/-1.4 86.47+/-1.3 85.80 +/- 1.3 84.64+/-1.4

chess •88.02+/-0.6 •92.30+/-0.5 •92.30+/-0.5 99.32+/-0.1 99.13+/-0.2 •97.69+/-0.3 — •94.06+/-0.4

vehicle ◦59.09+/-1.7 68.79+/-1.6 69.50+/-1.6 67.78+/-1.6 67.10+/-1.6 69.22+/-1.6 — ?63.59+/-1.7

soybean-large 92.90+/-1.0 91.64+/-1.1 92.17+/-1.0 91.71+/-1.2 ◦64.86+/-2.0 ?88.69+/-1.3 — 92.89+/-1.1

Classifiers accuracies: Calculated accuracy for the 22 datasets used in the experiments; the results are given together with their theoretical
standard deviation. The adjusted t-test of Nadeau and Bengio (2003) was used to compare the classifiers: Results that are significantly
poorer than the best on a given dataset at 10%-level are marked with ‘?’. Results significant at 5%-level are marked with ‘◦’, and 1%-level
with ‘•’.

L
a
n
g
s
e
t
h
N
i
e
l
s
e
n
-
H
N
B
.
t
e
x
;

2
0
/
1
0
/
2
0
0
5
;

8
:
5
7
;

p
.
3
2

