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Abstract

We present a new methodology for detecting faults and abnormal behavior in pro-
duction plants. The methodology stems from a joint project with a Danish energy
consortium. During the course of the project we encountered several problems that
we believe are common for projects of this type. Most notably, there was a lack
of both knowledge and data concerning possible faults, and it therefore turned out
to be infeasible to learn/construct a standard classification model for doing fault
detection. As an alternative we propose a method for doing on-line fault detection
using only a model of normal system operation. Faults are detected by measuring
the conflict between the model and the sensor readings, and knowledge about the
possible faults is therefore not required. We illustrate the proposed method using
real-world data from a coal driven power plant as well as simulated data from an
oil production facility.
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1 Introduction

Most production plants are equipped with sensors providing information to a
control room where operators monitor the production process. Based on skill
and experience the operators are alerted if something unusual happens, and
through inspection of sensor readings, or derivatives thereof (so-called soft
sensors), a diagnostic process may be initiated.
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In connection to a joint project with an energy consortium, we have been
working on establishing an alert system for a coal driven power plant. By an
alert system we mean a system that, based on sensor readings, raises a flag in
case of an abnormal situation. We intended to base the system on a Bayesian
network representation (Pearl, 1988; Jensen, 2001) of the power plant, and
to help us establish the model we had access to process engineers and an
extensive database of logged sensor data. However, during the course of the
project we encountered several problems, which we believe are common for
projects of this type:

(1) The engineers’ knowledge of the plant is not sufficient for providing a
causal structure.

(2) The production process is so complex that it is difficult for the engineers
to specify the possible faults (abnormal situations) and, in particular,
how these faults would manifest themselves in the sensor readings.

(3) The time constants, describing the delay from event to effect, are difficult
to determine.

(4) Faults are so rare that statistics cannot be used to learn neither the
structure nor the parameters of a model of the faults.

(5) As there is a difference between a true value and its sensor reading, true
values should appear as hidden variables.

Faced with these problems, one approach would be to get as much causal
structure from the engineers as possible and to combine this information with
a data driven learning method. Unfortunately, state of the art of structural
learning algorithms cannot cope with domains with a massive set of hidden
variables. Furthermore, due to the lack of knowledge about the possible faults
it is not obvious how such a model should subsequently be used for classifying
abnormal behavior; as done in e.g. (Chien et al., 2002) and (Mehranbod et al.,
2003).

In this paper we propose an alternative methodology for on-line detection of
abnormal behavior in production systems. The method focuses on systems
which are prone to the problems described above, and it has the desirable
property that it does not require information about the possible faults nor a
model of abnormal behavior. We illustrate the proposed method using real-
world data from the above mentioned power plant as well as simulated data
from an oil production facility.

2 The proposed methodology

As implied above, it is not obvious how to construct a classifier (encoding
the possible faults) for detecting abnormal behavior; neither in the form of a

2



causal model nor in the form of e.g. a Näıve Bayes model (Duda and Hart,
1973) or a tree augmented Näıve Bayes model (Friedman et al., 1997).

Instead, we propose to learn a Bayesian network representing normal oper-
ation only. At each time step the model is used to calculate the probability
of the set of sensor readings for that time step. This probability is in turn
used to evaluate whether the sensor readings are jointly outside the scope of
normal operation. That is, the proposed methodology consists of two steps:
(i) learning a model of the sensors for normal operation, and (ii) using the
learned model to monitor the system, initiate alerts and perform on-line diag-
nostics. Models for describing normal operation has also been explored in the
model-based diagnosis community (Reiter, 1987; de Kleer and Kurien, 2003):
Based on a pre-specified model of normality (formulated in first-order logic),
each component in the system is assigned a state (either normal or abnormal)
which is consistent with both the model and any observations made of the
system.

2.1 Learning a model

The available database consists of sensor readings that have been logged dur-
ing normal system operation; each instance in the database can be seen as a
“snapshot” of the overall production process. In what follows we shall assume
that the production process is composed of a temporally ordered collection
(C1, C2, . . . , Cn) of components (or sub-processes). The output of component
Ci serves as input to component Ci+1, and (for ease of exposition) each com-
ponent, Ci, is assumed to be equipped with a single sensor, Si. For instance,
when tracking the coal in a power plant we can, at an abstract level, describe
the overall production process as being composed of three components: the
silo, the coal mill, and the furnace. Since the production process is a physical
non-instantaneous process we also have a delay (or time constant) associated
with each of the components, i.e., the time it takes for a particular unit (e.g.
a piece of coal) to pass through.

Based on this perspective, we initially considered learning a model of the flow
of one unit (e.g. coal) through the production plant. The variables in the
learned model would then represent the sensors in the system. One approach
for learning such a model would be to first transform the original database s.t.
a case in the transformed database would correspond to the sensor readings
related to one particular unit (this transformation is illustrated in Table 1).
However, making such a transformation requires information about the time
constants, which was unfortunately not available.

An alternative approach would be to learn a dynamic Bayesian network model
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Table 1
The original database is transformed s.t. each case in the resulting database contains
the sensor readings related to one particular unit in the system. We have assumed
that the time delay between sensor S1 and S2 corresponds to the sampling delay
between case/snapshot c1 and cj in the original database.

directly from the database by treating the cases as representing a trajectory
through the system (Friedman et al., 1998; Boyen et al., 1999). Unfortunately,
learning such a model also requires information about the time constants.

Instead, we used the database directly to learn a Bayesian network model over
the sensor variables. This approach, however, has a potential computational
drawback in the sense that we must expect the learned model to be very dense
(this was also confirmed in the empirical experiments). If we had known the
time constants we would also have expected a dense model, albeit to a smaller
degree. To see this, consider Fig. 1 which illustrates a simplified temporal
causal model of the data generation process for a production plant. Learning
a model for the sensor variables can now conceptually be seen as learning a
model that describes the marginal distribution over the sensor variables Si

in a time slice. However, according to Fig. 1 we see that after very few time
steps, each pair of variables in a time slice are dependent no matter how we
condition on the other variables in the time slice. This is not only due to the
hidden variables (modeling the components in the system), but also because
standard learning methods treat the cases as being independent (Cooper and
Herskovits, 1991); the latter corresponds to the past being unobserved.

2.2 Initiation of alerts

The sensor readings are received in a constant flow, which is chopped up into
time steps of, say, 1 second. This means that for every second we have evidence
consisting of a value for each variable in the model.

Let the evidence be e = {e1, . . . , en}, where ei is a sensor reading. We can now
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Fig. 1. The figure illustrates a dynamic Bayesian network representation of the data
generation process for a production plant. The variable Si represents the sensor
associated with component Ci, and the arcs going into a sensor variable from a
previous time slice models that the state of a sensor (correct, faulty or drifting) has
an impact on the next sensor reading.

calculate the conflict measure for the evidence (Jensen et al., 1990) as:

conf(e) = log

[

P (e1) · . . . · P (en)

P (e)

]

.

Since the learned model represents normal system operation we would in gen-
eral expect that sensor readings recorded during normal operation are pos-
itively correlated (i.e., conf(e) ≤ 0) relative to the model. That is, for two
sensor readings ei and ej we would expect P (ei | ej) > P (ei), and therefore
P (ei, ej) = P (ei | ej)P (ej) > P (ei)P (ej). Thus, when conf(e) > 0 then this
is an indication of an abnormal situation, and an alert may be triggered, see
also (Laskey, 1991; Kim and Valtorta, 1995). The conflict measure can also be
interpreted as a soft measure of inconsistency: If a case is inconsistent with the
model, then it has probability 0, and if it is close to being inconsistent then it
has an unusual low probability; “unusual” is for this measure calculated rela-
tive to the model for complete independence. For the conflict measure above,
we expect a rather constant level for conf(·) under stable normal operation.
When the process is changed, and it transforms from one mode of normal
operation to another, we should expect oscillations in the conflict values until
the changes have propagated and resulted in a new stable mode of normal
operation.

The probabilities P (ei) can be read directly from the Bayesian network in its
initial state, and it does not require any propagation. As all variables in the
model are instantiated, P (e) is also very easy to calculate: it is simply the
product of the appropriate entries in the conditional probability tables of the
Bayesian network. No propagation is required, i.e, the complexity is linear in
the number of variables in the model.
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As noted above, a positive conflict value is an indication of an abnormal situ-
ation. On the other hand, a negative conflict value does not necessarily imply
that we have a normal situation as it may hide a serious conflict: If the sen-
sors are strongly correlated during normal operation, the conflict level will be
very negative, and a few conflicting sensor readings may therefore not cause
the entire conflict to be positive. This can also be seen from the following
proposition.

Proposition 2.1 Let e
x = {ex

1 , . . . , e
x
n}, e

y = {ey
1, . . . , e

y
m}, and e = e

x ∪ e
y.

Then

conf(e) = conf(ex, ey) + conf(ex) + conf(ey),

where conf(ex, ey) = log
[

P (ex)P (ey)
P (e)

]

.

Proof

conf(e) = log

[

P (ex
1) · . . . · P (ex

n) · P (ey
1) · . . . · P (ey

m)

P (e)

]

= log

[

P (ex
1) · . . . · P (ex

n) · P (ey
1) · . . . · P (ey

m)P (ex)P (ey)

P (e)P (ex)P (ey)

]

= log

[

P (ex)P (ey)

P (e)
·
P (ex

1) · . . . · P (ex
n)

P (ex)
·
P (ey

1) · . . . · P (ey
m)

P (ey)

]

= conf(ex, ey) + conf(ex) + conf(ey).

So, it may happen that e
x and e

y are internally so strongly correlated that
they dominate a conflict between the two sets. Thus, even when the conflict is
negative, we shall watch out for jumps in the conflict level that may indicate
a potential abnormal situation.

When an alert has been triggered, the system can start tracing the source
of the alert. Various ways of tracing the conflict may be used. In our case
we perform a greedy conflict resolution: recursively remove the sensor reading
that reduces the conflict the most, and continue until the conflict is below a
predefined threshold. This procedure can be performed very fast by exploiting
fast retraction (Dawid, 1992), lazy propagation (Madsen and Jensen, 1999)
or arithmetic circuits (Darwiche, 2003) as can be seen from the following
proposition.

Proposition 2.2 Let e = {e1, . . . , en, ex} be evidence, X a variable with evi-
dence ex, and e

−x the remaining evidence. Then

conf(e) = log

[

P (ex)

P (ex | e−x)

]

+ conf(e−x).
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Proof

conf(e) = log

[

P (ex)P (e1) · . . . · P (en)

P (e)

]

= log

[

P (ex)

P (ex | e−x)
·
P (e1) · . . . · P (en)

P (e−x)

]

= log

[

P (ex)

P (ex | e−x)

]

+ conf(e−x).

That is, the reading with lowest normalized likelihood given the other readings
contributes the most to the conflict. Note that as the Markov blanket of X is
instantiated, the calculation of P (ex|e

−x) can be performed locally.

Algorithm 2.1 (Conflict resolution)

(1) Let t be a “conflict threshold” for when an alert should be initiated (e.g.
t = 0).

(2) Let e be a set of conflicting sensor readings.
(3) Repeat

(a) Select

e′ = arg max
e

log

[

P (e)

P (e | e \ {e})

]

.

(b) Set e := e \ {e′}.
(4) Until conf(e) < t.

It should be emphasized that as evidence is retracted during conflict resolu-
tion, we will in general need to perform standard probability updating when
calculating the probabilities required for Step 3a and Step 4.

3 Empirical results

The proposed methodology has been tested on real-world data from a coal
based power plant as well as simulated data from an oil production facility.
In the latter case the data was generated based on a model that includes the
dynamics of the facility as well as control loops.

3.1 Power plant data

We received data about the power plant under normal system operation with
load average 90−100%, i.e., the power plant operated between 90% and 100%

7



of its full capacity. The data set contains 9600 cases, and each case consists
of 87 simultaneous observations with no missing values. 1 The power plant
can roughly be seen as being composed of four distinct coal mills powering
a turbine, thereby providing a natural partitioning of the observations into
five disjoint sets: for each coal mill there are 12 distinct observations, and 35
observations summarize general properties of the power plant (the remaining 4
observations can be derived from the other observations, and they are therefore
redundant). The cases do not only contain actual sensor values, but they
also include soft sensors, i.e., artificial “sensors” that have been computed
based on the values of other sensors, as well as set-points and other indirect
signals. Unfortunately, as the domain experts could not provide information
for distinguishing between the observations, they were all treated similarly.

As a preprocessing step, all data sets were naively discretized using equal width
binning, where the number of bins were chosen (based on several tests) to be
3. Based on the preprocessed data, we learned a Bayesian network model for a
single coal mill as described in Section 2.1; the actual learning was performed
using the software tool PowerConstructor with a 0.1-threshold for the condi-
tional independence tests (Cheng et al., 1997, 2002). In the learned model,
six variables turned out to be completely independent of the other variables
and they were therefore removed together with the redundant observations
(see Fig. 2). It should be emphasized that the learned model is only used as
a factorization of the joint probability distribution and should not be sub-
ject to interpretation from e.g. a causal point of view. One part of the model
stands out, though, namely the node cluster consisting of V26 together with
its children. Node V26 represents the sensor measuring the water concentra-
tion in the coal, and the nodes that appear as children of V26 can, except for
one node, be partitioned into two disjoint subsets with distinct semantics: 10
nodes correspond to sensors which either directly or indirectly measures the
volume/pressure and temperature of the air that is used for drying the coal,
and 4 nodes correspond to sensors related to the load average of the plant and
which are therefore closely related to the water concentration in the coal.

Finally, it should be noted that since the database is complete, the parameters
of the model could simply be estimated using frequency counts.

In addition to the data sets for normal system operation, we received three
data sets that each contained 1441 cases. Two of the data sets covered actual
errors/abnormal situations whereas the last represented an “unusual behavior”
that it would be interesting to detect:

• The fall-pipe leading coal into the power plant becomes clogged.
• A temperature sensor becomes faulty.

1 Since each case contains sensors readings for a particular point in time, the
database can also be interpreted as a sequence of “snapshots” of the plant.
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Fig. 2. The network learned from the power plant data.

• A large load change (from 60 − 75% to 90 − 100%) occurs while the water
concentration in the coal is high, thereby making it difficult to regulate the
production process.

We have tested the proposed methodology by simulating on-line performance
using the “clogged fall-pipe” data set as well as the “faulty-sensor” data set.
Both tests were performed “blind-folded”, i.e., we first analyzed the data and
then, after the analysis, we discussed our findings with the domain experts.

A plot of the conflict measures for the “clogged fall-pipe” data set is depicted
in Fig. 3. From the plot we see that we have positive conflict measures from ob-
servation 1136 and forward, i.e., the conflict measures indicate that the system
makes a transition from a normal to an abnormal system state at 1136. This
is also consistent with the information provided to us, namely that the system
entered an abnormal state (the fall-pipe became clogged) between 1100 and
1144. Another interesting aspect of the plot is the fluctuations in the conflict
measure that appears around observation 700 and lasts until approximately
780. We were later told that in this interval the system actually made a short
change in load average from 99% to 84% and then back again.

When performing conflict resolution, the algorithm indicates that the sensor
measuring the water-percentage in the coal can explain all the conflicts. Ide-
ally, we would have liked the system to pinpoint that the fall-pipe is clogged.
However, since this is not part of the vocabulary provided by the model we
interpret the result as indicating that there is an inconsistency in the energy
balance of the system, and that this inconsistency can best be explained by

9



-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

 30

 0  200  400  600  800  1000  1200  1400

C
on

fl
ic

t m
ea

su
re

Observation numbers

Load change

Clogged fall-pipe

-60

-50

-40

-30

-20

-10

 0

 10

 20

 30

 0  200  400  600  800  1000  1200  1400

C
on

fl
ic

t m
ea

su
re

Observation numbers

Fig. 3. The left hand figure shows a plot of the conflict measure for each case in
the “clogged fall-pipe” data set; a value above 0 indicates a conflict. Note how the
conflict measure is affected by the load-change and the fall-pipe becoming clogged.
To reduce the noise in the data, the right hand figure shows the 0.9 percentile of
the last 30 cases.

the water percentage in the coal; this was also consistent with the analysis by
the engineers.

A similar test was made on the “faulty sensor” data set, where the conflict
measures can be seen in Fig. 4. As suggested by the plot, the conflict mea-
sure indicates that the system entered the abnormal state prior to the first
observation; this was later confirmed by the engineers. We were also informed
that in the beginning of the data set and around observation 600, there were
two quick changes in the load averages (from 90 − 100% to 80% and back
again); these changes are reflected as quick changes in the calculated conflict
measures. Finally, we were told that around observation 600 the temperature
drops from 100◦C to 90◦C (at which level it stays for the remaining observa-
tions). Observe, that around this observation we also see a permanent drop in
the conflict measure that seems to stabilize around observation 1100.
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Fig. 4. A plot of the conflict measure for each case in the “faulty-sensor” data set;
a value above 0 indicates a conflict. Note how the conflict measure is affected by
the load-changes and the drop in temperature. The right hand figure shows the 0.9
percentile of the last 30 cases.

When performing conflict resolution we found that after observation 600, there
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were six significant sensors that could explain the conflict. We were informed
that four of the sensors were actually significant for this scenario, but that the
other two “sensors” should not have been picked out since they were set-points
rather than sensors. However, the identification of these sensors actually makes
sense as there is a conflict between the system sensors and the set-points.

Finally, we have made a tentative analysis of the “production regulation” data
set. A difficulty with this data set is that the learned model only covers normal
operation during load average 90− 100%. Hence, we have only considered the
observations made after the load change has been completed. For the resulting
data set the distinguishing characteristic is that the coal has a high water con-
centration, which made it difficult to regulate the production process. 2 That
is, the data set has not been produced from a system state which should be
classified as being abnormal, but rather an unusual system state that it would
be interesting to detect (in case it would eventually result in an abnormal
state). Fig. 5 shows a plot of the conflicts after observation 550 where the load
change has been completed.
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Fig. 5. A plot of the conflict measure for the “production regulation” data set after
the change has taken effect. The system is correctly classified as not being in an
abnormal state. The right hand figure shows the 0.9 percentile of the last 30 cases.

As can be seen from the figure, the conflict values are all below 0 (except for a
few single cases). This is consistent with the system not being in an abnormal
state. However, from the measurements we can also see that the average con-
flict value is higher than for normal operation: For the “production regulation”
data set, the average conflict value is −7.44, but during normal operation in
the “clogged-fall-pipe” data set the average conflict value is between −10.34
and −22.8 with an average of −19.96. That is, you may be able to discrimi-
nate between different types of normal system operation by also considering
the value of the conflict measure and not only whether it is positive or negative.

2 The actual difficulty is caused by the system not being able to dry the coal during
a load average of 90 − 100%.
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Time: “Pump” data set “Cooling” data set

30 Small leak in the pump Small external leak in the cooling
system

1500 Large leak in the pump Large external leak in the cooling
system

3000 Normal operation Normal operation

3500 Small degradation of motor effi-
ciency

Small internal leak in the cooling
system

5000 Large degradation of motor effi-
ciency

Large internal leak in the cooling
system

6500 Normal operation Normal operation

7000 Small degradation of pump effi-
ciency

Moderate fouling

8500 Large degradation of pump effi-
ciency

Significant fouling

Table 2
The table summarizes the changes in the production process for the “Pump” data
set and the “Cooling” data set, respectively. Note The changes in the two scenarios
are initiated at the same points in time.

3.2 Oil production data

We have received a database with 10000 simulated cases for normal system
operation for an oil production facility; each case in the database covers 140
sensors with white noise added to the sensor values. 3 The database was gen-
erated from a temporal causal model, which also simulated standard process
variations. Hence, the database shares the same characteristics w.r.t learning
as the power plant database (see Section 2.1). All of the sensor values appeared
as real-valued output, so as a preprocessing step all variables/sensors were
discretized. The actual discretization was performed using cross-validation to
find the number of bins (with a maximum of 5) that maximizes the estimated
likelihood of the data; the actual discretization was performed using Weka
(Witten and Frank, 2000).

In order to test the proposed methodology in this setting, we used two other
data sets both containing 10000 cases. The first data set was generated by
simulating faults in the pumping system whereas the second data set was
generated by simulating faults in the cooling system (see also Table 2).

3 Similar to the power plant database, the database can be interpreted as a sequence
of “snapshots” of the facility.
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A plot of the conflict measure for the “Pump” data set is shown in Fig. 6(a).
As in the previous section, Fig. 6(b) shows the 0.9-percentile over the last 30
cases. The vertical lines in the two plots correspond to the points in time where
changes are initiated (see Table 2). As can be seen from Fig. 6, there are signif-
icant changes in the conflict measure at time 1500, 3000, 5000, 6500 and 8500,
which either correspond to large errors in system operation or changes back
to normal system operation. From Table 2 we see that the changes appearing
at 30, 3500 and 7000 correspond to small errors in the system operation and,
accordingly, they are also less apparent in the plots. In particular, the change
appearing at 3500 occurs before the system has settled into stationary normal
system operation.
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Fig. 6. The left hand figure shows a plot of the conflict measure for each case in
the “Pump” data set. The vertical lines indicate when a change in the production
process is initiated as specified in Table 2. The figure to the right shows the 0.9
percentile of the last 30 cases.

A similar plot of the conflict measure for the “Cooling” data set is given in
Fig. 7(a). Analogously to the previous data set, there is a significant change
in the conflict measure for all errors except at time 30, 3500 and 7000.

Note that the conflict measures for both databases are all negative, which is a
consequence of the decomposition property (Proposition 2.1) as discussed in
Section 2.2. Thus, in order to perform conflict resolution the conflict threshold
(see Algorithm 2.1) should be specified based on the values observed during
normal operation. Moreover, in order to detect changes in system operation
we need to track jumps in the conflict measure.

3.3 Change point detection

In order to track the changes in the conflict measure we have applied a method
related to the work by Yamanishi and TakeUchi (2002), and which can be seen
as an extension of the method presented in Section 2.2. Specifically, we assume
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Fig. 7. The figure to the left shows a plot of the conflict measure for each case in
the “Cooling” data set. The vertical line indicates when a change in the production
process is initiated as specified in Table 2. The right hand figure shows the 0.9
percentile of the last 30 cases.

that under normal system operation the conflict values can (approximately)
be seen as independent samples from a normal distribution with fixed mean
and variance. Under this assumption we can model the l’th conflict value as
a random variable with a normal distribution, f , where the mean µl and the
variance σ2

l are estimated as the sample mean and sample variance of the last
m observations (also called the relevant history):

µ̂l = x̄l,m =
1

m

m
∑

j=1

xl−j σ̂2
l =

1

m

m
∑

j=1

(xl−j − x̄l,m)2.

Thus, an immediate approach for detecting a change point could be to calcu-
late the logarithmic loss for the last n observations (xi+1, . . . , xi+n), and then
raise an alert in case the value is above a predefined threshold:

− log2 f(xi+1, . . . , xi+n|x1, . . . , xi) = −
n

∑

j=1

log[f(xi+j|µ̂i+j, σ̂
2
i+j)] > δ.

This approach, however, is very sensitive to fluctuations in the conflict value
(thereby producing false alerts), and it has a difficulty in detecting drifts in
the conflict measure. To alleviate these two problems, we instead compare the
model above with another model f ′, where the mean and the variance are
estimated without taking the last s observations into account. That is, the
relevant history, used to estimate µ and σ2, is shifted s observations back:

µ̂′

i =
1

m

m
∑

j=1

xi−j−s σ̂′2
i =

1

m

m
∑

j=1

(xi−j−s − x̄i−s,m)2.
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The models are compared by evaluating the difference in log-likelihood of the
models given the last n observations (also called the score difference):

∆f,f ′(xi+1, . . . xi+n) = log2

[

f(xi+1, . . . xi+n | µ̂i, σ̂
2
i )

f ′(xi+1, . . . xi+n | µ̂′

i, σ̂
′2
i )

]

.

Note that ∆f,f ′ should not be considered a conflict measure as in Section 2.2,
but rather a score for comparing two competing models for normal operation.
In particular, during normal operation we would expect the score to be within
an interval [−δ : δ], and for actual change points we would expect ∆ > δ. The
value of δ influences the ratio of false positives and false negatives and could
e.g. be chosen based on the conflict values observed during normal/stable
system operation. The value of n determines the response time of the system,
but by choosing the value of n too small we risk having the score dominated
by random fluctuations.

To test the method, we first simulated on-line fault detection using the conflict
values produced by the “clogged fall-pipe” data set. A plot of ∆f,f ′ using n = 5
(the number of conflict values used to compare the models) m = 5 (the size of
the relevant history) and s = 20 (the number of conflict values ignored in the
second model) is shown in Fig. 8(a). Fig. 8(b) shows another example with
n = m = 10 and s = 40. In both plots we have an increase in ∆f,f ′ when
the load-average changes (around observation 600) and when the fall-pipe
becomes clogged (around observation 1100). The changes in ∆f,f ′ appearing
around observation 200 are caused by the relative large fluctuations in the
conflict values occurring after intervals with zero variance. Unfortunately we
have not been able to identify the source of these fluctuations.
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Fig. 8. The left hand figure shows a plot of ∆f,f ′ (with n = m = 5 and s = 20)
for the conflict values produced by the “clogged fall-pipe” data set. The right hand
figure shows a similar plot, but with n = m = 10 and s = 40.

We have performed similar tests for the “faulty sensor” data set as shown in
Fig. 9. As described previously, for this data set the system had entered an ab-
normal system state already prior to the first observation. This is also reflected
in the score difference, which is less stable than for the “clogged fall-pipe” data
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set. Most significantly, though, are the two peaks corresponding to the two
changes in load average, as well as the peaks that occur around observation
1100, where the system appears to stabilize after the temperature drop.
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Fig. 9. The figure shows the score difference for the faulty sensor data set using
m = n = 10 and s = 25.

For the oil production data, the detection of change points is obscured by
the relative large amount of noise in the system. Fig. 10 shows the score
difference for the “Pump” data set using (m = 15, n = 15, s = 45) and
(n = 20, m = 20, s = 50), respectively. In the first test, the change points
caused by the small degradations in the production process are less apparent
as compared to the second test, where we increase the relevant history and the
number of discarded samples. Our experiments indicate that the parameter
values governing change point detection have a significant impact on the score
difference as well as the response time of the system. However, a more formal
analysis is outside the scope of this paper.
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Fig. 10. The left hand figure shows a plot of ∆f,f ′ for the conflict measure produced
by the “Pump” data set with n = m = 15 and s = 45. The right hand figure shows
a similar plot, but with n = m = 20 and s = 50.
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4 Conclusion and future work

We have proposed an alert system methodology based on conflict analysis.
A distinguishing characteristic of the proposed methodology is that it only
relies on a model for normal system operation, i.e., knowledge about the pos-
sible faults is not required. Moreover, the computational complexity of the
algorithm ensures that on-line analysis is feasible. The methodology has been
successfully tested on both real-world data from a power plant and simulated
data from an oil production facility.

As part of ongoing research and future work, we are working on establishing
alternative straw models in order to perform a more refined conflict analysis;
see also the discussion in (Laskey, 1991; Kim and Valtorta, 1995) concerning
the independence straw model (Jensen et al., 1990). Having an alternative
straw model might also reduce the effect of the decomposition property. I.e.,
when faulty sensors’ impact on the conflict measure is dominated by strongly
correlated sensors. Moreover, it could also be interesting to consider alternative
types of models for normal operation. For example, instead of looking for a
general Bayesian network model, which tends to become very dense, we might
focus on a restricted subclass of models, such as the Näıve Bayes models
(Lowd and Domingos, 2005). In addition, rather than discretizing the sensor
values one could also try to learn a model with continuous variables using e.g.
mixtures of truncated exponentials (Romero et al., 2004).

In the process of finishing the paper, we became aware of the work recently
published by Ibargüengoytia et al. (2005). Ibargüengoytia et al. (2005) take
outset in the related field of sensor validation, where they use Bayesian net-
works for representing normal sensor operation. However, instead of using
conflict measures for detecting faults they compare the actual sensor readings
with the expected sensor readings; a discrepancy between these values is then
interpreted as a possible fault. A more thorough comparison is outside the
scope of the present paper and is subject to future research.
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