Documentation of Software

e Types of documentation

e The problems related to documentation

e The purpose of the JavaDoc tool (or utility)
= [imitation

e Guidelines for JavaDoc from SunSoft

 Non standard JavaDoc comments

e Summary

OOP: Documentation

Types of Documentation

e Analysis and design (high-level and low-level) documentation
= What you are doing in object-oriented analysis and design documents
= Used to provide an overview of the system

e System documentation
= Provides all the (low-level) details
= Reference manual type of documentation
= This 1s what we emphasizing in today's lecture

e Test documentation
= High-level descriptions of the test approach
= Low-level documentation JavaDoc-like

OOP: Documentation

Problems Related to Documentation

e Documentation 1s competing hard with test to be the part most
often missing from a software project.

'66

= ,Use the source, Luke!* [The motion picture Star Wars]

e Programmers are often reluctant to write documentation.
= The job of the most recently hired programmer

e Documentation 1s often the last thing done 1n a project

'66

= [f1t1s done at all, ,,it takes too long to write documentation

 Documentation gets outdated

= Documentation 1s for version 1.0 of the system which is currently
now release 1n version 5.2.

= Source code 1n one file, documentation in another file

e Documentation 1s incomplete
= Not all parts of the system are documented

OOP: Documentation

Problems Related to Documentation, cont.

e Documentation is incorrect

e It looks ugly
= Text file
= Multiple different Word or HTML templates

e The documentation is not uniform

= Where should I start to look for information?

= Some document method, others also the data, and a final group only
constructors. They all forget to document the return value of
functions.

e Does not provide an overview

= Find documentation for that single method your are currently having
problems understanding

OOP: Documentation

JavaDoc Purposes

e Makes the documentation look nice
= Use HTML

e Makes the documentation look uniform across all programs

= If you know the structure of the documentation for one program, you
know it for all programs!

e Makes the documentation fast to write

= Auto generated from source files

e Makes it easy to browse the documentation
= Extract overview and use HTML, e.g., hyper links to different parts

e Solves the problem that documentation written last
= Written concurrently with the program

e Solves the problem that documentation gets outdated
= Documentation is embedded into the source code

OOP: Documentation

JavaDoc Purposes, cont.

e Solves documentation not complete
» Can check e.g., all method documented

e Solves (partly) documentation 1s incorrect

= Simple checks that, e.g., all parameters and return value have
documentation strings

OOP: Documentation

Limitations of JavaDoc

e Only system documentation, 1.e., reference manual type

e No-magic, the programmer still have to write the
documentation strings that are extracted via the JavaDoc tool
= Development environments will help you provide JavaDoc skeletons
* Only partly check of consistency between source and
documentation
= check documentation string for all parameters and return value
= check all exception documented

OOP: Documentation

JavaDoc, Example

import com.mycompany.misc.*;
/** Implements a garage of cars and trucks */

public class Garage {
/** Comment on instance variable */

Car carl;
Truck truckl;

/** Default constructor, create a car and a truck */

public Garage () {
/** Comment on method internals */

carl = new Car();
truckl = new Truck() ;

}

/** Prints the vehicles made in the constructor
* @see Garage#fGarage ()
*/
public void toPrint() {
System.out.println ("A garage: " + carl + truckl);

}
}

OOP: Documentation

JavaDoc Tags

e A tag is a special keyword within a comment that JavaDoc can
process (note case sensitive)
* Types
= Block tags, must appear at beginning of line, e.g., (@author
= Inline tags, anywhere must be within curly bracket, e.g., {@link}

e User-defined cascading-style-sheet for JavaDoc can be
provided
= To give a company-specific look to the documentation
e Tags can be user-defined via Doclets

= Java program using the doclet API
¢ e.g., @todo, @extension, @bug, @workaround, @pre, @post

= Overkill for your projects

OOP: Documentation

mailto:%7B@link

Standard Tags

(@author fext

(@deprecated text

(@exception class-name description
(@param parameter-name description
(@return description

(@see reference

(@serial description | include | exclude
(@ser1alData description

(@senalField field-name field-type
(@since text

(@throws (same as (@exception)
(@version text

OOP: Documentation

10

Standard Tags, cont

e {(@docRoot}
= Example: See Copyright.

e {(@inheritDoc}

= Copies documentation from the ,,nearest* inheritable class
= Nice when methods are overridden 1in subclasses

e {(wlink} package-name.class#member label

e {(lhinkplain} package-name.class#member label
= Same as {@link} but plain text

e {(@value}

= Show the value of a constant

OOP: Documentation

11

mailto:%7B@docRoot
mailto:%7B@inheritDoc
mailto:%7B@link
mailto:%7B@linkplain
mailto:%7B@link
mailto:%7B@value

Class Documentation Example

/ * *
* The SQL keywords. This are defined here to avoid having literals
* spread all over the code.
* The ant logo.
* <center>
*
* </center>
*
* (@author Kristian Torp, torp (at) cs (dot) aau (dot) dk
* (@author Viggo Pedersen vig (at) cs (dot) aau (dot) dk
* @version 1.20
* @since 1.00
* <p/>
* History
* <pre>
* Version How What changed
K e
* 1.0 kt Made first running version
* 1.1 vig Made to inherit from DatabaseObject
* 1.2 kt Implemented Comparable interface
* </pre>
*/
The Output

OOP: Documentation 12

file:///E:/Java/SQL/doc/dk/auc/cs/sql/ast/Keyword.html

The (@see Tag

e Current Class

" (wsee
" (wsee
" (wsee
" (wsee
" (wsee

#field

#method(Type, Type,...)

#method(Type argname, Type argname,...)
#constructor(Type, Type,...)
#constructor(Type argname, Type argname,...)

e Referencing an element 1in another package (fully qualified)

" (wsee
" (wsee
" (wsee
" (wsee
" (wsee
" (wsee
" (wsee
" (wsee

OOP: Documentation

package.Class#tield

package.Class#method(Type, Type,...)
package.Class#method(Type argname, Type argname,...)
package.Class#constructor(Type, Type,...)
package.Class#constructor(Type argname, Type argname,...)
package.Class.NestedClass

package.Class

package

13

(@see, Example

/**
* Checks 1f two NumberColumns are equal.
* (@param o Object
* [@dsee java.lang.Object#equals(java.lang.Object)
*/
public boolean equals (Object o) { // snip }
/**
* The visitor method.
* (@param v the visitor
* @link dk.auc.cs.sgl.visitor
*/
public void accept (Visitor v) {
v.visitNumberColumn (this) ;

}
/**
* Gets the default value for the column.
* @return the default value for a column
* @dlinkplain Column
*/
public double getDefaultValue() {
return defaultValue;

}
The Output

OOP: Documentation

14

file:///E:/Java/SQL/doc/dk/auc/cs/sql/ast/NumberColumn.html

JavaDoc Guidelines

Document all public, package, and protected fields and
methods.

= classes, (including inner classes)
= interface

Document all constructors

Document all checked exceptions thrown by methods

Make a general comment on each package
= Via package.html file in directory

Add @auther, @version and (@since to each class and interface
= To document changes

Add HTML code to documentation where it makes sense
= Overviews
= Detailed history
= Examples

OOP: Documentation 15

Running the JavaDoc Tool

e javadoc

= The Java documentation generator
= javadoc [options] <filename.class> | <package>

e Examples
= javadoc dk.auc.sql.ast
¢ Cannot handle assert keyword private not covered
* Must be at right location
= javadoc -private -source 1.4 dk.auc.cs.sql.ast

¢ Outputs 1n same directory as source files

* javadoc -private -source 1.4 -d c:\temp
dk.auc.cs.sqgl.ast

¢+ specify the output directory with -d

» javadoc -private -source 1.4 -d c:\temp
-windowtitle "Hello JavaDoc" dk.auc.cs.sql.ast

¢ Make a nice title on main window

OOP: Documentation

16

Non-JavaDoc Comments

e JavaDoc 1s for the client programmers and partly for class

developers.

e Good implementation comments are still needed for class
maintainers
* For internal use in a company

= For open source, for any one else to be able to understand the code

OOP: Documentation

17

Examples of Non-JavaDoc Comments
* (wdefault

= When a default value 1s supplied for a system variable
* (@wdesign
= To indicate and communicate important design decision
* (wextension
= Nice-to-have feature that can be implemented in the next release

* (wgrant

= Database grant or network grant to be able to use a service
o @limit
= Know limitation of the system, e.g., max. 10 user can be handled

e (wperformance
= Correct but slow implementation, to be looked at in next release

e (@todo

= Should be done before system 1s release to customers

OOP: Documentation 18

Rules-of-Thumb

Saying variable and method names are the best comments

Make comments where there are surprises

Make comments where you cannot remember what your own
code does

Mal
Mal
Mal
Mal

Do

ke comments clear and correct
ke comments that focus on why rather than Zow!
ke comments to prepare reader for the code to follow

ke comments that summarizes what the code does

not comment the obvious

OOP: Documentation

19

Summary

e Documentation 1s the piece of information most likely to be
missing for a complete software program.

e JavaDoc has set new standards for system documentation
= Code and documentation stored in the same file
= Many similar products to other languages

e For the MIP exam you must provide JavaDoc system
documentation.

Not documenting your software
1S unprofessional!

OOP: Documentation

20

