Exception Handling

e Error handling in general
= Run-time errors

e Java's exception handling mechanism
e The catch-or-specify principle
e Checked and unchecked exceptions

e Exceptions impact/usage
= Overloaded methods
* Inheritance hierarchies
= Constructors
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Motivation

e Make programs more robust!
= Less overtime Sunday afternoons

e Make programs shorter!
e Make programs less complicated!

e General 1deas applies to most programming languages!
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Error Handling

e Not all errors can be caught at compile time!

= These errors are called run-time errors (the opposite is compile-time
€ITors)

e Help -- run-time error! What next ...?

e First 1deas:
= System.out.println()

= System.err.println() (much better than the previous)

e (Good guess but some errors call for corrective action, not just
warning.

e In general, printing 1s a bad 1dea!

e Better: tell someone (not necessarily the user)!
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Error Handling, cont.

e Establish return code convention
= )vs. !01n C/CH+H+
= boolean in Java

e Set value of a global variable
= Done in many shells.
= In Java use a public static field in a class.

e Raise an exception, catch it, and act
= The 1dea comes from hardware.
= Modern language support (Java, Python, Lisp, Ada, C++, C#).
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General Errors and Error Handling

e Errors must be handled where they occur

* One error in a method can be handled very differently in the clients,
this 1s not a good approach. Repeating handling of the same error.

= Can be extremely hard to debug.

e To handle an error detailed information on the error must be
provided.
= Where did the error occur (class, method, line number)
= What type of error
= A good error message
* Dump of runtime stack? (too much information?)

e In object-oriented languages errors are represented by objects.

OOP: Exception Handling



How to Handle Errors

e [gnore: False alarm just continue.

e Report. Write a message to the screen or to a log.
o Terminate: Stop the program execution.

e Repair: Make changes and try to recover the error.

e To be able to repair seems to be the best.
e The best is often the combination of report and terminate.
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Java's Exception Handling

o Exception: An event that occurs during the execution of a
program the disrupts the normal execution flow.

= A run-time phenomenon.

e Exception handling 1s part of the language.
e Exceptions are objects.
e Exceptions are structured in a class hierarchy.

It 1s not possible to ignore an exceptions (nice feature?).

= A method specifies, which exceptions may occur, the client must
anticipate these exceptions, otherwise compile-time error.

[t 1s sometimes possible to recover to a known good state after
an exception was raised.
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Java’s Exception Handling, cont.

e Java’s object-oriented way to handle errors
= more powerful, more flexible than using return values
= keywords try, catch, throw, throws, finally.

e An exception 1s an object that describes an erroneous or unusual
situation.

e Exceptions are thrown by a program, and may be caught and
handled by another part of the program.

e A program can therefore be separated into a normal execution
flow and an exception execution flow.

* An error 1s also represented as an object 1n Java, but usually
represents a unrecoverable situation and should not be caught.

OOP: Exception Handling



Motivation for Exception Handling

errorCodeType readFile {
initialize errorCode = O;
open the file;

determine the length of the file;

allocate that much memory;

read the file into memory;

if (readFailed) {
errorCode = -1;

}

} else {
errorCode = -2;

}

} else {
errorCode = -3;

}

close the file;

errorCode = -4;
} else {

errorCode = errorCode and -4;

}
} else {

errorCode = -5;

}
_oop: B&SH BafigorCode s

readFile {
try {

open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

} catch (fileOpenFailed) {
doSomething;

} catch (sizeDeterminationFailed) {
doSomething;

} catch (memoryAllocationFailed) {
doSomething;

} catch (readFailed) {
doSomething;

} catch (fileCloseFailed) {
doSomething;

[source: java.sun.com]



Simple Example

public class SimpleException extends Exception{}

public class SimpleExample {

public double calcPrice(int netPrice) throws SimpleException({

if (netPrice > 100) {
throw new SimpleException(); // too expensive

}

return netPrice * 1.25; // add sales tax
}
public static void main (String[] args) {
SimpleExample se = new SimpleExample() ;
try{
se.calcPrice(10) ;
se.calcPrice (23) ;
se.calcPrice (1000) ;
se.calcPrice (88) ; // never called
}
catch (SimpleException e) {
System.err.println ("Caught SimpleException") ;

}
}

OOP: Exception Handling
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Exception Handling Model

e Code where you anticipate a problem:

= Detect error, probably with an 1f create a new exception and throw it
= Alternatively let JVM detect error, create, and throw an exception

public static void main (String[] args) throws
exceptionl, exception2, exception3 ({

}

e Code in client (somewhere 1n message invocation stack)
= try, hoping for the best

= prepare to catch an exception

try
// statements that can throws exceptions
} catch (exceptionl) {
// do stuff
} catch (exception2) {
// do stuff
}
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Java's Catch or Specity Requirement
e (Catch

= A method can catch exception by providing and exception handler.

e Specify
= [f a method chooses not to catch, then specify which exceptions can be
thrown.

= Exceptions are part of a method's public interface.

OOP: Exception Handling
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Checked/Unchecked Exceptions

e An exception 1s either checked or unchecked
* Checked = checked by the compiler

* A checked exception can only be thrown within a try block or
within a method that 1s designated to throw that exception.

= The compiler will complain 1f a checked exception is not handled
appropriately.

e An unchecked exception does not require explicit handling,
though 1t could be processed that way.

OOP: Exception Handling
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Java's Exception Class Hierarchy

Object
Checked T Checked
— Throwable
4 /
Exception
Subclasses
| / Checked —>
Unchecked Unchecked

(System and JVM Errors)

OOP: Exception Handling
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Java's Exception Class Hierarchy, cont.
e Throwable

= Superclass for all exceptions
= Two methods for filling in and printing the stack

e Error

= Serious internal errors (should not occur 1n running programs).
= Are normally not handled. (report and terminate)

= Programs should not throw Exrrors
= The catch or specify principle does not apply, because they are so
severe.

= Examples
¢ Dynamic linking failure
¢ Memory shortage
¢ Instantiating abstract class

OOP: Exception Handling
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Java's Exception Class Hierarchy, cont.

e Exception

= The base class for most exception used in Java programs
= The catch or specify principle does apply

= Examples of subclasses
¢ TOException
¢ ClassNotFoundException

e RuntimeException

= Not a good name (all exceptions are at run-time)!

= Commonly seen run-time errors
¢ ArrayIndexOutOfBoundsException
¢ ClassCastException

= The catch or specify principle does not apply, because they are so
ubiquitous.

= Examples
¢ Divide by zero, Cast error, and Null pointer errors
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The try Statement

e To process an exception when it occurs, the line that throws the
exception 1s executed within a #ry block.

e A try block 1s followed by one or more catch clauses, which
contain code to process an exception.

e Each catch clause has an associated exception type.

try { // what is wrong here?
// statements try {

// handle error }
}
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The catch Statement

 The catch statement 1s used for catching exceptions.

* A try statement must be accompanied by a catch statement.

e try and catch statements can be nested, 1.e., try block in
try block, etc.

try {
// statements that throws exceptions
} catch (ArrayIndexOutOfBoundsException e) {

System.err.println("Caught first " + e.getMessage())
} catch (IOException e) {

System.err.println("Caught second " + e.getMessage())
}

// what is ugly here?
try {

// statements that throw exceptions
} catch (IOException e) {

System.out.println (“"Error occured”) ;

}

OOP: Exception Handling
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The catch Statement, cont.

 When an exception occurs, processing continues at the first
catch clause that matches the exception type.

 The catch statements should be should be listed in
most-specialized-exception-first order.

// what is wrong here?
try {
// statements that throw exceptions
} catch (Exception e) { // very general exception
System.err.println("Caught first " + e.getMessage())
} catch (ArrayIndexOutOfBoundsException e) {
// will never be called
System.err.println("Caught second " + e.getMessage()) ;
}

// what is ugly here?
try {

// statements that throw exceptions
} catch (Exception e) ({

}

OOP: Exception Handling
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The £inally Clause

e A try statement can have an optional clause designated by the

reserved word £inally.

e The £inally clause 1s always called
= After the try block 1s ended successfully
= After each catch block 1s executed

try {
// statements that throw exceptions

} catch (FirstException e) {
// handle error

} catch (SecondException e) ({
// handle error
} finally {

// code here always runs
// clean up file, database etc.

}

OOP: Exception Handling
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OOP: Exception Handling

The £inally Clause, cont.

previous statement

'

try

FirstException =—

SecondException =

finally

l

next statement
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The £inally Clause, Example

try {
// open a file

out = new PrintWriter (new FileWriter ("out.txt"))
// statements that throws exceptions

} catch (ArrayIndexOutOfBoundsException e) {
System.err.println ("Caught array error");
} catch (IOException e) ({
System.err.println("Caught I/O error");
} finally {
// always close files that are opened
if (out !'= null) {
System.out.println("Closing file");
out.close() ;

OOP: Exception Handling
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The throw Statement

e All methods use the throw statement to throw an exception.

public class Car {

// snip
// prevent cloning
public Object clone() throws CloneNotSupportedException{

throw new CloneNotSupportedException ('"Cannot clone car");

}

// check the users input and throw exception if illegal

// “precondition”
public void setPrice (double thePrice) {

if (thePrice < 0)
throw new IllegalArgumentException (
"Price is negative" + thePrice);

price = thePrice;

}

// for testing, do not use in production code
public static void main(String[] args) throws Exception {

// snip
}

OOI}: Exception Handling
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Exception Propagation

e Idea: Solve problems locally!
= private variables that points to opened resources close these

e If 1t 1s not appropriate to handle the exception where 1t occurs, it
can be handled at a higher level.

e Exceptions propagate up through the method calling hierarchy
until they are caught and handled or until they reach the
outermost level.

e A try block that contains a call to a method 1n which an
exception 1s thrown can be used to catch that exception.

OOP: Exception Handling
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Exception Propagation, Example

static void methodl throws IOException ({
throw new IOException ("Error in methodl") ;

}

static void method2 throws IOException ({

// do stuff, but no catch, just specify
methodl () ;

}
static void method3 throws IOException {

// do stuff, but no catch, just specify
method2 () ;

}

public static void main (String[] args) {
// catch if just specify error to console

try {
method3 () ;

} catch (IOException e) {

// handle the exception from methodl
}

OOP: Exception Handling
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Rethrowing an Exception

static void methodl throws IOException ({
throw new IOException ("Error in methodl") ;

}

static void method2 throws IOException ({

try{
methodl () ;

} catch (IOException e) ({
System.err.println ("Handle partly here");
throw e; // lst method
// throw e.fillInStackTrace; // 2nd method
// throw new IOException ("new one"); // 3th method

}
}

public static void main (String args|[]) {
// catch if just specify error to console
try {
method2 () ;
} catch (IOException e) {
System.err.println("Handle rest here") ;

}
}
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Creating New Exceptions

e Requires careful design (part of the public interface).
e Can an existing Exception be used?

e Choose the correct superclass.

e Choosing the name
= The most important thing for new exceptions.

* Tends to be long an descriptive
¢ ArrayIndexOutOfBoundsException

e Code for exception class typically minimal

e Sun exception naming convention

= All classes that inherits from Exception has 'Exception’' postfixed to
their name.

= All classes that inherits from Exrror has 'Error' postfixed to their
name.

OOP: Exception Handling
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Creating New Exceptions, Example

class SimplestException extends Exception {

// empty method body okay, just give it a good name
}

class SimpleException extends Exception ({
SimpleException () { super(); } // default constructor
SimpleException (String str) { super(str); }

}

class ExtendedException extends Exception {
private static int counter = 0; // no of exceptions
private int instanceNo;
ExtendedException () { super(); counter++; }
ExtendedException (String str) {
super (str); counter++; }
ExtendedException (String str, int no) ({
super (str) ;
instanceNo = no;
counter++;

}

OOP: Exception Handling
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Overloading and Exception

e Methods cannot be overloaded based on exception
specification.

public class OverloadedMethod{
/** An overloaded method */
public int calc(int x) throws SimpleException {

return x;

}
/** NOT allowed */

public int calc(int y) throws AnotherException ({
return y;

}
/** Is allowed */

public int calc(int x, int y) {
return x + y;

}

public static void main(String[] args) {

OverloadedMethod om = new OverloadedMethod() ;

System.out.println(om.calc(3)) ;

}
}

OOP: Exception Handling
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Inheritance and Exceptions

e [f base-class method throws an exception, derived-class method
may throw that exception or one derived from it.

e Derived-class method cannot throw an exception that is not a
type/subtype of an exception thrown by the base-class method.

= Otherwise subclass cannot be upcasted to base-class.

class BaseException extends Exception{}
class DerivedException extends BaseException{}
class AnotherException extends Exception{}

class A { void £ () throws BaseException{}}
// allowed

class B extends A { void f£() throws DerivedException{}}

// not allowed compile-error
class C extends B { void f() throws AnotherException{} }

OOP: Exception Handling
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Inheritance and Constructors

e Constructors can throw exceptions

e Subclass constructor cannot catch exception throws by base
class constructor.

class A{
int 1i;
A(int j) throws SimpleException{
if (J < 0){ throw new SimpleException(); }
i=7;
}
}

class B extends A {
B(int j) throws SimpleException, AnotherException{
// cannot have try block here
super (J) ;
if (j > 100){ throw new AnotherException(); }
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Guidelines

e Do not use exceptions for normal control flow!
= Slows down the program

e Do use exceptions to indicate abnormal conditions!

e Handle the error (fully or partially) if you have enough
information 1n the current context. Otherwise, propagate!

e Handle group of statements
= Do not encompass every single statement 1n a try block

e Use exceptions 1n constructors!
e Do something with the exceptions your code catches!
e Clean up using finally.

OOP: Exception Handling
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Summary

e The manner in which an exception 1s processed is an important
design consideration.

e Advantages of Exceptions
= Separates error handling from “regular” code.
= Propagation of errors up the call stack.

¢ Handle error in a context

= Grouping of error type and differentiation of errors.
* Overview
¢ Reuse of error handling code

e Exception handling similar in most object-oriented languages!
= Knowledge transfer between languages!

OOP: Exception Handling

33



Interfaces and Exception

e Exceptions can naturally be specified for methods 1n interfaces

public interface InterfaceException({
int calc(int x) throws SimpleException;

// not allowed
//int calc(int y) throws AnotherException;

int calc(int x, int y)
throws SimpleException, AnotherException;

OOP: Exception Handling
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