
OOP: Exception Handling 1

Exception Handling
• Error handling in general

 Run-time errors
• Java's exception handling mechanism
• The catch-or-specify principle
• Checked and unchecked exceptions
• Exceptions impact/usage

 Overloaded methods
 Inheritance hierarchies
 Constructors

OOP: Exception Handling 2

Motivation
• Make programs more robust!

 Less overtime Sunday afternoons
• Make programs shorter!
• Make programs less complicated!

• General ideas applies to most programming languages!

OOP: Exception Handling 3

Error Handling
• Not all errors can be caught at compile time!

 These errors are called run-time errors (the opposite is compile-time
errors)

• Help -- run-time error! What next …?

• First ideas:
 System.out.println()
 System.err.println() (much better than the previous)

• Good guess but some errors call for corrective action, not just
warning.

• In general, printing is a bad idea!
• Better: tell someone (not necessarily the user)!

OOP: Exception Handling 4

Error Handling, cont.
• Establish return code convention

 0 vs. !0 in C/C++
 boolean in Java

• Set value of a global variable
 Done in many shells.
 In Java use a public static field in a class.

• Raise an exception, catch it, and act
 The idea comes from hardware.
 Modern language support (Java, Python, Lisp, Ada, C++, C#).

OOP: Exception Handling 5

General Errors and Error Handling
• Errors must be handled where they occur

 One error in a method can be handled very differently in the clients,
this is not a good approach. Repeating handling of the same error.

 Can be extremely hard to debug.

• To handle an error detailed information on the error must be
provided.
 Where did the error occur (class, method, line number)
 What type of error
 A good error message
 Dump of runtime stack? (too much information?)

• In object-oriented languages errors are represented by objects.

OOP: Exception Handling 6

How to Handle Errors
• Ignore: False alarm just continue.
• Report: Write a message to the screen or to a log.
• Terminate: Stop the program execution.
• Repair: Make changes and try to recover the error.

• To be able to repair seems to be the best.
• The best is often the combination of report and terminate.

OOP: Exception Handling 7

Java's Exception Handling
• Exception: An event that occurs during the execution of a

program the disrupts the normal execution flow.
 A run-time phenomenon.

• Exception handling is part of the language.
• Exceptions are objects.
• Exceptions are structured in a class hierarchy.
• It is not possible to ignore an exceptions (nice feature?).

 A method specifies, which exceptions may occur, the client must
anticipate these exceptions, otherwise compile-time error.

• It is sometimes possible to recover to a known good state after
an exception was raised.

OOP: Exception Handling 8

Java’s Exception Handling, cont.
• Java’s object-oriented way to handle errors

 more powerful, more flexible than using return values
 keywords try, catch, throw, throws, finally.

• An exception is an object that describes an erroneous or unusual
situation.

• Exceptions are thrown by a program, and may be caught and
handled by another part of the program.

• A program can therefore be separated into a normal execution
flow and an exception execution flow.

• An error is also represented as an object in Java, but usually
represents a unrecoverable situation and should not be caught.

OOP: Exception Handling 9

Motivation for Exception Handling
errorCodeType readFile {
 initialize errorCode = 0;
 open the file;
 if (theFileIsOpen) {
 determine the length of the file;
 if (gotTheFileLength) {
 allocate that much memory;
 if (gotEnoughMemory) {
 read the file into memory;
 if (readFailed) {
 errorCode = -1;
 }
 } else {
 errorCode = -2;
 }
 } else {
 errorCode = -3;
 }
 close the file;
 if (theFileDidntClose && errorCode == 0) {
 errorCode = -4;
 } else {
 errorCode = errorCode and -4;
 }
 } else {
 errorCode = -5;
 }
 return errorCode;
}

readFile {
 try {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
 } catch (fileOpenFailed) {
 doSomething;
 } catch (sizeDeterminationFailed) {
 doSomething;
 } catch (memoryAllocationFailed) {
 doSomething;
 } catch (readFailed) {
 doSomething;
 } catch (fileCloseFailed) {
 doSomething;
 }
}

[source: java.sun.com]

OOP: Exception Handling 10

Simple Example
public class SimpleException extends Exception{}
public class SimpleExample{
 public double calcPrice(int netPrice) throws SimpleException{

if (netPrice > 100){
throw new SimpleException(); // too expensive

}
return netPrice * 1.25; // add sales tax

}
 public static void main (String[] args){

SimpleExample se = new SimpleExample();
try{

se.calcPrice(10);
se.calcPrice(23);
se.calcPrice(1000);
se.calcPrice(88); // never called

}
catch(SimpleException e){

System.err.println("Caught SimpleException");
}

}
}

OOP: Exception Handling 11

Exception Handling Model
• Code where you anticipate a problem:

 Detect error, probably with an if create a new exception and throw it
 Alternatively let JVM detect error, create, and throw an exception

• Code in client (somewhere in message invocation stack)
 try, hoping for the best
 prepare to catch an exception

try{
 // statements that can throws exceptions
} catch (exception1) {
 // do stuff
} catch (exception2) {
 // do stuff
}

public static void main (String[] args) throws
 exception1, exception2, exception3 {

. . .
}

OOP: Exception Handling 12

Java's Catch or Specify Requirement
• Catch

 A method can catch exception by providing and exception handler.

• Specify
 If a method chooses not to catch, then specify which exceptions can be

thrown.
 Exceptions are part of a method's public interface.

OOP: Exception Handling 13

Checked/Unchecked Exceptions
• An exception is either checked or unchecked

 Checked = checked by the compiler

• A checked exception can only be thrown within a try block or
within a method that is designated to throw that exception.
 The compiler will complain if a checked exception is not handled

appropriately.

• An unchecked exception does not require explicit handling,
though it could be processed that way.

OOP: Exception Handling 14

Java's Exception Class Hierarchy

Checked

Unchecked
(System and JVM Errors)

Checked

Unchecked

Object

Throwable

ExceptionError

RunTimeExceptionSubclasses Subclasses

SubclassesChecked

OOP: Exception Handling 15

Java's Exception Class Hierarchy, cont.
• Throwable

 Superclass for all exceptions
 Two methods for filling in and printing the stack

• Error
 Serious internal errors (should not occur in running programs).
 Are normally not handled. (report and terminate)
 Programs should not throw Errors
 The catch or specify principle does not apply, because they are so

severe.
 Examples

 Dynamic linking failure
 Memory shortage
 Instantiating abstract class

OOP: Exception Handling 16

Java's Exception Class Hierarchy, cont.
• Exception

 The base class for most exception used in Java programs
 The catch or specify principle does apply
 Examples of subclasses

 IOException
 ClassNotFoundException

• RuntimeException
 Not a good name (all exceptions are at run-time)!
 Commonly seen run-time errors

 ArrayIndexOutOfBoundsException
 ClassCastException

 The catch or specify principle does not apply, because they are so
ubiquitous.

 Examples
 Divide by zero, Cast error, and Null pointer errors

•

OOP: Exception Handling 17

The try Statement
• To process an exception when it occurs, the line that throws the

exception is executed within a try block.
• A try block is followed by one or more catch clauses, which

contain code to process an exception.
• Each catch clause has an associated exception type.

// what is wrong here?
try {

// statements
}

try {
// statements

} catch(Exception e){
 // handle error
}

OOP: Exception Handling 18

The catch Statement
• The catch statement is used for catching exceptions.
• A try statement must be accompanied by a catch statement.
• try and catch statements can be nested, i.e., try block in
try block, etc.
try {
 // statements that throws exceptions
} catch (ArrayIndexOutOfBoundsException e) {
 System.err.println("Caught first " + e.getMessage());
} catch (IOException e) {
 System.err.println("Caught second " + e.getMessage());
}
// what is ugly here?
try {
 // statements that throw exceptions
} catch (IOException e) {
 System.out.println(“Error occured”);
}

OOP: Exception Handling 19

The catch Statement, cont.
• When an exception occurs, processing continues at the first

catch clause that matches the exception type.
• The catch statements should be should be listed in

most-specialized-exception-first order.
// what is wrong here?
try {
 // statements that throw exceptions
} catch (Exception e) { // very general exception
 System.err.println("Caught first " + e.getMessage());
} catch (ArrayIndexOutOfBoundsException e) {

// will never be called
 System.err.println("Caught second " + e.getMessage());
}

// what is ugly here?
try {
 // statements that throw exceptions
} catch (Exception e) {
}

OOP: Exception Handling 20

The finally Clause
• A try statement can have an optional clause designated by the

reserved word finally.
• The finally clause is always called

 After the try block is ended successfully
 After each catch block is executed

try {
// statements that throw exceptions

} catch(FirstException e) {
// handle error

} catch(SecondException e) {
// handle error

} finally {
 // code here always runs
 // clean up file, database etc.

}

OOP: Exception Handling 21

The finally Clause, cont.

try

FirstException

SecondException

finally

next statement

previous statement

OOP: Exception Handling 22

The finally Clause, Example

try {
 // open a file

out = new PrintWriter(new FileWriter("out.txt"));
 // statements that throws exceptions

} catch (ArrayIndexOutOfBoundsException e) {
 System.err.println("Caught array error");
 } catch (IOException e) {
 System.err.println("Caught I/O error");
 } finally {
 // always close files that are opened
 if (out != null) {
 System.out.println("Closing file");
 out.close();
 }
 }
}

OOP: Exception Handling 23

The throw Statement
• All methods use the throw statement to throw an exception.
public class Car {
 // snip
 // prevent cloning
 public Object clone() throws CloneNotSupportedException{

 throw new CloneNotSupportedException("Cannot clone car");
 }
 // check the users input and throw exception if illegal
 // “precondition”
 public void setPrice(double thePrice) {
 if (thePrice < 0)

 throw new IllegalArgumentException(
 "Price is negative" + thePrice);

price = thePrice;
}

 // for testing, do not use in production code
 public static void main(String[] args) throws Exception {
 // snip
 }
}

OOP: Exception Handling 24

Exception Propagation
• Idea: Solve problems locally!

 private variables that points to opened resources close these

• If it is not appropriate to handle the exception where it occurs, it
can be handled at a higher level.

• Exceptions propagate up through the method calling hierarchy
until they are caught and handled or until they reach the
outermost level.

• A try block that contains a call to a method in which an
exception is thrown can be used to catch that exception.

OOP: Exception Handling 25

Exception Propagation, Example
static void method1 throws IOException {

throw new IOException("Error in method1");
}
static void method2 throws IOException {

// do stuff, but no catch, just specify
method1();

}
static void method3 throws IOException {

// do stuff, but no catch, just specify
method2();

}
public static void main (String[] args){

// catch if just specify error to console
try {

method3();
} catch (IOException e){

// handle the exception from method1
}

}

OOP: Exception Handling 26

Rethrowing an Exception
static void method1 throws IOException {

throw new IOException("Error in method1");
}
static void method2 throws IOException {

try{
method1();

} catch (IOException e) {
System.err.println("Handle partly here");
throw e; // 1st method
// throw e.fillInStackTrace; // 2nd method
// throw new IOException ("new one"); // 3th method

}
}
public static void main (String args[]){

// catch if just specify error to console
try {

method2();
} catch (IOException e){

System.err.println("Handle rest here");
}

}

OOP: Exception Handling 27

Creating New Exceptions
• Requires careful design (part of the public interface).
• Can an existing Exception be used?
• Choose the correct superclass.
• Choosing the name

 The most important thing for new exceptions.
 Tends to be long an descriptive

 ArrayIndexOutOfBoundsException
• Code for exception class typically minimal

• Sun exception naming convention
 All classes that inherits from Exception has 'Exception' postfixed to

their name.
 All classes that inherits from Error has 'Error' postfixed to their

name.

OOP: Exception Handling 28

Creating New Exceptions, Example
class SimplestException extends Exception {

// empty method body okay, just give it a good name
}
class SimpleException extends Exception {

SimpleException () { super(); } // default constructor
SimpleException (String str) { super(str); }

}
class ExtendedException extends Exception {

private static int counter = 0; // no of exceptions
 private int instanceNo;

ExtendedException () { super(); counter++; }
ExtendedException (String str) {

super(str); counter++; }
ExtendedException (String str, int no) {

super(str);
instanceNo = no;
counter++;

}
}

OOP: Exception Handling 29

Overloading and Exception
• Methods cannot be overloaded based on exception

specification.

public class OverloadedMethod{
/** An overloaded method */
public int calc(int x) throws SimpleException {

 return x;
 }

/** NOT allowed */
public int calc(int y) throws AnotherException {

 return y;
 }

/** Is allowed */
public int calc(int x, int y){

 return x + y;
 }

public static void main(String[] args){
OverloadedMethod om = new OverloadedMethod();
System.out.println(om.calc(3));

}
}

OOP: Exception Handling 30

Inheritance and Exceptions
• If base-class method throws an exception, derived-class method

may throw that exception or one derived from it.

• Derived-class method cannot throw an exception that is not a
type/subtype of an exception thrown by the base-class method.
 Otherwise subclass cannot be upcasted to base-class.
class BaseException extends Exception{}
class DerivedException extends BaseException{}
class AnotherException extends Exception{}
class A { void f() throws BaseException{}}
// allowed
class B extends A { void f() throws DerivedException{}}
// not allowed compile-error
class C extends B { void f() throws AnotherException{} }

OOP: Exception Handling 31

Inheritance and Constructors
• Constructors can throw exceptions
• Subclass constructor cannot catch exception throws by base

class constructor.

class A{
int i;
A(int j) throws SimpleException{

if (j < 0){ throw new SimpleException(); }
i = j;

}
}
class B extends A {

B(int j) throws SimpleException, AnotherException{
// cannot have try block here
super(j);
if (j > 100){ throw new AnotherException(); }

}
}

OOP: Exception Handling 32

Guidelines
• Do not use exceptions for normal control flow!

 Slows down the program
• Do use exceptions to indicate abnormal conditions!

• Handle the error (fully or partially) if you have enough
information in the current context. Otherwise, propagate!

• Handle group of statements
 Do not encompass every single statement in a try block

• Use exceptions in constructors!
• Do something with the exceptions your code catches!
• Clean up using finally.

OOP: Exception Handling 33

Summary
• The manner in which an exception is processed is an important

design consideration.

• Advantages of Exceptions
 Separates error handling from “regular” code.
 Propagation of errors up the call stack.

 Handle error in a context
 Grouping of error type and differentiation of errors.

 Overview
 Reuse of error handling code

• Exception handling similar in most object-oriented languages!
 Knowledge transfer between languages!

OOP: Exception Handling 34

Interfaces and Exception
• Exceptions can naturally be specified for methods in interfaces

public interface InterfaceException{
int calc(int x) throws SimpleException;
// not allowed

 //int calc(int y) throws AnotherException;
int calc(int x, int y)

 throws SimpleException, AnotherException;
}

