Exception Handling

e Error handling in general
= Run-time errors

e Java's exception handling mechanism
e The catch-or-specify principle
e Checked and unchecked exceptions

e Exceptions impact/usage
= Overloaded methods
* Inheritance hierarchies
= Constructors

OOP: Exception Handling

Motivation

e Make programs more robust!
= Less overtime Sunday afternoons

e Make programs shorter!
e Make programs less complicated!

e General 1deas applies to most programming languages!

OOP: Exception Handling

Error Handling

e Not all errors can be caught at compile time!

= These errors are called run-time errors (the opposite is compile-time
€ITors)

e Help -- run-time error! What next ...?

e First 1deas:
= System.out.println()

= System.err.println() (much better than the previous)

e (Good guess but some errors call for corrective action, not just
warning.

e In general, printing 1s a bad 1dea!

e Better: tell someone (not necessarily the user)!

OOP: Exception Handling

Error Handling, cont.

e Establish return code convention
=)vs. !01n C/CH+H+
= boolean in Java

e Set value of a global variable
= Done in many shells.
= In Java use a public static field in a class.

e Raise an exception, catch it, and act
= The 1dea comes from hardware.
= Modern language support (Java, Python, Lisp, Ada, C++, C#).

OOP: Exception Handling

General Errors and Error Handling

e Errors must be handled where they occur

* One error in a method can be handled very differently in the clients,
this 1s not a good approach. Repeating handling of the same error.

= Can be extremely hard to debug.

e To handle an error detailed information on the error must be
provided.
= Where did the error occur (class, method, line number)
= What type of error
= A good error message
* Dump of runtime stack? (too much information?)

e In object-oriented languages errors are represented by objects.

OOP: Exception Handling

How to Handle Errors

e [gnore: False alarm just continue.

e Report. Write a message to the screen or to a log.
o Terminate: Stop the program execution.

e Repair: Make changes and try to recover the error.

e To be able to repair seems to be the best.
e The best is often the combination of report and terminate.

OOP: Exception Handling

Java's Exception Handling

o Exception: An event that occurs during the execution of a
program the disrupts the normal execution flow.

= A run-time phenomenon.

e Exception handling 1s part of the language.
e Exceptions are objects.
e Exceptions are structured in a class hierarchy.

It 1s not possible to ignore an exceptions (nice feature?).

= A method specifies, which exceptions may occur, the client must
anticipate these exceptions, otherwise compile-time error.

[t 1s sometimes possible to recover to a known good state after
an exception was raised.

OOP: Exception Handling

Java’s Exception Handling, cont.

e Java’s object-oriented way to handle errors
= more powerful, more flexible than using return values
= keywords try, catch, throw, throws, finally.

e An exception 1s an object that describes an erroneous or unusual
situation.

e Exceptions are thrown by a program, and may be caught and
handled by another part of the program.

e A program can therefore be separated into a normal execution
flow and an exception execution flow.

* An error 1s also represented as an object 1n Java, but usually
represents a unrecoverable situation and should not be caught.

OOP: Exception Handling

Motivation for Exception Handling

errorCodeType readFile {
initialize errorCode = O;
open the file;

determine the length of the file;

allocate that much memory;

read the file into memory;

if (readFailed) {
errorCode = -1;

}

} else {
errorCode = -2;

}

} else {
errorCode = -3;

}

close the file;

errorCode = -4;
} else {

errorCode = errorCode and -4;

}
} else {

errorCode = -5;

}
_oop: B&SH BafigorCode s

readFile {
try {

open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

} catch (fileOpenFailed) {
doSomething;

} catch (sizeDeterminationFailed) {
doSomething;

} catch (memoryAllocationFailed) {
doSomething;

} catch (readFailed) {
doSomething;

} catch (fileCloseFailed) {
doSomething;

[source: java.sun.com]

Simple Example

public class SimpleException extends Exception{}

public class SimpleExample {

public double calcPrice(int netPrice) throws SimpleException({

if (netPrice > 100) {
throw new SimpleException(); // too expensive

}

return netPrice * 1.25; // add sales tax
}
public static void main (String[] args) {
SimpleExample se = new SimpleExample() ;
try{
se.calcPrice(10) ;
se.calcPrice (23) ;
se.calcPrice (1000) ;
se.calcPrice (88) ; // never called
}
catch (SimpleException e) {
System.err.println ("Caught SimpleException") ;

}
}

OOP: Exception Handling

10

Exception Handling Model

e Code where you anticipate a problem:

= Detect error, probably with an 1f create a new exception and throw it
= Alternatively let JVM detect error, create, and throw an exception

public static void main (String[] args) throws
exceptionl, exception2, exception3 ({

}

e Code in client (somewhere 1n message invocation stack)
= try, hoping for the best

= prepare to catch an exception

try
// statements that can throws exceptions
} catch (exceptionl) {
// do stuff
} catch (exception2) {
// do stuff
}

OOP: Exception Handling

Java's Catch or Specity Requirement
e (Catch

= A method can catch exception by providing and exception handler.

e Specify
= [f a method chooses not to catch, then specify which exceptions can be
thrown.

= Exceptions are part of a method's public interface.

OOP: Exception Handling

12

Checked/Unchecked Exceptions

e An exception 1s either checked or unchecked
* Checked = checked by the compiler

* A checked exception can only be thrown within a try block or
within a method that 1s designated to throw that exception.

= The compiler will complain 1f a checked exception is not handled
appropriately.

e An unchecked exception does not require explicit handling,
though 1t could be processed that way.

OOP: Exception Handling

13

Java's Exception Class Hierarchy

Object
Checked T Checked
— Throwable
4 /
Exception
Subclasses
| / Checked —>
Unchecked Unchecked

(System and JVM Errors)

OOP: Exception Handling

14

Java's Exception Class Hierarchy, cont.
e Throwable

= Superclass for all exceptions
= Two methods for filling in and printing the stack

e Error

= Serious internal errors (should not occur 1n running programs).
= Are normally not handled. (report and terminate)

= Programs should not throw Exrrors
= The catch or specify principle does not apply, because they are so
severe.

= Examples
¢ Dynamic linking failure
¢ Memory shortage
¢ Instantiating abstract class

OOP: Exception Handling

15

Java's Exception Class Hierarchy, cont.

e Exception

= The base class for most exception used in Java programs
= The catch or specify principle does apply

= Examples of subclasses
¢ TOException
¢ ClassNotFoundException

e RuntimeException

= Not a good name (all exceptions are at run-time)!

= Commonly seen run-time errors
¢ ArrayIndexOutOfBoundsException
¢ ClassCastException

= The catch or specify principle does not apply, because they are so
ubiquitous.

= Examples
¢ Divide by zero, Cast error, and Null pointer errors

OOP: Exception Handling 16

The try Statement

e To process an exception when it occurs, the line that throws the
exception 1s executed within a #ry block.

e A try block 1s followed by one or more catch clauses, which
contain code to process an exception.

e Each catch clause has an associated exception type.

try { // what is wrong here?
// statements try {

// handle error }
}

OOP: Exception Handling 17

The catch Statement

 The catch statement 1s used for catching exceptions.

* A try statement must be accompanied by a catch statement.

e try and catch statements can be nested, 1.e., try block in
try block, etc.

try {
// statements that throws exceptions
} catch (ArrayIndexOutOfBoundsException e) {

System.err.println("Caught first " + e.getMessage())
} catch (IOException e) {

System.err.println("Caught second " + e.getMessage())
}

// what is ugly here?
try {

// statements that throw exceptions
} catch (IOException e) {

System.out.println (“"Error occured”) ;

}

OOP: Exception Handling

18

The catch Statement, cont.

 When an exception occurs, processing continues at the first
catch clause that matches the exception type.

 The catch statements should be should be listed in
most-specialized-exception-first order.

// what is wrong here?
try {
// statements that throw exceptions
} catch (Exception e) { // very general exception
System.err.println("Caught first " + e.getMessage())
} catch (ArrayIndexOutOfBoundsException e) {
// will never be called
System.err.println("Caught second " + e.getMessage()) ;
}

// what is ugly here?
try {

// statements that throw exceptions
} catch (Exception e) ({

}

OOP: Exception Handling

19

The £inally Clause

e A try statement can have an optional clause designated by the

reserved word £inally.

e The £inally clause 1s always called
= After the try block 1s ended successfully
= After each catch block 1s executed

try {
// statements that throw exceptions

} catch (FirstException e) {
// handle error

} catch (SecondException e) ({
// handle error
} finally {

// code here always runs
// clean up file, database etc.

}

OOP: Exception Handling

20

OOP: Exception Handling

The £inally Clause, cont.

previous statement

'

try

FirstException =—

SecondException =

finally

l

next statement

21

The £inally Clause, Example

try {
// open a file

out = new PrintWriter (new FileWriter ("out.txt"))
// statements that throws exceptions

} catch (ArrayIndexOutOfBoundsException e) {
System.err.println ("Caught array error");
} catch (IOException e) ({
System.err.println("Caught I/O error");
} finally {
// always close files that are opened
if (out !'= null) {
System.out.println("Closing file");
out.close() ;

OOP: Exception Handling

22

The throw Statement

e All methods use the throw statement to throw an exception.

public class Car {

// snip
// prevent cloning
public Object clone() throws CloneNotSupportedException{

throw new CloneNotSupportedException ('"Cannot clone car");

}

// check the users input and throw exception if illegal

// “precondition”
public void setPrice (double thePrice) {

if (thePrice < 0)
throw new IllegalArgumentException (
"Price is negative" + thePrice);

price = thePrice;

}

// for testing, do not use in production code
public static void main(String[] args) throws Exception {

// snip
}

OOI}: Exception Handling

23

Exception Propagation

e Idea: Solve problems locally!
= private variables that points to opened resources close these

e If 1t 1s not appropriate to handle the exception where 1t occurs, it
can be handled at a higher level.

e Exceptions propagate up through the method calling hierarchy
until they are caught and handled or until they reach the
outermost level.

e A try block that contains a call to a method 1n which an
exception 1s thrown can be used to catch that exception.

OOP: Exception Handling

24

Exception Propagation, Example

static void methodl throws IOException ({
throw new IOException ("Error in methodl") ;

}

static void method2 throws IOException ({

// do stuff, but no catch, just specify
methodl () ;

}
static void method3 throws IOException {

// do stuff, but no catch, just specify
method2 () ;

}

public static void main (String[] args) {
// catch if just specify error to console

try {
method3 () ;

} catch (IOException e) {

// handle the exception from methodl
}

OOP: Exception Handling

25

Rethrowing an Exception

static void methodl throws IOException ({
throw new IOException ("Error in methodl") ;

}

static void method2 throws IOException ({

try{
methodl () ;

} catch (IOException e) ({
System.err.println ("Handle partly here");
throw e; // lst method
// throw e.fillInStackTrace; // 2nd method
// throw new IOException ("new one"); // 3th method

}
}

public static void main (String args|[]) {
// catch if just specify error to console
try {
method2 () ;
} catch (IOException e) {
System.err.println("Handle rest here") ;

}
}

OOP: Exception Handling

Creating New Exceptions

e Requires careful design (part of the public interface).
e Can an existing Exception be used?

e Choose the correct superclass.

e Choosing the name
= The most important thing for new exceptions.

* Tends to be long an descriptive
¢ ArrayIndexOutOfBoundsException

e Code for exception class typically minimal

e Sun exception naming convention

= All classes that inherits from Exception has 'Exception’' postfixed to
their name.

= All classes that inherits from Exrror has 'Error' postfixed to their
name.

OOP: Exception Handling

27

Creating New Exceptions, Example

class SimplestException extends Exception {

// empty method body okay, just give it a good name
}

class SimpleException extends Exception ({
SimpleException () { super(); } // default constructor
SimpleException (String str) { super(str); }

}

class ExtendedException extends Exception {
private static int counter = 0; // no of exceptions
private int instanceNo;
ExtendedException () { super(); counter++; }
ExtendedException (String str) {
super (str); counter++; }
ExtendedException (String str, int no) ({
super (str) ;
instanceNo = no;
counter++;

}

OOP: Exception Handling

28

Overloading and Exception

e Methods cannot be overloaded based on exception
specification.

public class OverloadedMethod{
/** An overloaded method */
public int calc(int x) throws SimpleException {

return x;

}
/** NOT allowed */

public int calc(int y) throws AnotherException ({
return y;

}
/** Is allowed */

public int calc(int x, int y) {
return x + y;

}

public static void main(String[] args) {

OverloadedMethod om = new OverloadedMethod() ;

System.out.println(om.calc(3)) ;

}
}

OOP: Exception Handling

29

Inheritance and Exceptions

e [f base-class method throws an exception, derived-class method
may throw that exception or one derived from it.

e Derived-class method cannot throw an exception that is not a
type/subtype of an exception thrown by the base-class method.

= Otherwise subclass cannot be upcasted to base-class.

class BaseException extends Exception{}
class DerivedException extends BaseException{}
class AnotherException extends Exception{}

class A { void £ () throws BaseException{}}
// allowed

class B extends A { void f£() throws DerivedException{}}

// not allowed compile-error
class C extends B { void f() throws AnotherException{} }

OOP: Exception Handling

30

Inheritance and Constructors

e Constructors can throw exceptions

e Subclass constructor cannot catch exception throws by base
class constructor.

class A{
int 1i;
A(int j) throws SimpleException{
if (J < 0){ throw new SimpleException(); }
i=7;
}
}

class B extends A {
B(int j) throws SimpleException, AnotherException{
// cannot have try block here
super (J) ;
if (j > 100){ throw new AnotherException(); }

OOP: Exception Handling 31

Guidelines

e Do not use exceptions for normal control flow!
= Slows down the program

e Do use exceptions to indicate abnormal conditions!

e Handle the error (fully or partially) if you have enough
information 1n the current context. Otherwise, propagate!

e Handle group of statements
= Do not encompass every single statement 1n a try block

e Use exceptions 1n constructors!
e Do something with the exceptions your code catches!
e Clean up using finally.

OOP: Exception Handling

32

Summary

e The manner in which an exception 1s processed is an important
design consideration.

e Advantages of Exceptions
= Separates error handling from “regular” code.
= Propagation of errors up the call stack.

¢ Handle error in a context

= Grouping of error type and differentiation of errors.
* Overview
¢ Reuse of error handling code

e Exception handling similar in most object-oriented languages!
= Knowledge transfer between languages!

OOP: Exception Handling

33

Interfaces and Exception

e Exceptions can naturally be specified for methods 1n interfaces

public interface InterfaceException({
int calc(int x) throws SimpleException;

// not allowed
//int calc(int y) throws AnotherException;

int calc(int x, int y)
throws SimpleException, AnotherException;

OOP: Exception Handling

34

