Introduction to Object-Oriented Programming

e Objects and classes
e Encapsulation and information hiding

* Mental exercises
= (lassification and exemplification
= Aggregation and decomposition
= Generalization and specialization

e Inheritance

e Polymorphism and dynamic binding

e Java
= An object-oriented programming language
= Program example

= History of Java
= Comparison to C/C+

OOP: Introduction

Objects and Classes

Mammal
Two-legs
Very large brains
Omnivorous (plants + meat)

Mammal
Tusks
Four legs
Herbivorous (plant eater)

OOP: Introduction

The Object Concept

* An object 1s an encapsulation of data.

* An object has

= 1dentity (a unique reference)
¢+ Memory address
¢ Social security number (cpr), employee number, passport number

= state, also called characteristics (variables or attributes)
¢ hungry, sad, drunk, running, alive

= behavior (functions also called methods)
¢ cat, drink, wave, smile, kiss

e An object is an instance of a class.

OOP: Introduction

The Class Concept

e A class is a collection of objects (or values) and a
corresponding set of methods.

e A class encapsulates the data representation and makes data
access possible at a higher level of abstraction.

e A class is often called an Abstract Data Type (ADT).

e Example 1: A vehicle with methods for starting, stopping,
driving, get km/liter, etc.

e Example 2: A time interval with methods for start time, end
time, duration, overlapping intervals, etc.

e Example 3: A string, upper case, compare, lower case, etc.
= str.equals (otherStr) —class/Java style
= strcemp (str, otherStr) —C style

OOP: Introduction

Encapsulation and Information Hiding

e Data can be encapsulated such that it 1s invisible to the
“outside world”.

e Data can only be accessed via methods.

Data send Data
message
Function Method
Function Method
Function Method

Procedural Class

OOP: Introduction

Encapsulation and Information Hiding, cont.

e What the “outside world” cannot see i1t cannot depend on!
* The object 1s a “fire-wall” between the object and the “outside

world”.

e The hidden data and methods can be changed without
effecting the “outside world™.

An object

Outside world

Client interface

-~

L=

4%

-

Visible data and methods

.

Hidden &awd data and methods

OOP: Introduction

Class vs. Object

Class Object

e A description of the * A representation of the
common properties of a properties of a single
set of objects. instance.

* A concept. e A phenomenon.

e Aclassisapartofa e An object is part of data
program. and a program execution.

e Example 1: Person e Example 1: Bill Clinton,

Bono, Viggo Jensen.
» Example 2: Album e Example 2: A Hard Day's

Night, Joshua Tree, Rickie
Lee Jones.

OOP: Introduction

Connection between Object and Class

e In object-oriented programming language we write classes
= The text files we create contain classes!
= Static (and “One”)

e Objects are created from classes

= A class contains a “recipe” on how to make objects
* Dynamic (and “Many”)

250 g digestive biscuits

Class Objects
125 g soft brown sugar
125 g butter

50 g raisins

3 tablespoons cocoa »

1l egg
few drops vanilla essence

.)) source nttp://www.filflora.com
OOP: Introduction source http://www.icbl.hw.ac.uk/ltdi/cookbook/chocolate cake/

Type and Interface

* An object has a type and an interface.

_—

Class <<<

e To get an object

e To send a message

OOP: Introduction

Account

balance ()
withdraw ()
deposit ()

Account a
Account b

Type

Interface

new Account ()
new Account ()

a.withdraw ()
b.deposit()
a.balance ()

Instantiating Classes

* An instantiation 1s a mechanism where objects are created
from a class.

e Always involves storage allocation for the object.
* A mechanism where objects are given an initial state.

Static Instantiating Dynamic Instantiating

e In the declaration part of a e In the method part of a
program. program.

e A static instance 1s e A dynamic instance is
implicitly created created explicitly with a

special command.

OOP: Introduction

10

Interaction between Objects

e Interaction between objects happens by messages being send.
* A message activates a method on the calling object.

 An object Ol interacts with another object O2 by calling a
method on O2 (must be part of visible interface).

= “0Ol sends O2 a message”
e OI and O2 must be related to communicate.

e The call of a method corresponds to a function (or procedure)
call in a non-object-oriented languages such as C or Pascal.

message 02

Ol

A/message
message 03

OOP: Introduction

11

Phenomenon and Concept

* A phenomenon 1s a thing in the “real” world that has
individual existence.

= an object
e A concept is a generalization, derived from a set of

phenomena. It 1s based on the common properties of these
phenomena.

= g class

e Characteristics of a concept
" A name
= [ntension, the set of properties of the phenomenon
= FExtension, the set of phenomena covered by the concept.

OOP: Introduction

12

Classification and Exemplification, Examples

e hat, 23, 34, mouse, telephone, book, 98, 45.34, hello
= pumbers: 23, 34, 98, 45.34
= words: hat, mouse, telephone, book, hello

° mouse, tyrannosaurus rex, allosaurus, elephant, velociraptor
= dinosaur: tyrannosaurus rex, allosaurus, velociraptor
* mammal: mouse, elephant

OOP: Introduction

13

Classification and Exemplification, cont.

* A classification 1s a description of which phenomena that
belongs to a concept.

* An exemplification 1s a phenomenon that covers the concept.

Concept

classification exemplification

Phenomenon

OOP: Introduction

14

Aggregation and Decomposition, Example

e Idea: make new objects by combining existing objects.
e Reusing the implementation!

Engine
start () Car
stop () |
Engine
Gearbox Gearbox
goregatio
up () Doors|[4]
down () start ()
Door drive ()
open ()
close () new class

existing classes

e Car “has-a” Gearbox and Car “has-an” Engine

OOP: Introduction 15

Aggregation and Decomposition, cont.

* An aggregation consists of a number of (sub-)concepts that
collectively 1s considered a new concept.

* A decomposition splits a single concept into a number of
(sub-)concepts.

Concept Concept Concept Concept
" decompgosition > regati

Concept Concept Concept Concept

OOP: Introduction 16

Generalization and Specialization, Example

plani eslen

Drnithopods
; [Towl, Bos hagnl
= "x?
ﬁ ;ﬂﬁ
.‘ . -
e — Triceralaps., ' el ;
‘\\

\ e ———————

r = ﬁ.‘ LY
| The earth B L 135 milllos &% millsan
200 millban peare axo ' F FRACE 2K FEErY AL

OOP: Introduction source : www.geology.ucdavis.edu/ ~GEL12/dinosauria.Html 17

http://www.geology.ucdavis.edu/~GEL12/dinosauria.Html

Generalization and Specialization, cont.

e Generalization creates a concept with a broader scope.
= Larger extension, smaller intension

e Specialization creates a concept with a narrower scope.
= Smaller extension, larger intension

* Reusing the interface!

Concept A Concept C
Specia%ization genem}ization
Concept B Concept D
Vehicle
4/\»
Car Truck

T :

Hatchback Station car Sedan Pickup

OOP: Introduction

18

Generalization and Specialization, Example

o Inheritance: get the interface from the general class.

e Objects related by inheritance are all of the same type.

Shape
draw ()
resize ()
A
Circle Line Rectangle
draw () draw () draw ()
resize () resize () resize ()
Square
draw ()
resize ()

e Square “is-a” Shape or Square ‘“is-like-a” Shape

OOP: Introduction

19

Generalization and Specialization 1n Java

Object

clone ()

equals ()
toString()

|

Shape

draw ()
resize ()

A

Circle

draw ()
resize ()

Line

OOP: Introduction

draw ()
resize ()

Rectangle

draw ()
resize ()

20

Polymorphism and Dynamic Binding

void doSomething (Shape s) {
s.draw(); // “magically” calls the specific class

s.resize () ;

}

Circle c = new Circle(); // create Circle object
Line 1 = new Line(); // create line object

Rectangle r = new Rectangle();// create Rec. object

doSomething (c) ; // dynamic binding
doSomething (1) ;
doSomething (r) ;

e Polymorphism: One piece of code works with all shape
objects.

e Dynamic binding: How polymorphism 1s implemented.

OOP: Introduction

Benefit Generalization and Specialization

e Take previous Shape class hierarchy

= Remove inheritance
= Remove general class Shape

Rectangle Square
draw () draw ()
resize () resize ()
Circle Line
draw () draw ()
resize () resize ()

OOP: Introduction

Code Example, Revisited

void doSomething(Circle c) {
c.draw() ;

c.resize() ;

}
void doSomething(Line 1) {

l.draw() ;

l.resize () ;

Circle c new Circle() ;

Line 1 new Line() ;

Rectangle r new Rectangle() ;

doSomething (c) ;
doSomething (1) ;
doSomething (r) ;

OOP: Introduction

void doSomething (Rectangle r) {
r.draw() ;
r.resize (),

}

void doSomething (Square s) {
s.draw() ;

s.resize () ;

Similar code
1s repeated

23

Java Class Example Car

/** A simple class modeling a car. */

public class Car {

}

OOP: Introduction

// instance variables

private String make;

private String model;

private double price;

// constructor

public Car(String m, String mo, double p)
make = m; model = mo; price = p;

}

// string representation of the car

public String toString () ({
return "make: " + make + " model: "

+ model + " price: " + price;

{

24

Byte Code vs. Executable

javac M¥Prog.java

gcc MyProg.cpp

v -0 myptog.exe

Java Class File
MyProg.class

Portable Byte Code

Java/C# world C++ world

OOP: Introduction 25

History of Java

e 1990 Oak (interactive television, big failure)

e 1994 Java (for the Internet)

= Main feature: “Write Once, Run Any Where”
=> wrap the operating system so they all look the same

e Designed for

= A fresh start (no backward compatibility)
“Pure” OOP: C++ Syntax, Smalltalk style
= Improvements over C++ much harder to write a bad program

= Internet programming
¢ Very hard to create a virus
¢ Run in a web browser (and at the server)

= There 1s a speed issue (from Java 1.3 and up much better)
e C# Microsoft's “Java-Killer” project release 2001

= Language very similar to Java
= Common-Language Runtime (CLR) supports 60+ languages

OOP: Introduction

26

Difference from C/C++

Everything resides 1n a class
= variables and methods

Garbage collection
= Bye byemalloc (), free (), and sizeof ()

Error and exception handling handling
No global variables or methods
No local static variables

No separation of declaration and implementation
= Bye bye header files

No explicit pointer operations (uses references)
Has fewer “dark corners”

Has a much larger standard library
= Java Developer Kit or JDK

OOP: Introduction

27

Summary

e A classis a “recipe” for creating objects
e All objects are instances of classes

e Encapsulation
= Key feature of object-oriented programming
= Separation of interface from implementation
= [t 1s not possible to access the hidden/encapsulated parts of an object

e Aggregation and decomposition
= “has-a” relationship

e Generalization and specialization (1inheritance)
= “1s-a” or “is-like-a” relationship

e Polymorphism/dynamic binding
= Softening static typing

OOP: Introduction

28

Java Program Structure

// comment on the class

public class MyProg ({

String s = ”“Viggo”; -
[*% method header
* The main method (comment on method)
*/
public static void main (String[] args) {
// just write some stuff
method body

System.out.println ("Hello World"); }

OOP: Introduction

29

Common Mistakes and Errors

// what is ugly here?
public class main {
public static void main(String[] args) {
System.out.println(“Hello World”) ;}

}

// what is wrong here?
public class MyClass {
public void static main(string[] args) {

system.out.println(“Hello World”) ;}
}

// what is ugly here?

public class MyClass {
public static void main(String[] args) {
System.out.println (“Hello World”) ;}

};

OOP: Introduction

30

Structuring by Program or Data?

 What are the actions of the program vs. which data does the
program act on.

e Top-down. Stepwise program refinement
e Bottom-up: Focus on the stable data parts then add methods

e (Object-oriented programming 1s bottom-up. Programs are
structure with outset in the data.

= C and Pascal programs are typically implemented in a more top-down
fashion.

OOP: Introduction

31

Pure Object-Oriented Languages

Five rules [source: Alan Kay]

e Everything in an object.

e A program is a set of objects telling each other what to do by
sending messages.

e Each object has its own memory (made up by other objects).
e Every object has a type.
e All objects of a specific type can receive the same messages.

Java breaks some of these rules in the name of efficiency.

OOP: Introduction

32

