
ǫ-Subjective Equivalence of Models for Interactive Dynamic Influence Diagrams

Prashant Doshi
Dept. of Computer Science and IAI

University of Georgia
Athens, GA 30602
pdoshi@cs.uga.edu

Muthukumaran Chandrasekaran
Institute for AI (IAI)
University of Georgia

Athens, GA 30602
mkran@uga.edu

Yifeng Zeng
Dept. of Computer Science

Aalborg University
DK-9220 Aalborg, Denmark

yfzeng@cs.aau.dk

Abstract—Interactive dynamic influence diagrams (I-DID)
are graphical models for sequential decision making in uncer-
tain settings shared by other agents. Algorithms for solving
I-DIDs face the challenge of an exponentially growing space of
candidate models ascribed to other agents, over time. Pruning
behaviorally equivalent models is one way toward minimizing
the model set. We seek to further reduce the complexity by ad-
ditionally pruning models that are approximately subjectively
equivalent. Toward this, we define subjective equivalence in
terms of the distribution over the subject agent’s future action-
observation paths, and introduce the notion of ǫ-subjective
equivalence. We present a new approximation technique that
reduces the candidate model space by removing models that
are ǫ-subjectively equivalent with representative ones.

I. I NTRODUCTION

Interactive dynamic influence diagrams (I-DID) [1] are
recognized graphical models for sequential decision making
in uncertain multiagent settings. I-DIDs concisely represent
the problem of how an agent should act in an uncertain
environment shared with others who may act in sophisticated
ways. They generalize DIDs [2] to multiagent settings, and
provide a way to model and exploit the embedded structure
often present in real-world decision-making situations. For
comparisons with related graphical models, MAIDs [3] and
NIDs [4], see [1].

I-DIDs acutely suffer from both the curses of dimen-
sionality and history [5]. This is because the state space
in I-DIDs includes the models of other agents as well.
These models encompass the agents’ beliefs, action and
sensory capabilities, and preferences, and may themselves
be formalized as I-DIDs. The nesting is terminated at the
0th level where the other agents are modeled using DIDs.
As the agents act, observe, and update beliefs, I-DIDs must
track the evolution of the models over time. Thus, I-DIDs
not only suffer from the curse of history that afflicts the
modeling agent, but more so from that exhibited by the
modeled agents. The exponential growth in the number of
models over time further contributes to the state space.

Previous approaches for solving I-DIDs [1], [6] focus on
limiting the number of candidate models of other agents.
Using the insight that beliefs that are spatially close are
likely to be behaviorally equivalent[7], [8], Doshi, Zeng
and Chen [1] cluster the models of other agents and select

representative models from each cluster. Intuitively, a cluster
contains models that are likely to be behaviorally equivalent
and hence may be replaced by a subset of representatives
without significant loss in the optimality of the decision
maker. However, this approach often retains more models
than needed. Doshi and Zeng [6] further minimize the model
set. At each time step, only those models are updated which
will result in predictive behaviors that are distinct from
others in the updated model space. The initial set of models
are solved and merged to obtain a policy graph, which
assists in discriminating between model updates. Pynadath
and Marsella [7] proposed utility equivalence to additionally
cluster models; its applicability in the context of I-DIDs is
not straight forward.

In this paper, we aim to reduce the model space by
pruning models that are approximately subjectively equiv-
alent. Toward this objective, we introduce the concept ofǫ-
subjective equivalenceamong candidate models. We define
subjective equivalence as the class of models of the other
agents that induce an identical distribution over the subject
agent’s future action-observation paths in the interaction.
We relate subjective equivalence to the previous concept
of behavioral equivalence. Subsequently, models that induce
distributions over the paths, which are no more thanǫ ≥ 0
apart are termed as beingǫ-subjectively equivalent. Intu-
itively, this results in a lesser number of equivalence classes
in the partition than behavioral equivalence. If we pick a
single representative model from each class, we typically
end up with no more models than the number of subjectively
distinct ones, which need be solved. This improves on
approaches that utilize exact behavioral equivalence.

We begin by selecting a model at random and grouping
togetherǫ-subjectively equivalent models with it. We repeat
this procedure for the remaining models until all models
have been grouped. The retained model set consists of the
representative model from each equivalence class. In the
worst case (ǫ = 0), our approach identifies exact subjective
equivalence and the model set consists of all the subjectively
unique models. Our novel approach provides a unique oppor-
tunity to bound the error in optimality of the subject agent.
Furthermore, we experimentally evaluate our approach on
I-DIDs formulated for benchmark problem domains and



show significant qualitative improvement. However, this
improvement is tempered by increased time complexity of
ascertainingǫ-subjective equivalence of models.

II. BACKGROUND: INTERACTIVE DID

We outline interactive influence diagrams (I-IDs) for two-
agent interactions followed by their extensions to dynamic
settings, I-DIDs [1].

A. Syntax

In addition to the usual nodes, I-IDs include a new type
of node called themodel node(hexagonal node,Mj,l−1,
in Fig. 1(a)). We note that the probability distribution over
the chance node,S, and the model node together represents
agenti’s belief over itsinteractive state space. In addition
to the model node, I-IDs differ from IDs by having a chance
node, Aj , that represents the distribution over the other
agent’s actions, and a dashed link, called apolicy link.

S

Oi

Ai

Ri

Mj.l-1

Aj

Aj
2

Aj
1

Mod[Mj]

Aj
S

mj,l-1
1

(a) (b)

Mj,l-1

mj,l-1
2

Figure 1. (a) A generic levell > 0 I-ID for agent i situated with
one other agentj. (b) Representing the model node and policy link
using chance nodes and dependencies.

The model node contains as its values the alternative
computational models ascribed byi to the other agent. We
denote the set of these models byMj,l−1. A model in the
model node may itself be an I-ID or ID, and the recursion
terminates when a model is an ID or a simple probability
distribution over the actions. Formally, we denote a model
of j as, mj,l−1 = 〈bj,l−1, θ̂j〉, where bj,l−1 is the level
l − 1 belief, andθ̂j is the agent’sframe encompassing the
action, observation, and utility nodes. We observe that the
model node and the dashed policy link that connects it to
the chance node,Aj , could be represented as shown in
Fig. 1(b). The decision node of each levell − 1 I-ID is
transformed into a chance node. Specifically, ifOPT is the
set of optimal actions obtained by solving the I-ID (or ID),
thenPr(aj ∈ A1

j ) = 1
|OPT | if aj ∈ OPT , 0 otherwise. The

conditional probability table (CPT) of the chance node,Aj ,
is a multiplexer, that assumes the distribution of each of the
action nodes (A1

j , A
2
j ) depending on the value ofMod[Mj ].

The distribution overMod[Mj ] is i’s belief overj’s models
given the state.

I-DIDs extend I-IDs to allow sequential decision making
over several time steps (see Fig. 2). In addition to the model
nodes and the dashed policy link, I-DIDs include themodel
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Figure 2. A generic two time-slice levell I-DID for agent i.

update linkshown as a dotted arrow in Fig. 2. We briefly
explain the semantics of the model update. The update of
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Figure 3. The semantics of the model update link. Notice the
growth in the number of models att + 1 shown in bold.

the model node over time involves two steps: First, given the
models at timet, we identify the updated set of models that
reside in the model node at timet+1. Because the agents act
and receive observations, their models are updated to reflect
their changed beliefs. Since the set of optimal actions for
a model could include all the actions, and the agent may
receive any one of|Ωj | possible observations, the updated
set at time stept + 1 will have up to |Mt

j,l−1||Aj ||Ωj |

models. The CPT ofMod[M t+1
j,l−1] is 1 if the beliefbt

j,l−1

in the modelmt
j,l−1 using the actionat

j and observation
ot+1

j updates tobt+1
j,l−1 in a modelmt+1

j,l−1; otherwise it is 0.
Second, we compute the new distribution over the updated
models, given the original distribution and the probability
of the agent performing the action and receiving the ob-
servation that led to the updated model. The dotted model
update link in the I-DID may be implemented using standard
dependency links and chance nodes (Fig. 3) transforming it
into a flat DID.

B. Behavioral Equivalence and Solution

Although the space of possible models is very large, not
all models need to be considered in the model node. Models
that arebehaviorally equivalent[7], [8] – whose behavioral
predictions for the agent are identical – could be pruned and
a single representative model considered. This is because
the solution of the subject agent’s I-DID is affected by the



predicted behavior of the other agent only; thus we need not
distinguish between behaviorally equivalent models.

The solution of an I-DID (and I-ID) proceeds in a bottom-
up manner, and is implemented recursively. We start by
solving the level 0 models, which may be traditional DIDs.
Their solutions provide probability distributions which are
entered in the corresponding action nodes found in the model
node of the level 1 I-DID. The solution method uses the
standard look-ahead technique, projecting the agent’s action
and observation sequences forward from the current belief
state, and finding the possible beliefs thati could have in the
next time step. Because agenti has a belief overj’s models
as well, the look-ahead includes finding out the possible
models thatj could have in the future. This is done by
combiningj’s actions obtained by solving its models with
its possible observations. The updated set ofj’s models is
minimized by excluding the behaviorally equivalent models.
Beliefs over these updated set of candidate models are
calculated using the standard inference methods through
the dependency links between the model nodes (Fig. 3).
The algorithm in Fig. 4 may be realized using the standard
implementations of DIDs.

I-DID E XACT (level l ≥ 1 I-DID or level 0 DID, T )
Expansion Phase
1. For t from 1 to T − 1 do
2. If l ≥ 1 then

MinimizeM t
j,l−1

3. For each mt
j in Mt

j,l−1 do
4. Recursively call algorithm with thel − 1 I-DID

(or DID) that representsmt
j and the horizon,T − t

5. Map the decision node of the solved I-DID
(or DID), OPT (mt

j), to the chance nodeAt
j

6. Mt
j,l−1 ← BehavioralEq(Mt

j,l−1)
PopulateM t+1

j,l−1

7. For each aj in OPT (mt
j) do

8. For each oj in Oj (part of mt
j) do

9. Updatej’s belief, bt+1

j ← SE(bt
j , aj , oj)

10. mt+1

j ← New I-DID (or DID) with bt+1

j

as belief
11. Mt+1

j,l−1

∪

← {mt+1

j }

12. Add the model node,M t+1

j,l−1
, and the model

update link betweenM t
j,l−1 andM t+1

j,l−1

13. Add the chance, decision and utility nodes fort+1
time slice and the dependency links between them

14. Establish the CPTs for each chance node and utility node

Solution Phase
15. If l ≥ 1 then
16. Represent the model nodes and the model update link

as in Fig. 3 to obtain the DID
17. Apply the standard look-ahead and backup method to

solve the expanded DID

Figure 4. Algorithm for exactly solving a levell ≥ 1 I-DID or level 0
DID expanded overT time steps.

III. SUBJECTIVE EQUIVALENCE

We assume that the models ofj have identical frames
and differ only in their beliefs. Recall that models
mj,l−1, m̂j,l−1 ∈Mj,l−1 are behaviorally equivalent if and
only if OPT (mj,l−1) = OPT (m̂j,l−1), where OPT (·)
denotes the solution of the model that forms the argu-
ment [8]. If the model is a DID or an I-DID, its solution is
a policy tree. While a pair of policy trees may be checked
for equality, disparate policy trees do not directly permit
intuitive behavioral comparisons. This makes it difficult to
define a measure of approximate behavioral equivalence,
motivating further investigations.

We note that subsets of models may impact the decision
making of the modeling agent similarly, thereby motivating
interest in grouping such models together. We utilize this
insight toward introducing the new concept ofsubjective
equivalence(SE)1. Let h = {at

i, o
t+1
i }Tt=1 be the action-

observation path for the modeling agenti, whereoT+1
i is null

for a T horizon problem. Ifat
i ∈ Ai andot+1

i ∈ Ωi, where
Ai and Ωi are i’s action and observation sets respectively,
then the set of all paths is,H = ΠT

1 (Ai × Ωi), and the
set of action-observation histories up to timet is Ht =
Πt−1

1 (Ai × Ωi). The set of future action-observation paths
is, HT−t = ΠT

t (Ai×Ωi), wheret is the current time step.
We observe that agentj’s model together with agent

i’s perfect knowledge of its own model and its action-
observation history induces a predictive distribution over
i’s future action-observation paths. This distribution plays
a critical role in our approach and we denote it as,
Pr(HT−t|h

t,mi,l,m
t
j,l−1), whereht ∈ Ht, mi,l is i’s level

l I-DID and mt
j,l−1 is the level l − 1 model of j in the

model node at timet. For the sake of brevity, we rewrite
the distribution term as,Pr(HT−t|m

t
i,l,m

t
j,l−1), wheremt

i,l

is i’s horizonT−t I-DID with its initial belief updated given
the actions and observations inht. We define SE below:

Definition 1 (Subjective Equivalence):Two models of
agentj, mt

j,l−1 andm̂t
j,l−1, are subjectively equivalent if and

only if Pr(HT−t|m
t
i,l,m

t
j,l−1) = Pr(HT−t| m

t
i,l, m̂

t
j,l−1),

whereHT−t andmt
i,l are as defined previously.

In other words, SE models induce an identical distribution
over agenti’s future action-observation paths. This reflects
the fact that such models impacti’s behavior similarly and
could be grouped.

Let hT−t be some future action-observation path of agent
i, hT−t ∈ HT−t. In Proposition 1, we provide a recursive
way to arrive at the probability,Pr(hT−t|m

t
i,l,m

t
j,l−1). Of

course, the probabilities over all possible paths sum to 1.
Proposition 1: Pr(hT−t|m

t
i,l, m

t
j,l−1)=Pr(at

i, o
t+1

i |mt
i,l,

mt
j,l−1)

∑

at
j
,o

t+1

j
Pr(hT−t−1|m

t+1

i,l , mt+1

j,l−1
)Pr(at

j , o
t+1

j |at
i, m

t
i,l,

mt
j,l−1)

1We will use SE as an acronym for both, subjectively equivalent
(adjective form) and subjective equivalence (noun form). Appro-
priate usage will be self-evident.



where

Pr(at
i, o

t+1

i |mt
i,l, m

t
j,l−1) = Pr(at

i|OPT (mt
i,l))

∑

at
j
Pr(at

j |

OPT (mt
j,l−1))

∑

st+1 Oi(s
t+1, at

i, a
t
j , o

t+1

i )
×

∑

s,mj
Ti(s, a

t
i, a

t
j , s

t+1) bt
i,l(s, mj)

(1)

Pr(at
j , o

t+1

j |at
i, m

t
i,l, m

t
j,l−1) = Pr(at

j |OPT (mt
j,l−1))

∑

st+1

Oj(s
t+1, at

j , a
t
i, o

t+1

j )
∑

s,mj
Ti(s, a

t
i, a

t
j , s

t+1)bt
i,l(s, mj)

(2)

In Eq. 1, Oi(s
t+1, at

i, a
t
j , o

t+1
i ) is i’s observation function

contained in the CPT of the node,Ot+1
i , in the I-DID,

Ti(s, a
t
i, at

j , s
t+1) is i’s transition function contained in the

CPT of the node,St+1, Pr(at
i|OPT (mt

i,l)) is obtained by
solving agenti’s I-DID, Pr(at

j |OPT (mt
j,l−1)) is obtained

by solvingj’s model and appears in the CPT ofAt
j . In Eq. 2,

Oj(s
t+1, at

j , at
i, o

t+1
j ) is j’s observation function contained

in the CPT of the chance node,Ot+1
j , given j’s model

is mt
j,l−1. Proposition 1 may be derived recursively over

future paths and by noting thatj’s level l − 1 actions and
observations are independent ofi’s observations. We provide
a concise proof in the Appendix.

Now that we have a way of computing the distribution
over the future paths, we may relate Definition 1 to our
previous understanding of behaviorally equivalent models:

Proposition 2: If OPT (mt
j,l−1) = OPT (m̂t

j,l−1), then
Pr(HT−t|m

t
i,l,m

t
j,l−1) = Pr(HT−t|m

t
i,l, m̂t

j,l−1), where
mt

j,l−1 andm̂t
j,l−1 are j’s models.

Proof sketch: The proof is reducible to showing the
above for some individual path,hT−t ∈ HT−t.

Given OPT (mt
j,l−1) = OPT (m̂t

j,l−1), we may write,
Pr(at

j |OPT (mt
j,l−1)) = Pr(at

j |OPT (m̂t
j,l−1)) for all at

j .
Because all other terms in Eqs. 1 and 2 are identical,
it follows that Pr(hT−t|m

t
i,l,m

t
j,l−1) must be same as

Pr(hT−t | m
t
i,l, m̂t

j,l−1).

Consequently, the set of SE models includes those that are
behaviorally equivalent.It further includes models that in-
duce identical distributions over agenti’s action-observation
paths, but these models could be behaviorally distinct over
those paths that have zero probability. Thus, these latter
models may not be behaviorally equivalent. Doshi and Gmy-
trasiewicz [10] call these models as (strictly) observationally
equivalent. Therefore, the converse of Prop. 2 is not true.

A simple method for computing the distribution over the
paths given models ofi andj is to replace agenti’s decision
nodes in the I-DID with chance nodes so thatPr(ai ∈ At

i)
= 1

|OPT (mt
i,l

)|
and remove the utility nodes, thereby trans-

forming the I-DID into a dynamic Bayesian network (DBN).
The desired distribution is then the marginal over the chance
nodes that representi’s actions and observations withj’s
model entered as evidence in the Mod node att.

IV. ǫ-SUBJECTIVE EQUIVALENCE

Our definition of SE formalizes the intuition that SE
models impact the subject agent identically. While rigorous,
it has the advantage that it permits us to measure the
degree to which models are SE, allowing the introduction
of approximate SE.

A. Definition

We introduce the notion ofǫ-subjective equivalence (ǫ-
SE) and define it as follows:

Definition 2 (ǫ-SE): Given ǫ ≥ 0, two models,mt
j,l−1

andm̂t
j,l−1, areǫ-SE if the divergence between the distribu-

tionsPr(HT−t|m
t
i,l,m

t
j,l−1) andPr(HT−t|m

t
i,l, m̂

t
j,l−1) is

no more thanǫ.
Here, the distributions overi’s future paths are computed

as shown in Proposition 1. While multiple ways to measure
the divergence between distributions exist, we utilize the
well-known Kullback-Leibler (KL) divergence [11] in its
symmetric form, in part because its mathematical properties
are well studied. Consequently, the models areǫ-SE if,

DKL(Pr(HT−t|m
t
i,l,m

t
j,l−1)||Pr(HT−t|m

t
i,l, m̂

t
j,l−1)) ≤ ǫ

where DKL(p||p′) denotes the symmetric KL divergence
between distributions,p andp′, and is calculated as:

DKL(p||p′) =
1

2

∑

k

(

p(k)log
p(k)

p′(k)
+ p′(k)log

p′(k)

p(k)

)

If ǫ = 0, ǫ-SE collapses into exact SE. Sets of models
exhibiting ǫ-SE for some non-zero but smallǫ do not differ
significantly in how they impact agenti’s decision making.

B. Approach

We proceed by picking a model ofj at random,mt=1
j,l−1,

from the model node in the first time step, which we call
the representative. All other models in the model node that
areǫ-SE withmt=1

j,l−1 are grouped together. Of the remaining
models, another representative is picked at random and the
previous procedure is repeated. The procedure terminates
when no more models remain to be grouped. We illustrate
the process in Fig. 5. We point out that forǫ > 0, in
general, more models will likely be grouped together than
if we considered exact SE. This results in a fewer number
of classes in the partition.

We first observe that the outcome is indeed a partition
of the model set intoǫ-SE classes. This is because we
continue to pick representative models and build classes
until no model remains ungrouped. There is no overlap
between classes since new ones emerge only from the
models that did not get previously grouped. We observe
that the representatives of different classes areǫ-subjectively
distinct, otherwise they would have been grouped together.
However, this set is not unique and the partition could
change with different representatives.



From each class in the partition, the previously picked
representative is retained and all other models are pruned.
The representatives are distinguished in that all models inits
group areǫ-SE with it. Unlike exact SE,ǫ-SE relation is not
necessarily transitive. Consequently, we may not arbitrarily
select a model from each class as the representative since
others may not beǫ-SE with it. Let M̂j be the largest set
of behaviorally distinct models. Then, the following holds:

Proposition 3 (Cardinality):Theǫ-SE approach results in
at most|M̂j | models after pruning.
Intuitively, the Prop. follows from the fact that in the worst
case,ǫ = 0, resulting in subjectively distinct models. This
set is no larger than the set of behaviorally distinct models.

0.1 0.10.050.10.150.20.10.050.020.05 0.030.05 Pri(Mj,0
1
)

0 1Prj(TL)

0.15 0.85

Iteration 1

Iteration 2

Figure 5. Illustration of iterative ǫ-SE model grouping using
the multiagent tiger problem. Black vertical lines denote beliefs
contained in different models ofj included in the initial model
node,M1

j,0. Decimals on top indicatei’s probability distribution
over j’s models. We pick a representative model (red line) and
group modelsǫ-SE with it. Unlike exact SE, models in a different
behavioral (shaded) region also get grouped. Of the remaining
models, another is selected as representative.i’s distribution over
the representatives is obtained by summing probabilities assigned
to individual models in each class.

Transfer of probability mass Recall that agenti’s belief
assigns some probability mass to each model in the model
node. A consequence of pruning some of the models is that
the mass assigned to the models would be lost. Disregarding
this probability mass may introduce further error in the
optimality of the solution. We avoid this error by transferring
the probability mass over the pruned models in each class
to theǫ-SE representative that is retained in the model node
(see Fig. 5).

Sampling actions and observations Recall that the pre-
dictive distribution overi’s future action-observation paths,
Pr(HT−t|h

t, mi,l,m
t
j,l−1), is conditioned on the history

of i’s observations,ht, as well. For a time-extended I-
DID, because the model grouping is performed at every
subsequent time step at which we do not know the actual
history, we obtain a likelyht by samplingi’s actions and
observations for subsequent time steps in I-DID.

Beginning with the first time step, we pick an action,at
i,

at random assuming that each action is equally likely. An
observation is then sampled from the distribution giveni’s
sampled action and belief,ot+1

i ∼ Pr(Ωi|a
t
i, b

t
i,l). We utilize

this sampled action and observation pair as the history,

ht ∪
← 〈at

i, o
t+1
i 〉. We may implement this procedure by

entering as evidencei’s action in the chance node,At
i, of the

DBN mentioned previously and sampling from the inferred
distribution over the chance node,Ot+1

i .

Finally, we note that in computing the distribution over
the paths, solution to agenti’s I-DID is needed as well
(Pr(at

i|OPT (mt
i,l)) term in Eq. 1). As we wish to avoid

this, we assume a uniform distribution overi’s actions.
However, this may change the set of SE models. Specifically,
this does not affect the set of behaviorally equivalent models,
but a different set of models ofj may now be observationally
equivalent. Nevertheless, a uniform distribution minimizes
any change as models that are now observationally equiva-
lent would continue to remain so for any other distribution
over i’s actions. This is because given a model ofj, a
uniform distribution fori induces a distribution that includes
the largest set of paths in its support.

V. A LGORITHM

We present the algorithm for partitioning the models in
the model node of the I-DID at each time step according to
ǫ-SE, in Fig. 6. The procedure,ǫ-SubjectiveEquivalence
replaces the procedure,BehaviorEq, in the algorithm in
Fig. 4. The procedure takes as input, the set ofj’s models,
Mj , agenti’s DID, mi, current time step and horizon, and
the approximation parameter,ǫ. The algorithm begins by
computing the distribution over the future paths ofi for each
model of j. If the time step is not the initial one, the prior
action-observation history is first sampled. We may compute
the distribution by transforming the I-DID into a DBN as
mentioned in Section III and entering the model ofj as
evidence – this implements Eqs. 1 and 2.

We then pick a representative model at random, and using
the cached distributions group models whose distributions
exhibit a divergence less thanǫ from the distribution of the
representative model. We iterate over models left ungrouped
until none remain. Each iteration results in a new class
of models including a representative. In the final selection
phase, all models except the representative are pruned from
each class in the partition. The set of representative models,
which areǫ-subjectively distinct, are returned.

VI. COMPUTATIONAL SAVINGS AND ERRORBOUND

As with previous approaches, the primary complexity of
solving I-DIDs is due to the large number of models that
must be solved overT time steps. At time stept, there
could be|M0

j |(|Aj ||Ωj |)
t models of the other agentj, where

|M0
j | is the number of models considered initially. Nested

modeling further contributes to the complexity since solution
of each model at levell − 1 requires solving the lower
level l − 2 models, and so on recursively up to level 0. In
an N+1 agent setting, if the number of models considered
at each level for an agent is bound by|M|, then solving
an I-DID at level l requires the solutions ofO((N |M|)l)



ǫ-SUBJECTIVE EQUIVALENCE (Model setMj , DID mi, current
time steptt, horizonT , ǫ) returns M′

j

1. Transform DIDmi into DBN by replacingi’s decision nodes
with chance nodes having uniform distribution

2. For t from 1 to tt do
3. Sample,at

i ∼ Pr(At
i)

4. Enterat
i as evidence into chance node,At

i, of DBN
5. Sample,ot+1

i ∼ Pr(Ot+1

i )

6. ht ∪

← 〈at
i, o

t+1

i 〉
7. For each mk

j in Mj do
8. Compute the distribution,P [k] ← Pr(HT−t|h

t, mi, m
k
j ),

obtained from the DBN by enteringmk
j as evidence

(Proposition 1)
Clustering Phase
9. While Mj not empty

10. Select a model,mk̂
j ∈Mj , at random as representative

11. Initialize,Mk̂
j ← {m

k̂
j }

12. For each mk
j in Mj do

13. If DKL(P [k̂]||P [k]) ≤ ǫ

14. Mk̂
j

∪

← mk
j , Mj

−

← mk
j

Selection Phase

15. For eachMk̂
j do

16. Retain the representative model,M′

j

∪

← mk̂
j

17. Return M′

j

Figure 6. Algorithm for partitioningj’s model space usingǫ-SE. This
function replacesBehaviorEq() in Fig. 4.

models. As mentioned in Proposition 3,ǫ-SE approximation
reduces the number of models at each level to at most the
size of the minimal set,|M̂t|. In doing so, it solves|M0

j |
models initially and incurs the complexity of performing
inference in a DBN for computing the distributions. This
complexity while significant is less than that of solving
DIDs. Consequently, we need solve at mostO((N |M̂∗|)l)
number of models at each non-initial time step, typically
less, whereM̂∗ is the largest of the minimal sets, in
comparison toO((N |M|)l). HereM grows exponentially
over time. Generally,|M̂| ≪ |M|, resulting in a substantial
reduction in computation. Reducing the number of models
in the model node also reduces the size of the state space,
making the upper-level I-DID more memory efficient.

Given that lower-level models of other agent are solved
exactly, we analyze the conditional error bound of this
approach.2 Trivially, if ǫ = 0 there is no optimality error
in the solution. If we limit the pruning ofǫ-SE models to
the initial model node, the error is due to transferring the
probability mass of the pruned model to the representative,
effectively replacing the pruned model. Our definition of SE
provides us with a unique opportunity to bound the error
for i. Observe that the expected value of the I-DID could
be obtained as the expected reward of following each path
weighted by the probability of that path. Letρbi,l

(HT ) be

2Doshi and Zeng [6] show that, in general, it is difficult to usefully bound
the error if lower-level models are themselves solved approximately.

the vector of expected rewards for agenti given its belief
when each path inHT is followed. Here,T is the I-DID’s
horizon. The expected value fori is:

EVi = Pr(HT |mi,l,mj,l−1) · ρbi,l
(HT )

wheremj,l−1 is the model ofj.
If the above model ofj is pruned in the Mod node, let

model m̂j,l−1 be the representative that replaces it. Then
b̂i,l is i’s belief in which modelmj,l−1 is replaced with the
representative. Expected value fori, ÊVi, is:

ÊV i = Pr(HT |mi,l,mj,l−1) · ρb̂i,l
(HT )

Then, the effective error bound is:

∆ = ||ÊV i − EVi||∞ = ||Pr(HT |mi,l, mj,l−1) · ρb̂i,l
(HT )

− Pr(HT |mi,l, mj,l−1) · ρbi,l
(HT )||∞

= ||Pr(HT |mi,l, mj,l−1) · ρb̂i,l
(HT )

− Pr(HT |mi,l, m̂j,l−1) · ρbi,l
(HT )

+ Pr(HT |mi,l, m̂j,l−1) · ρbi,l
(HT )

− Pr(HT |mi,l, mj,l−1) · ρbi,l
(HT )||∞ (add zero)

≤ ||Pr(HT |mi,l, mj,l−1) · ρb̂i,l
(HT )

− Pr(HT |mi,l, m̂j,l−1) · ρb̂i,l
(HT )

+ Pr(HT |mi,l, m̂j,l−1) · ρbi,l
(HT )

− Pr(HT |mi,l, mj,l−1) · ρbi,l
(HT )||∞ (|ρb̂i,l

| ≤ |ρbi,l
|)

≤ ||ρb̂i,l
(HT )− ρbi,l

(HT )||∞ · ||Pr(HT |mi,l, mj,l−1)

− Pr(HT |mi,l, m̂j,l−1)||1 (Hölder’s inequality)
≤ (Rmax

i −Rmin
i )T × 2ǫ (Pinsker’s inequality)

Matters become more complex when we additionally
prune models in the subsequent model nodes as well. This
is because rather than comparing over distributions given
each history ofi, we samplei’s action-observation history.
Hence, additional error incurs due to the sampling.

VII. E XPERIMENTAL EVALUATION

We implemented the approach in Figs. 4 and 6 utiliz-
ing Hugin API for DIDs and show results for the well-
known two-agenttiger problem(|S|=2, |Ai|=|Aj |=3, |Ωi|=6,
|Ωj |=3) [1], [9] and the multiagent version of the machine
maintenance (MM) problem (|S|=3, |Ai|=|Aj |=4, |Ωi|=2,
|Ωj |=2) [12]. We formulate level 1 I-DIDs of increasing
time horizons for the problems and solve it approximately
for varying ǫ. We show that,(i) the quality of the solution
generated using our approach (ǫ-SE) improves as we reduce
ǫ for given numbers of initial models of the other agent,M0,
and approaches that of the exact solution. This is indicative
of the flexibility of the approach;(ii) in comparison to
the previous approach of updating models discriminatively
(DMU) [6], which is the current efficient technique,ǫ-SE
is able to obtain larger rewards for an identical number of
initial models. This indicates a more informed clustering and
pruning usingǫ-SE in comparison to DMU, although it is
less efficient in doing so.

In Figs. 7 and 8(a, b), we show the average rewards
gathered by executing the policies obtained from solving
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Figure 7. Performance profile obtained by solving a level 1 I-DID for themultiagent tiger problem using theǫ-SE approach for(a)
3 horizons and(b) 4 horizons. Asǫ reduces, quality of the solution improves and approaches that of the exact. (c) Comparison ofǫ-SE
and DMU in terms of the rewards obtained given identical numbers of models in the initial model node after clustering and pruning.
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Figure 8. Performance profile formultiagent MM problem by solving level 1 I-DIDs approximately usingǫ-SE for (a) 3, and(b) 4
horizon. Reducingǫ results in better quality solutions.(c) Significant increase in rewards obtained forǫ-SE given identical numbers of
retained models in the initial model node.

level 1 I-DIDs approximately within a simulation of each
of the two problem domains. Each data point is the average
of 300 runs where the true model ofj is picked randomly
according toi’s belief. Notice that as we reduceǫ the policies
tend to converge to the exact (denoted by flat lines) and this
remains true for different numbers of initial models, across
horizons and problem domains. Values of these policies
increase asi considers greater numbers of models thereby
improving it’s chances of modelingj correctly.3

Next, we compare the performance of this approach with
that of DMU. While both approaches cluster and prune
models, DMU does so in the initial model node only, there-
after updating only those models which on update will be
behaviorally distinct. Thus, we compare the average rewards
obtained by the two approaches when an identical number of
models remain in the initial model node after clustering and
selection. This is done by varyingǫ in both approaches until
the desired number of models are retained. In DMU, models
whose beliefs are withinǫ of a representative are pruned.
This allows comparison between clustering and selection
techniques of the two methods. From Figs. 7 and 8(c),
we observe thatǫ-SE results in better quality policies that
obtain significantly higher average reward. This indicates
that models pruned by DMU were more valuable than those
pruned byǫ-SE, thereby testifying to the moreinformedway
in which we compare between models by directly gauging

3Note that the error bound of Section VI does not apply here because
we prune models in subsequent time steps as well.

the impact oni’s history. DMU’s method of measuring
simply the closeness of beliefs in models for clustering re-
sults in significant models being pruned. However, the trade
off is the increased computational cost in calculating the
distributions over future paths. To illustrate,ǫ-SE consumed
an average of 23.7 secs in solving a 4 horizon I-DID with
25–100 initial models for the tiger problem and differing
ǫ, on a Xeon 2GHz, 2GB RAM machine. This represents
approximately a two-fold increase compared to DMU. For
the MM problem, the approach incurred on average 38.1 secs
exhibiting a three-fold increase in time taken compared to
DMU to solve a horizon 4 I-DID with 25–100 initial models.
On the other hand, whileǫ-SE continues to solve I-DIDs of
5 horizons, the exact approach runs out of memory.

VIII. D ISCUSSION

Our results demonstrate flexible solutions of I-DIDs by
pruning models that are approximately SE. Defining SE by
explicitly focusing on the impact that other agents’ models
have on the subject agent allows us to better identify model
similarity. This translates into solutions of better quality
given a limit on the number of models that could be held in
memory. Consequently, other approaches would need more
models to achieve comparable quality, which could translate
into better efficiencies for our approach. However, we face
the challenge of computing distributions over a number of
paths that grow exponentially with horizon, which translates
into increased time complexity. Although the approach is not
yet viable as a scalable approximation technique, we are



optimistic that the technique may be combined synergisti-
cally with DMU, and this will facilitate application to larger
multiagent problem domains. Given the informed clustering
and selection, this approach also serves as a benchmark for
other techniques that seek to prune models.
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APPENDIX

Proof of Proposition 1: Pr(hT−t|m
t
i,l,m

t
j,l−1) =

Pr(hT−t−1, a
t
i, o

t+1
i |mt

i,l,m
t
j,l−1) =

Pr(hT−t−1|a
t
i, o

t+1
i ,mt

i,l,m
t
j,l−1)Pr(at

i, o
t+1
i |mt

i,l,m
t
j,l−1)

(using Bayes rule)
We focus on the first term next:

Pr(hT−t−1|a
t
i, o

t+1
i ,mt

i,l,m
t
j,l−1) =

∑

at
j
,o

t+1

j
Pr(hT−t−1|

at
i,o
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i ,mt
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t
j , o

t+1
j ,mt

j,l−1)Pr(at
j , o

t+1
j |at

i,m
t
i,l,m

t
j,l−1)

= Pr(hT−t−1|m
t+1
i,l ,mt+1

j,l−1) Pr(at
j , o

t+1
j |at

i,m
t
i,l,m

t
j,l−1)

In the above equation, the first term results due to an update
of the models at time stept with actions and observations.
This term is computed recursively. For the second term,j’s
level l − 1 actions and observations are independent ofi’s
observations.

We now focus on the term,Pr(at
i, o

t+1
i |mt

i,l,m
t
j,l−1):

Pr(at
i, o

t+1
i |mt

i,l,m
t
j,l−1) = Pr(ot+1

i |at
i,m

t
i,l,m

t
j,l−1)

× Pr(at
i|OPT (mt

i,l)) (i’s action is conditionally
independent ofj given its model)
= Pr(at

i|OPT (mt
i,l))
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i |at

i, a
t
j ,m

t
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× Pr(at
j |OPT (mt
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i,l))
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j
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× Pr(at
j |OPT (mt

j,l−1)) (i’s observation is conditionally
independent ofj’s model)
= Pr(at

i|OPT (mt
i,l))
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j

Pr(at
j |OPT (mt

j,l−1))

Pr(ot+1
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t
j , bt

i,l) (bt
i,l is i’s belief in model,

mt
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= Pr(at
i|OPT (mt
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j

Pr(at
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×
∑
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t
j) Pr(st+1|at
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j , s

t+1) bt
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whereOi andTi arei’s observation and transition functions
respectively, in the I-DID denoted by model,mt

i,l. This
proves Eq. 1 in Proposition 1.

Finally, we move to the term,
Pr(at

j , o
t+1
j |at

i,m
t
i,l,m

t
j,l−1), to obtain Eq. 2:
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t
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where Oj is j’s observation function in modelmt
j,l−1,

which is a part ofi’s I-DID.


