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Abstract

Interactive dynamic influence diagrams (I-DIDs) offer a
transparent and semantically clear representation for these-
quential decision-making problem over multiple time stepsin
the presence of other interacting agents. Solving I-DIDs ex-
actly involves knowing the solutions of possible models of
the other agents, which increaseexponentially with the num-
ber of time steps. We present a method of solving I-DIDs
approximately by limiting the number of other agents’ can-
didate models at each time step to a constant. We do this by
clustering the models and selecting a representative set from
the clusters. We discuss the error bound of the approximation
technique and demonstrate its empirical performance.

Introduction
Interactive dynamic influence diagrams (I-DIDs) (Doshi,
Zeng, & Chen 2007) are graphical models of sequen-
tial decision-making in uncertain multi-agent settings. I-
DIDs may be viewed as computational counterparts of I-
POMDPs (Gmytrasiewicz & Doshi 2005) providing a way
to solve I-POMDPsonline. They generalize DIDs (Tat-
man & Shachter 1990), which may be viewed as compu-
tational counterparts of POMDPs, to multi-agent settings
in the same way that I-POMDPs generalize POMDPs. I-
DIDs contribute to a growing line of work that includes
multi-agent influence diagrams (MAIDs) (Koller & Milch
2001), and more recently, networks of influence diagrams
(NIDs) (Gal & Pfeffer 2003). All of these formalisms seek
to explicitly and transparently model the structure that isof-
ten present in real-world problems by decomposing the situ-
ation into chance and decision variables, and the dependen-
cies between the variables. MAIDs provide an alternative
to normal and extensive forms of games, using a graphi-
cal formalism to represent games of imperfect information.
MAIDs objectively analyze the game, efficiently computing
the Nash equilibrium profile by exploiting the independence
structure. NIDs extend MAIDs to include agents’ uncer-
tainty over the game being played and over models of the
other agents. However, both MAIDs and NIDs provide an
analysis of the game from an external viewpoint and their
applicability is limited to static single play games. Matters
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are more complex when we consider interactions that are ex-
tended over time, where predictions about others’ future ac-
tions must be made using models that change as the agents
act and observe. I-DIDs aim to address this gap by offer-
ing an intuitive way to extend sequential decision-making as
formalized by DIDs to multi-agent settings.

As we may expect, I-DIDs acutely suffer from both the
curses of dimensionality and history. This is because the
state space in I-DIDs includes the models of other agents
in addition to the traditional physical states. These models
encompass the other agents’ beliefs, capabilities, and pref-
erences, and may themselves be formalized as I-DIDs. The
nesting is terminated at the0th level where the other agents
are modeled using DIDs. As the agents act, observe, and
update beliefs, I-DIDs must track the evolution of the mod-
els over time. Consequently, I-DIDs not only suffer from
the curse of history that afflicts the modeling agent, but also
from those exhibited by the modeled agents. This is further
complicated by the nested nature of the state space.

In this paper, we present methods that reduce the di-
mensionality of the state space and mitigate the impact of
the curse of history that afflicts the other modeled agents.
The basic idea, motivated by the point based approaches for
POMDPs (Pineau, Gordon, & Thrun 2003), is to limit and
hold constant the number of models,0 < K ≪ M , where
M is the possibly large number of candidate models, of the
other agents included in the state space at the first time step
in the sequential interaction. Using the insight that beliefs
that are spatially close are likely to be behaviorally equiv-
alent (Rathnas., Doshi, & Gmytrasiewicz 2006), our ap-
proach is tocluster the models of the other agents and select
representative models from each cluster. In this regard, we
utilize the populark-means clustering method (MacQueen
1967), which gives an iterative way to generate the clusters.
Intuitively, the clusters contain models that are likely tobe
behaviorally equivalent and hence may be replaced by a sub-
set of representative models without a significant loss in the
optimality of the decision-maker. We selectK representa-
tive models from the clusters and update them over time.

At each time step, we begin the clustering by identifying
those models that lie on the boundary of the equivalence re-
gions, and use these models as the initial means. Models
on each side of the boundary points are expected to exhibit
similar behaviors. For two-agent settings, we theoretically



bound the worst case error introduced by the approach in
the policy of the other agent and empirically measure its im-
pact on the quality of the policies pursued by the original
agent. Our empirical results demonstrate the computational
savings incurred in solving the I-DIDs and the favorable per-
formance of the approach.

Overview of I-DIDs
We briefly describe interactive influence diagrams (I-IDs)
for two-agent interactions followed by their extensions to
dynamic settings, I-DIDs.

Syntax
In addition to the usual chance, decision, and utility nodes,
I-IDs include a new type of node called themodel node
(hexagon in Fig. 1(a)). We note that the probability distri-
bution over the chance node,S, and the model node together
represents agenti’s belief over its interactive state space. In
addition to the model node, I-IDs differ from IDs by having
a chance node,Aj , that represents the distribution over the
other agent’s actions, and a dashed link, called apolicy link.
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Figure 1:(a) A generic levell > 0 I-ID for agenti situated with
one other agentj. The hexagon is the model node whose structure
we show in(b). Members of the model node are I-IDs themselves
(m1

j,l−1, m
2
j,l−1; not shown here for simplicity) whose decision

nodes are mapped to the corresponding chance nodes (A1
j , A2

j ).

The model node contains as its values the alternative com-
putational models ascribed byi to the other agent. A model
in the model node may itself be an I-ID or ID, and the re-
cursion terminates when a model is an ID or a simple prob-
ability distribution over the actions. Formally, we denotea
model ofj as,mj,l−1 = 〈bj,l−1, θ̂j,l−1〉, wherebj,l−1 is the
level l−1 belief, andθ̂j,l−1 is the agent’sframe encompass-
ing the action, observation, and utility nodes. We observe
that the model node and the dashed policy link that connects
it to the chance node,Aj , could be represented as shown
in Fig. 1(b). The decision node of each levell − 1 I-ID is
transformed into a chance node. Specifically, ifOPT is the
set of optimal actions obtained by solving the I-ID (or ID),
thenPr(aj ∈ A1

j) = 1

|OPT | if aj ∈ OPT , 0 otherwise.
The conditional probability table of the chance node,Aj , is
a multiplexer, that assumes the distribution of each of the
action nodes (A1

j , A
2
j ) depending on the value ofMod[Mj ].

In other words, whenMod[Mj] has the valuem1
j,l−1

, the
chance nodeAj assumes the distribution of the nodeA1

j ,

andAj assumes the distribution ofA2
j whenMod[Mj] has

the valuem2
j,l−1. The distribution overMod[Mj ], is i’s be-

lief overj’s models given the state.
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Figure 2:A generic two time-slice levell I-DID for agenti. No-
tice the dotted model update link that denotes the update of the
models ofj and the distribution over the models, over time.

I-DIDs extend I-IDs to allow sequential decision-making
over several time steps.We depict a general two time-slice I-
DID in Fig. 2. In addition to the model nodes and the dashed
policy link, what differentiates an I-DID from a DID is the
model update link shown as a dotted arrow in Fig. 2. We
briefly explain the semantics of the model update next.
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Figure 3: The semantics of the model update link. Notice the
growth in the number of models in the model node att + 1.

The update of the model node over time involves two
steps: First, given the models at timet, we identify the up-
dated set of models that reside in the model node at time
t + 1. Because the agents act and receive observations, their
models are updated to reflect their changed beliefs. Since
the set of optimal actions for a model could include all the
actions, and the agent may receive any one of|Ωj | possible
observations, the updated set at time stept + 1 will have
at most|M t

j ||Aj ||Ωj | models. Here,|M t
j | is the number of

models at time stept, |Aj | and|Ωj | are the largest spaces of
actions and observations respectively, among all the models.
Second, we compute the new distribution over the updated
models, given the original distribution and the probability of
the agent performing the action and receiving the observa-
tion that led to the updated model. The dotted model update
link may be implemented in the I-DID using the standard
dependency links and chance nodes, as shown in Fig. 3.

Solution
The solution of an I-DID (and I-ID) proceeds in a bottom-up
manner, and is implemented recursively. We start by solv-



ing the level 0 models, which may be traditional IDs. Their
solutions provide probability distributions which are entered
in the corresponding action nodes found in the model node
of the level 1 I-DID. The solution method uses the standard
look-ahead technique, projecting the agent’s action and ob-
servation sequences forward from the current belief state,
and finding the possible beliefs thati could have in the next
time step. Because agenti has a belief overj’s models as
well, the look-ahead includes finding out the possible mod-
els thatj could have in the future. Consequently, each of
j’s level 0 models represented using a standard DID in the
first time step must be solved to obtain its optimal set of
actions. These actions are combined with the set of possi-
ble observations thatj could make in that model, resulting
in an updated set of candidate models (that include the up-
dated beliefs) that could describe the behavior ofj. Beliefs
over these updated set of candidate models are calculated us-
ing the standard inference methods through the dependency
links between the model nodes.

Model Clustering and Selection
Because models of the other agent,j, are included as part of
the model node ini’s I-DID, solution of the I-DID suffers
from not only the high dimensionality due to the possibly
large number of models ofj, M , but also the curse of history
responsible for an exponential number of candidate models
of j over time. We mitigate the impact of these factors by
holding constant the number of candidate models ofj in the
model node of the I-DID, at each time step.

Initial Means
For illustration, we assume that models ofj differ only in
their beliefs. Our arguments may be extended to models that
differ in their frames as well. In order to selectively pick
0 < K ≪ M models ofj, we begin by identifying the
behaviorally equivalent regions ofj’s belief space (Rath-
nas., Doshi, & Gmytrasiewicz 2006). These are regions of
j’s belief simplex in which the beliefs lead to an identical
optimal policy. As an example, we show in Fig. 4 the be-
haviorally equivalent regions ofj’s level 0 belief simplex
for the well-known tiger problem (Kaelbling, Littman, &
Cassandra 1998). The agent opens the right door (OR) if it
believes the probability that the tiger is behind the right door,
P(TR), is less than 0.1. It will listen (L) if 0.1< P(TR) <
0.9 and open left door (OL) ifP(TR) > 0.9. Therefore, each
of the optimal policies spans over multiple belief points. For
example, OR is the optimal action for all beliefs in the set
[0–0.1). Thus, beliefs in [0–0.1) are equivalent to each other
in that theyinduce the same optimal behavior. Notice that
at P(TR) = 0.1, the agent is indifferent between OR and L.

We select the initial means as those that lie on the inter-
sections of the behaviorally equivalent regions. This allows
models that are likely to be behaviorally equivalent to be
grouped on each side of the means.1 We label these assen-
sitivity points (SPs) and define them below:

1Another option could be the centers of the behaviorally equiv-
alent regions. However, for small regions many models that do not
belong to the region may also be grouped together.
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Figure 4:Horizon 1 solution ofj’s level 0 models in tiger prob-
lem. Note the belief ranges corresponding to the optimal actions.

Definition 1 (SP) Let bj,l−1 be a level l − 1 belief of agent
j and OPT(bj,l−1) be the optimal policy for this belief. Then
bj,l−1 is a sensitivity point (SP), if for any ~ǫ s.t. |~ǫ| > 0,
OPT(bj,l−1 ± ~ǫ) 6= OPT(bj,l−1).

Referring to Fig. 4,P(TR) = 0.1 is an SP because slight devi-
ations from 0.1 lead to either OR or L as the optimal action,
while at 0.1 the agent is indifferent between the two. In or-
der to compute the SPs, we observe that they are the beliefs
at the non-dominated intersection points between the value
functions of pairs of policy trees. The following linear pro-
gram (LP) provides a straightforward way of computing the
SPs. For each pair of possible policies ofj, π′

j andπ′′
j as

input, we solve:

LP SP(π′
j ,π′′

j ,Πj)

Objective: Constraints:
maximizeδ ∀πj ∈ Πj/{π

′
j , π

′′
j }

Variable: bj,l−1 · V alj,l−1(π
′
j)− bj,l−1 · V alj,l−1(πj) ≥ δ

bj,l−1 bj,l−1 · V alj,l−1(π
′
j)− bj,l−1 · V alj,l−1(π

′′
j ) = 0

bj,l−1 · 1 = 1

Table 1:LP for exact computation of SPs.

If δ ≥ 0, then the belief,bj,l−1, is a SP. Here,Πj is the
space of all horizonT policy trees, which has the cardinal-
ity O(|Aj |

2|Ωj |
T

). The computation of the value function,
V alj,l−1(·), requires solutions of agenti’s level l − 2 I-
DIDs. These may be obtained exactly or approximately; we
may recursively perform the model clustering and selection
to approximately solve the I-DIDs, as outlined in this paper.
The recursion bottoms out at the0th level where the DIDs
may be solved exactly.

The above LP needs to be solvedO(|Aj |
2|Ωj |

T

) times to
find the SPs exactly, which is computationally expensive.
We approximate this computation by randomly selectingK
policy trees from the space of policies and invokingLP SP
(π′

j, π′′
j , ΠK

j ), whereΠK
j is the reduced space of policy trees,

andπ′
j , π

′′
j ∈ ΠK

j . Computation of the new set of SPs, de-
noted by SPK , requires the solution ofO(K2) reduced LPs
allowing computational savings.

In addition to the sensitivity points, we may also designate
the vertices of the belief simplex as the initial means. This
allows models with beliefs near the periphery of the simplex
and away from the SPs, to be grouped together.



With each mean, say thenth SPK , we associate a cluster,
Mn

j,l−1
, of j’s models. The models inMn

j,l−1
are those with

beliefs that are closer to thenth SPK than any other, with
ties broken randomly. One measure of distance between be-
lief points is the Euclidean distance, though other metrics
such as the L1 may also be used.

Iterative Clustering
The initial clusters group together models of the other agent
possibly belonging to multiple behaviorally equivalent re-
gions. Additionally, some of the SPK may not be candidate
models ofj as believed byi. In order to promote clusters
of behaviorally equivalent models and segregate the non-
behaviorally equivalent ones, we update the means using an
iterative method often utilized by thek-means clustering ap-
proach (MacQueen 1967).

For each cluster,Mn
j,l−1

, we recompute the mean belief
of the cluster and discard the initial mean, SPK , if it is not in
the support ofi’s belief. The new mean belief of the cluster,
b̄j,l−1, is:

b̄j,l−1 =

∑
bj,l−1∈Bn

j,l−1

bj,l−1

|Mn
j,l−1

|
(1)

Here, the summation denotes additions of the belief vectors,
Bn

j,l−1is the set of beliefs in thenth cluster, and|Mn
j,l−1| is

the number of models in thenth cluster.

0 0.1 0.9 1.0P(TR)

Initial means

Iteration 1

Iteration n

Select using K=10

Figure 5: An illustration of the iterative clustering method. The
gray vertical lines are the belief points while the black ones are the
means. The SPs and the vertices of the belief simplex form theini-
tial means. Notice the movement of the means over the iterations.
Once the means have converged, we selectK=10 models.

Next, we recluster the models according to the proximity
of their beliefs to the revised means. Specifically, models
are grouped with the mean to which their respective beliefs
are the closest, and all ties are broken randomly. The steps of
recomputing the means (Eq. 1) and reclustering using the re-
vised means are repeated untilconvergence ie. the means no
longer change. Intuitively, this iterative technique converges
because over increasing iterations less new models will be
added to a cluster, thereby making the means gradually in-
variant. We illustrate example movements of the means and
clusters of beliefs over multiple iterations in Fig. 5.

SelectingK Models
Given the stable clusters, we select a total ofK represen-
tative models from them. Depending on its population, a

cluster,n, contributes,kn =
|Mn

j,l−1
|

M × K (rounded off to
the floor integer) models to the set. Thekn models whose

beliefs are the closest to the mean of the cluster are selected
for inclusion in the set of models that are retained. Remain-
ing models in the cluster are discarded. The selected models
provide representative behaviors for the original set of mod-
els included in the cluster.

The models in the model node ofi’s I-DID, M t+1

j,l−1
, are

pruned to include just theK models. These models form
the values of the chance node,Mod[Mj] in time stept + 1.
We note that our approach is more suited to situations where
agenti has some prior knowledge about the possible models
of others, thereby facilitating the clustering and selection.

Algorithm
We show the algorithm,APPROX I-DID , for approxi-

APPROX I-DID (level l ≥ 1 I-ID or level 0 ID, T , K)
Expansion Phase
1. For t from 1 to T − 1 do
2. If l ≥ 1 then

Populate M t+1

j,l−1

3. For eachmt
j in Range(M t

j,l−1) do
4. Recursively call algorithm withl − 1 I-ID
5. Map the decision node of the solved I-ID (or ID),

OPT (mt
j), to a chance nodeAj

6. For eachaj in OPT (mt
j), oj in Oj do

7. Updatej’s belief,bt+1

j ← SE(bt
j , aj , oj)

8. mt+1

j ← New I-ID (or ID) with bt+1

j as the
initial belief

9. Range(M t+1

j,l−1
)

∪
← {mt+1

j }
Approximate Model Space

10. Range(M t+1

j,l−1
)← KModelSelection(Range(M t+1

j,l−1
,

T − t, K))
11. Add the model node,M t+1

j,l−1
, and the dependency links

betweenM t
j,l−1 andM t+1

j,l−1
(shown in Fig. 3)

12. Add the chance, decision, and utility nodes fort + 1 time
slice and the dependency links

13. Establish the CPTs for each chance node and utility node
Look-Ahead Phase
14. Apply the standard look-ahead and backup method to solve
the expanded I-DID

Figure 6:Approximate solution of a levell ≥ 0 I-DID.

mately solving I-DIDs in Fig. 6. The algorithm is a slight
variation of the one in (Doshi, Zeng, & Chen 2007) that is
used for solving I-DIDs exactly. In particular, on generating
the candidate models in the model node,M t+1

j,l−1
, during the

expansion phase (lines 3-9), we cluster and selectK mod-
els of these using the procedureKModelSelection. We note
that models at all levels will be clustered and pruned.

The algorithm forKModelSelection(Fig. 7) takes as in-
put the set of models to be pruned,Mj,l−1, current horizon
H of the I-DID, and the parameterK. We compute the ini-
tial means – these are the sensitivity points,SPK , obtained
by solving the reduced LP of Table 1 (line 1; vertices of the
belief simplex may also be added). Each model inMj,l−1

is assigned to a cluster based on the distance of its belief to
a mean (lines 2-9). The algorithm then iteratively recalcu-
lates the means of the clusters and reassigns the models to a



cluster based on their proximity to the mean of the cluster.
These steps (lines 10-16) are carried out until the means of
the clusters no longer change. Given the stabilised clusters,
we calculate the contribution,kn, of thenth cluster to the
setK of models (line 18), and pick thekn models from the
cluster that are the closest to the mean (lines 19-20).

KModelSelection (Mj,l−1, H , K)
Initial Means
1. InvokeLP SPonK horizonH policy trees
2. Means0 ← {SP 1

K , SP 2
K , . . ., SP n

K }
3. For i from 1 to n do
4. Mi

j,l−1 ← {SP i
K} /* Initialize clusters*/

5. For eachmj,l−1 = 〈bj,l−1, θ̂j,l−1〉 inMj,l−1 do
6. SP i

K ← argmin
SPK∈Means0 |SPK − bj,l−1|

7. Mi
j,l−1

∪
← mj,l−1

8. For i from 1 to n do

9. Mi
j,l−1

−
← {SP i

K} if SP i
K is not inMj,l−1

Iteration
10. Repeat
11. For i from 1 ton do
12 Recompute the mean of each cluster (Eq. 1)
13. For eachmj,l−1 = 〈bj,l−1, θ̂j,l−1〉 inMj,l−1 do
14. b̄i

j,l−1← argmin̄bj,l−1
|̄bj,l−1 − bj,l−1|

15. Mi
j,l−1

∪
← mj,l−1

16. Until no change in the means
Selection
17. For i from 1 to n do

18. ki ←
|Mi

j,l−1
|

|Mj,l−1|
×K

19. Sort the models in clusteri using distance from mean
20. MK

∪
← topki models

21. ReturnMK

Figure 7:Algorithm for clustering and selectingK models.

Computational Savings and Error Bound
The primary complexity of solving I-DIDs is due to the large
number of models that must be solved overT time steps. At
some time stept, there could beM0(|Aj ||Ωj |)

t many dis-
tinct models of the other agentj, whereM0 is the number
of models considered initially. The nested modeling further
contributes to the complexity since solutions of each model
at levell − 1 requires solving the lower levell − 2 models,
and so on recursively up to level 0. In anN+1 agent setting,
if the number of models considered at each level for an agent
is bound byM , then solving an I-DID at levell requires the
solutions ofO((NM)l) many models. TheKModelSelec-
tion algorithm reduces the number of agent’s models at each
level toK representative models while incurring the worst
case complexity ofO(M2). Consequently, we need to solve
O((NK)l) number of models at each time step in compari-
son toO((NM)l), whereM grows exponentially over time.
In general,K ≪ M , resulting in a substantial reduction in
the computation.

We bound the error introduced inj’s behavior due to
excluding all butK models. Recall that for some clus-
ter n, we retain thekn models closest to the mean. If

K = M , then we retain all the models and the error is
zero. LetMK denote the set ofK models andM/K de-
note the set of theM − K models that are pruned. The
error may be bounded by finding the model among theK re-
tained models that is the closest to the discarded one. Define
dK as the largest of the distances between a pruned model,
mj,l−1, and the closest model among theK selected models:
dK = maxmj,l−1∈M/K

minm′

j,l−1
∈MK

|bj,l−1 − b′j,l−1
|,

wherebj,l−1 andb′j,l−1 are the beliefs inmj,l−1 andm′
j,l−1,

respectively. GivendK , the derivation of the error bound
proceeds in a manner analogous to that of PBVI (Pineau,
Gordon, & Thrun 2003), though over finite horizon,H , of
the I-DID. Thus, the worst-case error bound for the setK is:

ǫH
K = (Rmax

j − Rmin
j )H2dK (2)

We may go a step further and gauge the impact of this
error on agenti who has a belief overj’s models. Using
these beliefs, we may compute the expected impact of the
error bound in Eq. 2. LetPri(M/K) be the probability mass
of i’s belief, bi,l, on the space of pruned models. Thus the
worst-case error bounded by Eq. 2 may occur with at most
a probability ofPri(M/K), while no error is incurred with
the remaining probability. Consequently, the expected error
bound of our approach is:

E = Pri(M/K)×ǫH
K+(1−Pri(M/K))×0 = Pri(M/K) ǫH

K
(3)

For the example case wherei’s belief is a uniform distribu-
tion over the finite set ofj’s models, Eq. 3 becomes:

E =
|M/K |

M (Rmax
j − Rmin

j )H2dK

Equations 2 and 3 measure the errors introduced by
KModelSelectionat some nesting levell. These equations
assume that the I-DIDs at the lower levels have been solved
exactly. However, as we mentioned previously, we may use
the model clustering and selection at all levels of nesting to
approximately solve the I-DIDs. Deriving error bounds for
this more general case is one avenue of future work.

Experiments
We implemented the algorithms in Figs. 6 and 7 and
demonstrate the empirical performance of the model clus-
tering approach on two problem domains: the multi-agent
tiger (Doshi & Gmytrasiewicz 2005) and a multi-agent ver-
sion of the machine maintenance problem (Smallwood &
Sondik 1973). We also compare the performance with an
implementation of the interactive particle filter (I-PF) (Doshi
& Gmytrasiewicz 2005) in the context of I-DIDs. In partic-
ular, we show that the quality of the policies generated using
our method approaches that of the optimal policy asK in-
creases. As there are infinitely many computable models, we
define an optimal policy as the one obtained byexactly solv-
ing the I-DID given a finite set ofM models of the other
agent. In addition, the approach performs better than the
I-PF when both are allocated low numbers of models and
consequently, less computational resources. Furthermore,
we obtain significant computational savings from using the
approximation technique as indicated by the low run times.

In Fig. 8, we show the average rewards gathered by exe-
cuting the policies obtained from solving the level 1 I-DIDs



Multi-agent Tiger Problem
Horizon = 3
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Figure 8:Performance profiles for the multi-agent tiger and machine maintenance problems generated by executing the policies obtained
using model clustering and selection (MC). As the number of allocated models,K, increases, the performance approaches that of the optimal
for given M (shown as the straight line). We show this for different numbers,M , of candidate models ofj, and compare with the I-PF.

approximately. Each data point here is the average of 50
runs where the true model of the other agent,j, is randomly
picked according toi’s belief distribution overj’s models.
Each curve within a plot is for a particularM , whereM de-
notes thetotal number of candidate models ofj. As we in-
crease the number of models selected,K, from the clusters,
the policies improve and converge toward the exact. This
remains true for increasingM and for both, the multi-agent
tiger and machine maintenance problem domains.

We observe from Fig. 8 that our approach obtains better
average rewards with reduced variance than I-PF for small
numbers,K, of selected models. This is due to the large
variance in performances of PFs for small numbers of sam-
ples, which is a well-known problem. For larger numbers of
models, both approaches exhibit similar performances.

Prob. Tiger Machine
Exact 83.6s 99.2s

K = 20 K=50 K=20 K=50
MC 3.8s 10.5s 6.2s 18.7s
I-PF 3.9s 9.5s 4.3s 10.8s

Table 2: Run times of exactly and approximately solving the I-
DID for a horizon of 4 andM=100 (3.0GHz, 1GB RAM, WinXP).

Finally, the run times in Table 2 are indicative of the com-
putational savings incurred by pruning the model space to a
fixed number of models at each time step in the I-DID. How-
ever, the approach is somewhat slower than the I-PF because
of the convergence step, though its performance is signifi-
cantly better as shown in Fig. 8. Using the clustering ap-
proach we were able to solve I-DIDs up to 8 horizons, while
the exact solutions could not be obtained beyond 4 horizons.
We expect similar results as we evaluate for deeper levels of
strategic nesting of the models.
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