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ABSTRACT
We develop a new graphical representation for interactive partially
observable Markov decision processes (I-POMDPs) that is signif-
icantly more transparent and semantically clear than the previous
representation. These graphical models called interactive dynamic
influence diagrams (I-DIDs) seek to explicitly model the structure
that is often present in real-world problems by decomposing the sit-
uation into chance and decision variables, and the dependencies be-
tween the variables. I-DIDs generalize DIDs, which may be viewed
as graphical representations of POMDPs, to multiagent settings in
the same way that I-POMDPs generalize POMDPs. I-DIDs may be
used to compute the policy of an agent online as the agent acts and
observes in a setting that is populated by other interacting agents.
Using several examples, we show how I-DIDs may be applied and
demonstrate their usefulness.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems

General Terms
Theory

Keywords
Dynamic influence diagrams, decision-making, agent modeling

1. INTRODUCTION
Interactive partially observable Markov decision processes (I-

POMDPs) [9] provide a framework for sequential decision-making
in partially observable multiagent environments. They generalize
POMDPs [13] to multiagent settings by including the other agents’
computable models in the state space along with the states of the
physical environment. The models encompass all information in-
fluencing the agents’ behaviors, including their preferences, capa-
bilities, and beliefs, and are thus analogous totypesin Bayesian
games [11]. I-POMDPs adopt a subjective approach to understand-
ing strategic behavior, rooted in a decision-theoretic framework that
takes a decision-maker’s perspective in the interaction.
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In [15], Polich and Gmytrasiewicz introducedinteractive dy-
namic influence diagrams(I-DIDs) as the computational repre-
sentations of I-POMDPs. I-DIDs generalize DIDs [12], which may
be viewed as computational counterparts of POMDPs, to multia-
gents settings in the same way that I-POMDPs generalize POMDPs.
I-DIDs contribute to a growing line of work [19] that includes
multi-agent influence diagrams (MAIDs) [14], and more recently,
networks of influence diagrams (NIDs) [8]. These formalisms seek
to explicitly model the structure that is often present in real-world
problems by decomposing the situation into chance and decision
variables, and the dependencies between the variables. MAIDs
provide an alternative to normal and extensive game forms using
a graphical formalism to represent games of imperfect information
with a decision node for each agent’s actions and chance nodes
capturing the agent’s private information. MAIDs objectively ana-
lyze the game, efficiently computing the Nash equilibrium profile
by exploiting the independence structure. NIDs extend MAIDs to
include agents’ uncertainty over the game being played and over
models of the other agents. Each model is a MAID and the network
of MAIDs is collapsed, bottom up, into a single MAID for comput-
ing the equilibrium of the game keeping in mind the different mod-
els of each agent. Graphical formalisms such as MAIDs and NIDs
open up a promising area of research that aims to represent multia-
gent interactions more transparently. However, MAIDs provide an
analysis of the game from an external viewpoint and the applicabil-
ity of both is limited to static single play games. Matters are more
complex when we consider interactions that are extended over time,
where predictions about others’ future actions must be made using
models that change as the agents act and observe. I-DIDs address
this gap by allowing the representation of other agents’ models as
the values of a specialmodel node. Both, other agents’ models and
the original agent’s beliefs over these models are updated over time
using special-purpose implementations.

In this paper, we improve on the previous preliminary represen-
tation of the I-DID shown in [15] by using the insight that the static
I-ID is a type of NID. Thus, we may utilize NID-specific language
constructs such asmultiplexersto represent the model node, and
subsequently the I-ID, more transparently. Furthermore, we clarify
the semantics of the special purpose “policy link” introduced in the
representation of I-DID by [15], and show that it could be replaced
by traditional dependency links. In the previous representation of
the I-DID, the update of the agent’s belief over the models of others
as the agents act and receive observations was denoted using a spe-
cial link called the “model update link” that connected the model
nodes over time. We explicate the semantics of this link by show-
ing how it can be implemented using the traditional dependency
links between the chance nodes that constitute the model nodes.
The net result is a representation of I-DID that is significantly more



transparent, semantically clear, and capable of being implemented
using the standard algorithms for solving DIDs. We show how I-
DIDs may be used to model an agent’s uncertainty over others’
models, that may themselves be I-DIDs. Solution to the I-DID is
a policy that prescribes what the agent should do over time, given
its beliefs over the physical state and others’ models. Analogous to
DIDs, I-DIDs may be used to compute the policy of an agent online
as the agent acts and observes in a setting that is populated by other
interacting agents.

2. BACKGROUND: FINITELY NESTED I-
POMDPS

Interactive POMDPs generalize POMDPs to multiagent settings
by including other agents’ models as part of the state space [9].
Since other agents may also reason about others, the interactive
state space is strategically nested; it contains beliefs about other
agents’ models and their beliefs about others. For simplicity of
presentation we consider an agent,i, that is interacting with one
other agent,j.

A finitely nested I-POMDP of agenti with a strategy levell is
defined as the tuple:

I-POMDPi,l = 〈ISi,l, A, Ti, Ωi, Oi, Ri〉

where:• ISi,l denotes a set of interactive states defined as,ISi,l =
S × Mj,l−1, whereMj,l−1 = {Θj,l−1 ∪ SMj}, for l ≥ 1, and
ISi,0 = S, whereS is the set of states of the physical environ-
ment. Θj,l−1 is the set of computableintentional modelsof agent
j: θj,l−1 = 〈bj,l−1, θ̂j〉 where theframe, θ̂j = 〈A, Ωj , Tj , Oj , Rj ,
OCj〉. Here,j is Bayes rational andOCj is j’s optimality criterion.
SMj is the set of subintentional models ofj. Simple examples of
subintentional models include a no-information model [10] and a
fictitious play model [6], both of which are history independent.
We give a recursive bottom-up construction of the interactive state
space below.
ISi,0 = S, Θj,0 = {〈bj,0, θ̂j〉 | bj,0 ∈ ∆(ISj,0)}

ISi,1 = S × {Θj,0 ∪ SMj}, Θj,1 = {〈bj,1, θ̂j〉 | bj,1 ∈ ∆(ISj,1)}
...

...
ISi,l = S × {Θj,l−1 ∪ SMj}, Θj,l = {〈bj,l, θ̂j〉 | bj,l ∈ ∆(ISj,l)}

Similar formulations of nested spaces have appeared in [1, 3].
• A = Ai × Aj is the set of joint actions of all agents in the
environment;• Ti : S×A×S → [0, 1], describes the effect of the
joint actions on the physical states of the environment;• Ωi is the
set of observations of agenti; • Oi : S × A × Ωi → [0, 1] gives
the likelihood of the observations given the physical state and joint
action;• Ri : ISi × A → R describes agenti’s preferences over
its interactive states. Usually only the physical states will matter.

Agent i’s policy is the mapping,Ω∗
i → ∆(Ai), whereΩ∗

i is
the set of all observation histories of agenti. Since belief over the
interactive states forms a sufficient statistic [9], the policy can also
be represented as a mapping from the set of all beliefs of agenti to
a distribution over its actions,∆(ISi) → ∆(Ai).

2.1 Belief Update
Analogous to POMDPs, an agent within the I-POMDP frame-

work updates its belief as it acts and observes. However, there are
two differences that complicate the belief update in multiagent set-
tings when compared to single agent ones. First, since the state of
the physical environment depends on the actions of both agents,i’s
prediction of how the physical state changes has to be made based
on its prediction ofj’s actions. Second, changes inj’s models have
to be included ini’s belief update. Specifically, ifj is intentional
then an update ofj’s beliefs due to its action and observation has
to be included. In other words,i has to update its belief based on

its prediction of whatj would observe and howj would update
its belief. If j’s model is subintentional, thenj’s probable obser-
vations are appended to the observation history contained in the
model. Formally, we have:
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whereβ is the normalizing constant,τ is 1 if its argument is 0
otherwise it is 0,Pr(at−1

j |θt−1

j,l−1
) is the probability thatat−1

j is

Bayes rational for the agent described by modelθt−1

j,l−1
, andSE(·)

is an abbreviation for the belief update. For a version of the belief
update whenj’s model is subintentional, see [9].

If agentj is also modeled as an I-POMDP, theni’s belief update
invokesj’s belief update (via the termSEbθt

j
( bt−1

j,l−1
, at−1

j , ot
j)),

which in turn could invokei’s belief update and so on. This recur-
sion in belief nesting bottoms out at the0th level. At this level, the
belief update of the agent reduces to a POMDP belief update.1 For
illustrations of the belief update, additional details on I-POMDPs,
and how they compare with other multiagent frameworks, see [9].

2.2 Value Iteration
Each belief state in a finitely nested I-POMDP has an associated

value reflecting the maximum payoff the agent can expect in this
belief state:

Un(〈bi,l, bθi〉) = max
ai∈Ai

� P
is∈ISi,l

ERi(is, ai)bi,l(is)+

γ
P

oi∈Ωi

Pr(oi|ai, bi,l)U
n−1(〈SEbθi

(bi,l, ai, oi), bθi〉)

� (2)

where,ERi(is, ai) =
P

aj
Ri(is, ai, aj)Pr(aj |mj,l−1) (since

is = (s, mj,l−1)). Eq. 2 is a basis for value iteration in I-POMDPs.
Agent i’s optimal action,a∗

i , for the case of finite horizon with
discounting, is an element of the set of optimal actions for the belief
state,OPT (θi), defined as:

OPT (〈bi,l, bθi〉) = argmax
ai∈Ai

� P
is∈ISi,l

ERi(is, ai)bi,l(is)

+γ
P

oi∈Ωi

Pr(oi|ai, bi,l)U
n(〈SEbθi

(bi,l, ai, oi), bθi〉)

� (3)

3. INTERACTIVE INFLUENCE DIAGRAMS
A naive extension of influence diagrams (IDs) to settings popu-

lated by multiple agents is possible by treating other agents as au-
tomatons, represented using chance nodes. However, this approach
assumes that the agents’ actions are controlled using a probability
distribution that does not change over time. Interactive influence
diagrams (I-IDs) adopt a more sophisticated approach by gener-
alizing IDs to make them applicable to settings shared with other
agents who may act and observe, and update their beliefs.

3.1 Syntax
In addition to the usual chance, decision, and utility nodes, I-

IDs include a new type of node called themodelnode. We show a
general levell I-ID in Fig. 1(a), where the model node (Mj,l−1) is
denoted using a hexagon. We note that the probability distribution
over the chance node,S, and the model node together represents

1The 0th level model is a POMDP: Other agent’s actions are treated
as exogenous events and folded into the T, O, and R functions.
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Figure 1: (a) A generic levell I-ID for agent i situated with one other agentj. The hexagon is the model node (Mj,l−1) whose structure we show in
(b). Members of the model node are I-IDs themselves (m1

j,l−1
, m2

j,l−1
; diagrams not shown here for simplicity) whose decision nodes are mapped to

the corresponding chance nodes (A1
j , A2

j ). Depending on the value of the node, Mod[Mj ], the distribution of each of the chance nodes is assigned to
the nodeAj . (c) The transformed I-ID with the model node replaced by the chance nodes and the relationships between them.

agenti’s belief over its interactive states. In addition to the model
node, I-IDs differ from IDs by having a dashed link (called the
“policy link” in [15]) between the model node and a chance node,
Aj , that represents the distribution over the other agent’s actions
given its model. In the absence of other agents, the model node and
the chance node,Aj , vanish and I-IDs collapse into traditional IDs.

The model node contains the alternative computational models
ascribed byi to the other agent from the set,Θj,l−1 ∪SMj , where
Θj,l−1 andSMj were defined previously in Section 2. Thus, a
model in the model node may itself be an I-ID or ID, and the recur-
sion terminates when a model is an ID or subintentional. Because
the model node contains the alternative models of the other agent
as its values, its representation is not trivial. In particular, some of
the models within the node are I-IDs that when solved generate the
agent’s optimal policy in their decision nodes. Each decision node
is mapped to the corresponding chance node, sayA1

j , in the follow-
ing way: if OPT is the set of optimal actions obtained by solving
the I-ID (or ID), thenPr(aj ∈ A1

j ) = 1

|OPT |
if aj ∈ OPT , 0

otherwise.
Borrowing insights from previous work [8], we observe that the

model node and the dashed “policy link” that connects it to the
chance node,Aj , could be represented as shown in Fig. 1(b). The
decision node of each levell − 1 I-ID is transformed into a chance
node, as we mentioned previously, so that the actions with the
largest value in the decision node are assigned uniform probabil-
ities in the chance node while the rest are assigned zero probability.
The different chance nodes (A1

j , A
2
j ), one for each model, and addi-

tionally, the chance node labeledMod[Mj ] form the parents of the
chance node,Aj . Thus, there are as many action nodes (A1

j , A
2
j )

in Mj,l−1 as the number of models in the support of agenti’s be-
liefs. The conditional probability table of the chance node,Aj ,
is amultiplexerthat assumes the distribution of each of the action
nodes (A1

j , A
2
j ) depending on the value ofMod[Mj ]. The values of

Mod[Mj ] denote the different models ofj. In other words, when
Mod[Mj ] has the valuem1

j,l−1, the chance nodeAj assumes the
distribution of the nodeA1

j , andAj assumes the distribution ofA2
j

whenMod[Mj ] has the valuem2
j,l−1. The distribution over the

node,Mod[Mj ], is the agenti’s belief over the models ofj given a
physical state. For more agents, we will have as many model nodes
as there are agents. Notice that Fig. 1(b) clarifies the semantics of
the “policy link”, and shows how it can be represented using the
traditional dependency links.

In Fig. 1(c), we show the transformed I-ID when the model node
is replaced by the chance nodes and relationships between them. In

contrast to the representation in [15], there are no special-purpose
“policy links”, rather the I-ID is composed of only those types of
nodes that are found in traditional IDs and dependency relation-
ships between the nodes. This allows I-IDs to be represented and
implemented using conventional application tools that target IDs.
Note that we may view the levell I-ID as a NID. Specifically, each
of the levell − 1 models within the model node are blocks in the
NID (see Fig. 2). If the levell = 1, each block is a traditional ID,
otherwise ifl > 1, each block within the NID may itself be a NID.
Note that within the I-IDs (or IDs) at each level, there is only a
single decision node. Thus, our NID does not contain any MAIDs.

mj,l-1
2

mj,l-1
1

mi,l

Mj,l-1

{j,Aj
1
} {j,Aj

2
}

Figure 2: A level l I-ID represented as a NID. The probabilities as-
signed to the blocks of the NID arei’s beliefs overj’s models condi-
tioned on a physical state.

3.2 Solution
The solution of an I-ID proceeds in a bottom-up manner, and is

implemented recursively. We start by solving the level 0 models,
which, if intentional, are traditional IDs. Their solutions provide
probability distributions over the other agents’ actions, which are
entered in the corresponding chance nodes found in the model node
of the level 1 I-ID. The mapping from the level 0 models’ decision
nodes to the chance nodes is carried out so that actions with the
largest value in the decision node are assigned uniform probabili-
ties in the chance node while the rest are assigned zero probability.
Given the distributions over the actions within the different chance
nodes (one for each model of the other agent), the level 1 I-ID is
transformed as shown in Fig. 1(c). During the transformation, the
conditional probability table (CPT) of the node,Aj , is populated
such that the node assumes the distribution of each of the chance
nodes depending on the value of the node,Mod[Mj ]. As we men-
tioned previously, the values of the nodeMod[Mj ] denote the dif-
ferent models of the other agent, and its distribution is the agenti’s
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Figure 3: (a) A generic two time-slice levell I-DID for agent i in a setting with one other agentj. Notice the dotted model update link that denotes
the update of the models ofj and the distribution over the models over time.(b) The semantics of the model update link.

belief over the models ofj conditioned on the physical state. The
transformed level 1 I-ID is a traditional ID that may be solved us-
ing the standard expected utility maximization method [18]. This
procedure is carried out up to the levell I-ID whose solution gives
the non-empty set of optimal actions that the agent should perform
given its belief. Notice that analogous to IDs, I-IDs are suitable for
online decision-making when the agent’s current belief is known.

4. INTERACTIVE DYNAMIC INFLUENCE
DIAGRAMS

Interactive dynamic influence diagrams (I-DIDs) extend I-IDs
(and NIDs) to allow sequential decision-making over several time
steps. Just as DIDs are structured graphical representations of POMDPs,
I-DIDs are the graphical online analogs for finitely nested I-POMDPs.
I-DIDs may be used to optimize over a finite look-ahead given ini-
tial beliefs while interacting with other, possibly similar, agents.

4.1 Syntax
We depict a general two time-slice I-DID in Fig. 3(a). In ad-

dition to the model nodes and the dashed policy link, what differ-
entiates an I-DID from a DID is themodel update linkshown as a
dotted arrow in Fig. 3(a). We explained the semantics of the model
node and the policy link in the previous section; we describe the
model updates next.

The update of the model node over time involves two steps: First,
given the models at timet, we identify the updated set of models
that reside in the model node at timet + 1. Recall from Section 2
that an agent’s intentional model includes its belief. Because the
agents act and receive observations, their models are updated to
reflect their changed beliefs. Since the set of optimal actions for
a model could include all the actions, and the agent may receive
any one of|Ωj | possible observations, the updated set at time step
t + 1 will have at most|M t

j,l−1||Aj ||Ωj | models. Here,|M t
j,l−1|

is the number of models at time stept, |Aj | and|Ωj | are the largest
spaces of actions and observations respectively, among all the mod-
els. Second, we compute the new distribution over the updated
models given the original distribution and the probability of the
agent performing the action and receiving the observation that led
to the updated model. These steps are a part of agenti’s belief
update formalized using Eq. 1.

In Fig. 3(b), we show how the dotted model update link is im-
plemented in the I-DID. If each of the two levell − 1 models as-
cribed toj at time stept results in one action, andj could make
one of two possible observations, then the model node at time step
t + 1 contains four updated models (m

t+1,1
j,l−1

,mt+1,2
j,l−1

, m
t+1,3
j,l−1

, and

m
t+1,4
j,l−1

). These models differ in their initial beliefs, each of which
is the result ofj updating its beliefs due to its action and a possible
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Figure 4: Transformed I-DID with the model nodes and model update
link replaced with the chance nodes and the relationships (in bold).

observation. The decision nodes in each of the I-DIDs or DIDs that
represent the lower level models are mapped to the corresponding
chance nodes, as mentioned previously. Next, we describe how the
distribution over the updated set of models (the distribution over the
chance nodeMod[M t+1

j ] in M t+1

j,l−1
) is computed. The probability

that j’s updated model is, saymt+1,1
j,l−1

, depends on the probability
of j performing the action and receiving the observation that led to
this model, and the prior distribution over the models at time step
t. Because the chance nodeAt

j assumes the distribution of each
of the action nodes based on the value ofMod[M t

j ], the proba-
bility of the action is given by this chance node. In order to obtain
the probability ofj’s possible observation, we introduce the chance
nodeOj , which depending on the value ofMod[M t

j ] assumes the
distribution of the observation node in the lower level model de-
noted byMod[M t

j ]. Because the probability ofj’s observations
depends on the physical state and the joint actions of both agents,
the nodeOj is linked withSt+1, At

j , andAt
i.

2 Analogous toAt
j ,

the conditional probability table ofOj is also a multiplexer modu-
lated byMod[M t

j ]. Finally, the distribution over the prior models
at timet is obtained from the chance node,Mod[M t

j ] in M t
j,l−1.

Consequently, the chance nodes,Mod[M t
j ], At

j , andOj , form the
parents ofMod[M t+1

j ] in M t+1

j,l−1
. Notice that the model update

link may be replaced by the dependency links between the chance
nodes that constitute the model nodes in the two time slices. In
Fig. 4 we show the two time-slice I-DID with the model nodes re-
placed by the chance nodes and the relationships between them.
Chance nodes and dependency links that not in bold are standard,
usually found in DIDs.

2Note thatOj representsj’s observation at timet + 1.



Expansion of the I-DID over more time steps requires the repe-
tition of the two steps of updating the set of models that form the
values of the model node and adding the relationships between the
chance nodes, as many times as there are model update links. We
note that the possible set of models of the other agentj grows expo-
nentially with the number of time steps. For example, afterT steps,
there may be at most|M t=1

j,l−1|(|Aj ||Ωj |)
T−1 candidate models re-

siding in the model node.

4.2 Solution
Analogous to I-IDs, the solution to a levell I-DID for agent i

expanded overT time steps may be carried out recursively. For the
purpose of illustration, letl=1 andT=2. The solution method uses
the standard look-ahead technique, projecting the agent’s action
and observation sequences forward from the current belief state [17],
and finding the possible beliefs thati could have in the next time
step. Because agenti has a belief overj’s models as well, the look-
ahead includes finding out the possible models thatj could have in
the future. Consequently, each ofj’s subintentional or level 0 mod-
els (represented using a standard DID) in the first time step must be
solved to obtain its optimal set of actions. These actions are com-
bined with the set of possible observations thatj could make in that
model, resulting in an updated set of candidate models (that include
the updated beliefs) that could describe the behavior ofj. Beliefs
over this updated set of candidate models are calculated using the
standard inference methods using the dependency relationships be-
tween the model nodes as shown in Fig. 3(b). We note the recursive
nature of this solution: in solving agenti’s level 1 I-DID,j’s level 0
DIDs must be solved. If the nesting of models is deeper, all models
at all levels starting from 0 are solved in a bottom-up manner.
We briefly outline the recursive algorithm for solving agenti’s

Algorithm for solving I-DID
Input : level l ≥ 1 I-ID or level 0 ID, T

Expansion Phase
1. For t from 1 to T − 1 do
2. If l ≥ 1 then

PopulateMt+1

j,l−1

3. For eachmt
j in Range(Mt

j,l−1
) do

4. Recursively call algorithm with thel− 1 I-ID (or ID)
that representsmt

j and the horizon,T − t + 1

5. Map the decision node of the solved I-ID (or ID),
OPT (mt

j), to a chance nodeAj

6. For eachaj in OPT (mt
j) do

7. For eachoj in Oj (part ofmt
j ) do

8. Updatej’s belief,bt+1
j ← SE(bt

j , aj , oj)

9. mt+1
j ← New I-ID (or ID) with bt+1

j as the
initial belief

10. Range(Mt+1

j,l−1
)

∪
← {mt+1

j }

11. Add the model node,Mt+1

j,l−1
, and the dependency links

betweenMt
j,l−1

andMt+1

j,l−1
(shown in Fig. 3(b))

12. Add the chance, decision, and utility nodes fort + 1 time
slice and the dependency links between them

13. Establish the CPTs for each chance node and utility node

Look-Ahead Phase
14. Apply the standard look-ahead and backup method to solve
the expanded I-DID

Figure 5: Algorithm for solving a level l ≥ 0 I-DID.

level l I-DID expanded overT time steps with one other agentj in
Fig. 5. We adopt a two-phase approach: Given an I-ID of levell

(described previously in Section 3) with all lower level models also

represented as I-IDs or IDs (if level 0), the first step is to expand
the levell I-ID over T time steps adding the dependency links and
the conditional probability tables for each node. We particularly
focus on establishing and populating the model nodes (lines 3-11).
Note that Range(·) returns the values (lower level models) of the
random variable given as input (model node). In the second phase,
we use a standard look-ahead technique projecting the action and
observation sequences over T time steps in the future, and backing
up the utility values of the reachable beliefs. Similar to I-IDs, the
I-DIDs reduce to DIDs in the absence of other agents.

As we mentioned previously, the 0-th level models are the tradi-
tional DIDs. Their solutions provide probability distributions over
actions of the agent modeled at that level to I-DIDs at level 1. Given
probability distributions over other agent’s actions the level 1 I-
DIDs can themselves be solved as DIDs, and provide probability
distributions to yet higher level models. Assume that the number
of models considered at each level is bound by a number, M. Solv-
ing an I-DID of levell in then equivalent to solvingO(M l) DIDs.

5. EXAMPLE APPLICATIONS
To illustrate the usefulness of I-DIDs, we apply them to three

problem domains. We describe, in particular, the formulation of
the I-DID and the optimal prescriptions obtained on solving it.

5.1 Followership-Leadership in the Multiagent
Tiger Problem

We begin our illustrations of using I-IDs and I-DIDs with a slightly
modified version of the multiagent tiger problem discussed in [9].
The problem has two agents, each of which can open the right door
(OR), the left door (OL) or listen (L). In addition to hearing growls
(from the left (GL) or from the right (GR)) when they listen, the
agents also hear creaks (from the left (CL), from the right (CR), or
no creaks (S)), which noisily indicate the other agent’s opening one
of the doors. When any door is opened, the tigerpersistsin its orig-
inal location with a probability of 95%. Agenti hears growls with
a reliability of 65% and creaks with a reliability of 95%. Agentj,
on the other hand, hears growls with a reliability of 95%. Thus,
the setting is such that agenti hears agentj opening doors more
reliably than the tiger’s growls. This suggests thati could usej’s
actions as an indication of the location of the tiger, as we discuss
below. Each agent’s preferences are as in the single agent game
discussed in [13]. The transition, observation, and reward func-
tions are shown in [16].

A good indicator of the usefulness of normative methods for
decision-making like I-DIDs is the emergence of realistic social
behaviors in their prescriptions. In settings of the persistent multia-
gent tiger problem that reflect real world situations, we demonstrate
followershipbetween the agents and, as shown in [15],deception
among agents who believe that they are in a follower-leader type
of relationship. In particular, we analyze the situational and episte-
mological conditions sufficient for their emergence. The follower-
ship behavior, for example, results from the agent knowing its own
weaknesses, assessing the strengths, preferences, and possible be-
haviors of the other, and realizing that its best for it to follow the
other’s actions in order to maximize its payoffs.

Let us consider a particular setting of the tiger problem in which
agenti believes thatj’s preferences are aligned with its own - both
of them just want to get the gold - andj’s hearing is more reliable
in comparison to itself. As an example, suppose thatj, on listening
can discern the tiger’s location 95% of the times compared toi’s
65% accuracy. Additionally, agenti does not have any initial infor-
mation about the tiger’s location. In other words,i’s single-level
nested belief,bi,1, assigns 0.5 to each of the two locations of the
tiger. In addition,i considers two models ofj, which differ in j’s
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Figure 6: (a) Level 1 I-ID of agent i, (b) two level 0 IDs of agentj
whose decision nodes are mapped to the chance nodes,A1

j , A2
j , in (a).

flat level 0 initial beliefs. This is represented in the level 1 I-ID
shown in Fig. 6(a). According to one model,j assigns a proba-
bility of 0.9 that the tiger is behind the left door, while the other
model assigns 0.1 to that location (see Fig. 6(b)). Agent i is un-
decided on these two models ofj. If we vary i’s hearing ability,
and solve the corresponding level 1 I-ID expanded over three time
steps, we obtain the normative behavioral policies shown in Fig 7
that exhibit followership behavior. Ifi’s probability of correctly
hearing the growls is 0.65, then as shown in the policy in Fig. 7(a),
i begins to conditionally followj’s actions:i opens the same door
that j opened previously iffi’s own assessment of the tiger’s lo-
cation confirmsj’s pick. If i loses the ability to correctly interpret
the growls completely, it blindly followsj and opens the same door
thatj opened previously (Fig. 7(b)).
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Figure 7: Emergence of(a) conditional followership, and (b) blind
followership in the tiger problem. Behaviors of interest are in bold. * is
a wildcard, and denotes any one of the observations.

We observed that asingle levelof belief nesting - beliefs about
the other’s models - was sufficient for followership to emerge in the
tiger problem. However, the epistemological requirements for the
emergence of leadership are more complex. For an agent, sayj, to
emerge as a leader, followership must first emerge in the other agent
i. As we mentioned previously, ifi is certain that its preferences
are identical to those ofj, and believes thatj has a better sense
of hearing,i will follow j’s actions over time. Agentj emerges
as a leader if it believes thati will follow it, which implies that
j’s belief must be nestedtwo levelsdeep to enable it to recognize
its leadership role. Realizing thati will follow presentsj with an
opportunity to influencei’s actions in the benefit of the collective
good or its self-interest alone. For example, in the tiger problem,
let us consider a setting in which if bothi andj open the correct
door, then each gets a payoff of 20 that is double the original. If
j alone selects the correct door, it gets the payoff of 10. On the
other hand, if both agents pick the wrong door, their penalties are
cut in half. In this setting, it is in bothj’s best interest as well as the
collective betterment forj to use its expertise in selecting the cor-

rect door, and thus be a good leader. However, consider a slightly
different problem in whichj gains fromi’s loss and is penalized
if i gains. Specifically, leti’s payoff be subtracted fromj’s, indi-
cating thatj is antagonistic towardi - if j picks the correct door
andi the wrong one, theni’s loss of 100 becomesj’s gain. Agent
j believes thati incorrectly thinks thatj’s preferences are those
that promote the collective good and that it starts off by believing
with 99% confidence where the tiger is. Becausei believes that its
preferences are similar to those ofj, and thatj starts by believing
almost surely that one of the two is the correct location (two level
0 models ofj), i will start by following j’s actions. We showi’s
normative policy on solving its singly-nested I-DID over three time
steps in Fig. 8(a). The policy demonstrates thati will blindly fol-
low j’s actions. Since the tiger persists in its original location with
a probability of 0.95,i will select the same door again. Ifj begins
the game with a 99% probability that the tiger is on the right, solv-
ing j’s I-DID nestedtwo levelsdeep, results in the policy shown in
Fig. 8(b). Even thoughj is almost certain that OL is the correct
action, it will start by selecting OR, followed by OL. Agentj’s in-
tention is to deceivei who, it believes, will followj’s actions, so
as to gain $110 in the second time step, which is more than whatj

would gain if it were to be honest.
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Figure 8: Emergence of deception between agents in the tiger prob-
lem. Behaviors of interest are in bold. * denotes as before.(a) Agent
i’s policy demonstrating that it will blindly follow j’s actions.(b) Even
though j is almost certain that the tiger is on the right, it will start by
selecting OR, followed by OL, in order to deceivei.

5.2 Altruism and Reciprocity in the Public
Good Problem

The public good (PG) problem [7], consists of a group ofM

agents, each of whom must either contribute some resource to a
public pot or keep it for themselves. Since resources contributed to
the public pot are shared among all the agents, they are less valu-
able to the agent when in the public pot. However, if all agents
choose to contribute their resources, then the payoff to each agent
is more than if no one contributes. Since an agent gets its share of
the public pot irrespective of whether it has contributed or not, the
dominating action is for each agent to not contribute, and instead
“free ride” on others’ contributions. However, behaviors of human
players in empirical simulations of the PG problem differ from the
normative predictions. The experiments reveal that many players
initially contribute a large amount to the public pot, and continue
to contribute when the PG problem is played repeatedly, though
in decreasing amounts [4]. Many of these experiments [5] report
that a small core group of players persistently contributes to the
public pot even when all others are defecting. These experiments
also reveal that players who persistently contribute have altruistic
or reciprocal preferences matching expected cooperation of others.

For simplicity, we assume that the game is played betweenM =
2 agents,i and j. Let each agent be initially endowed withXT

amount of resources. While the classical PG game formulation per-
mits each agent to contribute any quantity of resources (≤ XT ) to



the public pot, we simplify the action space by allowing two possi-
ble actions. Each agent may choose to eithercontribute(C) afixed
amount of the resources, or not contribute. The latter action is de-
noted asdefect(D). We assume that the actions are not observable
to others. The value of resources in the public pot is discounted
by ci for each agenti, whereci is the marginal private return. We
assume thatci < 1 so that the agent does not benefit enough that
it contributes to the public pot for private gain. Simultaneously,
ciM > 1, making collective contribution pareto optimal.

i/j C D
C 2ciXT , 2cjXT ciXT − cp, XT + cjXT − P
D XT + ciXT − P, cjXT − cp XT , XT

Table 1: The one-shot PG game with punishment.

In order to encourage contributions, the contributing agents pun-
ish free riders but incur a small cost for administering the punish-
ment. LetP be the punishment meted out to the defecting agent
andcp the non-zero cost of punishing for the contributing agent.
For simplicity, we assume that the cost of punishing is same for
both the agents. The one-shot PG game with punishment is shown
in Table. 1. Letci = cj , cp > 0, and ifP > XT − ciXT , then de-
fection is no longer a dominating action. IfP < XT − ciXT , then
defection is the dominating action for both. IfP = XT − ciXT ,
then the game is not dominance-solvable.

PrivatePoti
t

Ai
t Ri

Aj
t

PublicPot
t

(a)

Aj
t,1

Mod[Mj
t
]

mj,0
1

PrivatePotj
t,1

Aj
t,1Rj

1

PublicPot
t,1

Aj
t,2

mj,0
2

PotStatus
t

PotStatus
t,1

PrivatePotj
t,2

Aj
t,2 Rj

2

PublicPot
t,2

PotStatus
t,2

(b)

mi,1

Figure 9: (a) Level 1 I-ID of agent i, (b) level 0 IDs of agentj with
decision nodes mapped to the chance nodes,A1

j and A2
j , in (a).

We formulate asequentialversion of the PG problem with pun-
ishment from the perspective of agenti. Though in the repeated PG
game, the quantity in the public pot is revealed to all the agents after
each round of actions, we assume in our formulation that it is hid-
den from the agents. Each agent may contribute a fixed amount3,
xc, or defect. An agent on performing an action receives an ob-
servation ofplenty (PY) or meager(MR) symbolizing the state
of the public pot. Notice that the observations are also indirectly
indicative of agentj’s actions because the state of the public pot
is influenced by them. The amount of resources in agenti’s pri-
vate pot, is perfectly observable toi. The payoffs are analogous to
Table. 1. Borrowing from the empirical investigations of the PG
problem [5], we construct level 0 IDs forj that model altruistic and
non-altruistic types (Fig. 9(b)). Specifically, our altruistic agent has
a high marginal private return (cj is close to 1) and does not punish
others who defect. Letxc = 1 and the level 0 agent be punished
half the times it defects. With one action remaining, both types
of agents choose to contribute to avoid being punished. With two
actions to go, the altruistic type chooses to contribute, while the

3The amount is selected so that the resources last the entire game.

other defects. This is becausecj for the altruistic type is close to
1, thus the expected punishment,0.5P > (1 − cj), which the al-
truistic type avoids. Becausecj for the non-altruistic type is less,
it prefers not to contribute. With three steps to go, the altruistic
agent contributes to avoid punishment (0.5P > 2(1− cj)), and the
non-altruistic type defects. For greater than three steps, while the
altruistic agent continues to contribute to the public pot depending
on how close its marginal private return is to 1, the non-altruistic
type prescribes defection.

We analyzed the decisions of an altruistic agenti modeled using
a level 1 I-DID expanded over 3 time steps.i ascribes the two level
0 models, mentioned previously, toj (see Fig. 9). Ifi believes with
a probability 1 thatj is altruistic,i chooses to contribute for each of
the three steps. This behavior persists wheni is unaware of whether
j is altruistic (Fig. 10(a)), and wheni assigns a high probability to
j being the non-altruistic type. However, wheni believes with a
probability 1 thatj is non-altruistic and will thus surely defect,i

chooses to defect to avoid being punished and because its marginal
private return is less than 1. These results demonstrate that the be-
havior of our altruistic type resembles that found experimentally.
The non-altruistic level 1 agent chooses to defect regardless of how
likely it believes the other agent to be altruistic. We analyzed the
behavior of a reciprocal agent type that matches expected cooper-
ation or defection. The reciprocal type’s marginal private return
is similar to that of the non-altruistic type, however, it obtains a
greater payoff when its action is similar to that of the other. We
consider the case when the reciprocal agenti is unsure of whether
j is altruistic and believes that the public pot is likely to be half
full. For this prior belief,i chooses to defect. On receiving an ob-
servation of plenty,i decides to contribute, while an observation of
meager makes it defect (Fig. 10(b)). This is because an observa-
tion of plenty signals that the pot is likely to be greater than half
full, which results fromj’s action to contribute. Thus, among the
two models ascribed toj, its type is likely to be altruistic making
it likely that j will contribute again in the next time step. Agenti

therefore chooses to contribute to reciprocatej’s action. An anal-
ogous reasoning leadsi to defect when it observes a meager pot.
With one action to go,i believing thatj contributes, will choose to
contribute too to avoid punishment regardless of its observations.
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Figure 10: (a) An altruistic level 1 agent always contributes. (b) A
reciprocal agent i starts off by defecting followed by choosing to con-
tribute or defect based on its observation of plenty (indicating that j is
likely altruistic) or meager (j is non-altruistic).

5.3 Strategies in Two-Player Poker
Poker is a popular zero sum card game that has received much at-

tention among the AI research community as a testbed [2]. Poker is
played amongM ≥ 2 players in which each player receives ahand
of cards from a deck. While several flavors of Poker with vary-
ing complexity exist, we consider a simple version in which each
player has three plys during which the player may either exchange
a card (E), keep the existing hand (K), fold (F) and withdraw from
the game, or call (C), requiring all players to show their hands. To
keep matters simple, letM = 2, and each player receive a hand



consisting of a single card drawn from the same suit. Thus, during
a showdown, the player who has the numerically larger card (2 is
the lowest, ace is the highest) wins the pot. During an exchange of
cards, the discarded card is placed either in theL pile, indicating to
the other agent that it was a low numbered card less than 8, or in the
H pile, indicating that the card had a rank greater than or equal to
8. Notice that, for example, if a lower numbered card is discarded,
the probability of receiving a low card in exchange is now reduced.

We show the level 1 I-ID for the simplified two-player Poker in
Fig. 11. We considered two models (personality types) of agent
j. Theconservativetype believes that it is likely that its opponent
has a high numbered card in its hand. On the other hand, theag-
gressiveagentj believes with a high probability that its opponent
has a lower numbered card. Thus, the two types differ in their be-
liefs over their opponent’s hand. In both these level 0 models, the
opponent is assumed to perform its actions following a fixed, uni-
form distribution. With three actions to go, regardless of its hand
(unless it is an ace), the aggressive agent chooses to exchange its
card, with the intent of improving on its current hand. This is be-
cause it believes the other to have a low card, which improves its
chances of getting a high card during the exchange. The conser-
vative agent chooses to keep its card, no matter what its hand is
because its chances of getting a high card are slim as it believes
that its opponent has one.
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Figure 11: (a) Level 1 I-ID of agent i. The observation reveals infor-
mation about j’s hand of the previous time step,(b) level 0 IDs of agent
j whose decision nodes are mapped to the chance nodes,A1
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The policy of a level 1 agenti who believes that each card ex-
cept its own has an equal likelihood of being inj’s hand (neutral
personality type) andj could be either an aggressive or conserv-
ative type, is shown in Fig. 12.i’s own hand contains the card
numbered 8. The agent starts by keeping its card. On seeing that
j did not exchange a card (N ), i believes with probability 1 thatj
is conservative and hence will keep its cards.i responds by either
keeping its card or exchanging it becausej is equally likely to have
a lower or higher card. Ifi observes thatj discarded its card into
the L or H pile, i believes thatj is aggressive. On observingL,
i realizes thatj had a low card, and is likely to have a high card
after its exchange. Because the probability of receiving a low card
is high now,i chooses to keep its card. On observingH, believ-
ing that the probability of receiving a high numbered card is high,
i chooses to exchange its card. In the final step,i chooses to call
regardless of its observation history because its belief thatj has a
higher card is not sufficiently high to conclude that its better to fold
and relinquish the payoff. This is partly due to the fact that an ob-
servation of, say,L resets the agenti’s previous time step beliefs
overj’s hand to the low numbered cards only.
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Figure 12: A level 1 agenti’s three step policy in the Poker problem.
i starts by believing that j is equally likely to be aggressive or conserv-
ative and could have any card in its hand with equal probability.

6. DISCUSSION
We showed how DIDs may be extended to I-DIDs that enable

online sequential decision-making in uncertain multiagent settings.
Our graphical representation of I-DIDs improves on the previous
work significantly by being more transparent, semantically clear,
and capable of being solved using standard algorithms that target
DIDs. I-DIDs extend NIDs to allow sequential decision-making
over multiple time steps in the presence of other interacting agents.
I-DIDs may be seen as concise graphical representations for I-
POMDPs providing a way to exploit problem structure and carry
out online decision-making as the agent acts and observes given its
prior beliefs. We are currently investigating ways to solve I-DIDs
approximately with provable bounds on the solution quality.
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