Multiagent Based Construction for Human-like
Architecture

Yifeng ZENG
Machine Intelligence Group
Department of Computer
Science
Aalborg University
Fredrik Bajers Vej 7E, 9220
Aalborg, Denmark

yfzeng@cs.aau.dk

ABSTRACT

Collaborative construction is a main application in the field
of autonomous systems. An interesting subject in the area is
the construction of realistic human-like architecture. How-
ever, the task of building a human-like architecture is non-
trivial since the construction is a real time process without
human supervision. In this paper, we present a collective
building algorithm based on stigmergy. A swarm of virtual
agents construct edifications which resemble basic features
in human-like architecture. The algorithm maps sensory in-
formation to appropriate building actions.
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1. INTRODUCTION AND BACKGROUND

Collaborative construction on hazardous and remote places
may require the use of autonomous agents prior to human ar-
rival. Therefore, it is important to design an algorithm to di-
rect those agents in the building process. Swarm intelligence
algorithms have been used for physical and virtual construc-
tion [4, 5]. In this paper, we present the foundation of a
collaborative construction algorithm (named the CCA) for
human-like architecture. Construction in natural systems
rely heavily upon two important concepts, self-organization
and stigmergy. Self-organization is based on four important
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mechanisms: Positive/negative feedback, randomness and
multiple interactions. Stigmergy is an indirect mechanism
of communication between agents [3]. In swarm intelligence,
we often talk of two kinds of stigmergy: Quantitative and
qualitative. Pheromone trails are an example of quantitative
stigmergy [4]. Qualitative stigmergy involves coupling spe-
cific stimulus with specific actions, such as nest construction
by wasps.

This paper is structured as follows: Section 2 presents the
CCA algorithm. Section 3 introduces a genetic algorithm for
the evolutive construction of templates. Section 4 describes
some experimental results. Finally, Section 5 highlights the
major achievements of this study and suggests future work.

2. THE CCA ALGORITHM

The CCA algorithm controls a number of agents that
move about in a discrete 3D lattice. The agents deposit
building materials according to a set of stimulus-response
rules. The lattice is an array of cells which contain informa-
tion about the presence of building blocks and pheromone
intensity. Whenever a building block is placed, a certain
amount of pheromone is deposited along with it. Agents
move by selecting their direction stochastically following the
pheromone intensities. Assuming that each cell in the 3D
lattice diffuses pheromone to its eight neighbors, the amount
of pheromone A, that each neighbor receives from cell ¢;
can be expressed as:

Te; - d
A, = 2 — 1
re, = T 1)

where 0 < d < 1 is the diffusion coefficient which regu-
lates the percentage of pheromone moved from a cell to its
neighbors. 7., is the amount of pheromone in the cell ¢;.
Once an area has been built up to the point where rules are
no longer matched, agents must no longer continue to be re-
cruited to that area. In order to ensure this, the pheromone
is evaporated at a steady rate in a cell ¢; as shown below:

Te; < (1 - p) *Teis (2)

where 7, is the amount of pheromone in cell ¢; and 0 <
p < 1is a coefficient dictating the speed of evaporation.

The agents have a direct perception range which is lim-
ited to a cube of 3 x 3 x 3 cells surrounding their position.
Additionally, the agents are able to sense the concentra-
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tions of pheromone in a small area in each of the directions
they could travel (2 squares ahead, behind, left and right).
As building progresses, the CCA algorithm maintains the
front, side and top views of the overall density of the build-
ing blocks, which we call density maps. The density maps
form gray-scale image from the environment.

The agents do not move diagonally and have the ability
to climb the existing architecture. We utilized an adapted
form of the movement selection equation from the work by
Deneubourg et al. [1]. Let C be the set of all allowable
target cells. 7., is the desirability of the target cell ¢; € C.
The probability p., that an agent will move to cell ¢; € C'is
given by:

(r+me,)”
Pe; = . 3
Bejec(r +ne;)® 3)

The parameter a controls the linearity of the function.
The parameter r adjusts the tendency of the agent to choose
its direction randomly. The branching rules in the CCA al-
gorithm map a triggering configuration to the placement of
a block in a specific location (action). Let A be the set of
all possible actions that an agent has to choose from when
encountering a specific triggering configuration. The proba-
bility p., that an agent chooses build action a; € A is given
by:

Fi + Nsi + N1i
Pa, = n n m i (4)
Da;ea i+ 085 015

whereas nr;, Nsi, and nr; are the front, side, and top
desirability values for the cell being considered for the block
placement by action a;. The agents make their decision
on which building action to take depending on the density
values read from the density maps. In order to do so, we
calculate the desirabilities using an adaptation of the basic
model of clustering behavior from Deneubourg et al. [2] as
follows: Let M = {F, S, T} be the set of density maps; front,
side and top. The desirability value 7,,; for action a; and
map m € M is provided by:

2
(5:2%=) s if6mi>0
2
Nmi = (Iémlflyiifllm> . if S <0 (5)
0, if 6mi =0

having d,; as the density threshold and D,,; as the density
value read from the density map m for the cell being consid-
ered for block placement by action a;. Algorithm 1 provides
a high-level description of the CCA algorithm. First, the
3D lattice and the data structures are initialized, a rule set
is taken as input and a number k of agents are randomly
distributed across the lattice. For each iteration, the agent
senses the configuration of the environment and looks up this
configuration in the rule set. If the configuration matches
a branching rule, then the agent decides which action to
take by using equation 4. Then, the agent places a building
block and building pheromone at ground level. The agent
must then decide which direction to move. It examines each
possible cell it can move to and it calculates the probabil-
ity of moving there by using equation 3. A roulette wheel
selection mechanism is used for the agent to decide upon a
cell and then it moves there. At the end of an iteration, the

pheromone concentrations are diffused and evaporated.

Algorithm 1 The CCA Algorithm
/* Initialization */
Input: A set of rules, and the simulation parameters in-
cluding max_iterations and k
Initialize the 3D lattice
Construct the initial density maps
for each agent k do
set random (xg, Yk, 2k )
end for
/* Main loop */
for 0 to max_iterations do
/* Agent loop */
for each agent k do
Construct the sensory information for (x, yx, zk)
for each configuration do
if (sensory information matches rule) then
for each action a; € A do
Calculate p,,; according to equation 4
end for
Place a building block according to the rule with
the highest pq,
Deposit pheromone in the appropriate floor cell
beneath the newly placed building block
end if
end for
for all allowable target cells ¢; € C do
Calculate p., according to equation 3
end for
Select the target cell with Roulette Wheel selection
Move the agent to the chosen cell
end for
for each cell ¢; in world do
Evaporate pheromone according to equation 2
end for
for each cell ¢; in world do
Move an amount of pheromone from ¢; according to
equation 1 to each neighboring cell
end for
end for

3. RULE EVOLUTION

We used a genetic algorithm (GA) to design new con-
struction templates. The implementation of a simple GA re-
quires: A population of solutions (individuals), a method for
determining the relative fitness of each individual, a strategy
for selecting individuals for reproduction and evolutionary
variation methods. The fitness function for the CCA algo-
rithm makes use of the density maps which influence the
decisions for each agent. Since the maps are equivalent to
gray-scale images, we used an image comparison algorithm
[6] to calculate the objective measure for the similarity be-
tween two structures. In order to compare two images, the
root-mean-squared error has to be calculated. Let f and g
be two gray-scale images, then the root-mean-squared error
is given by:

RS(£,0) = | —= 3" (f(2) — g(2))2, ()
n(X)

z€X
where n(X) is the number of pixels in an image X and
f(z) is a single pixel in the image. This gives us an objec-
tive measure of the dissimilarity between the two pieces of
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architecture, which we use as the base for the fitness score
(F) of a rule set as follows:

P (RS(fF,gF> + RS(fs,95) + RS(fr.9r) |\
3 b
(7
where fr, fs and fr are the front, side and top density
maps of the generated architecture and gr, gs and gr are
the front, side and top density maps of the hand crafted
architecture.

Algorithm 2 describes the GA used for the CCA algo-
rithm. Initially, a population of random rule sets is gen-
erated. For each generation, the algorithm looks at every
individual in turn. A a rule set is executed to the CCA al-
gorithm which is allowed to run for a specified number of
iterations. Once the CCA algorithm was executed, it gen-
erates a set of density maps which are used in the fitness
evaluation of the rule set. The GA calculates the fitness
function described in equation 7 to determine the fitness of
the rule set. Finally, once every rule set has obtained its
fitness, the two highest scoring rule sets are chosen through
elitist selection. The remainder of the parent pairs are cho-
sen through roulette wheel selection. At the end, crossover
and mutation produce two offsprings for the next generation
of the parent pair.

Algorithm 2 GA for the CCA algorithm

/* Initialization * / Generate population of random rule
sets
/* Main loop */
for 0 to max_generations do
/* Simulation loop */
for each rule set R in population do
Run CCA for max_iterations with Rule Set R
Determine fitness F' from resulting density maps us-
ing equation 7
end for
/* Selection and variation stage */
Select the parent pair (Ri, R2) of rules with highest
fitness
for 0 to max-population _ 9 g
Select the parent pair (R1, R2) of rules with Roulette
Wheel selection based on fitness.
end for
for each pair (R1, R2) do
Apply crossover and mutation.
Add the new children to the population
end for
end for

3.1 Experimental Results

Figure 1 depicts the progress of the construction of a
building with one door using the CCA algorithm. The red
marks on the ground represent repulsion pheromone and
green marks represent attraction pheromone. The simula-
tion used 47 rules with 4 branching rules; 3 to build the
corners, 1 to extend the walls upwards until certain height
was reached. The rest of the rules were 1:1 mappings be-
tween triggering configurations and single actions. Agents
are shown as yellow cubes.

< <A <=

a c)

Figure 1: a) The seed structure. b) Agents started
foraging. c) Agents constructing an square struc-
ture. d) Contiguous walls started to be constructed.
e) The construction was finished. f) The agents
started foraging again (branching rules were no
longer matched).

4. CONCLUSION

Basic shapes of human-like architecture were presented as
the final result by using a swarm of building agents. The
combination of short range perception and large scale in-
direct perception in the form of density maps is a novel
swarm construction approach. We were able to match a spe-
cific local configuration to specific building actions. These
building actions depended on the quantitative influence of
global building densities. In the case of the GA, the method
of comparing two structures based on their density maps
provided us with an objective measure of the dissimilarity
between them. Future work is to implement a robust GA.
Besides that, we are currently working on an multiagent vi-
sualization environment for the CCA algorithm and it will
be announced in a posterior paper.
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