
Auto-Clustering Using Particle Swarm Optimization
and Bacterial Foraging

Jakob R. Olesen, Jorge Cordero H., and Yifeng Zeng

Department of Computer Science, Aalborg University, Selma Lagerlfs Vej 300 Aalborg 9220,
Denmark

jpcordero@exatec.itesm.mx, yfzeng@cs.aau.dk, jro@cs.aau.dk
http://www.cs.aau.dk/∼yfzeng/

Abstract. This paper presents a hybrid approach for clustering based on parti-
cle swarm optimization (PSO) and bacteria foraging algorithms (BFA). The new
method AutoCPB (Auto-Clustering based on particle bacterial foraging) makes
use of autonomous agents whose primary objective is to cluster chunks of data
by using simplistic collaboration. Inspired by the advances in clustering using
particle swarm optimization, we suggest further improvements. Moreover, we
gathered standard benchmark datasets and compared our new approach against
the standard K-means algorithm, obtaining promising results. Our hybrid mecha-
nism outperforms earlier PSO-based approaches by using simplistic communica-
tion between agents.

1 Introduction

How can we define a group of highly correlated genes while examining gene expres-
sion data? How can we find those relevant features in a dataset having numerous vari-
ables? How could we define a set of classes over a collection of observations? Basically,
all these questions have been the fundamental motivation for one of the most popular
branches of data mining: data clustering.

Clustering is one of the most important unsupervised learning problems that com-
puter scientists, statisticians and mathematicians have tried to develop and improve for
years. For more than two decades, clustering has taken special interest between the sci-
entific community and it is probably in the jargon of other professionals that have no
direct relationship with machine learning or even computer science. The reason for the
later relies beneath its clear definition and interpretation.

The aim of data clustering is to recognize patterns in data and form groups (clusters
C) of interdependent objects. According to [1], this task can be classified in four major
paradigms:

– Model based methods.
– Hierarchical methods.
– Partitioning methods.
– Density estimation methods.

Besides of the previous classification, clustering approaches can also be independently
classified in other terms. They can be either exhaustive or not exhaustive methods (ex-
haustive clustering associates every object to a given cluster, whereas in the second case

L. Cao et al. (Eds.): ADMI 2009, LNCS 5680, pp. 69–83, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

70 J.R. Olesen, J. Cordero H., and Y. Zeng

some variables could not be included in any cluster at all). Moreover, a given clustering
algorithm can produce disjoint or overlapping clusters.

In this work we focus on data clustering (exhaustive and disjoint) utilizing pairwise
Euclidean distance between points in a m dimensional vectorial space.

Specifically, the objective is to partition a dataset D = {di|i = 1, · · · ,n} with n records
into a set of k = |C| clusters according the following constraints: Every d ∈ D has to
be assigned to a cluster Ci ∈ C such that ∀Ci∈C Ci �= /0 and ∀Ci ,Cj∈C Ci ∩Cj = /0. In this
paper, we compare AutoCPB with the K-means [1] algorithm due to its popularity and
robustness.

Several machine learning techniques have been applied to solve the problem of clus-
tering. For example in [2], a neural network clusters data using entropy estimates. In [3],
a genetic algorithm is combined with Nelder-Mead simplex search in order to produce
a hybrid clustering algorithm. On the other hand, self organizing maps [4] have also
been used for partitioning a dataset without specifying the number of clusters. How-
ever, much effort has not been dedicated to study evolutionary collaborative scheme for
clustering. We propose an extension of the elemental particle swarm clustering algo-
rithm for clustering.

Multiagent systems are used for simulating complex environments. In this paper, we
propose a swarm intelligence clustering algorithm which takes advantage of simplistic
communication and evolutionary methods in agents. Particle swarm optimization [5] is
a class of evolutionary algorithms which aims to find a solution to a given optimiza-
tion problem. Bacterial foraging algorithms [6] are a new paradigm in searching based
on behavior of biological systems. In this paper we extend the advantages of social
influence in PSO with the influence of bacterial foraging behavior.

The rest of this paper is organized as follows: Section 2 introduces background mate-
rials related to PSO and BFA. Section 3 describes our novel approach in detail. Section
4 depicts experimental results and some implementation details. Finally, Section 5 con-
cludes our discussion and provides interesting remarks for future work.

2 Background

The fundamental idea of swarm intelligence algorithms [7] is that a set of individuals
can cooperate in a decentralized manner increasing their productivity. Thus, the aim is
to find mechanisms that can model complex systems, and represent them in a formal
way [8].

2.1 Particle Swarm Optimization Exposed

Particle swarm optimization is a form of stochastic optimization based on swarms of
simplistic, social agents [5]. Primary algorithms of particle swarm optimization perform
search over a m dimensional space U by using a set of agents. In this lattice, an agent
(particle) i occupy a position xi(t) = {xi, j(t)| j = 1, · · · ,m} and has a velocity vi(t) =
{vi, j(t)| j = 1, · · · ,m} in an instant t, with a 1:1 correspondence (both xi(t) and vi(t)
contain a set of components { j = 1, · · · ,m} mapped to coordinates in U).

A simple PSO algorithm [7] works as follows: In the initialization phase, every agent
takes positions around x(0) = xmin + r(xmax − xmin) and the velocities are set to 0 (xmin

Auto-Clustering Using Particle Swarm Optimization and Bacterial Foraging 71

and xmax are the minimal and maximal magnitudes in U and r is a real number between
0 and 1). Secondly, the algorithm enters in the search phase. The search phase consists
of the following steps: Best cognitive/global position updating and velocity/position
updating.

In the cognitive updating step every agent sets a value for the current (local) best
position yi(t) that it has directly observed. The agent’s local optima yi(t +1) is updated
according to equation 1:

yi(t + 1) =

{
yi(t) if f (xi(t + 1)) ≥ f (yi(t))
xi(t + 1) otherwise,

(1)

whereas f (xi(t)) is a fitness function which evaluates the goodness of a solution based
on position xi(t).

In contrast, the global updating step sets in each iteration the best possible position
Yi observed by any agent. Equation 2 depicts the selection of the best global position.

Yi(t + 1) =

{
Yi(t) if f (yi(t)) ≥ f (Yi(t)), ∀yi(t)
yi(t) if ∃yi(t)| f (yi(t)) < f (Yi(t)),

(2)

The velocity/position updating step selects new values for the position xi(t + 1) and
velocity vi(t + 1) using equations 3 and 4 respectively:

xi(t + 1) = xi(t)+ vi(t + 1), (3)

vi(t + 1) = vi(t)+ c1r1(yi(t)− xi(t))︸ ︷︷ ︸
Cognitive component

+c2r2(Yi(t)− xi(t))︸ ︷︷ ︸
Global component

, (4)

where the c1 and c2 parameters are used to guide the search between local (cognitive
component) and social (global component) observations. r1,r2 ∈ [0,1] are random pa-
rameters which introduce a stochastic weight in the search. Finally, the algorithm stops
until some convergence point is reached.

A suggested convergence test is proposed in [9]; it consists in testing whether
(f (Yi(t))− f (Yi(t −1)))/ f (Yi(t)) is smaller than a small constant ε for a given number
of iterations. It is important to note that each particle in this multiagent system shares
its knowledge (global best position) with all other particles by means of a neighborhood
topology.

Several topologies have been proposed [7] (i.e. star, ring, clusters, Von Neumann,
etc.). The difference between neighborhoods lies in how fast or slow (depending on
connectivity) knowledge propagates through the swarm.

Further improvements have been proposed for the basic PSO algorithm [7,9]: Veloc-
ity clamping, inertia weight and constriction coefficient. All PSO-based algorithms in
this study were implemented using the constriction coefficient (the most robust
mechanism).

Velocity Clamping. A weakness of basic particle swarm optimization algorithms is
that the velocity rapidly increases to unsuitable values. High velocity results in large

72 J.R. Olesen, J. Cordero H., and Y. Zeng

position updates (in this case the particles may even leave the boundaries of the search
space). This is specially true for particles occupying outlier positions. Velocity clamping
is a simple restriction that imposes a maximal velocity. Equation 5 depicts this rule.

vi, j(t + 1) =

{
v
′
i(t + 1) if v

′
i(t + 1) < Vmax

Vmax if v
′
i(t + 1)≥Vmax

(5)

Obviously, large values of Vmax facilitate exploration (small ones favor exploitation).
Vmax is frequently a fraction δ of the domain space for each dimension j in the search
space U . Equation 6 presents this adjustment.

Vmaxj = δ (xmaxj − xmin j), (6)

whereas xmaxj and xmin j represent the maximal and minimal magnitudes respectively.

Inertia Weight. The inertia weight is a constraint which aims to control the trade off
between exploration and exploitation in a more direct fashion. Equation 7 introduces
the inertia weight w that affects velocity updating.

vi(t + 1) = wvi(t)+ c1r1(yi(t)− xi(t))+ c2r2(Yi(t)− xi(t)) (7)

w ≥ 1 produces velocity increments over time (exploration), w < 1 decreases velocities
over time (favoring exploitation). According to [7], the values w = 0.7298, c1 = c2 =
1.49618 have proved good results empirically, although in many cases they are problem
dependent.

Constriction Coefficient. A similar method to inertia weight was proposed in [10], it is
denominated the constriction coefficient. Equation 8 defines the new velocity updating
mechanism.

vi(t + 1) = χ(vi(t)+ φ1(yi(t)− xi(t))+ φ2(Yi(t)− xi(t))), (8)

where φ = φ1 + φ2, φ1 = c1r1, φ2 = c2r2 and

χ =
2k

|2−φ −
√

φ2 −4φ | (9)

It is important to notice that φ ≥ 4 and k ∈ [0,1] are necessary constraints to set χ in the
range [0,1].

2.2 Bacterial Foraging Algorithms

Bacterial foraging algorithms are a new class of stochastic global search techniques [6].
Such algorithms emulate the foraging behavior of bacteria while situated in some nutri-
ent substance. During foraging, a bacterium can exhibit two different actions: Tumbling
or swimming.

Auto-Clustering Using Particle Swarm Optimization and Bacterial Foraging 73

The tumble action modifies the orientation of the bacterium. During swimming
(chemotactic step) the bacterium will move in its current direction. After tumbling, the
bacterium checks if it can find nutrients in its current direction, and if it can, then it will
swim for a finite number of steps in that direction. After the bacterium has collected
a given amount of nutrient, it will divide in two. The environment can also act in the
bacteria population by eliminating or dispersing them.

A bacterial foraging algorithm can be defined as follows. Given a m dimensional
search space U , each bacterium i has a position xi(t) = (xi, j(t)| j = 1, · · · ,m) with m
components at time t. It also has a chemotactic step size C(i) > 0 which influences the
bacterium’s step length. Initially the Bacteria is situated in several points in U . Then,
each bacterium generates a random tumbling vector bi consisting of m components.
Following, the agent will enter into the swimming phase. Therefore, it will update its
position one step at a time according to equation 10.

xi(t + 1) = xi(t)+C(i)∗ bi (10)

swimming will continue for a number Na of iterations iff f (xi(t + 1)) < f (xi(t)) holds.
Once that all agents finished tumbling and swimming, they reproduce. New generations
are created only with the half of the healthiest agents. Healthy agents can be interpreted
as the ones which performed the smallest number of chemotactic steps. Finally, an
elimination/dispersal step deletes and reallocates a percentage of agents at random. The
algorithm will run for a fixed number of iterations.

A simple improvement for tumbling/swimming is to make bacteria attract each other
in some area; and then repeal each other as they consume nearby nutrients. The idea is
to calculate the cell to cell fitness, and add it to the fitness position for each bacterium.

3 PSO/BFA Multiagent Clustering

Previously, we presented the theoretical foundations necessary in which the novel Au-
toCPB relies on. In this section we introduce in detail our multiagent system for
clustering.

One of the main problems related with PSO algorithms is that they have a tendency
to fall into suboptimal solutions, because of the lack of diversity in the swarm. One of
our ambitions is to find a mechanism to improve the diversity.

An improvement of the original PSO algorithm [11] is to use either a memetic
approach, or hybridizing it with another swarm intelligence method [12]. Given that
AutoCPB is a hybrid heuristic algorithm, we opted to design preliminary prototype-
algorithms. We start introducing a simplistic swarm-based clustering method and then
we gradually present more elaborated developments.

3.1 PSO Clustering

We implemented a simple clustering algorithm denominated ClusterP, which was
proposed in [11]. Such method combines PSO and K-means for grouping data.

The dataset D = {d1,m,d2,m, · · · ,dn,m} defines the number of components m and in-
stances n in the search space U . Thus, each datum di, j ∈ D can be seen as a point in

74 J.R. Olesen, J. Cordero H., and Y. Zeng

U . Since the aim is to find a set of k desired clusters C containing every element in D;
it is easy to visualize that the main problem is to find the set of O = {o1,o2, · · · ,ok}
centroids that minimize the fitness function (Euclidean distance) with respect to each
point in D. In clusterP, every agent pl ∈ P represent a solution with the set of position
Ol = {ol, j| j = 1, · · · ,k}. Algorithm 3.1 shows the ClusterP technique.

Algorithm 3.1. The ClusterP Algorithm.

Input: Data D = {d1,d2, · · · ,dn}, k.
Output: Clusters C = {C1,C2, · · · ,Ck}.

1: Initialize swarm P (distribute O).
2: REPEAT:
3: FOR i = 1 to n:
4: FOR j = 1 to k:
5: Calculate distances dist(di,o j).
6: END FOR
7: Ch ⇐ di iff argminoh∈O(dist(di,oh)).
8: END FOR
9: FOR l = 1 to |P|:
10: Update cognitive positions for pl using equation 1.
11: Update global position for P using equation 2.
12: END FOR
13: FOR l = 1 to |P|:
14: Update velocities for pl using equation 4.
15: Update positions for pl using equation 3.
16: END FOR
17: UNTIL stopping condition holds.

ClusterP works as follows: It receives the data D and an integer k. First, it collocates
every agent p in the environment, each containing a set of centroids O (line 1). Then,
it assigns every record di to a cluster Ch iff the distance with its centroid dist(di,oh) is
minimal (lines 3-8). Following, it obtains the cognitive and global position (lines 9-12),
and updates every of its centroids velocities and positions (lines 13-16) as explained in
Section 2.1. The algorithm stops after a fixed number of iterations or if no significant
progress is made according to the fitness function.

3.2 Automatic PSO Clustering

ClusterP was extended in [13] in order to find the optimal number of clusters automat-
ically. The new method is called AutoCP. It starts with a number k′ of clusters (k′ ≤ n),
and it deletes the inconsistent clusters.

We describe the form to detect inconsistent clusters as follows: First, for each cluster

Cj we calculate its weight Wj = ∑
|Cj |
q=1 dist(o j,dq) as the sum of the distances from the

center o j to its points q j where q j �= o j. Immediately, all weights W from the clusters

Auto-Clustering Using Particle Swarm Optimization and Bacterial Foraging 75

are sorted. Then, we normalize all weights Wj with respect to the cluster with lowest
value Ws, such that the set of local thresholds become th = {th j| j = 1, · · · ,k′

, th j =
Ws/Wj,Ws = argminw∈W (w)}. Finally, a cluster Cj is declared as inconsistent iff its
threshold t j is lower than the global threshold T , whereas T is in the range of [0,1].
Algorithm 3.2 introduces AutoCP.

Algorithm 3.2. The AutoCP Algorithm.

Input: Data D = {d1,d2, · · · ,dn}.
Output: Clusters C = {C1,C2, · · · ,Ck′ }.

1: Initialize swarm P (distribute O).
2: REPEAT:
3: Assign D to clusters as in algorithm 3.1.
4: Update cognitive/global positions as in algorithm 3.1.
5: Update velocities/positions as in algorithm 3.1.
6: FOR j = 1 to k

′
:

7: Calculate Wj for each cluster Cj .
8: END FOR
9: Obtain Ws = argminWj∈W (Wj).
10: FOR j = 1 to k

′
:

11: th j = Ws/Wj .
12: IF (th j < T)
13: Remove Cj and k

′
= k

′ −1.
14: END IF
15: END FOR
16: UNTIL stopping condition holds.

As previously mentioned, AutoCP simply adds a mechanism to ClusterP for auto-
matic detection of clusters with no further modification (lines 6-15). At the end of each
iteration, we select and discard inconsistent clusters.

3.3 AutoCB Clustering

In this section we present the method for automatic clustering using bacterial foraging
algorithm AutoCB. It is an adapted version of the bacterial foraging algorithm for au-
tomatic clustering. Basically, it uses the K-means principle to add data to the closest
centroids combined with a bacterial foraging search.

In algorithm 3.3, every agent observates a clustering solution represented by the po-
sitions of bacteria as centroids (notice that times are references to current xi(t) or pos-
terior xi(t + 1) positions in space. xi in fact represent the tentative position for centroid
oi). In order to keep this algorithm as simple as possible, we decided not to add any
complex initialization method. We simply exchanged the swimming mechanism to be
executed firstly, followed by tumbling. In this way we use the fitness function to set up

76 J.R. Olesen, J. Cordero H., and Y. Zeng

Algorithm 3.3. The AutoCB Algorithm.

Input: Data D = {d1,d2, · · · ,dn}.
Output: Clusters C = {C1,C2, · · · ,Ck′ }.

1: Initialize B (distribute O randomly).
2: FOR Number of Elimination/Dispersal Steps
3: FOR Number of Reproduction Steps
4: FOR Number of Chemotactic Steps
5: FOR Each Bacterium i ∈ B
6: WHILE m < MaxSwimLength
7: Delete inc. clusters as in algorithm 3.2.
8: Assign D to C as in algorithm 3.1.
9: IF f (xi(t +1),oi) < f (xi(t),oi)
10: oi = xi(t +1).
11: m = m+1.
12: END IF
13: ELSE
14: m = MaxSwimLength.
15: END ELSE
16: END WHILE
17: tumble(i), generate new xi(t +1).
18: END FOR
19: END FOR
20: reproduce(B).
21: END FOR
22: eliminate(B),disperse(B).
23: END FOR

bacteria in good spots since the beginning. Initially, the algorithm distributes the posi-
tions for all centroids of every agent in B at random (line 1). For every bacterium i, the
chemotactic part of the algorithm starts (lines 4-19): The agents will update their cen-
troids positions for a maximal number of swims MaxSwimLength (lines 6-16). Firstly,
the algorithm deletes inconsistent clusters as mentioned in lines 6-15 of algorithm 3.2
(line 7). Then, we assign each datapoint d ∈ D to a cluster Cj ∈C according to the lines
3-8 of algorithm 3.1 (line 8).

Every agent observates the cells xi(t + 1) in front of its centroids oi. Then, they
swim and update their centroids positions from oi to xi(t +1) iff the Euclidean distance
f (xi(t + 1),oi) to the new point is smaller than the current one f (xi(t),oi) (lines 9-12).
Swimming might immediately stop according to the control variable m in line 14; if the
fitness of the tentative cell f (xi(t + 1),oi) is greater or equal to the one of the current
position f (xi(t),oi).

Once agent i has finished swimming, it will tumble (line 17). Thus, i will choose a
tentative cell in a new direction xi(t + 1) for each of its centroids oi = xi(t). xi(t + 1)

Auto-Clustering Using Particle Swarm Optimization and Bacterial Foraging 77

is selected at random. Finally, the previous chemotactic process is encapsulated in a
reproductive phase (line 3), and in a combined elimination/dispersion phase(line 2).
The reproduction process deletes half of the agents having the smallest number of
chemotactic steps. The elimination method destroys again a percentage α of agents
at random. Dispersion reallocates a small percentage β of the remaining agents in U at
random.

3.4 The AutoCPB Algorithm

The previous AutoCB algorithm is strictly based on the theory of bacterial foraging
algorithms. However, we believe that we can improve its performance by sharpening
the swimming and tumbling phase using a PSO-based algorithm.

In this section we describe in detail the hybrid algorithm for clustering based on
PSO and BFA denominated AutoCPB. The algorithm follows the same structure of the
AutoCB algorithm. Nevertheless, each bacterium agent i has assigned a position and a
velocity to its centroids as previously seen in algorithm 3.1. The tumble is now guided
by the swarm local and social beliefs.

A tentative cell xi(t + 1) is deterministically chosen according to the best neighbor-
ing cell yi(t +1) and the global best position Yi(t +1). Swimming is still performed for
a given number of iterations but now the agent’s steps vary in dimension according to
its velocity. AutoCPB contains a bacterial foraging skeleton and a particle swarm op-
timizator. In this algorithm, we simply replace tumbling in line 17 from algorithm 3.3
by a more elaborated PSO-based foraging mechanism (lines 18-24). Logically, swim-
ming in lines 9-12 of algorithm 3.3 is also modified so we take advantage of the guided
tumbling.

Specifically, the AutoCPB clustering algorithm works as follows: It collocates ev-
ery centroid oi for agent i in U at random (xi(t) = oi). Then, the modified tumbling/
swimming version is executed for all agents for a number of swims MaxSwimLength
(lines 4-25): Inconsistent clusters are removed (line 7) as seen in algorithm 3.2. All
datapoints d ∈ D are assigned to the remaining clusters C = {Cj| j = 1, · · · ,k′ } (line 8).
Then, all centroid positions oi = xi(t) for agent i will be updated with the new position
xi(t + 1) iff f (xi(t + 1)) < f (xi(t)) holds (lines 9-10). Otherwise, swimming stops in
line 16. In this part of the algorithm, we swim by updating the value of xi(t + 1) ac-
cording equation 3 (line 11). We also record the best cognitive/local position yi(t + 1)
according to equation 1 for further tumbling computation (line 12). The final step of
swimming is the update of the best global/social position Yi(t + 1) (line 18).

In lines 21-24, PSO-based tumbling is executed. At this point, every centroid (with
a velocity vi(t) and a position xi(t)) starts observing its neighboring cells. It finally
updates its own velocity to vi(t +1) and tentative position xi(t +1) by using equations 3
and 4 respectively. Notice that agents do not modify its current position during tumbling
but only during the swimming phase (lines 9-14). Finally, once that we have clustered
U into C, AutoCPB will reproduce (line 26), eliminate and disperse (line 28) agents in
the same manner AutoCB does.

In the next part of this paper we comprehensively tested every approach obtaining
promising results.

78 J.R. Olesen, J. Cordero H., and Y. Zeng

Algorithm 3.4. The AutoCPB Algorithm.

Input: Data D = {d1,d2, · · · ,dn}.
Output: Clusters C = {C1,C2, · · · ,Ck′ }.

1: Initialize B (distribute O randomly).
2: FOR Number of Elimination/Dispersal Steps
3: FOR Number of Reproduction Steps
4: FOR Number of Chemotactic Steps
5: FOR Each agent i ∈ B
6: WHILE m < MaxSwimLength
7: Delete inconsistent clusters as in algorithm 3.2.
8: Assign D to C as in algorithm 3.1.
9: IF f (xi(t +1)) < f (xi(t))
10: oi = xi(t +1).
11: Update xi(t +1) using equation 3.
12: Update yi(t +1) using equation 1.
13: m = m+1.
14: END IF
15: ELSE
16: m = MaxSwimLength.
17: END ELSE
18: Update Yi(t +1) using equation 2.
19: END WHILE
20: END FOR
21: FOR Each agent i ∈ B
22: Update vi(t +1) using equation 4.
23: Update xi(t +1) using equation 3.
24: END FOR
25: END FOR
26: reproduce(B).
27: END FOR
28: eliminate(B),disperse(B).
29: END FOR

4 Experimental Results

We proceed to analyze the performance of the aforementioned algorithms by testing
them over well known benchmark datasets. Before we introduce the results, we describe
the datasets, parameter settings and performed tests used for experimentation.

The algorithms were tested on nine datasets (D). Two domains were generated at
random: Artificial1 (A1) and Artificial2 (A2). The rest of the datasets were taken from
the UCI repository [14]: Iris (Ir), Wine (Wi), Pima (Pi), Haberman (Ha), BreastCancer
(BC), Glass (Gl), and Yeast (Ye). Table 1 introduces the characteristics for each dataset
in terms of its number of classes and dimensions.

Auto-Clustering Using Particle Swarm Optimization and Bacterial Foraging 79

Table 1. The datasets used for experimentation

D Classes Dimensions
A1 2 2
A2 3 3
Ir 3 4
Wi 3 13
Pi 2 8
Ha 2 3
BC 2 30
Gl 6 9
Ye 10 8

4.1 Environmental Settings

Each experiment is based on fifty consecutive runs of the same algorithm. For the K-
means algorithm we set a maximal of 500 iterations (it terminates if no improvement is
made). In the other algorithms, the assignation of points to clusters consists of a single
iteration.

For ClusterP and AutoCP the stopping condition is the one described in Section 2.1.
For AutoCB and AutoCPB we used 10 elimination/dispersal iterations, 20 reproduction
steps and 20 chemotactic steps. In every method we used 30 agents. Every dataset has
a predefined class. Therefore, we set k in ClusterP as the number of classes (in fact, we
found that K-means obtains the best results in this fashion). For the multiagent-based
automatic clustering algorithms we used 30 agents and an upper limit k

′
of 10 initial

clusters.

4.2 Cluster Validation

According to [15] cluster validation can be divided into external, internal and relative
validation. When using an external measure, we compare the solution with some opti-
mal solution known a priori. Internal validation deals with judging the solution based on
the intra-distance of a cluster. Relative measures compare the experimental clustering
solution against another set of clusters previously found.

We used two validation measures, namely the inter cluster distance measure (ID)
and the quantization error function (QEF). Both metrics have previously utilized to
test cluster reliability [11]. The inter cluster distance calculates the average distances
between the centroids and all their points in the cluster. It is calculated according to
equation 11.

IDC = ∑
∀oi,o j∈CEN,i�= j

dist(oi,o j)/|C|, (11)

where oi and o j are centroids, CEN is the set of all centroids, |C| is the total number
of clusters C and dist() is the Euclidean distance. In essence, we calculate the average
Euclidean distance between all pairs of centroids. The QEF is a global distance measure

80 J.R. Olesen, J. Cordero H., and Y. Zeng

that evaluates the average distance from all datapoints to centroids in every cluster.
Equation 12 present the QEF metric.

QEFC =
(

∑
j=1,k

(∑
∀di∈Cj

dist(di,o j)/|Cj|)
)
/k, (12)

whereas k is the number of clusters, di is a datapoint contained in cluster Cj. All other
variables are defined as in equation 11. The previous measures can be used to express
the quality of a solution. Thus, we proceed to establish a discussion of the performance
of the algorithms.

4.3 Benchmark Testing

Table 2 includes the average results for the inter cluster distance, quantization error
function, number of clusters and the elapsed times (in milliseconds). Numbers in bold
represent the best result for each dataset.

Even though, it can be reasoned as subjective to evaluate different clustering meth-
ods, we are confident that our test reflect some truth regarding the quality of the clus-
tering. In fact, we believe that the ID and QEF tests express an acceptable comparison
between clusterings for this investigation. Thus, every algorithm makes use of the K-
means oriented mechanism for assigning points to clusters.

Specifically, every clustering method uses the same objective function. We add a
datapoint to a cluster whose cluster centroid is the closest. The only difference between
algorithms is their search mechanism, not contemplating any other characteristic for
grouping. For all cases, we appreciate that K-means is the worst performing algorithm
in terms of quality and the best in running time. Thus, every swarm based algorithm
adds a refined search to K-means. However, in many cases we are more concerned in
the quality of a solution. We can also improve the implementation of the algorithms in
order to decrease the elapsed times.

We can conclude that with respect to the QEF metric; AutoCP and AutoCPB are the
best algorithms, finding minimal values. AutoCP having a minimal QEF in A1, A2, Ir,
Gl and Ye. AutoCPB is the most competitive in Ha, Pi, Wi, BC and Ye. However, both
methods produce similar results. In every dataset any of them can be the first and the
second most competitive method. This behavior is logical, and it is a common example
of how the random element introduces some noise to a search technique. AutoCPB
performs random steps (reproduction, elimination and dispersion).

For the ID metric we observe an almost identical trend. AutoCB outperforms all other
methods in some cases (A1, A2). Indeed, AutoCB is the most randomized algorithm,
it performs a nearest neighbor search with poor guidance but with a dynamical evolu-
tionary mechanism. In every case, we can see that ClusterP is suboptimal and falls into
local optima. The later is one of the reasons why the evolutionary method in the form
of automatic clustering and bacterial foraging show a promising enhancement.

A common discussion in data mining is related with the selection of the appropriate
number of clusters k for a given domain. A common assumption is that we should apply
a given clustering technique depending on the particular problem/domain to analyze.
However, with the advents in information technology and the analytical capabilities of

Auto-Clustering Using Particle Swarm Optimization and Bacterial Foraging 81

Table 2. Full clustering results. Swarm-based enhancements improve the performance of
K-means

D Method QEF ID |C| E. time
A1 K-means 11.64 +/-0.10 28.4 +/-0 2 14.06 +/-5.75
A1 ClusterP 11.99 +/-0.42 29.95 +/-2.03 2 1394.68 +/-18.7
A1 AutoCP 4.91 +/-0.57 4.13 +/-2.46 5.6 +1.01 2105.08 +/-427.96
A1 AutoCB 7.75 +/-1.18 3.36 +/-2.31 4.48 +/-1.27 8439.36 +/-423.15
A1 AutoCPB 6.2 +/-0.7 3.73 +/-2.51 4.8 +/-0.76 835.3 +/-74.6

A2 K-means 44.95 +/-33.56 28.89 +/-11.26 3 95.3 +/-7.36
A2 ClusterP 29.92 +/-2.27 35.62 +/-7.2 3 6914.04 +/-59.66
A2 AutoCP 24.36 +/-1.13 8.09 +/-3.46 4.9 +/-1.06 9446.92 +/-1376.23
A2 AutoCB 30.40 +/-3.07 7.14 +/-3.87 4.36 +/-1.03 11914.98 +/-269.82
A2 AutoCPB 24.45 +/-2.11 7.73 +/-3.94 4.22 +/-0.93 3658.74 +/-298.91

Ha K-means 14.59 +/-6.69 8.85 +/-0.13 2 135.94 +/-7.25
Ha ClusterP 10.23 +/-0.32 6.83 +/-1.96 2 13655.02 +/-171.18
Ha AutoCP 9.18 +/-0.65 1.39 +/-0.84 3.26 +/-0.83 18916.88 +/-3962.37
Ha AutoCB 12.41 +/-1.73 1.57 +/-0.82 2.98 +/-0.98 12055.92 +/-272.07
Ha AutoCPB 8.87 +/-0.76 1.2 +/-0.7 3.14 +/-0.64 6930 +/-366.89

Pi K-means 132.86 +/-46.72 111.77 +0 2 742.2 +/-15.54
Pi ClusterP 73.85 +/-3.363 35.25 +/-11.43 2 72757.18 +/-1564.94
Pi AutoCP 72.35 +/-3.29 11.43 +/-12.17 3.02 +/-1.12 107948.8 +/-20853.2
Pi AutoCB 96.33 +/-12.68 12.06 +/-11.92 3.16 +/-0.89 33195.9 +/-1179.08
Pi AutoCPB 65.43 +/-6.73 6.65 +/-5.6 2.96 +/-0.53 37445.02 +/-4117.43

Ir K-means 1.58 +/-0.58 1.13 +/-0.49 3 117.5 +/-7.89
Ir ClusterP 0.98 +/-0.14 1.19 +/-0.33 3 8390.32 +/-91.91
Ir AutoCP 0.78 +/-0.06 0.26 +/-0.15 3.8 +/-0.81 11591.68 +/-1577.85
Ir AutoCB 1.13 +/-0.17 0.25 +/-0.16 3.46 +/-1.16 14862.18 +/-297.83
Ir AutoCPB 0.84 +/-0.09 0.24 +/-0.13 3.62 +/-0.81 4303.76 +/-324.01

Wi K-means 216.67 +/-52.69 162.28 +/-63.28 3 403.76 +/-13.2
Wi ClusterP 131.5 +/-8.60 68.74 +/-43.93 3 26301.88 +/-546.39
Wi AutoCP 99.49 +/-7.02 24.79 +/-18.72 5.48 +/-1.05 37724.1 +/-3461.18
Wi AutoCB 141.87 +/-17.68 32.1 +/-22.11 4.54 +/-1.11 42410.36 +/-1111.42
Wi AutoCPB 97.87 +/-10.51 23.29 +/-21.49 4.88 +/-1.1 13421.86 +/-799.42

BC K-means 563.32 +/-142.04 665.67 +/-0 2 1949.08 +/-215.4
BC ClusterP 314.87 +/-11.53 141.46 +/-51.5 2 174520.6 +/-3574.57
BC AutoCP 196.4 +/-14.18 44.3 +/-41.07 5.3 +/-1.04 259376.08 +/-34956.1
BC AutoCB 292.89 +/-53.18 59.86 +/-50.86 4.32 +/-1.28 108388.1 +/-2871.43
BC AutoCPB 195.01 +/-22.4 34.44 +/-35.2 4.62 +/-0.83 92403.2 +/-8281.34

Gl K-means 9.23 +/-7.21 0.63 +/-0.29 6 698.74 +/-41.74
Gl ClusterP 3.31 +/-0.42 0.39 +/-0.22 6 25520.92 +/-280.95
Gl AutoCP 1.23 +/-0.25 0.29 +/-0.24 2.28 +/-0.5 45504.3 +/-24056.07
Gl AutoCB 2.31 +/-0.4 0.24 +/-0.16 2.94 +/-1.27 29877.22 +/-651.5
Gl AutoCPB 1.62 +/-0.31 0.21 +/-0.2 2.2 +/-0.45 11431.86 +/-1466.4

Ye K-means 1.46 +/-1.09 0.04 +/-0.02 10 6815.02 +/-62.67
Ye ClusterP 0.8 +/-0.12 0.03 +/-0.01 10 175838.7 +/-1397.52
Ye AutoCP 0.26 +/-0.02 0.03 +/-0.01 2.12 +/-0.33 211558.7 +/-46305.2
Ye AutoCB 0.34 +/-0.04 0.04 +/-0.02 2.42 +/-0.61 35482.18 +/-558.49
Ye AutoCPB 0.26 +/-0.02 0.03 +/-0.02 2.22 +/-0.42 69598.58 +/-3044,74

82 J.R. Olesen, J. Cordero H., and Y. Zeng

the different branches of science we find enormous amounts of data from phenomena
we can not truly understand (i.e. complex gene expression data, astronomical data). The
later, is a true motivation for the development of automatic clustering algorithms.

From our results we can argue that in most domains, as the number of clusters in-
crease, the number of data points diminish. However, this can not be true in the cases
where the optimal clustering comprises a very segregated and marginal domain.

We can observe in Table 1 that a higher number of clusters (A1, A2, Ha, Pi, Ir, Wi and
BC) tends to give a lower result in both ID and QEF. This might be because our tests do
not express what we are really looking for, or perhaps, that we have discovered a new
feature in the dataset. Thus, we can modify our assumptions about the optimal number
of clusters in a dataset. Actually, since we use the same cluster assignment method in
all techniques, we can conclude that we have also found the optimal number of clusters
k given our objective function.

5 Final Discussion

In this work we described two swarm intelligence techniques, namely particle swarm
optimization and bacterial foraging. We described in detail several algorithms based on
these paradigms. The new algorithms improve the basic ClusterP method which in fact
is based on K-means.

The essence of our work is that we managed to combine two major paradigms PSO
and BFA in order to create a robust clustering algorithm. The resulting hybrid method
AutoCPB showed improvements during experimentation. The original AutoCP algo-
rithm was unable to reach the best results on its own. Actually, AutoCB is also sub-
optimal in non-random datasets because of its swarm model, which does not perform
global search. Therefore, we sustained with empirical results that by properly combin-
ing the two techniques result in a true enhancement for clustering. Thus, we take the
best feature of each algorithm (the smart foraging in PSO and the evolutionary rules
from BFA).

The testing was possible due to our implemented framework, which enabled us to
test all algorithm in well known datasets. In general, we believe that the application of
hybrid PSO/BFA mechanisms is promising. We expect to improve AutoCPB to a major
extent.

Future work consists in identifying a rule to minimize local optima in AutoCPB. This
algorithm can be applied to other domains such as attribute clustering. This stochas-
tic/evolutionary method can also show features not only in data but between variables
in datasets. A more specific analysis of parameter setting is also considered as a tenta-
tive improvement.

References

1. Han, F., Kamber, K.: Data mining: Concepts and techniques, pp. 334–395. Academic Press,
San Francisco (2001)

2. Tazutov, A., Kurenkov, N.: Neural network data clustering on the basis of scale invariant
entropy. In: International Joint Conference on Neural Networks, pp. 4912–4918 (2006)

Auto-Clustering Using Particle Swarm Optimization and Bacterial Foraging 83

3. Chandra, S., Murthy, J.: An Efficient Hybrid Algorithm for Data Clustering Using Improved
Genetic Algorithm and Nelder Mead Simplex Search. In: Proc. of the Int. Conf. on Comp.
Int. and Mult. Appl., vol. 1, pp. 498–510 (2007)

4. Goncalves, M., Andrade, M.: Data Clustering using Self-Organizing Maps segmented by
Mathematic Morphology and Simplified Cluster Validity Indexes: an application in remotely
sensed images. In: International Joint Conference on Neural Networks, pp. 4421–4428
(2006)

5. Kennedy, J., Ebenhart, R.: Particle Swarm Optimization. In: Proceedings of the 1995 IEEE
Int. Conf. on Neural Networks, pp. 1942–1948 (1995)

6. Passino, K.: Biomimicry of bacterial foraging for distributed optimization and control. Con-
trol Systems Magazine, 52–67 (2002)

7. Engelbrecht, A.: Fundamentals of Computational Swarm Intelligence. Wiley, Chichester
(2005)

8. Heylighen, F., Joslyn, C.: Cybernetics and second-order cybernetics. Encyclopedia of Physi-
cal Science and Technology. Academic Press, New York (2001)

9. Bergh, F.: An analysis of particle swarm optimizers. PhD Thesis, University of Pretoria,
South Africa (2002)

10. Clerc, M., Kennedy, J.: The particle swarm: Explosion, stability and convergence. IEEE
Transactions on Evolutionary Computation 6, 58–73 (2002)

11. van der Merwe, D., Engelbrecht, A.: Data Clustering using particle swarm optimization. In:
The 2003 congress on Evolutionary Computation, vol. 1, pp. 215–220 (2003)

12. Biswas, A., Dasgupta, S.: Synergy of PSO and bacterial foraging optimization: A compre-
hensive study on. Advances in Soft Computing Series, pp. 255–263. Springer, Heidelberg
(2007)

13. Abraham, A., Roy, S.: Swarm intelligence algorithms for data clustering. Chp. 12, 279–313
(2008)

14. Asuncion, A., Newman, D.: UCI Machine Learning Repository. University of California,
Irvine, School of Information and Computer Sciences (2007),
http://www.ics.uci.edu/˜mlearn/MLRepository.html

15. Theodoris, S., Koutroumbas, K.: Pattern Recognition. Academic Press, London (2006)

http://www.ics.uci.edu/~mlearn/MLRepository.html

	Auto-Clustering Using Particle Swarm Optimization and Bacterial Foraging
	Introduction
	Background
	Particle Swarm Optimization Exposed
	Bacterial Foraging Algorithms

	PSO/BFA Multiagent Clustering
	PSO Clustering
	Automatic PSO Clustering
	AutoCB Clustering
	The AutoCPB Algorithm

	Experimental Results
	Environmental Settings
	Cluster Validation
	Benchmark Testing

	Final Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

