
Time-based Reward Shaping in Real-Time
Strategy Games

Martin Midtgaard, Lars Vinther, Jeppe R. Christiansen,
Allan M. Christensen, and Yifeng Zeng

Aalborg University, Denmark
{initram,larskv,jepperc,allanmc,yfzeng}@cs.aau.dk

Abstract. Real-Time Strategy (RTS) is a challenging domain for AI,
since it involves not only a large state space, but also dynamic actions
that agents execute concurrently. This problem cannot be optimally
solved through general Q-learning techniques, so we propose a solution
using a Semi Markov Decision Process (SMDP). We present a time-based
reward shaping technique, TRS, to speed up the learning process in re-
inforcement learning. Especially, we show that our technique preserves
the solution optimality for some SMDP problems. We evaluate the per-
formance of our method in the Spring game Balanced Annihilation, and
provide some benchmarks showing the performance of our approach.

1 Introduction

Reinforcement learning (RL) is an interesting concept in game AI development
since it allows an agent to learn by trial-and-error by receiving feedback from
the environment [2]. Learning can be done without a complete model of the en-
vironment which means that RL can be easily applied to even complex domains.
RL has been applied to many types of problems, including many different board
games [3], a simple soccer game [4] and robot navigation [5]. In the context of
RTS games, RL has been applied to a small resource gathering task [7], and a
commercial real-time strategy game (RTS) called MadRTS [6].

The benefit of applying RL is to create adaptive agents (Non-player charac-
ters in computer games) that may change their behaviour according to the way
opponents play throughout games. Generally, RL requires that the problem shall
be formulated as a Markov decision process. This demands that environmental
states, as well as actions, must be well defined in the studied domain. However, a
complex and dynamic RTS game always involves a very large state-action space.
Moreover, agents’ actions may last several time steps and exhibit a dynamic
influence on the states. Both of these problems prevent a fast convergence to an
optimal policy in RTS games. Recently, Kresten et al. [10] showed that the hi-
erarchical decomposition of game states may mitigate the dimensional problem.
This paper will investigate solutions to the second problem and speed up the
convergence using relevant techniques.

We resort to Semi Markov Decision Processes (SMDPs) that extend MDPs
for a more general problem formulation. SMDPs allow one single action to span



multiple time steps and change environmental states during the action period.
This property matches well with solutions to the dynamic actions within RTS
games of our interest. However, the problem of slow convergence occurs when
an optimal policy needs to be compiled in a short period of gameplay.

To speed up the learning process, we present a time-based reward shaping
technique, TRS, which makes it possible to apply the standard Q-learning to
some SMDPs and to solve SMDPs in a fast way. We let the agent get a reward
only after it completes an action, and the reward depends on how much time it
takes to complete the action. This means that after many trials, the agent will
converge towards the fastest way of completing the scenario, since all other so-
lutions than the fastest possible one will result in a larger negative reward. Our
proposed approach puts some constraints on the properties of the SMDP prob-
lems on which time-based reward shaping can be applied without compromising
the solution optimality.

We compare TRS to the Q-learning algorithm SMDPQ presented by Sutton
et al [1]. SMDPQ extends Q-learning to support SMDPs by changing the update
rule. We theoretically analyse the equivalence of optimal policies computed by
both SMDPQ and our proposed method, TRS, given the constraints. We evaluate
performance of TRS on a scenario in the RTS game of Balanced Annihilation1

and show a significant improvement on the convergence of SMDPQ solutions.
We also apply TRS to other RL methods such as Q-learning with eligibility
traces, Q(λ), and show that this also can be successfully extended to support
some SMDP problems.

The rest of this paper is organized as follows. Section 2 describes related work
on using RL in computer games. Section 3 discusses some background knowl-
edge. Subsequently, Section 4 presents our proposed method, TRS, and analyse
the policy equivalence. Section 5 provides experimental results to evaluate the
method. Finally, Section 6 concludes our discussion and provides interesting re-
marks for future work.

2 Related Work

RL methods have been well studied in the machine learning area where much of
the work focuses on the theoretical aspect of either the performance improvement
or the extension from a single-agent case to a multi-agent case. Good survey
papers can be found in [11]. Although RL techniques have been demonstrated
successfully in a classical board game [12], computer games are just recently
starting to follow this path [13].

RTS games are very complex games, often with very large state- and action-
spaces and thus when applying RL to these problems we need ways to speed up
learning in order to make the agent converge to an optimal solution in reason-
able time. For example, some methods like backtracking, eligibility traces [2], or
reward shaping [9] have been proposed for this purpose. Laud demonstrates[9]

1 http://springrts.com/wiki/Balanced_Annihilation



that reward shaping allows much faster convergence in RL because the reward
horizon is greatly decreased when using reward shaping, i.e. the time that passes
before the agent gets some useful feedback from the environment is decreased.
Meanwhile, Ng et al. [8] prove if the reward shaping function takes the form of
the difference of potentials between two states the policy optimality is preserved.

Recently, Marthi et al. made a hierarchical concurrent approach to a small
gathering task in an RTS game [7]. This is a very basic scenario only constituting
a small part of an entire RTS game, but it is a clear proof that a hierarchical
division of an RTS game may very well be possible. This means that in some
cases we are able to identify isolated subtasks which we want to solve as fast as
possible, so we will be able to apply time-based reward shaping to achieve this
goal.

The Q-learning variant SMDPQ[1] is used for proving policy equivalence with
TRS on the supported SMDP problems.

3 Background

In this section we will describe some of the prerequisites needed for discussing
reward shaping in problems with non-discrete time. We will cover Semi Markov
Decision Processes (SMDPs) and Q-learning (for MDPs). This forms the basis
for our proposal on time-based reward shaping.

3.1 SMDP

An SMDP is a simple generalisation over an MDP where an action does not
necessarily take a single time step, but can span several time steps. The state
of the environment can change multiple times from when an action has been
initiated until the next decision is initiated. Rewards are also slightly different
from those of standard MDP, as the decision maker will both receive a lump sum
reward for taking an action and also continuous rewards from the different states
entered during the decision epoch. This all means that SMDPs can describe more
general scenarios and environments than MDPs [1].

Formally an SMDP can be described as the 5-tuple (S,A, T, F,R), where:

– S : the finite state set

– A : the finite set of actions

– T : the transition function defined by the probability distribution T (s′|s, a)

– F : the probability of transition time for each state-action pair defined by
F (s′, τ |s, a)

– R : the reward function defined by R(s′|s, a)

The F function specifies the probability that action a will terminate in s′

after τ timesteps when starting from s.



3.2 Q-Learning

Q-learning is an algorithm for finding an optimal policy for a MDP (not SMDP).
It does so by learning an action-value function (or Q-function) that returns the
expected future reward of taking an action in a specific state. Q-learning does
not need a model of its environment to be able to learn this function. The Q-
function is a mapping from a state and an action to a real number, which is the
expected future reward: Q : S ×A 7→ R.

After the Q-function has been learned, it is trivial to find the optimal policy,
as one simply has to choose the action with the highest return from the Q-
function in a given state.

Learning the Q-function is done using an action-value, and with an update
rule shown in Eq. 1. In addition, the algorithm chooses its actions in an ε-greedy
manner. It has been shown that by using this update rule the algorithm converges
to Q∗, the optimal value function, and using this to choose actions will result in
the optimal policy, π∗ [2].

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)] (1)

Q-learning is called an off-policy algorithm as it does not use its policy to
update the Q-function, but instead uses the best action given its current Q-
function. This however is not necessarily its policy, as the algorithm will have to
perform exploration steps from time to time. These choices are however needed
for the algorithm to converge to an optimal solution as it will have to take all
actions in all states to be sure that it converges to the optimal policy.

Sutton et al [1] proposed an algorithm, SMDPQ, which extends Q-learning to
support SMDPs by changing the update rule. Normally the discount factor, γ, is
multiplied with the expected future reward, as all actions in MDP problems are
assumed to take constant time to complete. In the modified version, the discount
factor is raised to the power of the number of time steps that the action took to
complete. This results in an update in Eq. 2.

[Q(st, at)← Q(st, at) + α(Rt + γk max
a

Q(st+1, a)−Q(st, at))] (2)

3.3 Reward Shaping

Ng et al. [8] proposed reward shaping to speed up Q-learning while preserving the
policy optimality. Every optimal policy in an MDP, which does not use reward
shaping will also be an optimal policy in an MDP which uses reward shaping,
and vice versa. To achieve this, we need a function Φ(s) that can calculate a
value based on state s, which should represent the potential of the state, making
it comparable to another state. The potential-based shaping function is formally
defined as:

F (s, a, s′) = γΦ(s′)− Φ(s) (3)



An example of such a function could be the euclidean distance to a goal from a
current position in a game world, as negative. As a rule of thumb, Φ(s) = V ∗M (s),
where V ∗M (s) means the value of the optimal policy for MDP M starting in state
s, might be a good shaping potential.

4 Time-based Reward Shaping

We perceive that reward shaping can be used to extend the standard Q-learning
algorithm to support SMDPs. In this section, we firstly propose a time-based
reward shaping method, TRS, and discuss the solution optimality in connection
with SMDP. Then, we elaborate the validity of our proposed method through
two counter examples.

4.1 Our Solution

We propose the simple solution of using the time spent for an action as an
additional negative reward given to the agent after it completes that action.
Formally, we define the time-based shaping function in Eq. 4.

F (s, a, s′) = −τ(a) (4)

where τ(a) is the number of time steps it takes the agent to complete action a
As the time spent for an action is independent of transition states, the re-

ward shaping is not potential based. Consequently, we can not guarantee the
solution optimality for any SMDP problem. However, we observe that solution
optimality may be preserved for some SMDP problems if the problem satisfies
some properties.

We begin by showing that using reward shaping (in Eq. 4), the agent will
never learn a solution consisting of a cyclic sequence of states for which the
individual rewards total to a positive reward, as this allows for an infinite loop.
Then, we proceed to prove a guaranteed consistency between the optimal policy
when learning by our approach, time-based reward shaping, and when using an
approach like SMDPQ, i.e. that our approach converges to the optimal policy
as SMDPQ.

No Cyclic Policy As shown in Eq. 4, only negative reward is given in the
learning process so that it is clear that no cyclic sequence of states can result in
a positive reward. This ensures that the possible cyclic issue of a poorly chosen
reward function can not occur in our solution.

Policy Equivalence We find that the termination reward is actually insignif-
icant using our TRS method, since it will converge to the fastest way to ter-
mination even when reward is e.g. zero for all states in the SMDP problem.
However, the termination reward is required in order to compare it to SMDPQ.
In SMDPQ the algorithm selects the fastest path to the goal, by discounting



the reward over time, while our approach gives a negative reward for each time
step used until termination. Both of these approaches make sure that a faster
path has a higher reward than all of other paths. This however is only true if the
reward received at the terminal states is the same for all terminal states. If they
were to differ, the two approaches are not guaranteed to find the same policy,
as the negative reward earned by the time spent, together with the discounting,
may have conflicting “priorities”.

The Q functions for TRS and SMDPQ , denoted QTRS and QSMDPQ, can
be seen respectively in Eqs. 5 and 6. The shown values are only for special cases
where α is 1 for both approaches and γ is 1 for QTRS and between 0 and 1 for
QSMDPQ. τ is here the time to termination by taking action a in state s and
following the policy after this. The equation shows that any action that leads to
a faster termination, will have a higher Q-value, and as this is the case for both
algorithms they end up with the same policy.

QTRS(s, a) = r − τ (5)

QSMDPQ(s, a) = γτ ∗ r (6)

Formally, we assume that a specific group of SMDPs shall have the following
properties:

1. Reward is only given at the end, by termination,

2. The goal must be to terminate with the lowest time consumption,

3. The reward must be the same for all terminal states.

Then, time-based reward shaping preserves the solution optimality of SMDPQ
as indicated in proposition 1. However, the policies can be equal even though
the restrictions do not hold, but this is not guaranteed.

Proposition 1 (Policy Equivalence)

∀s : arg max
a

Q∗TRS(s, a) = arg max
a

Q∗SMDPQ(s, a)

We note that our approach is not simply a matter of guiding the learning,
but actually giving it essential information to ever finding the optimal policy.
This however is only the case when using a MDP algorithm to solve the problem.
When the algorithm converges the agent will choose a policy allowing for the
fastest solution of the given problem—measured in time and not number of
actions. The application of the reward penalty encourages the agent to achieve a
goal as fast as possible, thus making our approach independent of game-specific
properties such as specific units etc.



4.2 Counter Examples

Here we present two examples of why the previousy mentioned properties on
applicable SMDPs have to be obeyed in order for TRS to converge to the optimal
policy, i.e. the same as the SMDPQ algorithm. We create examples for properties
1 and 3, and show that if the propeties are not obeyed, the two algorithms are
not guaranteed to converge to the same optimal policy.

Rewards in Non-Terminal States Figure 1 shows the state-space of an ex-
ample and illustrates why it is important that any reward should only be given
in terminal states in order for QTRS to converge to the same optimal policy as
QSMDPQ. For this case we use γ = 0.99, define the actions of the environment
as A1, A2 and A3, and the time steps required to take transitions as τ(A1) = 1,
τ(A2) = 2, τ(A3) = 50. This results in the optimal policy using QTRS would go
directly from S to T , but the optimal policy for QSMDPQ would be from S to
T through S′.

S

S’

TA1

A2 A3

r = 50

r = 100

Fig. 1. A case illustrating a counterexample of why it is important that rewards are
only given in terminal states.

The following shows the calculations resulting in the optimal policy using
QTRS :

QTRS(S,A1) = (100− τ(A1))γ = 98.0

QTRS(S,A2) = (50− τ(A2))γ + (100− τ(A3))γ2 = 96.5

While the optimal policy using QSMDPQ is caculated as follows:

QSMDPQ(S,A1) = γτ(A1)100 = 99.0

QSMDPQ(S,A2) = γτ(A2)50 + γτ(A2)+τ(A3)100 = 108.3

The goal of a QTRS problem should be to reach termination in the fewest time
steps, which means that giving rewards in non-terminal states, and thereby not
obeying the restrictions, will result in a possible suboptimal solution.



Different Rewards in Terminal States Figure 2 shows its importance that
all terminal states must yield the same reward in order to assure that QTRS
converges to the same optimal policy as QSMDPQ. In this case the following
parameter values are used: γ = 0.99, τ(A1) = 60, τ(A2) = 1. This results in the
optimal policy using QTRS would go from S to T2, but the optimal policy for
QSMDPQ would be T1 instead.

S

T2

T1A1

A2

r = 50

r = 100

Fig. 2. A case illustrating a counterexample of why it is important that all the rewards
given in terminal states need to be the same.

The following shows the reward calculations for the optimal policy using
QTRS :

QTRS(S,A1) = (100− τ(A1))γ = 39.6

QTRS(S,A2) = (50− τ(A2))γ = 48.5

While the reward calculations using QSMDPQ are as follows:

QSMDPQ(S,A1) = γτ(A1)100 = 54.7

QSMDPQ(S,A2) = γτ(A2)50 = 49.5

All terminal states in a QTRS problem must yield the same reward, and if this
is not obeyed the optimal policy will, as exemplified above, not be guaranteed
to be equivalent to the optimal policy of QSMDPQ.

5 Experiments

To test the proposed time-based reward shaping, we set a simple scenario in the
RTS game Balanced Annihilation which can be described as an SMDP problem.
The optimal solution for this problem is learned using Q-learning and Q(λ)[2]
with time-based reward shaping, and the proven SMDP approach SMDPQ[1].



5.1 Game Scenario

The scenario is a very simple base-building scenario. The agent starts with a
single construction unit, a finite amount of resources and a low resource income.
The agent controls the actions of the construction unit, which is limited to the
following three actions:

– Build a k-bot lab, for producing attack-units (production building)

– Build a metal extractor, for retrieving metal resources (resource building)

– Build a solar collector, for retrieving solar energy (resource building)

All actions in the scenario are sequential, as the construction unit can only
build one building at a time. The goal of the scenario is to build four of the
production buildings as quickly as possible (in terms of game time). The build
time depends on whether we have enough available resources for constructing
the building; e.g. if we have low resource income and our resource storage is
empty, it takes much more time to complete a new building than if we have
high resource income. Therefore the optimal solution is not to construct the
four production buildings at once, without constructing any resource building,
as this would be very slow. Figure 3 shows a screenshot of a possible state in
this scenario in Balanced Annihilation.

Fig. 3. A screenshot of the scenario in Balanced Annihilation. This shows the state of
the game after five metal extractors, one solar collector, and two k-bot labs have been
build. The construction unit is currently in the process of building a third k-bot lab.
At the top of the screen a white and a yellow indicator can be seen, representing the
current level of metal end solar energy, respectively.



As state variables, the number of each type of building is used; the number
of production building has the range [0; 4], and the numer of each of the two
types of resource buildings has the range [0; 19]. This results in a state space of
5 × 20 × 20 = 2000 and an state-action space of 2000 × 3 = 6000. This means
that it is not possible for the agent to take the current amount of resources into
account, as this may vary depending on the order in which the buildings have
been constructed. We do not think that this will have a great impact on the final
policy though.

5.2 Results

Figure 4 shows the results of four different settings of reinforcement learning in
the scenario: Standard Q-learning and Q(λ) with time-based reward shaping,
and SMDPQ both with and without time-based reward shaping.

Fig. 4. A graphical representation of the convergence of the different approaches for
SMDP support in Q-learning. Q-learning values are: α = 0.1, ε = 0.1, γ = 0.9. Ex-
ponential smoothing factor = 0.02. This experiment was done on the base-building
scenario.

The standard MDP Q-learning algorithm extended with time-based reward
shaping shows a significant improvement over standard SMDPQ. SMDPQ with
reward shaping also provides much faster convergence than standard SMDPQ.
However, there is no difference on applying reward shaping to standard MDP
Q-learning and SMDPQ. This can be explained by the fact that SMDPQ and
our reward shaping both help solve the problem as fast as possible, since the
reward decreases as time increases. The algorithms are not additive, so applying
one time penalty-algorithm to another does not increase the convergence rate.
In addition, both algorithms only pass reward back one step, and thus the two
approaches converge at the same rate.

When using the MDP algorithm on the scenario, which is in fact an SMDP
problem, this kind of reward shaping is actually necessary in order to make the
algorithm converge to a correct solution. Without reward shaping, the agent



would know nothing about the time it took to complete an action, and so it
would converge to the solution of building four production buildings in as few
steps as possible, namely four. This solution is not the optimal one in terms of
game time, since the production of resources would be very low given the fact
that the agent does not build any resource buildings.

From Figure 4 it is not clear whether or not SMDPQ without reward shaping
actually ever converges. In this experiment SMDPQ converged to the optimal
policy after approximately 22000 runs, but this result is not a part of the figure,
since it would obfuscate the other information contained within the graph.

Adding eligibility traces, in this case Q(λ), to the Q-learning with TRS fur-
thermore significantly improves the convergence rate, as it can be seen in Fig-
ure 4.

5.3 Discussion

As we have shown in our case, it is important to use reward shaping to reduce the
time spent on the learning. It is especially important when each learning session
takes more than a few seconds. In this case the change from 22000 sessions to
700, can result in a problem being feasible to learn and not take several hours
or even days to learn.

TRS can be a good choice when using RL for a sub-task in a game, where
the agent must solve a problem as fast as possible and can not fail to achieve the
goal. This however does not include an RTS game as a whole, as it is possible
to fail to achieve the goal, by loosing the game. General reward shaping can be
applied to all MDP problems, but it is especially important in games, where the
state space can be very large. Another task which could be solved using TRS is
pathfinding (in general).

6 Conclusions and Future Work

Scenarios in computer games are often time dependent and agents’ actions may
span multiple time steps. We propose an SMDP solution to have agents learn
adaptive behaviours. We make a further step to speed up the learning process
through reward shaping techniques. We propose a time-based reward shaping
method, TRS, that punishes the delayed actions using times. In particular, we
show that our method may result in the same policy as SMDP solutions for some
specific problems. Our experiments on the Balanced Annihilation game show
that applying time-based reward shaping is a significant improvement for both
general Q-learning, SMDPQ and Q(λ), allowing fast convergence when solving
some SMDPs. In addition, the technique allows us to solve SMDP problems with
the standard Q-learning algorithm.

We found a way to use reward shaping in Q-learning that reduced the number
of runs needed to converge for a restricted group of SMDP problems. It would
be interesting to see if this, or some similar approach, could be applied in a
more general case. There is already a general concept of reward shaping, which



has been proved to work. But we feel that some more specific concepts about
including time usage in reward shaping could really be beneficial. Improvements
of this approach could result in loosing the restrictions for the SMDP problems,
optimally allowing support for any SMDP problem.

Applying TRS to more advanced problems could also be done, to show
whether this approach is too limited. An example of such an advanced scenario
could be one with cooperative agents. This is especially relevant in RTS games,
where units need to cooperate in order to achieve their goals faster.

References

1. Richard Sutton, Doina Precup and Satinder Singh: Between MDPs and Semi-MDPs:
A Framework for Temporal Abstraction in Reinforcement Learning. Artificial Intel-
ligence 112, 181–211 (1999).

2. Richard S. Sutton and Andrew G. Barto: Reinforcement Learning: An Introduction.
MIT press, 1998.

3. Imran Ghory: Reinforcement learning in board games. Technical Report, Depart-
ment of Computer Science, University of Bristol, 2004.

4. Michael L. Littman: Markov games as a framework for multi-agent reinforcement
learning. In Proceedings of the Eleventh International Conference on Machine Learn-
ing, pp. 157-163, 1994.

5. Maja J. Mataric: Reward Functions for Accelerated Learning. In Proceedings of the
Eleventh International Conference on Machine Learning, pp. 181-189, 1994.

6. Manu Sharma, Michael Holmes, Juan Santamaria, Arya Irani, Charles Isbell, Ash-
win Ram: Transfer Learning in Real-Time Strategy Games Using Hybrid CBR/RL.
In Proceedings of the 20th international joint conference on Artifical intelligence,
pp. 1041-1046, 2007.

7. Bhaskara Marthi, Stuart Russell, David Latham, Carlos Guestrin: Concurrent Hi-
erarchical Reinforcement Learning. In Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, pp. 779-785, 2005.

8. Andrew Y. Ng and Daishi Harada and Stuart Russell: Policy invariance under
reward transformations: Theory and application to reward shaping. In Proceedings
of the Sixteenth International Conference on Machine Learning, pp. 278-287, 1999.

9. Adam Daniel Laud: Theory and application of reward shaping in reinforcement
learning. University of Illinois at Urbana-Champaign, 2004.

10. Andersen K. T., Y. F. Zeng, D. Tran and D. D. Christensen: Experiments with
Online Reinforcement Learning in Real-Time Strategy Games. Applied Artificial
Intelligence: An International Journal, 23(9): 855-871 (2009).

11. Kaelbling, L. P., M. L. Littman, and A. W. Moore: Reinforcement learning: a
survey. Journal of Artificial Intelligence Research 4, 237–285 (1996).

12. Tesauro, G.. Td-gammon, a self-teaching backgammon program, achieves master-
level play. Neural Comput. 6 (2), 215–219 (1994).

13. Manslow: Using reinforcement learning to solve ai control problems. AI Game Pro-
gramming Wisdom 2 , 591–601 (2004).


