
Refinement of Bayesian Network Structures upon New Data

Yifeng Zeng
Dept. of Computer Science

Aalborg University, Denmark
yfzeng@cs.aau.dk

Yanping Xiang
Dept. of Computer Science

Uni. of Electronic Sci. and Tech. of China
yanping xiang@yahoo.com.cn

Saulius Pacekajus
Dept. of Computer Science

Aalborg University, Denmark
saulius@cs.aau.dk

Abstract

Refinement of Bayesian network structures using new
data becomes more and more relevant. Some work has been
done there; however, one problem has not been considered
yet - what to do when new data has fewer or more attributes
than the existing model. In both cases data contains impor-
tant knowledge and every effort must be made in order to
extract it. In this paper, we propose a general merging al-
gorithm to deal with situations when new data has different
set of attributes. The merging algorithm updates sufficient
statistics when new data is received. It expands the flexibil-
ity of Bayesian network structure refinement methods. The
new algorithm is evaluated in extensive experiments, and its
applications are discussed at length.

1 Introduction

Bayesian network (BN) [1] is a directed acyclic graph
(DAG) where nodes represent attributes or variables of a
subject of matter, and arcs between the nodes describe the
causal relationship of attributes or variables. It is widely
used in the medical, biological domains, and so on. The
use of BN is a logical and natural way to represent the joint
probability distribution over the variables.

A lot have been written on how to construct a BN struc-
ture from data and most of the writing has been focused
on learning the structure using batch algorithms [2]. Batch
algorithms go through all of the data and then structure a
corresponding BN. This is an interesting field of study but
in many cases the whole data is not available i.e. new data
is expected sometime in the future. It is neither efficient
nor in some cases possible to store all the data met in order
to run batch algorithms that would learn the structure from
scratch, when new data is available. To address this kind
of problems in structural learning, algorithms need to be in-

cremental, and use both previous experience and new data
to refine the structure of the network. They must rely on the
previous structure to speed up the refinement process, but
not too heavily so that they could make corrections to the
old structure.

One way is to use the structure of the old network as
prior probability. Some work has been done in this line [3].
This however can have the unwanted consequences that the
new network is biased to the old structure. Another ap-
proach is to use sufficient statistics (SUFF) or combina-
tion of these two approaches [4]. There have been some
works in the field of incremental or sequential refinement
of network structures. A good review could be found in [5].

The problems that have not gotten enough attention are
when new data has different set of attributes. It can have
partial attributes, it can have some new attributes or both
partial and new attributes. When new data arrives, a net-
work needs to be refined in order to represent the domain
more accurately than before. The most accurate approach
would be to learn the network from scratch but this of course
is not always feasible. The main focus of this paper is on
these problems and the solution proposed is to update the
SUFF when receiving new data. The basic idea is to add
the new attributes to the SUFF in the right proportion.

We present the merging algorithm that orients operations
to configurations of all common attributes in old and new
SUFF , and does the sampling in a reasonable way. The
new approach is pretty straightforward, and performs well
in extensive experiments.

2 Relevant works

Most of the widely used batch algorithms take data (and
some extra information, if necessary) as an input, and learn
a Bayesian network structure. In order to be able to update
the model, new data must join the old data that has been kept

so far, and the batch algorithm needs to start its work from
scratch. Obviously this is neither memory nor time efficient,
therefore some better methods need to be invented.

A desired method should be able to iteratively use new
data instead of starting everything from scratch. In other
words a desired method should be intelligent enough to
combine new information with its previous experience to
update its knowledge. A response to these requirements is
incremental methods. These are Buntine (B) [6], Friedman
and Goldszmidt(FG) [4] algorithms, and so on. Both of
them use SUFF of data that only contains counts of differ-
ent entries in data instead of data entries. They only require
constant time to update SUFF when new records arrive;
the record itself can be discarded after SUFF is updated.

When the FG and Bun algorithms are designed to be in-
cremental, such popular batch algorithms like the B, K2 [7]
and HCMC [8] algorithms can also be turned into incremen-
tal ones. In [5], J. Roure has much discussion on the trans-
formation. After combinng SUFF with reduced search
space (RSS), J. Roure introduced new algorithms iK2, iB
and iHCMC that are all incremental [5]. In fact they are
quite similar to the original FG and Bun algorithms. J.
Roure even proposed special heuristics to store only SUFF
of the best structure candidates, just as in slightly different
styles the FG and Bun algorithms do.

A heuristic to incrementally learn Bayesian network
structures even when new data instances have different set
of attributes needs to be invented. It would also be nice, if
a desired heuristic could solve the problem generally and
in an elegant way, so that every or at least most learning
algorithms could be improved in a similar fashion and still
preserve their original efficiency and quality.

3 New data with different set of attributes

The incremental approaches have two common proper-
ties. The first one is that they all use sufficient statistics,
and at iteration they repeat the search path by traversing the
reduced DAG space. The later property is also known as
RSS heuristic. While RSS does not really care about the
attributes of data, SUFF is where the main knowledge is
stored. To understand how a problem of new data with dif-
ferent set of attributes can be solved it is therefore necessary
to understand SUFF .

3.1 Sufficient statistics

To store all the data that is constantly arriving in incre-
mental algorithms is not feasible because of finite memory.
On the other hand, not everything in the data is useful for
learning a Bayesian network structure. Actually a data entry
alone does not give any information. It is obvious that the
scoring needs to be explored in order to find out what in the

data is necessary for the learning process and what is not,
since only a scoring function deals with the data directly.

The well known BDe scoring function [7] is described in
Eq. 1.

P (BS |D) = P (BS)
n∏

i=1

qi∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k=1

Nijk!

(1)
where BS is a structure of Bayesian network, D is a data

set, P (BS) is the prior probability of a network structure
BS , that can be used to express any prior knowledge of a
structure. n is the number of variables, ri is the arity of a
variable Xi, qi is the number of possible parent (Pai) con-
figurations, Nijk is a number of entries in D where variable
Xi is set to its kth value and its parents are instantiated to
their jth configuration and Nij =

∑ri

k=1 Nijk.
Hence only the counts of entries satisfying certain at-

tribute configurations are necessary. Let X denote a set of
random variables and x be the value assignments for the
variables in X. Let the vector N̂D

X contain the counts of en-
tries in the data D where X = x for every possible x. A
set N̂D

X is called sufficient statistics of variables X. Then,
given the decomposability of the scoring function, N̂D

Xi,Pai

for all Xi ∈ X and all possible parent sets for Xi is all the
information necessary to learn the Bayesian network struc-
ture for the data D.

|SUFF (BS)| = n×
p∑

i=0

(
n
i

)
× arity(X)i (2)

The memory used for SUFF can be described by its
cardinality in Eq. 2, where n is the number of variables, p
the maximum number of parents and arity(X) is the ar-
ity of variable X . It is assumed for simplicity that all the
variables have the same arity. As it can be seen, cardinality
of SUFF is more than exponential. When p = n − 1 the
cardinality is extremely large, but, fortunately, in most ap-
plications p is rather small as well as an average arity of a
variable. One interested in implementing memory and time
efficient SUFF should consider such data structures like
AD-trees introduced in [9] or an even more optimised dy-
namic AD-trees discussed in [10].

Having a compact SUFF it is possible to keep the his-
tory of all the data entries seen while using constant amount
of data, therefore all the experience of incremental struc-
ture learning algorithms is accumulated there. When new
data with different set of attributes arrives, it can be consid-
ered equivalent to a problem where the new or old (or both)
data has missing values. Neither the Minimum Description
Length function [11] nor the BDe scoring function can deal
with missing values without special improvements. Experi-
ments showed that the BDe scoring function can even sense

5 entries with missing values in a data set containing 20000
items. The resulted BN structure was different from the one
obtained when those 5 entries were not removed or reason-
able values were specified (or even randomly, if the number
of entries with missing data is relatively small to the size of
the data set). Although incremental algorithms use SUFF
instead of data directly, the discrepancy of counts in the data
(which is the reason that scoring functions work incorrect)
still exists since it is transferred to SUFF . In addition,
if AD-trees together with most common value (MCV) [5]
pruning are used for SUFF , the entries with missing values
would eventually be identified as entries satisfying MCV
configurations, which in fact would not be true.

3.2 Merging data with different sets of at-
tributes

Since the same problem holds for both data sets and
SUFF of those data sets it would be nice to find a gen-
eral way to solve it. The proposal is pretty straightforward.
While merging two data sets (or SUFF) the missing at-
tribute values should be sampled with respect to the dis-
tribution of the same attribute values in the set they are
present. For the sake of a general representation, the merg-
ing algorithm is presented in Fig. 1 in the form of two data
sets. It can be used with SUFF instead of data sets with
minor technical changes.

As it can be seen, the algorithm runs through all com-
mon attribute (A1 ∩A2) configurations (value assignments)
that are met in both data sets (line 8). It is because only
from the common attributes the missing attribute values can
be sampled reasonably. If the common value configuration
(as) is present in both data sets - the one that has missing
attributes and the other that has them present (combinations
of lines 11 and 14 as well as 19 and 22) - the algorithm
can sample reasonable values for the missing attributes ac-
cording to their distribution in the set they are present (lines
16 and 24). In case some common attribute configurations
are in data set with missing attribute values but not within
the data set with those attributes present (lines 12 and 20),
it is impossible to make a reasonable sampling, hence, all
the entries satisfying that configuration are deleted (lines 13
and 21). This choice is made in order to save precision.

The argument for deleting configuration has two. First,
configurations present in one data set and missing in the
other occur because they have a low probability; hence,
their contribution to the general relationships is not strong,
and removing them does not have a big impact. The con-
sequence of deleting entries is that it makes the algorithm
more sensitive to the size of data. If the size of data is too
small with respect to the number of attributes, configura-
tions have lower chances to be included since the number
of configurations increases exponentially to the number of
attributes. The more attributes the data set has, the bigger

Merging Algorithm
Require: D1, D2 data sets
Ensure: a new data set D which is a result of merging D1 with

D2

1: A1 ← D1.getAttributes()
2: A2 ← D2.getAttributes()
3: if A1 = A2 then
4: return D ← D1 + D2

5: else
6: D′

1 ← D1.copy()
7: D′

2 ← D2.copy()
8: for all A1 ∩A2 value assignments as in D1 ∪D2 do
9: c1 ← D1.getCount(A1 ∩A2 = as)

10: c2 ← D2.getCount(A1 ∩A2 = as)
11: if A2\A1 6= ∅ and c1 > 0 then
12: if c2 = 0 then
13: D′

1.deleteEntries(A1 ∩A2 = as)
14: else
15: E ← D′

1.selectEntries(A1 ∩A2 = as)
16: E.sampleV alues(A2\A1, D2.entriesDistribution(A2\A1))
17: end if
18: end if
19: if A1\A2 6= ∅ and c2 > 0 then
20: if c1 = 0 then
21: D′

2.deleteEntries(A1 ∩A2 = as)
22: else
23: E ← D′

2.selectEntries(A1 ∩A2 = as)
24: E.sampleV alues(A1\A2, D1.entriesDistribution(A1\A2))
25: end if
26: end if
27: end for
28: return D ← D′

1 + D′
2

29: end if
Figure 1: The pseudo code of merging algorithm

chunks of new data should be accumulated in order to learn
relationships between new and old attributes without losing
much knowledge about their relationships. Secondly, ex-
periments have shown if the values are generated randomly
the bias is introduced. Randomly sampling for missing at-
tribute values with configurations that are not in the data set
with those available attributes was tried. The bias is small
enough to be ignored as long as the number of this kind of
configurations is small. However, the side effects (extra re-
lations are introduced or some of them disappear) become
more and more visible when the number of configurations
increases. This results in new relationships that eventually
affect a network structure.

4 Experiments

The proposed algorithm is evaluated in extensive exper-
iments. Before experimental results are presented, it is nec-
essary to notice that the problem can be divided into three
cases as shown in Fig. 2):

• The first case is when new data (or SUFF of data)
D2 introduces new attributes (Figure 2a). This could
happen, when some new knowledge about a subject is
available and new variables into a model need to be
introduced.

• In the second case, new data (or SUFF of data) D2

has only partial attributes (Figure 2b). Sometimes new
data that only has part of model attributes is available.
In spite of that, it still contains useful knowledge about
present attributes and their relationship, that could be
used to strengthen the model.

• The combination of the first two cases is the third one.
New data (or SUFF of data) D2 has some new at-
tributes as well as some old attributes of D1 are miss-
ing (Figure 2c).

(a) (b) (c)

Figure 2: (a): D2 introduces new attributes; (b): D2 has
partial attributes; (c): D2 has partial attributes as well as
introduces some new.

Experiments showed there is a large difference between
the first two cases and the third case. While in the first
two cases all the attributes can be related because they are
present in at least one data set or SUFF , in the third case it
is really complicated to relate attributes that are only in D1

with those only in D2. Hence it was necessary to conduct
different experiments for the first two cases and the third
case respectively.

4.1 Cases 1 and 2

The experiments for the first two cases were conducted
with three networks Asia (8 nodes) [12], Studfarm (12
nodes) and Boblo (22 nodes) provided by Hugin. The two
data sets containing 5000 entries were generated from the
three networks. All the data sets were checked whether
the K2 structure learning algorithm [9] can learn the orig-
inal network from them. The measures taken were three:
the logarithmic BDe score of the original network given the
merged data set, the score of the network learned using the
K2 algorithm given the merged data set, and the average
time used to merge the two data sets (the experiments were
conducted 6 times each and then average was taken). The
experiments were run in this way: at the beginning the first
data set is the one that has all the attributes available and

the attributes of the second one are gradually removed ev-
ery step until only one or two are left; then, the data sets are
switched in the second stage to be sure that the algorithm
can work correctly with different data sets. The results for
all three experiments are shown in Fig. 3(a), Fig. 3(b) and
Fig. 3(c) respectively.

Experimental results show that the merging algorithm
works well with data generated from the Asia and Studfarm
networks. In Fig. 3(a) and Fig. 3(b), the score of networks
leant from the merged data sets is the same as that of the
original networks in any situation. It indicates all resulted
networks best fit the data. Furthermore, according to the re-
sulted structures (not shown here), all of them learned from
the merged data sets by the K2 algorithm are identical to
the original network structure. Hence, the algorithm can
be considered reliable. The average time used by the algo-
rithm is reasonable and scales slower than the time spent for
learning when the number of attributes increases.

On the other hand, results are not so nice with the data
generated from the Boblo network. Fig. 3(c) shows the re-
sulted networks fit data well, even better than the original
network, and the algorithm uses reasonable time. However,
half of the network structures learned from the merged data
differs from the original one.

It indicates there is some information lost or some new
relationships introduced that change the data distribution.
A reasonable explanation could be that there is too little
data. Knowing that the number of configurations of at-
tributes grows exponentially to the number of attributes it
is pretty naive to expect the same amount of data is suffi-
cient for data sets with 8, 12 and 22 attributes. Hence a de-
cision to conduct experiments with 10000 entries data sets
generated from the Boblo network was made.

Experimental results in Fig. 3(d) show that the idea to in-
crease the amount of data is good. All the structures learned
from the merged data by the K2 algorithm are identical to
the original one, and time does not increase dramatically.
Hence it is necessary to conclude that one using the merg-
ing algorithm should have data sets with a reasonable size
(with respect to the number of attributes).

The experimental results conclude the merging algo-
rithm is reliable, effective and efficient (it takes similar time
in spite of the number of attributes missing) when at least
one data set has all the attributes (cases 1 and 2).

4.2 Case 3

Different experiments need to be conducted for case 3
when a data set has some attributes that are not in the other
one. In this situation attributes that are only in the first data
set cannot be directly related with attributes only in the sec-
ond data set. Nevertheless it is expected, that it should be
possible to obtain the relationship between them through the

Vars Orig. Net. Result Net. Time
Removed Score Score
0 -22516 -22516 0s
1 -22505 -22505 8s
2 -22529 -22529 7.5s
4 -22556 -22556 8s
6 -22716 -22716 8s
7 -22680 -22680 8.5s

(a)Results of merging two 5000 entries data sets generated from network

Asia with 8 nodes

Vars Orig. Net. Result Net. Time
Removed Score Score
0 -3695 -3695 1s
2 -3675 -3675 11s
4 -3720 -3720 8s
6 -3732 -3732 8.5s
8 -3692 -3692 8.5s
10 -3728 -3728 8.5s
11 -3710 -3710 8.5s

(b)Results of merging two 5000 entries data sets generated from network

Studfarm with 12 nodes
Vars Orig. Net. Result Net. Time
Removed Score Score
0 -47020 -47020 1s
4 -45940 -45940 24s
8 -46159 -46159 25s
12 -46907 -46908 20s
16 -47105.3 -47105.8 19s
18 -47136 -47143 20s
20 -47036 -47036 19s

(c)Results of merging two 5000 entries data sets generated from network

Boblo with 22 nodes

Vars Orig. Net. Result Net. Time
Removed Score Score
0 -90863 -90863 4s
4 -91321 -91321 49s
8 -91863 -91863 50s
12 -92943 -92943 30s
16 -93270 -93270 27s
18 -93561 -93561 33s
20 -93577 -93577 30s

(d)Results of merging two 10000 entries data sets generated from network

Boblo with 22 nodes

Figure 3: Experimental Results from Cases 1 and 2.

common attributes.

Figure 4: The original network in case 3

It is supposed that it should be safe to have missing at-
tributes if they are conditionally independent. To check how
conditional dependency properties manage to subsist when
different attributes are not available in two data sets an ex-
periment was made. A Markov blanket of node T was taken
from the Asia network, and then three extra nodes E1, E2

and E3 are added in all three possible different positions, so
they do not get involved in T ’s Markov blanket. The exper-
imental network is shown in Fig. 4. Just as the experiments
were done in the first two cases, different attributes were re-
moved from the two original data sets containing 5000 en-
tries each; then, they were merged and a network was built
using the K2 learning algorithm.

Since there are four nodes {A,E, L, T} in T ’s Markov
blanket(here it is supposed to include T) and three ex-

tra nodes {E1, E2, E3}, 21 different cases have been con-
ducted as well as 21 network structures best fitting them
have been obtained. There are 3 groups in 21 cases that
need to be commented:

Group 1 (12 cases). One extra attribute ({E1, E2, E3})
is removed from the first data set and one of T ’s Markov
blanket nodes ({A,E, L, T}) from the second data set. As
expected this does not change T ’s Markov blanket condi-
tional dependency properties with some exceptions in two
cases shown in Fig. 5 and Fig. 6 respectively. Other 10 cases
could output the same structure as the original one.

The results of the two exception cases could be explained
in this way. In both of them, extra attributes and T ’s Markov
blanket attributes that have direct relations were removed
from different data sets, which causes the original relation
to be lost. Hence the arcs between E1 and T (in Fig. 5(b))
and between E2 and E (in Fig 6(b)) are introduced when
intermediate variables are removed. In Fig. 5(c), the arc be-
tween nodes E1 and T is still kept since they have a strong
relation that is encoded in the second data set (D2) and is
not compromised in the merged data set (D1 ∪D2). Hence
the resulted network in Fig. 5(c) does not show nodes E1

and T are independent given node A. Similarly, in Fig. 6(c),
the introduced arc between T and L preserves the relation
between E2 and E. The result follows the logical combi-
nation of the two network structures that tries to preserve
dependent and conditional independent relations encoded
in these two networks.

Group 2 (3 cases). Both attributes removed are extra at-

(a) Network
learned from D1

(b) Network
learned from D2

(c) Network learned from
D1 ∪D2

Figure 5: The case when E1 and A are removed.

(a) Network learned
from D1

(b) Network learned
from D2

(c) Network learned
from D1 ∪D2

Figure 6: The case when E2 and L are removed.

tributes {E1, E2, E3}. Since they do not have any direct
relation, as expected, all three resulted networks are identi-
cal to the original one.

Group 3 (6 cases). Both attributes removed are from T ’s
Markov blanket {A,E, L, T}, therefore some missampling
happens. Nevertheless in most of the cases the resulted net-
works are identical to the original one. The two exception
cases are shown in Figs. 7 and 8 respectively. The case in
Fig. 7 can be explained in the same way as the second ex-
ception case in Fig. 6. However, the case in Fig. 8 is some-
what different. Some extra arcs are again introduced, but
the arc from E2 to E3 does not follow the logical combina-
tion of structures of the two compounding data sets. There
is no obvious reason for this.

(a) Network learned
from D1

(b) Network learned
from D2

(c) Network learned
from D1 ∪D2

Figure 7: The case when L and T are removed
5 Conclusion

When attributes are added into a network the effects on
the existing nodes can be very hard to be judged. The ef-
fects can range from no impact on the existing structure,

(a) Network learned
from D1

(b) Network learned
from D2

(c) Network learned
from D1 ∪D2

Figure 8: The case when L and E are removed

which means the new attributes are only introduced as par-
ents or children of the existing attributes. The effects can
also be very dramatic they might really affect the relation-
ships associated with the existing attributes. The algorithm
deals with both of these situations. It successuflly copes
with Cases 1 and 2 while showing the ability to preserve the
underlying structure in Case 3. We are in the future avenue
investigating the conditions in a more formal way.

References

[1] Jensen, F.V.: An introduction to Bayesian networks.
Springer, New Work (1996)

[2] Neapolitan, R.E.: Learning Bayesian Networks. Prentice
Hall (2003)

[3] Lam, W., Bacchus, F.: Using new data to refine a bayesian
network. In: UAI. (1994) 383–390

[4] Friedman, N., Goldszmidt, M.: Sequential update of
bayesian network structure. In: UAI. (1997) 165–174

[5] Roure, J.: Incremental methods for bayesian network struc-
ture learning. (1995)

[6] Buntine, W.: Theory refinement on bayesian networks. In:
UAI. (1991) 52–60

[7] Cooper, G.F., Herskovits, E.: A bayesian method for the in-
duction of probabilistic networks from data. Machine Learn-
ing 9 (1992) 309–347

[8] Castelo, R., Kocka, T.: On inclusion-driven learning of
bayesian networks. Machine Learning Research 4 (2003)
527–574

[9] Anderson, B., Moore, A.: Ad-trees for fast counting and for
fast learning of association rules. In: KDD. (1998) 134–138

[10] Komarek, P., Moore, A.: A dynamic adaptation of ad-trees
for efficient machine learning on large data sets. In: ICML.
(2000) 495–502

[11] Lam, W., Bacchus, F.: Learning bayesian belief networks -
an approach based on mdl principle. Computational Intelli-
gence 10 (1992) 269–293

[12] Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with
probabilities on graphical structures and their application to
expert systems. Journal of the Royal Statistical Society 50(2)
(1988) 157–224

