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Abstract

Selecting relevant features is in demand when a large
data set is of interest in a classification task. It produces a
tractable number of features that are sufficient and possibly
improve the classification performance. This paper studies
a statistical method of Markov blanket induction algorithm
for filtering features and then applies a classifier using the
Markov blanket predictors. The Markov blanket contains a
minimal subset of relevant features that yields optimal clas-
sification performance. We experimentally demonstrate the
improved performance of several classifiers using a Markov
blanket induction as a feature selection method. In addition,
we point out an important assumption behind the Markov
blanket induction algorithm and show its effect on the clas-
sification performance.

1 Introduction

A classification task has found great challenges in the
arising domains of biology, genetics and clinical diagno-
sis. The rapidly maturing technology offers a large data
set for classification analysis that may contain thousands
of features(or variables, we use features and variables in-
terchangeably) with (in-)sufficient data instances. Unfor-
tunately many of candidate features are either redundant
or irrelevant to a target feature. Such data present famil-
iar dimensional difficulties for classification of the target
variable, and undermine the classification accuracy due to
the noise of irrelevant variables. One solution is to prepro-
cess the data set by selecting a minimal subset of variables
and feed the selected features into a preferred classifier.
It demands the work on implementing a feature selection
method.

A good feature selection method picks an appropriate set
of variables by pruning irrelevant ones from the data set.
Much effort can be seen from a large amount of literature on
various feature selection approaches. Details can be found
in some comprehensive papers [1, 2, 3]. Two types of meth-
ods have been generally studied -filter methods andwrap-
permethods [4, 5]. A wrapper method iteratively evaluates
the used classifier for every feature subset selected during
the search while a filter method finds predictive subsets of
features independently of the final classifier. Apparently,
the wrapper method requires extremely expensive compu-
tation, which is infeasible in a large data set of interest. In
this paper, we focus on the filter method.

The filter method using Markov blanket concept has re-
ceived much attention in the current literature [6, 7]. The
connection between the Markov blanket filter and other
principled feature selection methods has been studied in [8].
The Markov blanket of a target variable contains a mini-
mal set of variables on which all other variables are con-
ditionally independent of the target variable. Most of the
research work aims for a new Markov blanket discovering
algorithm and then composes the final Markov blanket clas-
sifier [9, 10, 11].

In this paper, we do not aim for a new Markov blanket
induction algorithm, but rather attempt to experimentally
find out how the Markov blanket predictors could improve
the classification accuracy of several well-studied classi-
fiers like Naive Bayesian classifier [12], TAN [13], Id3 [14],
C4.5 [15] andk-dependence Bayesian classifier(KDB) [16].
More importantly, we challenge the assumption behind the
Markov blanket induction algorithm and study the effect on
the classification accuracy. We select the Incremental Asso-
ciation Markov Blanket(IAMB) algorithm [10] for discov-
ering a unique Markov blanket of the target variable. The
IAMB algorithm is proved of correctness and exhaustively



experimented in learning Bayesian networks.
We organize this paper as follows. In section 2, we

review the most relevant work on feature selection using
Markov blanket concept. In section 3, we firstly present a
generic classification framework that uses the Markov blan-
ket in the preprocess stage for selecting relevant features.
The IAMB algorithm is selected as the Markov blanket
discovering algorithm. Finally, in section 4, we describe
a comprehensive set of empirical results on demonstrating
the improved performance of several classifiers given the
Markov blanket predictors.

2 Related Work

Bayesian network (BN) [17, 18] is a directed acyclic
graph where nodes represent variables of a subject of mat-
ter, and arcs between the nodes describe the causal rela-
tionship of variables. It is a compact representation of a
joint probability distribution of domain variables. Markov
blanket is a key concept of conditional independence in the
graphical model of Bayesian networks. The Markov blan-
ket of a target variableT is the set consisting of the par-
ents ofT , the children ofT , and the variables sharing a
child with T [17]. Given its Markov blanket, the variableT
is conditionally independent from other variables in a BN.
Formally, the Markov blanket ofT is the minimal set of
features conditioned on which all other features are inde-
pendent ofT . Similar to a large amount of work on learn-
ing Bayesian networks, research on Markov blanket discov-
ery has been continuously updated since the first method of
Grow-Shrink [9] appeared around ten years ago.

As implied by its name, the Grow-Shrink algorithm
firstly finds the relevant variables to the target variable, and
then reduces the estimated set of Markov blanket using con-
ditional independence tests. However, the second stage of
the Grow-Shrink algorithm is not proved sound. A similar
line of work is the IAMB algorithm (We will describe it in
length in Section 3.) that is proved correct and sound for
discovering a unique Markov blanket [10, 19]. Later, many
variants of the IAMB algorithm appeared to show better em-
pirical results on the efficiency including Fast-IAMB [7],
IAMBNPC [20], and parallel IAMB [21].

The value of Markov blanket concept has been early rec-
ognized in Koller and Sahami’s work [6] on feature selec-
tion. Their work uses a heuristic method to identify the
Markov blanket of a target variable. This indicator intro-
duces more intensive research on designing Markov blan-
ket classifiers and comparing their accuracy with other al-
ternatives. One piece of such work presents the PCX clas-
sifier [22] relying on the PC algorithm [23] for identifying
the Markov blanket gradually. Similar work investigates the
variants of IAMB for composing classifiers and compares
between them.

Our work contributes the growing line of work on
Markov blanket classifiers. We study several classifiers us-
ing Markov blanket as feature selection method, and more
importantly we point out the limitation of the enhanced clas-
sifiers that is challenged by thefaithfulness assumption
behind the Markov blanket discovering algorithm.

3 The Framework

We describe a classification framework that accommo-
dates both a generic classifier and a feature selection method
using a Markov blanket induction algorithm. In this section,
we detail the IAMB algorithm and discuss its limitations.

A general classification framework is illustrated in
Fig. 1. Similar to the selection of classifiers, the feature
selection method can use any of available Markov blanket
induction algorithms. Note that the IAMB is a basic al-
gorithm that is currently proved correct and sound, and is
exhaustively tested in the literature [19].

Markov Blanket Induction 

Algorithms

(IAMB, its variants, )

Classifiers

(Naive Bayes, TAN, Id3, 

C4.5, ...)

Selected 

Features
Data Class

Figure 1. A framework classifies the input
data instances by using a Markov blanket in-
duction algorithm as feature selection. We
select the IAMB algorithm in this paper. The
intermediate results are selected features
discovered by the IAMB, which is a minimal
subset of relevant features.

The IAMB algorithm discovers a unique Markov blan-
ket,MB(T ), of the target variableT (also called theclass

variable in the classification) given data instances in the
data setD. The algorithm takes an incremental strategy by
starting an empty set and then gradually adding the Markov
blanket elements. It comprises two steps: the growing phase
and the shrinking phase. We show the IAMB algorithm in
Fig. 2.

The growing step finds all possible nodes that have a
strong dependency with the target variableT (lines 2-6).
It measures the dependency using the conditional mutual
informationMI(v, T |MB(T )) (line 3). Other association
functions could replace the information theoretical based
measurement. To decide which variable shall be included
into the initial Markov blanket,we use a conditional in-
dependence test (lines 4-5). One useful heuristic method
finds initial Markov blanket variables through a threshold
value [24]. The growing step terminates when no more new
variables are added into the Markov blanket. It implies that
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IAMB( T ; D)

1: AssignMB(T ) = ∅

Growing Phase: Add true positives toMB(T )

2: Repeat
3: Findv maxv∈(V −{T}−MB(T ))MI(v, T |MB(T ))

⊲ V : a set of features inD
4: IF Not CondInd(v, T |MB(T )) THEN
5: MB(T ) = MB(T ) ∪ {v}
6: Until MB(T ) does not change

Shrinking Phase: Remove false positives fromMB(T )

7: For v ∈ MB(T ) do
8: IF CondInd(v, T |MB(T ) − {v}) THEN
9: MB(T ) = MB(T ) − {v}
10: ReturnMB(T )

Figure 2. The IAMB algorithm utilizes two
phases, growing and shrinking, to find a cor-
rect Markov blanket for the target variable T .

the set is complete and no more variable could contribute
the knowledge to the target variableT given the current
Markov blanket.

As the computation of conditional mutual information
relies on the set of Markov blanket that is formed as far (line
3), the false positives occurs in the growing phase. A vari-
able that has the largest mutual information given the known
Markov blanket is included in the current step; however, it
would not be the one when the Markov blanket evolves over
time. Thus, it is necessary to have the shrinking step to re-
move false positives from the built Markov blanket.

The shrinking step tests the conditional independence,
CondInd(v, T |MB(T ) − {v}), between each variablev
and the target variableT given the remaining Markov blan-
ket (line 8). Consequently, the false positives are removed
from the Markov blanket gradually. We illustrate the two
steps in one toy example below.

Example: Given the sampled data from Bayesian net-
work (in Fig. 3), wherec5 is the target variable, we assume
the order of node follows the list{c1, c4, c2, c3, c6, c7, c8}.
In the growing phase, we firstly addc1 given the empty
MB(T ). Subsequently, we addc4 givenMB(T ) = {c1}.
Following similar procedures in the growing step, we in-
cludec2, c3, c6, c7 into theMB(T ). Finally, we don’t count
c8 since it does not pass the conditional independence test.

The shrinking phase starts with theMB(T ) =
{c1, c4, c2, c3, c6, c7}. The first variable,c1, is removed
since it is conditional independent fromT givenMB(T ) =
{c4, c2, c3, c6, c7}. Similar occurs to the variablec4. Other

c8 c1

c2 c3

c5 c4

c6

c7

Figure 3. A toy example of Bayesian network
illustrates the IAMB algorithm.

variables remain in the Markov blanket. The output is the
reduced Markov blanketMB(T ) = {c2, c3, c6, c7}. It is
correct as shown in Fig. 3.

The correctness of the IAMB algorithm is proved in [10].
However, similar to other Markov blanket or Bayesian net-
work discovery algorithms, the IAMB is sound under one
important assumptionfaithfulness [23]. A graph of
Markov blanket or Bayesian network is faithful to a joint
probability distribution over the set of features if and only if
every dependence entailed by the graph is also present in the
distribution (its details in [18]). In other words, if the distri-
bution generated by the data is notfaithful to the graph,
the IAMB algorithm may not ensure its optimality. We will
show this limitation in the experiment.

The IAMB algorithm has the worst running time of
O(|V |2 × |D|) where |V | is the number of features and
|D| the number of data instances. Many variants attempt
to make the IAMB more efficient by chunking the set
of features or ordering the test sequence in the growing
phase [21].

4 Experimental Results

In this section, we report the results of analysis of the
data from various sources. We firstly demonstrate the merit
of the Markov blanket using the IAMB algorithm on the
classification. We also compare between the correlation
based attribute selection (CFs) [25] in Weka1 by showing
the performance averaged over cross-validation runs. Then,
we use a couple of data sets to exhibit the limitations of
using the IAMB in the feature selection oriented to the clas-
sification task.

Before proceeding to the result analysis, we describe
three data sets and relevant parameter settings in Table 1.

1http://www.cs.waikato.ac.nz/ml/weka/
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Classifier All Features IAMB CFs
Naive 76.21% 79.75% 78.15%
Bayes
TAN 78.32% 79.98% 78.91%

Id3 76.14% 79.13% 78.92%
C4.5 77.65% 79.29% 79.76%
KDB 78.10% 79.24% 79.14%

(K =2)

(a) Insurance Data Set

Classifier All Features IAMB CFs
Naive 89.14% 91.12% 91.23%
Bayes
TAN 90.21% 93.31% 88.47%

Id3 88.35% 93.49% 89.98%
C4.5 89.90% 92.09% 86.61%
KDB 86.12% 93.12% 87.31%

(K =2)

(b) Alarm Data Set

Classifier All Features IAMB CFs
Naive 89.20% 93.90% 91.22%
Bayes
TAN 92.28% 94.18% 93.94%

Id3 91.49% 94.32% 91.23%
C4.5 94.12% 94.12% 91.14%
KDB 92.38% 93.84% 91.17%

(K =2)

(c) Headache Data Set
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Figure 4. ( a, b, c) Performance of the framework either without pruning the fe atures or using either the
IMAB or CFs as the feature selection method. ( d) summarizes the global performance by averaging
results over the three data sets.

Dataset Insurance Alarm Headache
Features 27 37 12

Sample Size 9000 6500 1000
Class Accident X35 Ha-Ho

Table 1. Data sets and the parameter settings
in the IAMB improvement experiment.

The data sets are taken from benchmarks in the Bayesian re-
search field. The insurance network estimates the expected
claim cost for car insurance policyholder [26]. The alarm
domain is compiled by a multiply connected Bayesian net-
work representing the uncertain relationships among some
relevant propositions in the intensive-case unit (ICU) [27].
The headache network [17] studies the involved causes
yielding the corresponding headache symptom2. It is well
known that causal relations exist among features within
these three data sets. Hence, thefaithfulness assumption
holds in executing the IAMB algorithm.

We experiment with the framework (in Fig. 1) on three
data sets:Insurance, Alarm, andHeadache. We also
replace the IAMB with theCFs in the feature selection
process that is noticed as one of effective attribute selec-

2http://www.hugin.com

tion methods in Weka, and compare between them. In ad-
dition, we show the classification accuracy when no any at-
tribute/feature is pruned from the data set. We use several
general classifiers such as Naive Bayes, TAN, Id3, C4.5 and
KDB 3. The results are shown in Fig. 4

We observe that the classification accuracy is improved
when the feature selection method is used to preprocess the
data set. The performance of the IAMB outperforms the
CFs selection method when both of them are used to prune
the available features for the classification. To make a fur-
ther investigation, we found that theCFs may not return
a correct set of relevant features. For example, theCFs

selected one more feature in theInsurance data set. It
may be due to the heuristic of theCFs that measures the
relevance of features individually on the correlation to the
class. We note that the classifiers differ in the classification
accuracy4; however, their performance is improved steadily
when the IAMB algorithm is used for selecting relevant fea-
tures.

The correctness of the IAMB algorithm relies on the
faithfulness assumption. The assumption does not al-
ways hold in all types of data sets. Consequently, the IAMB
algorithm could not produce correct features that are indeed

3After several simulations, we set the parameterk =2 that gave the
best results

4Discussion of classification performance of various classifiers is be-
yond the scope of this paper. Details in [28].
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Classifier All Features IAMB CFs
Naive 82.19% 86.18% 87.98%
Bayes
TAN 81.23% 86.92% 86.18%

Id3 79.11% 81.76% 83.90%
C4.5 79.98% 84.11% 82.45%
KDB 80.19% 82.75% 85.91%

(K =2)

(a) LRS Data Set

Classifier All Features IAMB CFs
Naive 91.18% 92.34% 92.93%
Bayes
TAN 91.98% 92.03% 93.11%

Id3 87.12% 86.11% 87.23%
C4.5 89.89% 88.38% 89.97%
KDB 91.24% 92.78% 93.47%

(K =2)

(b) TIC Data Set

Figure 5. Performance of the framework when a data set does no t obey the faithfulness assumption.

Dataset LRS TIC
Features 85 86

Sample Size 531 5822
Class FR49 Caravan

Table 2. Data sets and the parameter settings
in the experiments in Fig. 5 .

relevant to the class or it may be insufficient to remove all
irrelevant features, which definitely affects the final classi-
fication accuracy. We report such limitations over two data
sets,LRS andTIC, in Fig. 5. Both the LRS and TIC data
sets reside in the UCI repository5. The LRS data is a subset
of the higher quality low resolution observations taken be-
tween 12h and 24h right ascension. The TIC data contains
the complete set of possible board configurations at the end
of tic-tac-toe games. Note that the domain knowledge im-
plies no causal relations among features in the selected data
sets.

The results show the IAMB algorithm is not so effective
as theCFs method on improving the final classification
performance. However, the benefit of using the IAMB is
still visible since the selection method prunes many irrele-
vant or redundant features that introduce noise in the classi-
fication. To the best of our knowledge, this is the first piece
of work empirically showing the limitations of the IAMB
algorithm for the classification by challenging its assump-
tion although some effort has been invested into a theoreti-
cal discussion.

5 Discussion and Conclusion

We have shown that the classification performance is im-
proved when a Markov blanket induction algorithm is firstly
used for pruning irrelevant features. It is mainly because

5http://archive.ics.uci.edu/ml/

the IAMB algorithm predicts a minimal set of truly rel-
evant features. In contrast to previous work on Markov
blanket classifiers, we do not directly use the discovered
Markov blanket structure as a classifier for the final classifi-
cation, but feed the Markov blanket predictors into a gen-
eral classifier and empirically study its improvement. In
addition, we challenge thefaithfulness assumption be-
hind the Markov blanket induction algorithm. We shall note
that most of studied domains may have causal relations be-
tween features so that the assumption is followed. However,
we still need to be aware of possible consequences when a
Markov blanket is misused as a feature selection method.
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