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Abstract

Interactive influence diagrams (I-IDs) offer a transpar-
ent and semantically clear representation for the decision-
making problem in multiagent settings. They ascribe proce-
dural models such as IDs and I-IDs to the behavior of other
agents. Procedural models offer the benefit of understand-
ing how others arrive at their behaviors. However, as model
spaces are often bounded, the true models of others may not
be present in the model space. In addition to considering
the case when the true model is within the model space, we
investigate the realistic case when the true model may fall
outside the space. We then seek to identify models that are
relevantto the observed behaviors of others and show how
the agent may learn to identify these models. We evaluate
the performance of our method in two repeated games and
provide results in support.

1 Introduction

Interactive influence diagrams (I-IDs; Doshi, Zeng, &
Chen [5]) are graphical models of decision-making in un-
certain multiagent settings. I-IDs generalize influence di-
agrams (IDs; Tatman & Shachter [14]) to make them ap-
plicable to settings shared with other agents, who may act,
observe and update their beliefs. I-IDs and their sequen-
tial counterparts, I-DIDs, contribute to a growing line of
work that includes multiagent influence diagrams (MAIDs;
Koller & Milch [8]), and more recently, networks of in-
fluence diagrams (NIDs; Gal & Pfeffer [7]). All of these
formalisms seek to explicitly and transparently model the
structure that is often present in real-world problems by de-
composing the situation into chance and decision variables,
and the dependencies between the variables.

I-IDs ascribeproceduralmodels to other agents – these
may be IDs, Bayesian networks (BNs), or I-IDs themselves
leading to recursive modeling. Besides providing intuitive
reasons for the strategies, procedural knowledge may help
preclude certain strategies of others, deeming them impos-

sible because of the structure of the environment. As agents
act and make observations, beliefs over others’ models are
updated. With the implicit assumption that the true model
of other is contained in the model space, I-IDs use Bayesian
learning to update beliefs, which gradually converge.

However, in the absence of this assumption, Bayesian
learning is not guaranteed to converge and in fact, may be-
come undefined. This is significant as though there are
uncountably infinite numbers of agent functions, there are
only countable computable models. Hence, theoretically it
is likely that an agent’s true model may not be within the
model space. This insight is not new; it motivated Suryadi
and Gmytrasiewicz ([13]) to modify the IDs ascribed to oth-
ers when observations of other’s behaviors were inconsis-
tent with the model space during model identification.

An alternative to considering candidate models is to re-
strict the models to those represented using a modeling
language and directly learn, possibly approximate, mod-
els expressed in the language. For example, Carmel and
Markovitch ([2]) learn finite state automatons to model
agents’ strategies, and Sahaet al. ([11]) learn Cheby-
chev polynomials to approximate agents’ decision func-
tions. However, the representations are non-procedural and
the learning problems complex.

In this paper, we consider the realistic case that the true
model may not be within the bounded model space in an
I-ID. In this context, we present a technique that identifies
a model or a weighted combination of models whose pre-
dictions arerelevantto the observed action history. Using
previous observations of others’ actions and predictions of
candidate models, we learn how the predictions may relate
to the observation history. In other words, we learn toclas-
sify the predictions of the candidate models using the pre-
vious observation history as the training set. Thus, we seek
the hidden function that possibly relates the candidate mod-
els to the true model.

We then update the likelihoods of the candidate mod-
els. As a Bayesian update may be inadequate, we utilize
the similarity between the predictions of a candidate model



and the observed actions as the likelihood of the model. In
particular, we measure themutual informationof the pre-
dicted actions by a candidate model and the observed ac-
tion. This provides a natural measure of the dependence
between the candidate and true models, possibly due to
some shared behavioral aspects. We theoretically analyze
the properties and empirically evaluate the performance of
our approach on multiple problem domains modeled using
I-IDs. We demonstrate that an agent utilizing the approach
gathers larger rewards on average as it better predicts the
actions of others.

2 Background

We briefly describe interactive influence diagrams (I-
IDs; Doshi, Zeng, & Chen [5]) for modeling two-agent in-
teractions and illustrate their application using a simpleex-
ample. We also discuss Bayesian learning in I-IDs for iden-
tifying models and point out a limitation.

2.1 Overview of Interactive Influence Di-
agrams

Syntax and Solution In addition to the usual chance, de-
cision, and utility nodes, I-IDs include a new type of node
called themodelnode (hexagon in Fig. 1(a)). The probabil-
ity distribution over the model node represents an agent, say
i’s, belief over the candidate models of the other agent. In
addition to the model node, I-IDs differ from IDs by having
a chance node,Aj , that represents the distribution over the
other agent’s actions, and a dashed link, called apolicy link.
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Figure 1. (a) Generic I-ID for agenti situated with one
other agentj. The hexagon is the model node whose struc-
ture we show in(b). Members of model node may be
IDs, BNs or I-IDs themselves (m1

j , m
2
j ; not shown here for

simplicity) whose decision nodes are mapped to the corre-
sponding chance nodes (A1

j , A2
j ).

The model nodeMj,l−1 contains as its values the alter-
native computational models ascribed byi to the other agent
j at a lower level,l − 1. Formally, we denote a model of
j as mj,l−1 within an I-ID. A model in the model node,

for example, may itself be an I-ID, in which case the re-
cursion terminates when a model is an ID or a BN. We ob-
serve that the model node and the dashed policy link that
connects it to the chance node,Aj , could be represented as
shown in Fig. 1(b). Once an I-ID or ID ofj is solved and
the optimal decisions are determined, the decision node is
transformed into a chance node1. The chance node has the
decision alternatives as possible states and is given a prob-
ability distribution over the states. Specifically, ifOPT is
the set of optimal actions obtained by solving the I-ID (or
ID), thenPr(aj ∈ A1

j ) = 1

|OPT | if aj ∈ OPT , 0 other-
wise. The states ofMod[Mj ] denote the different models
of j. The distribution overMod[Mj ] is i’s belief overj’s
candidate models (model weights) given the physical state
S. The conditional probability distribution (CPD) of the
chance node,Aj , is amultiplexerthat assumes the distribu-
tion of each of the action nodes (A1

j , A
2

j ) depending on the
state ofMod[Mj]. In other words, whenMod[Mj ] has the
statem1

j , the chance nodeAj assumes the distribution of
A1

j , andAj assumes the distribution ofA2

j whenMod[Mj ]

has the statem2

j .
Solution of an I-ID proceeds in a bottom-up manner, and

is implemented recursively. We start by solving the lower
level models, which are traditional IDs or BNs. Their solu-
tions provide probability distributions over the other agents’
actions, which are entered in the corresponding chance
nodes found in the model node of the I-ID. Given the dis-
tributions over the actions within the different chance nodes
(one for each model of the other agent), the I-ID is trans-
formed into a traditional ID. During the transformation, the
CPD of the node,Aj , is populated such that the node as-
sumes the distribution of each of the chance nodes depend-
ing on the state of the node,Mod[Mj ]. The transformed
I-ID is a traditional ID that may be solved using the stan-
dard expected utility maximization method [12].
Illustration We illustrate I-IDs using an example applica-
tion to the public good (PG) game with punishment (Ta-
ble 1) explained in detail in [6]. Two agents,i andj, must
either contribute some resource to a public pot or keep it for
themselves. To make the game more interesting, we allow
agents to contribute the full (FC) or a partial (PC) por-
tion of their resources though they could defect (D) with-
out making any contribution. The value of resources in the
public pot is shared by the agents regardless of their actions
and is discounted byci for each agenti, whereci ∈ (0, 1)
is the marginal private return. As defection is a dominating
action, we introduce a punishmentP to penalize the de-
fecting agents and to promote contribution. Additionally,a
non-zero costcp of punishing is incurred by the contributing
agents. For simplicity, we assume each agent has the same
amount,XT , of private resources and a partial contribution

1If j ’s model is a BN, a chance node representingj ’s decisions will be
directly mapped into a chance node in the model node.
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P ) (XT ,XT )

Table 1. PG game with punishment. Based on punishment,P , and marginal return,ci, agents may choose to contribute than
defect.

is 1

2
XT .

We let agentsi andj play the PG game repeatedly a finite
number of times and aim for larger average rewards. After
a round, agents observe the simultaneous actions of their
opponents. Except for the observation of actions, no addi-
tional information is shared between the agents. As discov-
ered in field experiments with humans [1], different types
of agents play PG differently. To act rationally,i ascribes
candidate behavioral models toj. We assume the models
are procedural taking the form of IDs and BNs.
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Figure 2. Example level 1 I-ID for the repeated PG game with

four models ascribed toj. The dashed arrows represent the map-

ping between decision or chance nodes inj ’s models and chance

nodes in the model node.

For illustration, let agenti consider four models of
j (m1

j , m2

j , m3

j , andm4

j ) in the model node at timet, as
shown in Fig. 2. The first two models,m1

j and m2

j , are
simple IDs where the chance nodeAi,〈1,··· ,t−1〉 represents
the frequencies of the different actions of agenti in the
game history (from1 to time t − 1). However, the two
IDs have different reward functions in the value node. The
modelm1

j has a typical low marginal private return,cj , and
represents a reciprocal agent who contributes only when it
expects the other agent to contribute as well. The model
m2

j has a highcj and represents an altruistic agent who
prefers to contribute during the play. The third model,m3

j ,
is a BN representing thatj’s behavior relies on its own ac-
tion in the previous time step (Aj,t−1) andi’s previous ac-
tion (Ai,t−1). m4

j represents a more sophisticated decision
process. Agentj considers not only its own andi’s actions
at time t − 1 (chance nodesAi,t−1 andAj,t−1), but also
agenti’s actions at timet − 2 (Ai,t−2). It indicates thatj
relies greatly on the history of the interaction to choose its

actions at timet. We point out that these four models reflect
typical thinking of humans in the field experiments.

The weights of the four models form the probability dis-
tribution over the values of the chance node,Mod[Mj]. As
agenti is unaware of the true model ofj, it may begin by
assigning a uniform distribution toMod[Mj ]. Over time,
this distribution is updated to reflect any information thati

may have aboutj’s model.

2.2 Bayesian Model Identification in I-IDs

As we mentioned before,i hypothesizes a limited
number of candidate models of its opponentj, Mj =
{m1

j ,. . .,mp
j , . . .,mn

j }, and intends to ascertain the true
model,m∗

j , of j in the course of interaction. On observing
j’s action, where the observation in roundt is denoted by
ot

i, i may update the likelihoods (weights) of the candidate
models in the model node of the I-ID. Gradually, the model
that emerges as most likely may be hypothesized to be the
true model ofj. Here, we explore the traditional setting,
m∗

j ∈ Mj where the true model,m∗
j , is in the model space,

Mj, and move on to the challenge where the true model is
outside it,m∗

j 6∈ Mj, in Section 3.
Let o1:t−1

i be the history of agenti’s observations up to
time t − 1. Agent i’s belief over the models ofj at time

stept− 1 may be written as,Pr(Mj |o
1:t−1

i )
def
= 〈 Pr(m1

j ),
Pr(m2

j ),. . .,Pr(m∗
j ),. . ., Pr(mn

j ) 〉. If ot
i is the observa-

tion at timet, agenti may update its belief on receiving
the observation using a straightforward Bayesian process.
We show the update of the belief over some model,mn

j , in
Eq. 1.

Pr(mn
j |o

t
i) =

Pr(ot
i|m

n
j )Pr(mn

j |o
1:t−1
i )

∑
mj∈Mj

Pr(ot
i|mj)Pr(mj)

(1)

Here,Pr(ot
i|m

n
j ) is the probability ofj performing the ob-

served action given that its model ismn
j . This may be ob-

tained from the chance nodeAn
j in the I-ID of i.

Eq. 1 provides a way for updating the weights of models
contained in the model node,Mod[Mj], given the obser-
vation history. In the context of the I-ID, agenti’s belief
over the other’s models updated using the process outlined
in Eq. 1 will converge in the limit. Formally,

Proposition 1 (Bayesian Learning in I-IDs) If an agent’s
prior belief assigns a non-zero probability to the true model
of the other agent, its posterior beliefs updated using
Bayesian learning will converge with probability 1.



Proof of Proposition 1 relies on showing that the se-
quence of the agent’s beliefs updated using Bayesian learn-
ing is known to be a Martingale [4]. Proposition 1 then fol-
lows from a straightforward application of the Martingale
convergence theorem (§4 of Chapter 7 in Doob [4]).

The above result does not imply that an agent’s belief al-
ways converges to the true model of the other agent. This
is due to the possible presence of models of the other agent
that areobservationally equivalentto the true model. The
observationally equivalent models generate distinct behav-
iors for histories which are never observed.

3 Information-Theoretic Model Identifica-
tion in I-IDs

For computability purposes, the space of candidate mod-
els ascribed toj is often bounded. In the absence of prior
knowledge,i may be unaware whetherj’s true model,m∗

j ,
is within the model space. Ifm∗

j 6∈ Mj and in the absence of
observationally equivalent models, Bayesian learning may
be inadequate (Pr(ot

i|m
n
j ) in Eq. 1 may be 0 for allmn

j ).
As bounded expansions of the model space do not guaran-
tee inclusion of the true model, we seek to find a candidate
model or a combination of models from the space, whose
predictions arerelevantin determining actions ofj.

3.1 Relevant Models and Mutual Infor-
mation

As the true model may lie outside the model space, our
objective is to identify candidate models whose predictions
exhibit a mutual pattern with the observed actions of the
other agent. We interpret the existence of a mutual pattern
as evidence that the candidate model shares some behav-
ioral aspects with the true model. In order to do this, we
introduce a notion ofrelevancebetween a model inMj and
the true model,m∗

j . Let a∗
j be the observed action of the

other agentj andā∗
j denote any other action from its set of

actions. DefinePr(a1

j |a
∗
j ) as the probability that a candi-

date model ofj, mn
j , predicts actiona1

j whena∗
j is observed

in the same time step.

Definition 1 (Relevant Model) If for a model,mn
j , there

exists an action,a1

j : Pr(a1

j |a
∗
j ) ≥ Pr(a1

j |ā
∗
j ), wherea1

j ∈
OPT (mn

j ), thenmn
j is a relevantmodel.

Definition 1 formalizes the intuition that a relevant model
predicts an action that is likely to correlate with a particular
observed action of the other agent. In predictinga1

j , model
mn

j may utilize the past observation history. We note that
the above definition generalizes to a relevant combination
of models in a straightforward way. Given Def. 1, we need
an approach that assigns large probabilities to the relevant

model(s) in the nodeMod[Mj ] over time. We proceed to
show one way of computing these probabilities.

We begin by observing that the chance nodes,Mod[Mj ],
Aj and the mapped chance nodes,A1

j , A
2

j , . . ., form a BN,
as shown in Fig. 3(a). We seek the weights of models
in Mod[Mj ] that would allow the distribution overAj to
resemble that of the observed actions. Subsequently, we
may map the problem to one of classifying the predicted
actions of the individual models to the observed action ofj,
and using the classification function for deriving the model
weights. Because the candidate models are independent of
each other, the BN isnaiveand the classification reduces
to learning the parameters (CPDs) of the naive BN using
say, the maximum likelihood approach with Dirichlet pri-
ors. For multiple agents, the models may exhibit depen-
dencies in which case we learn a general BN. We show the
equivalent naive BN in Fig. 3(b).
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Figure 3. (a) The BN in the I-ID of agenti; (b) Equivalent

naive BN for classifying outcomes of candidate models to theob-

servation history;(c) Example of the training set used for learn-

ing the naive BN for PG. The actions in the last columnAj are

observations ofi, remaining columns are obtained from candidate

models.

As relevant models hint at possible dependencies with
the true model in terms of predicted and observed actions,
we utilize themutual information(MI) [3] between the
chance nodesAj and say,An

j , as a measure of the likeli-
hood of the model,mn

j , in Mod[Mj].

Definition 2 (Mutual Information) The mutual informa-
tion (MI) of the true model,m∗

j and a candidate model,mn
j ,

is computed as:

MI(mn
j , m∗

j )
def
= Pr(An

j |Aj)Pr(Aj)log[
Pr(An

j |Aj)

Pr(An
j
)

] (2)

Here, An
j is the chance node mapped from the model,

mn
j andAj are the observed actions generated by the true

model,m∗
j .

The termsPr(An
j |Aj), Pr(An

j ) andPr(Aj) are calcu-
lated from the CPDs of the naive BN. Note that the distri-
butions imply the possibility of both observed and predicted
actions as well as their relations in the history. Here, the ob-
served history ofj’s actions together with the predictions of
the models over time may serve as the training set for learn-
ing the parameters of the naive BN. We show an example



training set for PG in Fig. 3(c). Values of the columns,A1

j ,
A2

j , . . ., An
j are obtained by solving the corresponding mod-

els and sampling the resulting distributions if needed. We
utilize the normalized MI at each time step as the model
weights in the chance node,Mod[Mj ].

3.2 Theoretical Results

Obviously, modelmn
j is irrelevant if Pr(aj |a

∗
j ) =

Pr(aj |ā
∗
j ) for eachaj ∈ OPT (mn

j ). Then, we trivially
obtain the next proposition.

Proposition 2 If mn
j is irrelevant,MI(mn

j , m∗
j ) = 0.

As MI is non-negative, Proposition 2 implies that relevant
models are assigned a higher MI than irrelevant ones. To
enable further analysis, we compare the relevance among
candidate models.

Definition 3 (Relevance Ordering) Let a∗
j be some ob-

served action of the other agentj. If for two relevant
models, mn

j and m
p
j , there exists an action,a1

j , such
that Prmn

j
(a1

j |a
∗
j ) ≥ Prm

p

j
(a1

j |a
∗
j ) and Prmn

j
(a1

j |ā
∗
j ) ≤

Prm
p

j
(a1

j |ā
∗
j ), wherea1

j ∈ OPT (mn
j ) , OPT (mp

j ), the

subscriptmn
j or m

p
j denotes the generative model andā∗

j

denotes any other action of the true model, thenmn
j is a

more relevantmodel thanmp
j .

Given Def. 3, we show that models which are more rele-
vant are assigned a higher MI. Proposition 3 formalizes this
observation (the proof is not shown due to less space).

Proposition 3 If mn
j is a more relevant model thanmp

j

as per Definition 3 andm∗
j is the true model, thenMI

(mn
j , m∗

j ) ≥ MI (mp
j , m

∗
j ).

For the sake of completeness, we show that if the true
model,m∗

j , is contained in the model space, our approach
analogous to Bayesian learning will converge.

Proposition 4 (Convergence)Given that the true model
m∗

j ∈ Mj and is assigned a non-zero probability, the nor-
malized distribution of mutual information of the models
converges with probability 1.

The proof is intuitive and relies on the fact that the esti-
mated parameters of the naive Bayes converge to the true
parameters as the observation history grows (see chapter 3
of Rennie [10] for the proof when themaximum a posteriori
approach is used for parameter estimation). Proposition 4
then follows because the termsPr(An

j |Aj), Pr(An
j ) and

Pr(Aj) used in calculating the MI are obtained from the
parameter estimates.

Analogous to Bayesian learning, the distribution of MI
may not converge to the true model in the presence ofMI-
equivalentmodels inMj. In particular, the set of MI-
equivalent models is larger and includes observationally

equivalent models. However, consider the example where
j’s true strategy is to always selectFC, and letMj include
the true model and a candidate model that generates the
strategy of always selectingD. Though observationally dis-
tinct, the two candidate models are assigned equal MI due
to the perceived dependency between the action of selecting
D by the candidate and selectingFC by the true one. How-
ever, in nodeAj , the actionD is classified to the observed,
FC.

3.3 Algorithm

We briefly outline the algorithm for model identification
in Fig. 4. In each roundt, agenti receives an observa-
tion of its opponentj’s action (line 1). This observation
together with solutions from candidate models ofj (line
2), compose one sample in the training setTr (line 3; see
Fig. 3(c)). The training set is used for learning the param-
eters of the naive BN (line 4) and subsequently for com-
puting the model weights in the I-ID. Given the learned pa-
rameters, we compute the MI of each candidate modelm

p
j

andm∗
j (line 6). The posterior probabilities (from line 7) are

also used in the CPD of the chance nodeAj in the I-ID (line
8). Notice that the CPD,Pr(Aj |A

p
j , m

p
j ), describes the re-

lation between the predicted actions by candidate models
and the observed actions. In other words, it reflects the clas-
sification of the predicted actions. The normalized MI is
assigned as the CPD of the chance nodeMod[Mj ] in the I-
ID (line 10). This distribution represents the updated weight
over the candidate models ofj. Given the updated model
weights and the populated CPDs of the chance nodeAj , we
solve the I-ID of agenti to obtain its action.

Model Weight Update
Input : I-ID of agenti, observationot

i , training setTr

1. Agenti receives an observationot
i

2. Solve the model,mp
j,t (p = 1, . . . , n) to get actions for the

chance nodesAp
j,t (p = 1, · · · , n)

3. Add (A1
j,t,· · · , A

p
j,t, · · · , An

j,t, ot
i) as a sample into

the training setTr
4. Learn the parameters of thenaive BNincluding the chance

nodes,A1
j ,. . ., An

j , andAj

5. For eachA
p
j (p = 1, . . . , n) do

6. ComputeMI(mp
j , m∗

j ) using Eq. 2
7. ObtainPr(Aj |A

p
j ) from the learnednaive BN

8. Populate CPDs of the chance nodeAj usingPr(Aj |A
p
j , m

p
j )

9. NormalizeMI(mp
j , m∗

j )

10. Populate CPD of the chance nodeMod[Mj ] usingMI

Figure 4. Algorithm revises the model weights in the
model node,Mod[Mj ], on observingj’s action using MI as
a measure of likelihood, and populates CPDs of the chance
node,Aj , using the learned naive BN.

4 Performance Evaluation
We evaluate the effectiveness of the algorithm outlined

in Fig. 4 in the context of the repeated PG game and re-
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Figure 5. Performance profiles for both, the traditional setting,m∗
j ∈ Mj , and the realistic case,m∗

j 6∈ Mj , in the repeated PG
game. Notice that, for the case ofm∗

j 6∈ Mj , the model weight assigned using BL drops to zero.

peated one-shot negotiations as in [11] though simplified.
As we mentioned previously, if the true model falls outside
the model space (m∗

j 6∈ Mj), Bayesian learning (BL) may
be inadequate. A simple adaptation of BL (A-BL) would be
to restart the BL process when the likelihoods become zero
by assigning candidate models prior weights using the fre-
quency with which the observed action has been predicted
by the candidate models so far. Additionally, we utilize
another information-theoretic measure, the KL-Divergence
(KL), to assign the likelihood of a candidate model. Lower
is the KL between distributions overAn

j andAj , larger is
the likelihood of the corresponding model,mn

j .
We let agentsi andj play 1000 rounds of each game and

reporti’s average rewards. To facilitate analysis, we also
show the changing model weights across rounds that are
assigned to the relevant models for the case wherem∗

j 6∈
Mj. Due to lack of space, we do not show the changing
model weights for the case wherem∗

j ∈ Mj .

4.1 Repeated Public Good Game

In the PG game, we utilize the I-ID in Fig. 2 to model
the interaction. For the setting,m∗

j ∈ Mj , we let the model
space,Mj , contain three models,m1

j , m3

j , andm4

j , and let
agentj play using the true model,m4

j . Fig. 5(a) demon-
strates the favorable performances of MI, BL and A-BL,
which quickly converge to the true model and gain almost
the same average rewards.

For evaluation of the case wherem∗
j 6∈ Mj , i consid-

ers three candidate models ofj, m2

j , m3

j , andm4

j , while j

uses the reciprocal modelm1

j . We observe that MI signif-
icantly outperforms other updating methods obtaining the
largest average rewards over the long run (Fig. 5(b)). This
is because MI finds the deliberative model,m4

j , to be most
relevant to the true model,m1

j . Modelm1

j expectsi to per-
form its most frequently observed action and matches it, an
aspect that is best shared bym4

j , which relies the most on
other’s actions. We note that MI does not monotonically
increase but assigns the largest weight to the most relevant
model at any point in time. Notice that bothm1

j andm4

j

consider actions of the other agent, and identical actions of
the agents as promoted by a reciprocal model are more valu-
able. Both the A-BL and KL methods settle on the altruistic
model,m2

j , as the most likely.

4.2 Repeated One-shot Negotiations

A seller agenti wants to sell an item to a buyer agentj.
The buyer agent bargains with the seller and offers a price
that ranges fromLow, Mid, to High. The seller agent de-
cides whether toaccept the offer (A), toreject it immedi-
ately (R), or tocounter the offer (C). Ifi counters the offer,
it expects a new price offer from agentj. Once the nego-
tiation is completed successfully or fails, the agents restart
a new one on a different item; otherwise, they continue to
bargain. Figure 6(a) shows the payoffs of the seller agent
when interacting with the buyer. The seller aims to profit
in the bargaining process. As in most cases of negotiations,
here the seller and the buyer are unwilling to share their
preferences with the other. For example, from the perspec-
tive of the seller, some types of buyer agents have different
bargaining strategies based on their risk preferences.

j, i A R C
Low -1 1 1
Mid 1 0 1

High 3 1 -1

Negi,t

Ri

Offerj,t
3

Mod[Mj]
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Riskj,t
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2 mj
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Figure 6. (a) Single shot play of a negotiation between
the selleri and buyerj. The numbers represent the payoffs
of the selleri. (b) I-ID for the negotiation with four models
ascribed toj.

The idea of using probabilistic graphical models in mul-
tiagent negotiation was previously explored in [9]. In a
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Figure 7. Performance profiles of the MI approach and the changing model weights while repeatedly playing the negotiation
game.

similar vein, we model agenti using the I-ID shown in
Fig. 6(b). Analogous to [11], we consider four types of
the buyer agentj. Each of them is represented using a BN.
They differ in the probability distributions for the chance
nodesRiskthat represents the risk attitude andUrg, which
represents the urgency of the situation to the agent. Let
modelm1

j represent a buyer of a risk averse type. A risk
averse agent has an aversion to losing the deal and hence
always proposes a high offer. The second model,m2

j , is a
risk seeking buyer that adopts a risky strategy by intending
to offer a low price. Modelm3

j is a risk neutral buyer that
balances its low and high offers in the negotiation. The final
model,m4

j , is a buyer that is risk neutral but in an urgent sit-
uation, and is eager to acquire the item. Consequently, it is
prone to offering a high price, though its actions also depend
on the seller. Note that the chance nodeNegi,t−1 represents
i’s previous action in the negotiation.

Let agenti consider three candidate models forj, m1

j ,
m2

j , andm3

j , and agentj uses modelm1

j for the setting,
m∗

j ∈ Mj . Fig. 7(a) reveals that all the different updating
methods correctly identify the true model after some steps
and gather similar rewards. Asj is risk averse, it often of-
fers a high price that the seller chooses to accept incurring
a payoff of 3.

In the case wherem∗
j 6∈ Mj, agentj plays the game

using the model,m4

j , and i assumes the remaining three
models as candidates. Notice that MI eventually assigns
the largest weight (≈ 0.63) to the risk averse agent,m1

j ,
that always offers a high price in the negotiation. This be-
havior is consistent with the model,m4

j , that represents an
urgent buyer who is also prone to offering a high price.
Consequently, MI obtains better average rewards than other
methods. The remaining two candidate models are MI-
equivalent. In comparison, both KL and A-BL methods
eventually identify the risk neutral agentm3

j , which leads
to lower average rewards.

5 Discussion

I-IDs use Bayesian learning to update beliefs with the
implicit assumption that true models of other agents are
contained in the model space. As model spaces are of-

ten bounded, true models of others may not be present in
the space. We show that distribution of MI of the candi-
date models learned by classifying their predictions exhibits
a performance comparable to Bayesian learning when the
true model is within the set of candidate models. More im-
portantly, the MI approach improves on other heuristic ap-
proaches for the plausible case that true model is outside
the model space. Thus, the approach shows potential as a
general purpose candidate technique for identifying models
when we are uncertain whether the model space is exhaus-
tive. However, an important limitation is that the space of
MI-equivalent models is large. While it does not affect per-
formance, it merits further investigation.
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