Tank War Using Online Reinforcement Learning

Kresten Toftgaard Andersen, Yifeng Zeng, Dennis Dahl Christensen and Dung Tran
Dept. of Computer Science, Aalborg University
DK-9220 Aalborg, Denmark
line 3: City, Country
{krest,yfzeng} @cs.aau.dk

Abstract—Real-Time Strategy(RTS) games provide a chal-
lenging platform to implement online reinforcement learn-
ing(RL) techniques in a real application. Computer as one
player monitors opponents’(human or other computers) strate-
gies and then updates its own policy using RL methods. In this
paper, we propose a multi-layer framework for implementing
the online RL in a RTS game. The framework significantly
reduces the RL computational complexity by decomposing the
state space in a hierarchical manner. We implement the RTS
game - Tank General, and perform a thorough test on the
proposed framework. The results show the effectiveness of our
proposed framework and shed light on relevant issues on using
the RL in RTS games.

Keywords-Reinforcement Learning;
Game

Real-Time Strategy

I. INTRODUCTION

A Real-Time Strategy (RTS) game is a computer game
in which players intend to defeat opponents by gathering
resources, building bases, and exploring game fields. Gen-
erally, the RTS setting contains a large number of game
states and complex relations among them. The data about
both players’ behaviors and game fields accumulates only
when the game is moving on. Thus, a RTS application
may frustrate conventional reinforcement learning (RL) [3]
techniques due to the curse of dimensionality on the state
space and insufficient data.

Most of game developers use the RL or other learning
algorithms in the test phase of game programming or around
this phase [2]. To the best of our knowledge, most of
current computer game do not implement the online RL
when players start the game. This may be firstly due to
the RL’s requirement on a large amount of computation
which usually is not allowed online. Secondly, the online
RL utilization puts computer players out of the control of
game developers since unexpected paths toward the game
goal may occur in the course of games. Hence, implementing
various online RL techniques is more desirable in computer
games, but challenges the current game development.

We choose the RTS game as the platform for the online
RL experiment and propose several techniques for relieving
specific constraints of the RL implementation. We present a
multi-layer(e.g. hierarchical levels) RL framework that could
offer tractable computation online. The top layer provides
a general tactic through a RL system while the low layer

learns specific actions in the game. In addition, we introduce
a Profiler model into the multi-layer RL framework. The
Profiler identifies a type of opponents and then activates
the top level RL system to be configured with a new reward
function. The model is necessary since it would further
optimize the policy and speed up the RL convergence in
an early game stage.

We implement a RTS game called Tank General, where
two armies(blue and red) are fighting against each other in
a middle-size map full of uncertainty. We show that the
multi-layer RL framework could effectively speed up the RL
computation and generate strategic behaviors in the course
of games.

II. MULTI-LAYER RL FRAMEWORK

The RTS game is a sensible choice of game genre to
make the online RL within. Similar to the normal use, the
RL can take place before shipping off the game to the
customers. However, it would be more interesting and useful
to have the RL online and continue the learning even after
the game starts. The learning would allow computer players
to be more adaptive to the specific strategies of human
players. We will discuss main issues regarding the online RL
implementation in the RTS game. Our solutions will result
in a multi-layer RL framework together with a Profiler
model.

A. Fast Learning

The learning must be fast, meaning that computer players
must not seem dumb during the first several games, and
must quickly pick up some clues of what human players
are doing while playing the game. It may not consume a
large amount of processing power during or after a specific
game turn since this would annoy the players very much.
Learning fast means learning from a small amount of data,
which is always problematic due to the huge margin of
variation in the limited data. The learning shall be able to
recognize relevant data and only use them to update the
policy. The recognition is general difficult especially in the
early stage of games. One solution is to have computer
players create various profiles of opponents and provide
a method to identify a true type of the opponents . By

knowing the opponent’s type, the computer players would
learn counter-policies accordingly in a quick time.

B. Unit and Commander Level Policies

The RL is able to generate and update policies which
will adapt behaviors of computer players to real-time ac-
tions of human players. The policies could be placed into
different parts of the order hierarchy. Their placement must
be considered carefully since the consequence can affect the
gameplay in the most profound way.

The RL could be placed at the unit level so that each
individual unit learns from its surroundings. The learning
would be wasted when the units die. A number of problems
also arise if units do not synchronize their actions with
others. If one unit is going to explore a certain area, it makes
little sense that all other units are performing the same task.
On the other hand, the synchronization would result in the
deadlock problem since units are locked in decisions waiting
for others to take their decisions. A possible solution could
combine the synchronization with a central coordination
mechanism.

The RL placement at the commander level, being able to
give orders to the units and coordinate their actions, seems
another alternative. The consequence is that the commander
RL would have to collect data from all units and provide
a single policy to units. The orders of a pure commander
level RL are very precise and the number of orders becomes
extremely large. The RL would be asked almost instantly
after each order. The constant queries put much pressure on
the RL and the amount of data that the RL would collect to
generate policies may grow to be huge. Consequently, the
commander RL may lose a big picture on the game.

C. Our Solution

We consider RL at both the unit level and the commander
level in the RTS game, and provide a multi-layer RL frame-
work in Fig. 1. The right side of the framework represents
a hierarchical RL system which moves from the learning
of a general strategy downward to the learning of specific
behaviors. The top level RL learns a general strategy which
commands main activities of all units in the current game
stage. Under a general strategy, a specific RL system at
the low level is used for learning optimal actions that all
units can execute directly to counter opponents. Note that
the framework could contain more layers.

The left side of the framework, Pro filer, offers a mecha-
nism to identify the opponent type given current game states.
Subsequently, the Profiler system proposes a correspond-
ing reward function(predefined for each type of opponents)
to the top level RL on the right. We use Naive Bayesian
model [1] to classify opponents’ type over time. The utility
of using Naive Bayesian model to identify players’ types
is well studied in [4]. The parameters of Naive Bayesian
model are learned from data which are collected through

Profiler

RS

Game
State 1

Low(Action) Level
RL System 1

Low(Action) Level
RL System ...

Low(Action) Level
RL System M

Figure 1. The multi-layer RL framework contains both the
Profiler model and the RL in each level. The Profiler using
Naive Bayesian model identifies the player type and then provides
an appropriate reward function that becomes an input of the RL
in the top level. The RL at the top level learns a general strategy
that triggers one of the low level RLs for learning more specific
actions.

the game and characterize the state of the game as well as
opponents’ strategies in the history. Given a new observation
on the current game state, the opponent is classified into one
of three conventional character types, such as Aggressive,
Defensive, or Resource player, in the RTS game.

The framework is a conversion of a single layer RL system
by decomposing a large state space of games and separating
players’ general strategy from specific behaviors. The net
results generate a tractable state space for an individual RL
system, which avoids heavy computation online and speeds
up the RL convergence in the early stage of the gameplay.
Notice that we do not specify any specific RL technique, like
the SARSA or Q-learning, in the RL system. The framework
is a general architecture which can accommodate various RL
methods and implement them in a different layer.

III. EXPERIMENTAL RESULTS

We implemented the RTS game Tank General and thor-
oughly tested the proposed framework.

A. Game Description and Analysis

The game setting is a battlefield where two teams, referred
as the blue army and the red army respectively, are fighting
against each other and aiming to destroy the headquarters of
the other. Each team consists of five different types of units
which differ in both exploring ability and shooting power.
During the game each army may receive reinforcement
points which would be used to build new units or to
repair the headquarter. The resources called War Factory are
randomly located in the battlefield. The occupied resource
will give its owner more reinforcement points. In addition,
to increase the strategical elements in the game, we initialize
the battlefield covered by the fog of war. Both armies need to
make strategic manoeuvres by sending out scouting units to
explore the unknown areas. Screen shot of the Tank General
game is shown in Figs. 2.

Figure 2. The main frame shows units’ composition and locations
of the blue army in a small area of battlefield where one enemy
unit from the red army is intruding on the border of the fog of war.
The bottom-left corner records the unit statistic in both armies and
the bottom-right corner presents a mini-map. The mini-map zooms
out the whole battlefield and exhibits the location of the currently
explored area(with the red rectangular frame). Users can zoom in
any area in the mini-map.

We analyzed the Tank General game and got 20 unique
attributes by filtering out irrelevant features in the game.
Most of the attributes are around 2-3 states but up to 4
states, and the combination results in an extremely large
space(=181,395,528 states) which is intractable in a single
RL system. We divided the whole state space into 5 com-
ponents and built the multi-layer RL framework.

Similar to opponent modeling in a RTS game, we consider
three types of opponents, Aggressive, Defensive and
Resource, in the Profiler model. When a certain opponent
type is identified we change the reward function in the top
level RL. We have different reward sets, Anti— Aggressive,
Anti — Defensive and Anti — Resource, in the Tank
Generalgame.

The top level RL learns a general strategy among four: Ex-
plore, Defend, Attack Headquarters, and Attack Resources.
When the strategy is output from the top level the corre-
sponding low level RL is executed and learns specific actions
for units. For example, under the general strategy Explore,
the first RL system in the low level would be used to learn
actions such as BuildExploreUnit,ExploreRandomPosition,
ExplorelnfluenceMap and so on.

To have a thorough test, we design two computer players:
one uses the multi-layer (or single-layer) RL framework, and
the other adopts a script and plays the game in a consistent
manner. The scripted player could be Aggressive type
which attacks the enemy a lot, Defensive which is very
cautious and protective to headquarters, Resource which
focuses on capturing the resources. We have two computer
players compete for 500 games and compute the winning

percentage for each 25 games following the chronological
order. All curves in Figs. 3, 4 and 5 are the trend-lines
of all winning percentages(for 500 games) through a linear
regression. A normal game takes 9-25 minutes depending
on players.

B. Test 1: SARSA versus Q-learning

The first test aims for a comparison between two RL
techniques: the SARSA and the Q-learning. As we expect (in
Fig. 3) the computer game using the RL does really better
than the scripted player and the Q-learning technique out-
performs the SARSA, which verifies the online RL benefit
and fast convergence in the Q-learning. We will therefore
use the Q-learning as the RL technique in the subsequent
tests. Notice that the computer player using the SARSA has
a surprisingly decreasing tendency when it plays against the
Aggressive scripted player (the left chart in Fig. 3). This
may be due to much randomness involved in the playing
against the Aggressive scripted player. In general, the game
against the Aggressive player(average 9 minutes) is much
shorter than that against Resource(average 25 minutes). The
Aggressive type attacks its enemy as soon as it finds the
enemy headquarter and wins most of time; however, the
headquarter location is decided randomly when initializing
the game.

C. Test 2: Profiler versus Non-Profiler

The purpose of the second test is to demonstrate the
Profiler would improve the performance of the RL in the
Tank General game. Without the Profiler, the top level RL
uses a fixed reward function which is the same as the one in
a single layer RL framework. We show the results in Fig. 4.

We found that the multi-layer RL framework using the
Profiler performs clearly better against the Aggressive
scripted player and slightly better against Defensive. It
seems that the RL framework without the Pro filer achieves
better performance in the third case (the right chart in Fig. 4).
The Resource player focuses on capturing all resources
and defending for them while occasionally attacking its
opponents. This demands the Profiler to take some time to
identify the correct player type in the early game stage. We
notice that the RL using the Profiler steadily increases the
winning chance and performs equally well after 500 games.
Overall we conclude that the multi-layer RL framework
gains benefit from the using of Profiler model.

D. Test 3: Multi-layer RL versus Single layer RL

The third test demonstrates the performance of the multi-
layer RL framework comparing with the traditional RL
framework (single layer RL). The single layer RL framework
considers the whole state space together with all actions
in one RL system while the multi-layer RL decomposes
the state space and organizes individual RL systems in
two levels. Ideally the implementation of the single-layer

(a)AggressivePlayer (b)De fensive Player (¢)ResourcePlayer

Winning Percentage
a o o

& 3 2
T

@
3

Winning Percentage
@
3

Winning Percentage

fadtL TR
LA T
i T ST %
LE TPy

s
&

Q-Learning —+—

SARSA -+
50 L L L 1 L L L 40 L I I RS
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Game(s) Game(s) Game(s)

Figure 3. The Q-learning performs slightly better than the SARSA where the computer player using the multi-layer RL framework
competes with a scripted player of three types.

(a)AggressivePlayer (b)DefensivePlayer (c)ResourcePlayer

70 90 70

65 -

Winning Percentage
@
g
T
Winning Percentage
Winning Percentage

e
X
R
popss

i x:x..“..‘..,

e
e Profiler —+— Profiler —t— Profiler —t—

S Non-Profiler - Non-Profiler «+--+- Non-Profiler «--+-

50 . . . 0 55 . . . ? 40 . . . ?

) 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

Game(s) Game(s) Game(s)

Figure 4. The Profiler model improves the RL performance in the multi-layer RL framework. Notice that the Profiler shows the
benefit of modeling opponents.

(a)AggressivePlayer (b)De fensive Player (¢)ResourcePlayer
70 90 70
b 60 [
60T 80
o o o
g g nf g sof
§ 50 g 8
g 8 S b
2 & e g "
> s >
< “F S sl R
IR S = S ol speberd
0L B LI TP Keeerng, 40 TR e PR e s
Mult- Py & "y M e MY TR Iy JPRSTEE Sl Multi-layer —+—
”))) Single layer ------ %)) Single Iayer L T i)) Single layer -
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Game(s) Game(s) Game(s)

Figure 5. The multi-layer RL framework achieves better performance than the single layer one when both of them are used to compete
against the scripted players.

RL system shall consist of all 181,395,528 states in the strength of the RL utilization in computer games, and empit-
Tank General game. However, the space is so huge that the ically demonstrate the capability of our proposed framework.
learning is extremely slow online. We therefore reduce the
state space by filtering out less relevant states.

As the results(in Fig. 5) show that the single layer RL
framework performs quite poor compared with the multi-
layer RL framework. It results from the reduced state space
even though we have a careful selection on the relevant REFERENCES
states.

ACKNOWLEDGMENT

We would like to thank Anders Buch for participating in this
project and useful discussions on implementing the Tank General
game.

[1] D. Geiger, M. Goldszmidt, G. Provan, P. Langley, and
P. Smyth. Bayesian network classifiers. In Machine Learning,

131-1
[2] ?.a%esLa?{rd a?l%l 9\Zan Lent. Machine learning for computer

IV. CONCLUSION

Computer games are a useful arena for the RL application.
ames,. In Game, Developers Conference, 2005.
One of the main difficulty on using the RL is due to an [3] R sufton and A EEAS, %@mjp rcement Learning - An

intractable state space in games. We propose a multi-layer [4] @lt}%gl ““é%’%[ghﬁcl)v%tr lkn m’rlormatlon theoretic approach to
RL framework by decomposing the large state space and model 1dent1ﬁcat10n in interactive influence diagrams. In IAT,
then building several small RL systems which reside in pages 224-230, 2008.

different layers. The decomposition is not subjective, but

distinguishes different granularities of strategies which offer

an appropriate mechanism for controlling units’ behaviors

online. The results on the Tank General game verify the

