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Abstract

Interactive dynamic influence diagrams (I-DIDs)
are graphical models for sequential decision mak-
ing in partially observable settings shared by other
agents. Algorithms for solving 1-DIDs face the
challenge of an exponentially growing space of
candidate models ascribed to other agents, over
time. Previous approach for exactly solving I-
DIDs groups together models having similar solu-
tions into behaviorally equivalent classes and up-
dates these classes. We present a new method that,
in addition to aggregating behaviorally equivalent
models, further groups models that prescribe iden-
tical actions at a single time step. We show how to
update these augmented classes and prove that our
method is exact for some cases. The new approach
enables us to bound the aggregated model space by
the cardinality of other agents’ actions. We evalu-
ate its performance and provide empirical results in
support.

Introduction
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MAIDs to include agents’ uncertainty over the game being
played and over models of other agents. Both MAIDs and
NIDs provide an analysis of the game from an external view-
point, and adopt Nash equilibrium as the solution concept.
Specifically, MAIDs do not allow us to define a distribution
over non-equilibrium behaviors of other agents. Furthermore,
their applicability is limited to static single play games. Inter-
actions are more complex when they are extended over time,
where predictions about others’ future actions must be made
using models that change as the agents act and observe. |-
DIDs seek to address this gap by offering an intuitive way to
extend sequential decision making to multiagent settings.

As we may expect, I-DIDs acutely suffer from both the
curses of dimensionality and histofPineauet al., 2004.
This is because the state space in I-DIDs includes the models
of other agents in addition to the traditional physical states.
These models encompass the agents’ beliefs, actions and sen-
sory capabilities, and preferences, and may themselves be
formalized as I-DIDs. The nesting is terminated at @
level where the other agents are modeled using DIDs. As the
agents act, observe, and update beliefs, I-DIDs must track the
evolution of the models over time. Consequently, I-DIDs not
only suffer from the curse of history that afflicts the mod-
eling agent, but more so from that exhibited by the modeled

al., 2009 are graphical models for sequential decision mak-agents. The exponential growth in the number of models over
ing in uncertain settings shared by other agents. I1-DIDs magime also further contributes to the dimensionality of the state
be viewed as graphical counterparts of I-POMORsny-  space. This is complicated by the nested nature of the space.
trasiewicz and Doshi, 2005They generalize DIDETatman While we may solve I-DIDs exactly if the number of mod-
and Shachter, 1990which may be viewed as graphical coun- els of others is finite, we are unable to scale to large problems
terparts of POMDPs, to multiagent settings analogously t@r even longer horizons for small problems. One way to miti-
how I-POMDPs generalize POMDPs. Importantly, I-DIDs gate the intractability is to group together behaviorally equiv-
have the advantage of decomposing the state space into vagtent modeldRathnaset al., 2006; Pynadath and Marsella,
ables and relationships between them by exploiting the do2007 thereby reducing the cardinality of the model node.
main structure which allows computational benefits in com-Doshiet al. [2009] proposed an approximation technique for
parison to I-POMDP$§Doshiet al., 2009. solving I-DIDs based on clustering models that are likely to
I-DIDs contribute to a growing line of work that includes be behaviorally equivalent. Solutions of multiagent problems
multiagent influence diagrams (MAID$Koller and Milch,  up tosix horizons were shown using these approaches.
2001, and more recently, networks of influence diagrams Although exact approaches face significant hurdles in scal-
(NIDs) [Gal and Pfeffer, 2003 MAIDs objectively analyze jng tg realistic problems, nevertheless exact solutions play an
t_he game, e_ff_|C|entIy computing the Nash equilibrium Pro-important role: they serve asptimal benchmarks for solu-
file by exploiting the independence structure. NIDs extendions provided by approximation techniques. In this paper, we
*Prashant Doshi acknowledges partial support from granimprove on the previous approach of exactly solving I-DIDs.

#FA9550-08-1-0429 from US AFOSR. The authors thank Prof. Reid/We reduce the model space by grouping behaviorally equiva-
Simmons for discussions leading to changes in this paper. lent models. A behavioral equivalence class contains models
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that exhibit identical solutions for all time steps. We further
compact the space of models in the model node by observing
that behaviorally distinct models may prescribe identical ac-
tions at a single time step. We may then group together these
models into a single equivalence class. In comparison to be-
havioral equivalence, the definition of our equivalence class
is different: it includes those models whose prescribed action
for the particular time step is the same, and we caladtion
equivalence. Since there are typically additional models than
the behaviorally equivalent ones that prescribe identical ac-
tions at a time step, an action equivalence class often includes
many more models. Consequently, the model space is partizigure 1:(a) A generic level > 0 I-ID for agenti situated with
tioned into lesser number of classes than previolRathnas  one other agent. The hexagon is the model node (}/,) and the
et al., 2006 and is bounded by the number of actions of thedashed arrow is the policy link(b) Representing the model node
other agent. and policy link using chance nodes and dependencies between them.
We begin by solving the individual models in the initial The decision nodes of the lower-level I-IDs or IDs {1, m7 ;1)
model node to obtain the policy trees. These trees are merg@de mapped to the corresponding chance nodgs A4), which is
bottom-up to obtain a policy graph. As a result, behav-indicated by the dotted arrows.
iorally equivalent models, which have identical policy trees,
are merged. We further group models at each time step whos . .
prescribed actions at that step are identical. We show ho i eag;h lﬁvel.lf_ 1 I-ID 'f] transfofrmeq mtlo a phanc% npded.
we may compute the probability with which an equivalence pecifically, ifOPT Is the set of optimal acltlons 0 }alne
class is updated to another class in the next time step. The?é( solving the -ID (or ID), thenPr(a; € 4;) =

[OPT]
probabilities constitute the new conditional probability distri- I @; € OPT, 0 otherwise. The conditional probability ta-
bution of the model node. We discuss computational saving8!® (CPT) of the chance nodd,;, is amultiplexer, that as-
and theoretically show that the approach preserves optimagumes the distribution of each of the action node}, (4%)
ity for some cases. For other situations, we still can obtairdepending on the value dilod[);]. The distribution over
a good approximation using our approach. We demonstratd/ od[M;], isi’s belief overj’s models given the state.

the performance of our approach on two problem domains
and show significant time savings in comparison to previous
approaches.

2 Background: Interactive DID

We briefly describe interactive influence diagrams (I-1Ds) for
two-agent interactions followed by their extensions to dy-
namic settings, I-DIDs, and refer the readef@mshiet al.,
2009 for more details.

2.1 Syntax

In addition to the usual chance, decision, and utility nodes, IFigure 2:A generic two time-slice levell-DID for agenti. Notice

IDs include a new type of node called timedel node (hexag-  the dotted model update link that denotes the update of the models

onal nodeM;,—1, in Fig. 1(a)). The probability distribution  of j and of the distribution over the models, over time.

over the chance node,, and the model node together rep-

resents agents belief over itsinteractive state space. In I-DIDs extend I-IDs to allow sequential decision making

addition to the model node, I-IDs differ from IDs by having qyer several time steps. We depict a general two time-slice I-

a chance node};, that represents the distribution over other pp i, Fig. 2. In addition to the model nodes and the dashed

agent's actions, and a dashed link, callqebicy link. policy link, what differentiates an 1-DID from a DID is the
The model node contains as its values the alternative comyngel update link shown as a dotted arrow in Fig. 2. We

putational models ascribed lbyo the other agent. We denote briefly explain the semantics of the model update next.

the set of these models byt;,—,. A model in the model " rpq hqate of the model node over time involves two steps:

node may itself be an I-ID or ID, and the recursion termi- g o¢ “given the models at time we identify the updated
nates when a model is an ID or a simple probability distribu-got of models that reside in the model node at time 1.

tion over the actions. Formally, we denote a modej @S,  gecqyse the agents act and receive observations, their mod-

mji—1 = (bji-1,0;), whereb;,_, is the levell — 1 belief,  els are updated to reflect their changed beliefs. Since the
andd; is the agent'drame encompassing the action, observa- set of optimal actions for a model could include all the ac-
tion, and utility nodes. We observe that the model node andions, and the agent may receive any ong(®f| possible

the dashed policy link that connects it to the chance ndde, observations, the updated set at time step 1 will have
could be represented as shown in Figh)1The decisionnode  up to| M}, ,|[4;(|Q;| models. HerejM’, | is the num-
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graph. First, note that solutions of the models could be repre-
sented as policy trees. Each node in the policy tree represents
an action to be performed by the agent and edges represent
the agent’s observations. The policy trees may be merged
bottom-up to obtain a policy graph, as we demonstrate in
Fig. 4 using the well-known tiger probletiKaelblinget al.,

19994. Analogous to a policy graph in POMDPs, each node
in the graph is associated with a set of models for which the
corresponding action is optimal.

Figure 3: The semantics of the model update link. Notice the Q Q tme -0 Q @ ime -0

growth in the number of models in the model nodé #t1 in bold. o o

Q0 99=0Q0p 0~

*_ GL GR *

ber of models at time stefy |A;| and |2;| are the largest
spaces of actions and observations respectively, among all é Q GS \d§
o (b)

the models. The CPT af/od[M; ;] encodes the function, e

¢ t L pttl ichis 1i iefl i ’ _ v ,
T(bj,l—h a;,0; ’bj,l—l) which is 1 if the be|IEf)jvl_1 in the ctons node ahelst Obseryations edge abes)
modelm!,_, using the action:! and observation’*" up- R et R om ot coor

dates tob!t! | in a modelm’’!,; otherwise itis 0. Second, _ _ _
we compute the new distribution over the updated modelsT/9ure 4:(a) Example policy trees obtained by solving three mod-
given the original distribution and the probability of the agent€!s of j for the tiger problem. We may merge the three L nodes to
performing the action and receiving the observation that le@ptain the policy graph iiib). Because no policy trees of two steps

to the updated model. The dotted model update link in thét"e identical, no more merging is possible.

I-DID may be implemented using standard dependency links

and chance nodes, as in Fig. 3, transforming itinto a flat DID.  Implicit in the procedure of merging policy trees is the fact
that if pairs of policy trees are identical — resulting from be-

2.2 Solution haviorally equivalent models — they are merged into a single

Solution of an I-DID (and I-ID) proceeds in a bottom-up man- representative tree. The following proposition gives the com-
ner, and is implemented recursively. We start by solving thelexity of merging the policy trees to obtain the policy graph.

|eVe| 0 mOde|S, Wh|Ch may be traditional IDs. Their SO|uti0nS Proposition 1 (Comp|ex|ty of tree merge)\/\brst_ca% Ccomr
provide probability distributions which are entered in the cor-plexity of the procedure for merging policy trees to form a

responding action nodes found in the model node of the level . : AT=1yIM ;4| : ;
1 I-DID. The solution method uses the standard Iook—aheaeéo“(:ygraph'SO(“QJ| )*7=21) where T isthe horizon.

technique, projecting the agent’s action and observation se-

quences forward from the current belief state, and finding thes g, Complexity of the policy tree merge procedure is pro-
possible beliefs that could have in the next time step. Be- portional to the number of comparisons that are made be-
cause agent has a belief ovej’s models as well, the look-  tyeen parts of policy trees to ascertain their similarity. As
ahead includes finding out the possible models fheduld  he procedure follows a bottom-up approach, the maximum
have in the future. Each ofs level 0 models represented nymper of comparisons are made between leaf nodes and the
using a standard DID in the first time step must be solved tQyorst case occurs when none of the leaf nodes of the differ-
obtain its optimal set of acUons._Thesg actions are combinegn; policy trees can be merged. Note that this precludes the
with the set of possible observations tiiabuld make in that merger of upper parts of the policy trees as well. Each policy
model, resulting in an updated set of candidate models (thatee may contain up t{2,|7~" leaf nodes, wherd is the
include the updated beliefs) that could describe the behaviggrizon.” The case whenJ none of the leaf nodes merge must

of j. Beliefs over these updated set of candidate models argecyr when the models are behaviorally distinct. Hence, at

calculated using the standard inference methods through th (T—1yIMO, | ;
dependency links between the model nodes. rﬁOStO(OQJ' )7a77) comparisons are performed

. . . Intuitively, merging policy trees is analogous to grouping
3 Aggregating Models Using Action behaviorally equivalent models, whose entire policy trees are
Equivalence similar. The utility of grouping behaviorally equivalent mod-
s toward reducing the model space is well knd®athnas

As mentioned before, we seek to group at each step thoﬁal” 2006; Pynadath and Marsella, 2007

models that prescribe identical actions at that time step. WE
describe our approach below. 3.2 Action Equivalence

3.1 Policy Graph and Behavioral Equivalence Definition

Solutions of individual I-DIDs and DIDs that represent the Notice from Fig. 4p) that the policy graph contains multiple
models of other agents may be merged to obtajpolécy = nodes labeled with the same action at time steps 0 and
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dle class with actiorl, and the singleton class with actiGhR
att = 1. Consequently, the update functien,and therefore
the CPT ofMod[M;,], is no longer deterministic (an indi-
cator function) but is probabilistic

The probability,Pr(Mﬁlf | MY af, ol T, is zero triv-
ially if o} is not the optimal action for cIath;’ 1- Other-
wise, we show how we may derive the probability of class,
Mﬁl’f, given M’7_, and an action-observation combina-
tion.

As we expect, the aggregation at timenay not impact
the probability distribution ofj’s behaviors at other time
steps. The revised probabilityr(/vl;tlf | M3T, af, ol

must satlsfy two constraints given below (for aII vaIues of

t—1  t— t
M1, andoj)

_ o Const.1: Pr(MEPIMLY 17aj,of"’l)
Figure 5: (a) We may group models that prescribe identical ac- a 7 !

_ t+1 t+1
tions into classes as indicated by the dashed bdtggnnotations - ij“ eMGLy Pr(t 1|M 1:45,077)
are example probabilities for the models associated with the nodes Const.2 : Z/\/{t o Pr(m ;*ll UMGT L al, oﬁ“)
Probabilities on the edges represent the probability of transition t—1 -1 ¢
(©) . g P > P y Pr’(./\/l“ 1|m]l 1,aj ,0%)
between classes given action and observation. b+
_Z (mjl 1|m_]l 17a]70] )
t—1 ¢t
Pr(m}, m;— 1|m], 1)@ ’Oj)

t = 1. The associated models while prescribing actions that
are identical at a particular time step, differ in the entire be- The first constraint ensures the correctnesgbehavior
havior. We call these modettionally equivalent. Action  att + 1 while the second preserves the joint probability dis-
equivalence further partitions the model spaté¢,_,, into  tribution of j's behaviors at adjacent time stepsy- 1 and
classes, as we show in Fig.&g( If more than one action is t+ 1. . . .
optimal for a model, we may break ties randomly. By solving the first equation above, we get:

From Fig. 5@), the partition of the model set, ML 41
Mjl 1» induced by action equivalence at time step O is Pr(M Jil— 1|sz 17?;1709 ) = )
(M0 MTOTY, where M%) is the class of models g g, PrOmSisa e, ot I)Pi(wzf ‘t s
in the model space whose prescribed action at 0 is L, Eoata Primgalmii_y.a5™05)
and/\/ltl is the class of models whose prescribed action 1 1y ) 1)
att — 0is OL. Note that these classes include the behavr(my;_yImj, 4, a5,057") is equivalent to ther func-
iorally equivalent models as well. Thus, all models in a clasgion.  As for the second constraint, we may simplify
prescribe an identical action at that time step. Furthermore dtr(m},_,m’ 1, a7, o) to Pr(m!, _,), and further get:
t = 1, the partition consists of 3 action equivalence classes
and, att = 2, the partition also consists of 3 classes.

t— 1702)

Revised CPT ofMod Node Pr(MFEP MG at ofth) = .
As we mentioned previously, the nodéod[M! 1] in the Zoatitp g Prmy DBt m im1,05,057)
model nodeM/! !, has as its values the different models as- Zoatt_y PrOms)

cribed to ageny at timet + 1. The CPT ofMod[M'T!,]

J,l—1
1 1
jl—1 t t+ bt+ )

b AT s RN VLTS bi(mj,_1)7(b5 105,05
LMot | em!

i i t t t+1 pt+1 il 1—1"™j,1-1 1

implements the functlonr(b _1,a5,0;5 b 1), which is i z i B

1if %, ; in the modelmﬁl | updates tobt“1 in model R ' @)
t+1

miy using the action-observation combination, otherwisewhere b, (m i 1) is i's belief over the model ofj at ¢
it 1Is 0. However, now that the models have been aggregated bt is the belief in the modelnt and bt
into action equivalence classes, this CPT is no longer valid. -t del m™1 I ofh q .lf L Iélfl q
As we see from Fig. %), updating an equivalence class is in mode m; 111 n other words, It we could fin
given an action-observation combination may lead into mula valid Pr(M7|MGT,,af,0ft!) that meets for all
tiple classes at the next time step. For example, updating»ﬁl 1,at L and Ot in Eq. 1 by satisfying the second con-
M2 (left class att = 0) with action L and observa- straint, we could use Eq. 2 to compute the revised CPT of
tion GR leads into the Ieft class with actio@L and the Mod node.
middle class with action. at¢ = 1. Similarly, updating Intuitively, Eq. 2 gives the proportion of the total probabil-

/\/lt oy 1 with action and observatiot/ L leads into the mid- ity mass assigned to individual models in the clab!s;’?_l,
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that update to models in the clas&/,l;j}f. We note that reduction in the size of the state space. In doing so, we ad-

updating via Eq. 2 becomes approximate if there is ndditionally incur the computational cost of merging the policy

Pr(MEEPIMET | al, ot suiting all m?",ai7", and  trees, which isO((];|T-1)M5i11y (from Proposition 1).

o' values in Eqg. 1. In other words, our approach becomedVe point out that our approach is applied recursively to solve
approximate if Eq. 2 is used for updates in all cases. I-DIDs at all levels down to 1. _
What remains now is how we computgrm’,_, ) in Eq. 2. Analogous to[Rathnaset al., 2006, which showed that

If + = 0, this is straightforward and may be obtained as:considerations of behavioral equivalence do not upset the so-

lution of I-DIDs, we show th r in ionall iva-
bi(m$,_,) = X, Pr(mt,_,|s)Pr(s), wherePr(m§, _,|s) 410N O ~DIDS, We Show [nat aggregating actona’y equive
is given in the CPT of thélod node at time 0. For subse- er:n m(I)E € 52 Fgg:gr\rﬁj affeec(:)tptli:ga Ir}é).batl)?l(i:te digtﬁggtri?)%aol?n
guent time steps, this is a challenge since we have aggregatga bgh g: furth h ph d'y ive distributi
the individual models into action equivalence classes attime” > e,, aviors we further prO\;wet at(; € predictive distribution
and have obtained the probability of each class. We may ovelVerJ s-a.lctions rer.nain.s unchange i a.t a”Y t'me siep.
come this obstacle by computing the distribution over the inProposition 2 (Optimality). The predictive distribution over
dividual updated models as in the original I-DID as well and.j’S &ctions on aggregating the model space due to action
caching it. This is done, of course, before we begin comput&quivalence s preserved.
ing the probabilities of equivalence classes. A marginal of

: ; roof. We prove by showing that for some action’*?,
the previously cached values over all physical states for the P y g J

1 : 1
particular model results in the required probability. Pr(a}"") remains unchanged whekt} )", is replaced by
We illustrate the application of Eq. 2 to the policy graph of a partition. Let/\/l;iﬁ’{) be the set of models whose optimal
Fig. 5(a) below: action isa™" with probability 1:

Example For simplicity, let the left action equivalence class,

= . Pr(a®™) = ' p Pr(a®™mi*tt YPr(mit!
M3%1, comprise of two modelsy!,_, andm?,_,, both (@57 = 2t enagiry Priay ™ imgim, ) Pr(m;ic,)

. . . o . ; —_ ) t+1
of which prescribe actiorl.. Let i's marginal belief over = ij_ﬁilemzjﬂf Pr(mj;-,)
these two models be 0.35 and 0.3, respectively (see Fip.5( =3, Dot MLt epgha Pr(mitL |imf,_y, al,
. t=0,1 . . . . . Jil— A=100g1— Jrl= ’
Updating/\/lj’lf1 using the action-observation combination o) x Pr(mt, ,ab,00t")

. t=1,1 t=1,2 .,

(L, GR) leads into two classes\;;~; and M "7 With  Here, we do not show the sum overalando’ ™" for clarity. Notice
the_ probabilities 0.54 and 0.46, rt_aspectively (see Fig))5( that Pr(m't"  [m?,_,, a’, o/*") is equivalent tor(-).

This is because the model; , , which updates to the model ' ‘

7779
in M‘7 ] using (L GR) has the probability proportion (05 1 _yhafof Tl

2 tH1p 4 tha 3.1—13559;
M] l*l’Mj,lfl N

0.35 2 ; ; Pr(af™) =30 : 7 T
o3r03 — 0.94. Model m3i_q which updates to a model in J a EM?;?_l Pr(mt, .al,0i"h)
M1 has the probability proportiog2:2,— = 0.46. Sim- x Pr(m, i, af, ot Pr(MYT_ a0t
ilarly, updating M’ ;% using the action-observation combi- Pr(mj,_,,a},0}™") simplifies to Pr(mf,_,) and analogously

nation of (I, GL) leads intoM!512 and M!513 with the  for Pr(Myi_, . af,05"") if the second constraint is met (in Sec-
Jit— 7,0 . 5
probabilities 0.54 and 0.46 respectively. We shall note thati®" 3-2)-

. — . . t t+1 ;t+1
updating M!7! | becomes approximate at= 1 since no Pr(at) = i g oy AT Eai M M
b 1,p 2.q ¢ i1 Ta; )= 2.4 Yt bimi, )

probability values,Pr(M;7 [M}} 1, aj,0;""), could be mba_ P0G

found to satisfy Eq. 1. X by (mf 1) Pr(M;],)
In summary, we implement the proposed method by reUsing Eq. 2 we get:
vising the model update phase in the procedure for solving
I-DIDs [Doshiet al., 2009. We aggregate actionally equiva- ~ Pr(aj™) = Pr(MSIEPIMET b, 05 ) Pr(METy)
lent models and represent their probabilistic update using the q

new CPT for the nodaZod[M ! ]. Recall thatM 17 is the set whose optimal actiond$".
Thus, the last line (with summations not shown) is used to

4 Computational Savings and Optimality obtainPr(az.“) given the action equivalence classedl

The complexity of exactly solving a levél-DID is, in part, We notice that the solution optimality is ensured only if

due to solving the lower-level models of the other agent, and valid value,Pr(M T1T | M37_, af, of*') as computed in
given the solutions, due to the exponentially growing spacéq. 1, could be found for all values mrﬁ;‘lil,a;‘l, ando§

of models. In particular, at some time stefthere could be  at timet. If such a value could not found in the updates we
at most M7, [(14;]|€2])* many models, wherd19, | is  have to skip the aggregation in order to preserve the optimal-
the set of initial models of the other agent. AlthougH?, ,| ity. Itis quite often that we can not find a suitatste(M] ;17
models are solved, considering action equivalence bounds thev’7_,, a, o/™") due to constrains in Eq. 1. We may still
model space to at mogd ;| distinct classes. Thus, the cardi- perf’orm the aggregation and get a good approximation by us-
nality of the interactive state space in the I-DID is boundeding Eqg. 2. Consequently, our method becomes approximate

by |S||A4,| elements at any time step. This is a significantsince the updates are inexact in some time steps.
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Figure 6: Performance profiles for the multiagent tiger and MM problems generated by executing the solutions obtained using different
exact approaches. (9,Profiles for level 1 I-DIDs. Notice that AE maintains less classes at larger horizons in comparison to BE and never
more than 4;|. (¢) Solving level 2 I-DIDs reveals the efficiency facilitated by aggregation using action equivalence.

5 Experimental Results equivalence in comparison to behavioral equivalence. Here,

We evaluate our improvement to the exact approach using ad? approaches are recursively applied to the lower level I-
tion equivalence (AE) in the context of both the multiagentP!PS that represent models gfas well.

tiger [Nair et al., 2003; Gmytrasiewicz and Doshi, 2Q0&nd _
a multiagent version of the machine maintenance (MM) prob- Level2 T Time (s)

lem [Smallwood and Sondik, 1973We compare its perfor- AE BE _ Exact

- . : Tiger 3 12.35 2043  49.29
mance with the previous exact method that uses behavioral 6 3756 8914 *

equivalence (BEJRathnaset al., 2004 and the exact ap- 11 33141 M *
proach with no refinement (Exadtposhiet al., 2009. We MM 3 1729 3315 6413
show that AE solves the I-DIDs more efficiently than its coun- 5 54.63 120.31 *
terparts by comparing the time taken in achieving a level of 10 423.12 * *

expected reward. We experimented with both level 1 and level
2 1-DIDs. We shall note that AE method approaches the exacTable 1:Aggregation using action equivalence scales significantly
although the updates are inexact at some steps. better to larger horizons. All experiments are run on a WinXP plat-
In Figs. 6@) and(b), we show the reward gathered by ex- form with a dual processor Xeon 2.0GHz and 2GB memory.

ecuting the policy trees obtained from solving the I-DIDs for

level 1. The time consumed is a function of the initial num- Finally, as we show in Table 1, we were able to solve level 2
ber Of models and the horizon Of the I'DID, bOth Of Wh|Ch 1-DIDs over more than 10 horizons using AE (|(.)4;1;25), im-

are varied beginning withM°| = 50. We observe that the proving significantly over the previous approach which could

approaches which aggregate the model space perform signitomparably solve only up to 6 horizons.
cantly better than the traditional exact approach. In particular,

these approaches obtain the same reward in much less ti Discussion
because they are able to solve the same I-DID more quickly:

However, the time difference between AE and BE is not sig4-DIDs provide a general formalism for sequential decision
nificant, although AE maintains significantly less number ofmaking in the presence of other agents. The increased com-
model classes at each horizon as is evident from Fids. 6( plexity of I-DIDs is predominantly due to the exponential
This is because solution of level 0 models in our problem dogrowth in the number of candidate models of others, over
mains is fast and AE incurs the overhead of computing thdime. These models may themselves be represented as I-DIDs

update probabilities. or DIDs. We introduced the concept of action equivalence
The reduced time needed to obtain a level of reward is morgvhich induces a partition of the model space. The resultant
evident for level 2 I-DIDs, as we see in Figsch(Level 21-  number of classes is often significantly less in comparison to

DIDs for both the problem domains show a significant speedhose obtained by considerations of behavioral equivalence.
up in solving them when models are aggregated using actiomhe empirical performance demonstrates the computational
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savings provided by this approach and its significant improve-
ment over the previous exact technique. We note that action
equivalence could be seen as a less stringent criteria for model
aggregation compared to behavioral equivalence, leading to
more models in a class and less classes.
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